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Abstract:
Controlling reservoir fluid flow is important for maximizing petroleum production through
wellbores. A major challenge that reduces the production of oil is early breakthrough of
secondary fluids to the wellbore perforations. This occurs due to the low viscosity of gas
and water relative to oil, and the heterogeneity of reservoir permeability. Autonomous
inflow control devices represent a new self-regulating technology that helps to increase
petroleum production, particularly oil, by restricting the production of unwanted fluids like
gas and water into the wellbores. This study develops smart systems based on machine
learning models to predict the performance of autonomous inflow control devices. Several
machine learning models are evaluated including adaptive neuro fuzzy inference system,
hybrid adaptive neuro-fuzzy inference system genetic algorithm, artificial neural network
and support vector machine and their prediction performance is compared to that of linear
regression, full quadratic regression model and the mathematical autonomous inflow control
device performance model. Each model is developed to estimate the differential pressure of
Equiflow autonomous inflow control devices based on ninety experimentally recorded data
records. The range of equiflow autonomous inflow control device, viscosity, density and
flow rate are the input variables and differential pressure is the output dependent variable
of each model. The prediction accuracy of the models is assessed in terms of several
standard statistical accuracy performance measures. These performance indicators confirm
that the machine-learning models provide superior prediction accuracy for autonomous
inflow control device differential pressure. Overall, the support vector machine achieves
the most accurate predictions of all the models evaluated recording root mean square
error of 0.14 Mpa and coefficient of determination of 0.98. On the other hand, the linear
regression model records the lowest prediction performance, highlighting the non-linearity
of the autonomous inflow control device processes.

1. Introduction
Well completion technology has improved remarkably dur-

ing the past three decades (Eltaher, 2017). “Smart” well com-
pletion technologies, many providing real time data recording,
are being developed for oil and gas field deployments around
the world (Glandt, 2005). Shutting-in zones providing poor
production performance, remotely back and monitoring the
production of wells are some of the capabilities of these
smart technologies (Jovanov, 2016). The heterogeneous na-

ture of reservoirs causes several production-related problems,
including viscous fingering of reservoir fluid movements and
production of unwanted fluids, such as water and gas, espe-
cially in long horizontal wells (Chengzao, 2017; Zhao et al.,
2019; Cheng et al., 2020). Advanced well completions utilize
downhole flow control technology like interval control valves,
inflow control devices (ICD) and autonomous inflow control
devices (AICD) to provide practical solutions to the production
problems and constraints (Gimre, 2012; Eltaher, 2017).

Maximizing oil recovery from subsurface reservoirs is a
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Fig. 1. Schematic of fluid breakthrough in horizontal and vertical wells (modified after Aakre et al., 2013).

massive challenge for the oil production sector. Increasing
the reservoir contact per well and decreasing the negative
effects of water and gas breakthrough are the most important
factors to consider when striving to increase oil recovery
from a reservoir and enhance oil production rate. Traditionally,
vertical wells were used to access oil reservoirs. Although the
drilling of vertical wells is a simpler technique, such wells
have limited reservoir contact (Mikkelsen et al., 2005; Aakre
et al., 2013).

Fig. 1 reveals why better reservoir contact is achieved
by drilling deviated wells, especially when they include long
horizontal or low-angle sections. In horizontal wells early
breakthrough of water and/or gas is prone to occur in both
homogeneous and heterogeneous reservoirs. In homogeneous
reservoirs the fluid friction is the only reason causing pressure
drop within the wellbore. That pressure drop is proportional
to the density, viscosity, flow rate, length and diameter of the
well. Hence, pressure in the toe of the well is greater than
pressure in the heel of the well. As pressure drop in the heel
of the well increases, it leads to more oil production in the
heel of the well, causing early breakthrough of gas and/or
water to occur in the heels of horizontal wells (Al-Khelaiwi
and Davies, 2007; Aakre et al., 2013).

Heterogeneities, for example permeability differences
along the wellbore, may also result in early gas/oil break-
through. In these situations well logs are used to determine
the most susceptible zones with high permeability. Such
zones need to be avoided to delay early gas/oil breakthrough
or decrease the negative effects of such breakthrough by
back unwanted fluid production. Therefore utilizing ICDs
and AICDs in horizontal wells is necessary to diminish the
negative effects of early gas/oil breakthrough. In vertical wells,
fluid breakthrough tends to occur at the highest and lowest
perforations, because they are closer to gas cap (if present)
and aquifer, respectively (Aakre et al., 2013).

Traditional ICD, controlled only from the surface, have
been used as production aids since the 1990’s (Eltaher, 2017).
However, this technology generally proved to be too expensive
due to it requiring an energy source. These constraints meant
that only a limited number of them (typically four to five
ICDs) could be installed in single well. Consequently, most
operating companies abandoned this early device due to its
high cost and low reliability (Gao et al., 2007; Halvorsen et al.,
2012). Recently, hydraulic control systems have substantially
improved, leading to more extensive uptake and reliability of

down-hole control devices.
AICD are a new technology that has stimulated industry in-

terest due to their low costs, simplicity, precision, autonomous
operation, and, because they do not require an energy source
(Aakre et al., 2013). The performance of these devices is
controlled by viscosity differences of fluids and fluid mechan-
ics principles, including Bernoulli’s principle, and static and
dynamic fluid pressure variations through the valve, making
them powerful and efficient operating devices (Aakre et al.,
2014; Zhao et al., 2014; Jovanov, 2016; Eltaher, 2017). Also,
unlike ICDs, a large number of them can be used in one well
(Halvorsen et al., 2012).

After breakthrough, AICDs significantly reduce unwanted
fluid production (e. g., water and gas), which increases oil pro-
duction and also reduces costs of separation and re-injection of
unwanted fluids produced along with oil to the surface (Aakre
et al., 2013; Andreas et al., 2019; Lei et al., 2020). Cochua et
al. (2018) and Gurses et al. (2019) introduced a cyclone type
AICD which is similar to Equiflow AICD and performs based
on the viscosity and density of flowing fluids. Zhang et al.
(2019) designed a new Cyclone Inflow Control Device using
the principle of the cyclone to deal with fine particles like sand.
Equiflow is a self-regulating inflow control device with no
moving parts that is based on the fluidic diode principle (Fripp
et al., 2013), i.e., it is a passive device that displays reduced
flow resistance in its preferred direction of flow compared to
counter directions. The performance of the valve is connected
with the properties of the producing fluid including viscosity,
density and flow rate (Jovanov, 2016). An Equiflow AICD
comes in four different ranges which are tailored to a range
of oil viscosities from very light oil to very heavy oil (Eltaher,
2017). Table 1 displays details of the four versions and their
properties.

Fig. 2 illustrates the general structure and size of Equiflow
AICDs and the fluid flow-pathways for high (such as heavy
oil) and low (like water) viscous fluids (Pedroso et al., 2020).

Fluids with low viscosity, including gas and water, take
the longer path and begin to spin in the vortex of the device
(Fig. 2). As a result, pressure drop increases and this, in turn,
further acts to choke the gas and water production. Due to
the effect of viscous forces, viscous fluids take a more direct
pathway with lower pressure drop (Jovanov, 2016). Therefore,
when gas or water breakthrough occurs, the Equiflow AICD
significantly restricts unwanted fluid production from that
specific section while promoting increased oil production from
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Table 1. Equiflow AICD specialized designs (Eltaher, 2017).

No Design Oil viscosity range (cp) Oil type Fluid restrictions
1 Range 1 0.3 - 1.5 Very light Water and Gas

2 Range 2 1.5 - 10 Light, medium Water and Gas

3 Range 3 3 - 200 Light, medium heavy Water and Gas

4 Range 4 150 + Heavy, very heavy Water and Gas

Fig. 2. Equiflow AICD (a) size, (b) water-flow pathway (right) and (c) oil-flow pathway (left) (Fripp et al., 2013; Iqbal et al., 2015).

other compartments in the well completion (Least et al., 2012;
Zhao et al., 2014; Porturas, 2016).

There is an optimum fluid viscosity for which production
is favored, for each Equiflow AICD. The minimum differential
pressure occurs at the optimum viscosity and beyond the
optimum viscosity the differential pressure increases. As a
result, the performance of the Equiflow AICD changes with
changing fluid viscosity and, in certain conditions and fluid
compositions this can act to restrict the production of oil (Least
et al., 2012).

To meaningfully predict an AICD’s flow performance it
is necessary to develop a model that is able to estimate the
differential pressure across the AICD accurately using a small
data set. Unfortunately, in field conditions it is not possible to
record numerous data measurements of viscosity and density
of the reservoir fluid. To do so is both technically difficult
time consuming and costly. Moreover, reservoir density and
viscosity vary across limited ranges. Therefore, a practical
method must be able to model the performance of the Equiflow
AICDs accurately in field conditions based upon a limited
set of data. Accurate AICD prediction models are beneficial
for reservoir simulation, assisting them to accurately predict
the production rate and efficiency of reservoirs on a field-
wide basis (Eltaher, 2017; Pedroso et al., 2020). Conventional
autonomous flow control device (AFCD) formula, Halliburton
model, Aadnoy model and the mathematical AICD perfor-
mance model are the most popular mathematical models used
to estimate the differential pressure of AICDs (Jovanov, 2016;
Eltaher, 2017; Eltaher et al., 2019). However, results show
that these mathematical models are not able to model the
optimum performance of AICDs accurately. In these models,
for a constant differential pressure, as viscosity increases
the flow rate also increases. However, this is incorrect, as
outside the optimum viscosity range the flow rate actually
decreases in these devices. On the other hand, mathematical
models can only be developed for one valve, and when

there are several valves in a well, a separate model must be
developed for each valve. In recent years, many soft computing
techniques and machine-learning methods, some hybridized
with efficient optimization algorithms, have been adopted as
powerful approaches to predict various parameters associated
with complex systems in the oil and gas industry (Rabiei
et al., 2015; Jovic et al., 2016; Wood, 2018; Yavari et al.,
2018; Ashfari et al., 2019; Barbosa et al., 2019; Rashid et
al., 2019; Sabah et al., 2019; Yilmaz et al., 2019; Elkatatny,
2020; Gamal et al., 2020; Ghorbani et al., 2020; Mehrad et
al., 2020; Moazzeni and Khamehchi, 2020; Ossai and Duru,
2020; Somehsaraei et al., 2020; Abad et al., 2021; Hazbeh et
al., 2021; Mardanirad et al., 2021; Mohamadian et al., 2021).

The aim of this study is to develop an accurate and reliable
model to estimate the performance of Equiflow AICDs and
to evaluate various machine learning and multiple regression
models that could potentially achieve this. As there is an opti-
mum viscosity for each specified Equiflow AICD, successful
models must be able to identify the optimum performance
of Equiflow AICDs accurately under various downhole con-
ditions and fluid combinations, i.e., oil, gas and water cuts.
Several studies have been performed that simulate the effects
of both ICDs and AICDs on oil recovery, using commercial
software including OLGA, ROCX, Petrel and Eclipse. Mathe-
matical models are combined with such software to calculate
the pressure drop associated with smart valves. However, the
mathematical models used by the software typically do not
consider the optimum viscosity of these valves. Hence, the
results of this study could be used to increase the accuracy of
such simulations (Mikkelsen et al., 2005, Aakre et al., 2013;
Eltaher, 2017; Eltaher et al., 2019).

2. Data collection
Least et al. (2012) performed laboratory tests to assess

the performance of range 3 and range 4 Equiflow AICDs
in field-like conditions. The designed test set up includes a
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triplex pump, tank, pipes, and a circulating loop. A shell
and tube heat exchanger which is supplied with chilled and
heated water is utilized to control the temperature of the fluid
in the system. Most of the flow lines are also insulated to
assist with temperature control. The smart valve is placed on
the horizontally-oriented pipe and the system is configured to
measure the static pressure, flow rate and temperature at the
inlet and outlet of the AICD. The viscosity of the flowing
fluid is measured using a laboratory viscometer, set up in
accordance with the ASTM D-445 standard, and the density of
the fluid is determined based on the ASTM D-4052 standard,
in field-like conditions (Least et al., 2012) . Zhao et al. (2014)
also performed laboratory tests to measure the performance of
the range 2 Equiflow AICD simulating field like conditions.
Liquid testing required a two-phase-flow facility, specifically
designed to assess oil and water mixtures. Gas testing required
a nitrogen-gas-blowdown facility. For testing liquids, an oil-
water separator acted as a two-phase tank with a single triplex
pump circulating the test fluids (oil, water) in the flow loop.
During testing, fluid was drawn through either the oil suction
or water suction exits from the separator. A Coriolis flow meter
was used to provide the reference liquid flow rate and density
prior to entry into the AICD. A flowthrough circulation heater
provided test-fluid-temperature control. The AICD Range 2
utilizes similar fluid vectoring to the AICD Range 3 device.
However, the range 2 device includes a more autonomous
on/off type switching function whereas the Range 3 operates

in response to gradual changes in performance. Tests show
that the AICD range 2 is most effective with oil viscosities in
the 1.5-10 cP range (Zhao et al., 2014).

The viscosity, density and flow rate are the most important
properties of flowing fluids on which the design and perfor-
mance of the Equiflow AICD are based. Therefore, in all
models the viscosity, density, flow rate and range of the valves
are the input variables considered and the differential pressure
across the device is the output / dependent variable. 90 data
points are compiled from published evaluations of ranges 2, 3
and 4 Equiflow AICD (Least et al., 2012; Zhao et al., 2014).
The data set is divided into two parts, in which 80 % of overall
data are used to develop the model (training subset), and the
remaining 20 % are used to test the developed model (testing
subset). Table 2 shows detailed measured variable values for
each of 90 individual data records divided into training (72
records, 80 % of full dataset) and testing (18 records, 20 %
of full dataset) subsets.

Table 3 displays the statistical details of the data set.
Fig. 3 graphically displays the differential pressure versus

flow rate of flowing fluids with various viscosities for range
3 Equiflow AICDs. It illustrates that by increasing the flow
rates of the low-viscosity fluids, such as water, significantly
increases the differential pressure and reduces their production.
These relationships are clearly non-linear. Increasing fluid
viscosity reduces differential pressure, which continues until
a viscosity of 0.099. Further increasing the viscosity to 0.229,

Table 2. Equiflow AICDs performance data (Least et al., 2012; Zhao et al., 2014).

No. Independent variables Dependent variable

Range Viscosity (Kg/m·s) Density (S.G.) Flow rate (m3/day) Differential pressure (MPa)

33 3 0.001 0.994 2.889 0.400

34 3 0.001 0.994 6.432 2.510

35 3 0.001 0.994 7.468 3.530

36 3 0.001 0.994 8.286 4.516

37 3 0.010 0.849 5.887 0.400

38 3 0.010 0.849 9.812 1.482

39 3 0.010 0.849 11.992 2.530

40 3 0.010 0.849 14.772 4.454

41 3 0.045 0.849 8.286 0.400

42 3 0.045 0.849 17.171 2.517

43 3 0.045 0.849 19.406 3.551

44 3 0.045 0.849 21.422 4.585

45 3 0.099 0.865 6.596 0.393
46 3 0.099 0.865 13.246 1.475

47 3 0.099 0.865 20.278 2.517

48 3 0.099 0.865 26.165 4.488

49 3 0.229 0.881 5.451 0.400

50 3 0.229 0.881 18.424 2.496

51 3 0.229 0.881 22.186 3.482

52 3 0.229 0.881 25.347 4.544

Only the AICD Range 3 training records are shown. For all 90 data records see the Supplementary file.
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Table 3. Statistical parameters of input and output data.

No. Parameter Unit Minimum Maximum Average
1 Viscosity Kg/m·s 0.0002 1.002 0.5011

2 Density S.G. 0.79 0.995 0.8925

3 Flow rate m3/day 2.235 31.18 16.7075

4 Range - 2 4 3

5 Differential pressure MPa 0.109 4.585 2.347

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 5 10 15 20 25 30

D
if

fe
r
en

ti
a
l 

p
re

ss
u

re
 (

M
 P

a
)

Flow rate (m3/day)

Viscosity = 0.001

Viscosity = 0.010

Viscosity = 0.045

Viscosity = 0.099

Viscosity = 0.229

Fig. 3. Range 3 Equiflow AICDs differential pressure versus flow rate
performance curves (Least et al., 2012; Zhao et al., 2014).

however, increases the differential pressure again. It reveals
that the optimum viscosity of the range 3 Equiflow AICD for
any specific flow rate is between 0.099 to 0.229 Kg/m·s.

3. Mathematical model
Mathiesen et al. (2011) developed a function for Rate

Controlled Production valves to estimate the differential pres-
sure according to several experimental data. Eq. (2), which is
known as the conventional AFCD formula, is derived based on
a classical dimensional analysis for modeling the performance
of AICDs. This new formula has better prediction performance
than the other formulas applied, such as Halliburton’s method.
In particular, it provides better accuracy and physical rep-
resentation of multiphase-flow performance (Eltaher, 2017).
This formula is expressed as Eqs. (1) to (3) (Lauritzen and
Martiniussen, 2011; Mathiesen et al., 2011; Eltaher, 2017):

δP =

(
ρ

x−1
mix

µ
x−2
mix

)
bAICDqx (1)

ρmix = (αo)
a

ρo +(αw)
b

ρw +(αg)
c
ρg (2)

µmix = (αo)
d

µo +(αw)
e

µw +(αg)
f
µg (3)

where x is volume flow-rate exponent, bAICD is a constant
referred to as “strength of AICD” that has a dimension of
(length)−(x+2), x−2 is the viscosity function’s exponent, x−1
is the density function’s exponent, µmix and ρmix are volumetric
averages of fluid viscosity and fluid density, respectively, that
are defined by Eqs. (2) and (3). The term α is the volume
fraction of each phase and the parameters a,b,c,d,e and f
are mixture exponents each of which are usually assumed to

equal one (Eltaher, 2017). The subscripts o, w and g represent
oil, water and gas, respectively.

3.1 Mathematical model development
A genetic algorithm (GA) assists in the determination

of constant coefficients for the mathematical models based
on the available experimental data. GA was introduced by
John Holland in the 1960s using analogies to biological
evolution concepts (Goldberg and Holland, 1988; Holland,
1992a; Mitchell, 1996). GA conducts its searches of the fea-
sible solution spaces using metaheuristics that emulate natural
selection and other genetic processes. GA commences with a
randomly generated population of solutions subject to defined
limitations and constraints. At the end of each iteration the set
of solutions is ranked in terms of its prediction performance of
the dependent variable’s values for the population as a whole
and the attributes of the population amended accordingly. The
set of solutions are called population and each solution is
called a chromosome. Individual solutions (analogous to chro-
mosomes) evolves through a series of iterations (analogous
to generations). The next generation of individual solutions
(analogous to offspring) are created in several ways: (1) by
combining the attributes of two high-performing individual
solutions from the current iteration applying a crossover
operator, several of which are widely used; 2) applying a
mutation operator to certain attributes of high performing
solutions from the current iteration; and, 3) generating a
small, specified number of new individual solutions randomly.
Each individual solution is evaluated by a defined measure of
fitness (minimizing an objective function) during each iteration
to ensure that only the “fitter” high performing individual
solutions are either selected to progress to the next iteration,
or are involved in the crossover and mutation modifications to
create new solutions for the next iteration. This elitist strategy
helps the GA algorithm to progress steadily to optimum
solutions through a series of iterations. After several iterations
the GA ultimately converges to an optimum solution, although
there is a risk that it may become trapped at local optima rather
than reach the global optimum depending on the nature of the
solution space (Holland, 1992b; Mitchell, 1996; Velez-Langs,
2005; Rahul et al., 2011).

In this study, the differential pressure is the output of
all models evaluated. However, in order to develop models
and find the optimum constant coefficients of the models
using experimental data, the root mean square error (RMSE)
is employed as the objective function. The goal is to find
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Fig. 4. Flowchart for determining mathematical model coefficients applying a GA.

the constant coefficients of the model that have the least
error and provide the closest match with the collection of
experimental data records taken as a whole. Therefore, the
RMSE is typically considered as the objective function for GA
algorithms. The RMSE is calculated using the experimental
values of differential pressure (δPe) and predicted values of
differential pressure (δPp) using the mathematical model under
evaluation. RMSE is computed using Eq. (4):

RMSE =

√
1
n

n

∑
i=1

(δPe−δPp)
2 (4)

where n is the number of data records.
This formula is used in all models to determine the

optimum coefficients that have the least error and closest
match with the collection of experimental data records taken
as a whole.

The flowchart for implementing GA optimization is as
shown in Fig. 4.

Table 4 lists the control parameter values applied in this
study when implementing the GA.

Table 5 lists the range (lower limit and upper limit) of
mathematical model constants coefficients that are applied as
constraints for possible GA solutions.

Fig. 5 illustrates GA performance in determining the con-
stant coefficients of the mathematical model for the range 3
Equiflow AICD. It establishes that the determined constant for
the AICD performance model (Eq. (1)) has an RMSE value
equal to 0.533672 MPa. The lower diagram (Fig. 5) illustrates
the best determined values of the constants.

The lowest RMSE values determined for the ranges 2,
3 and range 4 are 0.283627, 0.533672 and 0.33228 MPa,
respectively. The tuned (optimum) coefficients for AICD per-
formance model for the ranges 2, 3 and 4 Equiflow AICDs are
displayed in Eqs. (5), (6) and (7) respectively, in which bAICD
is in

[
109 ∗8.64x(m)−(x+2)

]
that is produced for the following

units – viscosity (Kg/(m·s)), density (S.G.), flow rate (m3/day)
and differential pressure (MPa):

Table 4. Genetic algorithm control parameters.

No GA parameter Value
1 Population size 1000

2 Generation 2000

3 Selection method Roulette wheel

4 Mutation rate 0.8

5 Crossover rate 0.2

6 Elitism rate 0.05 * (Population size)

Table 5. Recommended constraint boundaries for constant coefficients
involved in a range 3 AICD mathematical models.

No Constant coefficient Lower limit Upper limit
1 x 0 3

2 bAICD 0 1

δP = 0.0000340491
(

ρ1.531432
mix

µ0.531432
mix

)
q2.531432 Range(2) (5)

δP = 0.0005393907
(

ρ1.527103
mix

µ0.527103
mix

)
q2.527103 Range(3) (6)

δP = 0.0036429406
(

ρ1.357872
mix

µ0.357872
mix

)
q2.357872 Range(4) (7)

4. Multiple regression models
Many engineering problems require the determining of

complex relationships between several variables (Khademi
et al., 2017). Regression analysis is widely used traditional
for such purposes. Linear regression is a special form of
regression models that utilizes linear functions to model the
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relationships among the influencing variables (Nathans et al.,
2012; Sadrmomtazi et al., 2013).

4.1 Multiple linear regression
In most systems, there is more than one influencing

variable, therefore requiring multiple linear regression (MLR)
analysis to predict the dependent variable. MLR attempt to
find the relationship between the multiple influencing or inde-
pendent variables and, usually, a single response or dependent
variable by minimizing errors. MLR can be expressed in
general terms by Eq. (8) (Sekki et al., 2015; Vickers, 2017;
Ciulla and D’Amico, 2019):

Y = a0 +
n

∑
j=1

a jX j (8)

where Y is the dependent variable, X j is the jth independent
(input) variable, n is the number of data records, and a
represents the partial regression coefficient (Khademi et al.,
2017). In this study, GA is used to determine the MLR
coefficients. The procedure, GA control-parameter values and
training subset sizes are the same as those applied to estab-
lish the coefficients of the AICD performance model in the
previous section. Viscosity, density and flow rate are the input
parameters and differential pressure is the dependent variable.

Fig. 6 displays the performance of GA for determining
the constant coefficients of MLR model for range 3 Equiflow
AICD. The determined constants have an RMSE of 0.75199
MPa. The lower diagram (Fig. 6) illustrates the determined
constants.

The lowest RMSE values achieved for the ranges 2, 3
and range 4 devices are 0.33943, 0.75199 and 0.60063 MPa,
respectively. The tuned (optimum) coefficients for the MLR
model for ranges 2, 3 and 4 of Equiflow AICDs are provided

in Eqs. (9), (10) and (11), respectively:

δP =−4.003913+14.2574148µ +3.94667315ρ

+0.09006775q Range(2)
(9)

δP =−12.02370690−6.40040759µ +13.37288776ρ

+0.23413315q Range(3)
(10)

δP =−17.43046162−0.75110657µ +18.64856115ρ

+0.27012850q Range(4)
(11)

4.2 Full quadratic multiple regression
A more comprehensive form of multiple regression, more

suited to curved relationships between variables, is the full
quadratic multiple regression method. The general form of full
quadratic multiple regression for dependent variable Y and k
independent variables X is expressed by Eq. (12) (Aiken et
al., 2012; Moraveji and Naderi, 2016):

Y = β0 +
k

∑
j=1

β jX j +
k−1

∑
i< j

k

∑
j=2

βi jXiX j +
k

∑
j=1

β j jX2
j j (12)

where β0 is the model intercept, β j is linear coefficient, β j j
is quadratic coefficient, βi j is interaction coefficient, Xi and
X j are independent variables, Y is the dependent variable
of the model and k is the number of independent variables
(Moraveji and Naderi, 2016). Formulating this for the AICD
model, viscosity, density and flow rate are the input variables,
differential pressure is the dependent variable and k is equal
to 3. GA is used to determine the constant coefficients of
the model. There is no lower and upper bound for constant
coefficients.
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Fig. 6. Performance of the genetic algorithm in determining the four constant coefficients (a0, a (viscosity), a (density); a (flow rate)) of MLR model. The
upper diagram shows the fitness values over multiple GA iterations (RMSE).
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Fig. 7. Performance of the GA in determining the ten constant coefficients for the full quadratic regression model involving three input variables. The upper
diagram shows the fitness values over multiple GA iterations (RMSE).

Fig. 7 displays the performance of GA in determining the
constant coefficients of the full quadratic multiple regression
model for the range 3 Equiflow AICD. The determined con-
stants have an RMSE value equal to 0.53891 MPa. The lower
diagram (Fig. 7) illustrates the determined optimum values of
the constants.

The lowest RMSE values achieved for the ranges 2, 3 and
range 4 are 0.204, 0.53891 and 0.272 MPa, respectively. The
tuned (optimum) coefficients for the full quadratic regression
model for ranges 2, 3 and 4 of Eqs. (13), (14) and (15),

respectively:

δP =657.86−36735µ−1318.4ρ−0.73222q

+36024µρ +3.8248µρ +0.92181µρ

+5.3452632∗105
µ

2 +659.81ρ
2

+0.00093912q2 Range(2)

(13)

δP =−105.824−27.220µ +233.954ρ−2.0465q

−0.752µρ−1.046µρ +2.727µρ

+124.982µ
2−129.689ρ

2

+0.00138q2 Range(3)

(14)



394 Yavari, H., et al. Advances in Geo-Energy Research, 2021, 5(4): 386-406

Table 6. Layers of an ANFIS model (Tang, 1993; Ebrahim et al., 2019; Chen et al., 2019; Soroush et al., 2019).

Layer Function Formulation

Fuzzification Converts crisp value into fuzzy value

O1,i = γAi(Viscosity)

O1,i = γBi(Density)

O1,i = γCi( f lowrate)

O1,i = γDi(Range)

Product layer Calculates firing strength (wi) O2,i = wi = γAi(Viscosity)γBi(Density)γCi( f lowrate)γDi(Range)

Normalization Calculate the ratio of firing strength O3,i = wi =
wi

w1+w2+w3+w4

De-Fuzzificationn Calculates the node function O4,i = wiDPi = wi(pi(Viscosity)+qi(Density)+ si(Flowrate)+ ti(Range)+ ri)

Output Calculates the overall output O5,i = ∑i wiDPi

where γ is membership function (MF), p, q, s, t and r are referred to as consequent parameters. The ANFIS model holds a five-layer process to calculate
the overall output and Ai and Bi are fuzzy sets that represents the linguistic labels.

δP =3.962+96.626µ +0.000001ρ−4.094q

−112.595µρ−0.3006µρ +4.8506µρ

+6.978µ
2−5.383ρ

2

+0.00785q2 Range(4)

(15)

5. Adaptive network fuzzy inference system
(ANFIS)

ANFIS is a machine learning technique first developed
by Tang (1993). It is a hybrid learning procedure which
integrates both human knowledge (fuzzy logic, if-then rules)
and artificial neural network principles. The i f − then rules
are used to construct a logical relationship between inputs and
output of the model (Sugeno and Kang, 1988; Mathur et al.,
2016). Table 6 contains the layers, their functions and their
outputs for a TSK DP model involving two inputs, viscosity
and density, and one output, DP (Jang, 1993).

5.1 ANFIS model development
The data set evaluated by the mathematical and regression

models is used to establish a four-input-variable ANFIS model
for the Equiflow AICDs. The data records are allocated 80%
to the training subset and 20% to the independent testing
subset. The Takagi, Sugeno and Kang (TSK) fuzzy inference
system method is followed in building the ANFIS model. A
hybrid-learning algorithm is employed to train the ANFIS’s
adaptive component (Habibi et al., 2018; Ehsanollah et al.,
2020). As is the case for the other models, range of AICD,
viscosity, density and flow rate are the four input variables and
differential pressure is the dependent variable. The structure
of the developed ANFIS model is summarized in Table 7.

The RMSE of the developed ANFIS model is equal to
0.18993 MPa for the training subset. Other membership func-
tions were tested for possible use to develop ANFIS models.
Table 8 displays the RMSE of the developed ANFIS models
for the training and testing data subsets and their ability
to identify the optimum viscosity accurately. The trapmf,
gaussmf and pimf membership functions are the only mem-
bership functions able to identify optimum viscosity accura-

Table 7. Summary of the four-input-variable ANFIS model developed for
AICDs evaluation.

ANFIS components Value/Type
Type ‘Sugeno’

Version 2

Number of membership functions

Range 1

Viscosity 2

Density 2

Flow rate 2

Number of input variables 4

Number of output variables 1

Number of fuzzy rules 8

Number of non-linear parameters 14

Number of linear parameters 40

Type of membership function “gaussmf”

“And” method applied “prod”

“Or” method applied “probor”

Implication method applied “prod”

Aggregation method applied “sum”

De-fuzzification method “wtaver”
(weighted average)

Table 8. RMSE values of ANFIS models using various membership
functions.

No. Membership function Train Test Optimum viscosity
1 trimf 0.81 0.57 ×

2 trapmf 0.47 0.51
√

3 gbellmf 0.21 0.24 ×

4 gaussmf 0.18 0.20
√

5 gauss2mf 0.28 0.31 ×

6 pimf 0.51 0.49
√

7 dsigmf 0.50 0.48 ×

8 psigmf 0.50 0.48 ×
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Fig. 9. Membership functions of developed four-input-variable ANFIS model using the hybrid-learning algorithm.

tely. As the RMSE value achieved by gaussmf for the testing
data is less than trapmf and pimf, the gaussmf membership
function was preferred for this analysis.

The membership functions are of the Gaussian type, re-
ferred to here as the gaussm f , involving 2 constants, c and σ ,
defined in Eq. (16):

f (x;σ ,c) = e
−(x−c)2

2σ2 (16)

The linguistic expressions for the input data record variable
values are binary: either low (L) or high (H). Such simplistic
linguistic descriptions can though combine to express the rela-
tionships between input variables and the dependent variable
in terms of a set of fuzzy IF-THEN rules. The IF-Then rules
are formulated using the variable values associated with the

data records included in the training subset. A sample of these
rules is as follow:

if Range is (3) Viscosity is (L) and Density is (H) and
FlowRate is (H) then. . .

Differential Pressure = f (Range, Viscosity, Density and
FlowRate) is (H)

Fig. 8 illustrates diagrammatically the structure of the four-
input-variable ANFIS model developed for AICDs evaluation.

The linguistic labels and corresponding membership func-
tions of the developed ANFIS model are summarized in Table
9. The RMSE of the developed ANFIS model is equal to
0.18993 MPa for the training subset.

Fig. 9 shows the membership functions of input variables
in the developed four-input-variable ANFIS model.
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Fig. 10. GA performance in determining the optimum coefficient values for the hybrid four-variable-input ANFIS-GA model. The upper diagram shows the
fitness values over multiple GA iterations (RMSE).

Table 9. ANFIS model linguistic labels and corresponding membership
functions.

Parameter Linguistic term Parameters of membership function
σ c

Range Range number inf 4

Viscosity Low 0.4242 -0.0028

high 0.4332 0.9961

Density Low 0.0593 0.7699

high 0.0776 0.9899

Flow rate Low 12.2914 2.2347

high 12.2908 31.1803

5.2 ANFIS-GA model
The developed ANFIS model, described in the previous

section, is hybridized with the GA optimizer in an attempt
improve the fuzzy inference system coefficients of the ANFIS.
Hybridized ANFIS-GA models have been applied with some
success in various fields (Kumar et al., 2019; Deshwal et
al., 2020; Kumar and Hynes, 2020). Linear and non-linear
coefficients of the FIS are key model control parameters
responsive to optimization. Table 7 indicates that the de-
veloped four-input-variable ANFIS model involves 14 non-
linear coefficients and 40 linear coefficients. GA was employed
to optimize all 54 of these coefficients associated with the
developed ANFIS model. The lower-limit and upper-limit
boundary constraints for of these coefficients were set to -
1000 and 1000, respectively. The GA control parameters and
function applied are those listed in Table 4 and the maximum
number of iterations is set to 1000.

The first step in evaluating the ANFIS-GA hybrid model

is to generate an initial population of feasible solutions with
a range of FIS coefficients within the constraint boundaries.
Each member of the initial population represents a set of
membership functions coefficients. These coefficients are used
to compute the dependent variable predictions from the ANFIS
model. A fitness function value is then calculated for each
set of membership functions in terms of the RMSE objective
function as expressed in Eq. (4). Based on their RMSE
values, the population members are ranked and the GA goes
on to apply its crossover, mutation and elitism adaptions to
construct a new population for the next iteration. Through
multiple successive iterations the GA model converges to an
optimum solution or is halted after 1000 iterations and the
best solution (lowest RMSE achieved) is selected to provide
the optimum FIS coefficient values. The optimum coefficient
values determined achieve an RMSE value equal to 0.894423
MPa.

Fig. 10 displays the performance of the GA in deter-
mining the optimum coefficients for the ANFIS model using
the training subset of data records. The optimum coefficient
values determined achieve an RMSE value equal to 0.894423
MPa. The lower diagram in Fig. 10 graphically displays the
optimized values of the 54 ANFIS coefficients.

Table 10 summarizes the optimum linguistic labels and
their associated MFs.

Fig. 11 shows the membership functions for the optimized
hybrid three-input-variable ANFIS-GA model.

The results show that ANFIS’s own hybrid algorithm
performs better than the GA optimizer in determining the
optimized values of the 54 coefficients of ANFIS model. As
it is seen, the RMSE value of the designed ANFIS model for
training data is equal to 0.189 MPa while, the RMSE value
of ANFIS-GA model is equal to 0.894 MPa. Moreover, the
ANFIS-GA is time consuming to implement. This indicates
that the ANFIS-GA hybrid model performs less well than the
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Fig. 11. Membership functions of developed four-input-variable ANFIS-GA model using the genetic algorithm.

Table 10. Hybrid ANFIS-GA linguistic labels and associated
membership-function values.

Parameter Linguistic term Parameters of membership function
σ c

Range Range number 235.825 4

Viscosity Low 3.0016 4.6854

high 1.0224 2.2559

Density Low 2.5791 -3.1773

high -0.4509 1.2024

Flow rate Low 17.0902 1.9655

high 16.4178 28.7138

straightforward ANFIS model for the AICDs data set evalu-
ated.

6. Artificial neural network (ANN)
ANNs are simplified mathematical models mimic in a

simplistic way the neural network functionality of animal
brains. ANN’s are populated by numerous elementary process-
ing units, referred to as neurons, arranged in layers, some of
them conducting hidden processing calculations. In most ANN
configurations the neurons are assembled in parallel layers
passing information from left to right through the network
(Mehrotra et al., 1997). At each PE the weighted input signals
are summed and the layer bias value is added. I j refers to
the combined input allocated to each hidden layer neuron. f
is a linear or non-linear transfer or activation function and yi
describes the transfer-function-adjusted output from one PE
fed forward to a neuron in the next layer. Eqs. (17) and (18)
summarize formulaically the data adjustments made (Shahin
et al., 2001):

I j =
n

∑
i=1

WjiXi +θ j Summation of combined inputs (17)

yi = f (I j) Transfer-function adjustment (18)

Various transfer functions are applied to ANNs in practice
and they can from layer to layer. They are selected using
sensitivity analysis and depend on the complexity of the data
set being modeled. Common non-linear transfer functions
applied to ANN are “logsig” and/or “tansig”. Common linear
transfer functions applied to ANN are “poslin” and “purelin”.
The hyperbolic tangent sigmoid function (tansig) is expressed
as Eq. (19) (Javad and Nargas, 2010):

f =
1

1+ e−av −1 (19)

where a is a constant and v represents the weighted-and-bias-
adjusted sum (Eq. (17)) of the inputs to a neuron (processing
unit). ANN training involves establishing the optimum values
for weights and biases and sensitivity analysis to evaluate
the effectiveness of different transfer functions and number
of hidden layers on dependent value prediction accuracy.

6.1 ANN methodology applied to AICD
The ANN developed for the AICDs model consists of a

three-layered feed-forward with Levenberg-Marquardt (LM)
algorithm. Training of the AICD ANN is performed using
the LM algorithm instead of the standard back-propagation
algorithm. This selection was made because the LM algorithm
is known to compute more quickly for moderate-sized training
subsets in feed-forward neural networks (Bao et al., 2019;
Bui et al., 2019; Sun and Huang, 2020). Its single hidden
layer has just eight neurons and hyperbolic tangent sigmoid
transfer function which is known as “tansig” is applied to the
ANN model as transfer function in input and output layers.
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Fig. 12. Schematic diagram of illustrating the fundamental principles of SVMs (a) a classification example between two datasets in 2-D space (b) a kernel
function transforming a 3-D data distribution onto a 2D plane that enables the data sets to be more clearly classified (Huang and Zhao, 2018).

As for the other models 80% of the data records are assigned
to an ANN training subset and the remaining 20% of data
records are held independently a testing subset to verify that
the trained model works with data not seen during the training
procedure. The AICD ANN developed on the basis described
and evaluated for the training subset achieved a prediction
error measured for the differential pressure in terms of RMSE
equal to 0.17212 MPa.

7. Support-Vector machine (SVM)
SVM is a supervised machine-learning technique devel-

oped in 1995 by Vapnik et al. based on a solution for the
separable bipartition problem established originally by AT
and T Bell laboratories (Vapnik, 1995). It is a method that
is applicable for solving either regression or classification
problems using a structural-risk minimization approach (Al
Amrani et al., 2018; Pham et al., 2018).

SVMs employ kernel functions to establish an optimal clas-
sification hyperplane. The square and point symbols plotted
in Fig. 12(a) show two groups of data where H represents
the classification line that distinguishes the two groups of
data, and H1 and H2 (support vectors) are lines parallel to
H. The support vectors are drawn close to the data points
from each set in vicinity of H classification line and the space
between them is referred to as the classification margin. The
hyperplane target is the optimum classification solution, such
that the two groups of data points are separated from each
other and the classification margin is maximized. Fig. 12(b)
shows diagrammatically how the kernel function transforms
the input data into higher dimensional space eventually facil-
itating linear classification between the data groups (Huang
and Zhao, 2018).

The training subset of data records can be defined in terms
of xi, yi & (i = 1,2,3, . . . ,n) where n refers to the number of
data records in the subset, xi refers to the input variable values
for the ith data record, and yi refers to the dependent variable
values for the ith data record. The SVM optimization function
expressed by Eqs. (20) and (21) must be solved in order
to locate the optimal hyperplane for classification purposes

(Colkesen et al., 2016; Pham et al., 2018):

Minimize :
1
2
‖ω‖2 +E

n

∑
i=1

vi + v∗i (20)

Subject to :

 yi−ωϕ(xi)−u≤ a+ vi
ωϕ(xi)+u− yi ≤ a+ v∗i

vi,v∗i ≥ 0
(21)

where E is defined as penalty parameter, ω is a weight vector,
ϕ(xi) is kernel function, α is defined as the precision SVM-
control parameter, u is bias term and v is defined as the slack
variable. Trial and error sensitivity analysis is required to select
the most appropriate kernel function to optimize the SVM
solution (Burges, 1998). The Gaussian kernel function defined
by Eq. (22) was selected on that basis for evaluating the AICD
data set (Colkesen et al., 2016; Pham et al., 2018).

exp
(
−‖xi− yi‖2

2σ2

)
(22)

The classification decision function of the SVM algorithm
is then expressed by Eq. (23).

f (xi) = sign

[
n

∑
i=1

ηiγi exp
(
−‖xi− yi‖2

2σ2

)]
(23)

where ηi is a Lagrange multiplier and γ is kernel function
(Pham et al., 2018). The SVM model optimizer applied to
the AICD data set is “gridsearch” that randomly searches
the feasible solution space, using uniform sampling without
replacement from a grid. In order to escape from local minima,
the expected improvement − plus is used as an acquisition
function constraint. The algorithm is executed for 2000 itera-
tions. The minimum RMSE value achieved by the developed
SVM model is equal to 0.12189 MPa for the training subset.
Fig. 13 displays the convergence of SVM model achieved for
the AICD training subset.

8. Results: Comparison of AICD differential
prediction accuracy

The optimum trained solutions for each of the mathemat-
ical, regression and machine learning models applied to the
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Fig. 14. Predicted versus experimental differential pressure (MPa) for (a) Mathematical, (b) MLR, (c) Full Quadratic Multiple Regression, (d) ANFIS, (e)
ANFIS-GA, (f) ANN, (g) SVM models. Linear regression lines and coefficients of determination between predicted and experimental data are displayed.
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AICD testing subset are compared graphically in Fig. 14 in
terms of predicted versus experimental differential pressure
(dependent variable) values. Linear regression lines and coeffi-
cient of determination (R2) are displayed in Fig. 14 to highlight
the statistical confidence in the predictions made by each
model. In terms of RMSE and R2 values (Fig. 14), the SVM
model (R2 = 0.98) clearly provides the most accurate AICD
differential-pressure predictions for the testing subset, whereas
the linear regression model (R2 = 0.82) provides the least
accurate differential-pressure predictions among mathematical
models and ANFIS-GA model (R2 = 0.67) also provides the
least performance among machine learning models. For the
SVM model, ANFIS model and ANN model the testing subset
data record predictions (versus experimental data) lie close to
a straight line, which, if extended passes close to the origin.
This provides confidence in these models and suggests that
the models are not likely to be overfitting the data set. The
trained ANFIS model (R2 = 0.968) displays better prediction
performance than the trained ANFIS-GA model (R2 = 0.67)
when applied to the testing subset (Fig. 14).

The AICD differential-pressure prediction accuracy and
reliability of the developed model is further assessed by
comparing four widely used statistical prediction accuracy
metrics for the training- and testing-subset predictions. These
prediction-accuracy metric values compared are root mean
squared error (RMSE; Eq. (24)), coefficient of determination
(R2; Eq. (25)), average absolute relative deviation (AARD; Eq.
(26)) and median absolute deviation (MAD; Eq. (27)).

RMSE =

√
1
N

N

∑
i=1

(
δPe

i −δPp
i

)2 (24)

R2 = 1− ∑
N
i=1
(
δPp

i −δPe
i
)2

∑
N
i=1

(
δPp

i −δP
e
)2 (25)

AARD =
100
N

N

∑
i=1

∣∣∣∣δPe
i −δPp

i
δPe

i

∣∣∣∣ (26)

MAD =
1
N

N

∑
i=1

∣∣δPp
i −δPe∣∣ (27)

The values of these four statistical prediction-accuracy
metrics for developed models are provided in Table 11. The
best prediction accuracy achieved by developed models can be
distinctive based on the high values of R2 and low values of
RMSE, AARD and MAD. The SVM model demonstrates the
best performance in terms of all four of these metrics.

Fig. 15 depicts the graphical comparison of developed
models in terms of RMSE, R2, AARD and MAD respectively.
Since the SVM has the lowest values of RMSE, AARD and
MAD and highest value of R2 for testing data, it is the
most accurate model among other models in estimation of
differential pressure of Equiflow AICD. The second most
accurate model is ANN model (Total RMSE = 0.1825)
and the third most accurate model is ANFIS model (Total
RMSE = 0.1931) that shows slightly lower precision than
ANN model for total data. The lowest performance among
developed models refers to ANFIS-GA model. As mentioned,
the ANFIS-GA model takes longer to develop and compute
than the other models considered, especially ANFIS model,
on the other hand statistical analyses represent that ANFIS-
GA exhibits lower prediction performance than ANFIS model.
It can be concluded that using GA to adjust FIS parameters of

Table 11. RMSE, R2, AARD and MAD for AICD differential-pressure prediction accuracy achieved by the developed models.

Prediction model RMSE (MPa) R2 AARD (%) MAD (MPa)

Train Test Train Test Train Test Train Test
Mathematical 0.38 0.40 0.94 0.90 24.13 19.28 0.26 0.28

MLR 0.55 0.51 0.84 0.82 63.91 30.02 0.40 0.38

Full quadratic 0.31 0.27 0.95 0.94 31.05 14.27 0.21 0.20

ANFIS 0.19 0.20 0.98 0.97 18.28 14.97 0.12 0.16

ANFIS-GA 0.89 0.74 0.70 0.67 91.27 45.05 0.68 0.62

ANN 0.17 0.22 0.98 0.96 9.82 13.31 0.10 0.18

SVM 0.12 0.14 0.99 0.98 6.768 6.16 0.06 0.08
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Fig. 15. Graphical comparison of (a) RMSE values (b) R2 values (c) AARD values (d) MAD values for developed models.

ANFIS model failed in enhancing performance of this type of
ANFIS model and hybrid algorithm performs better than GA
to determine the ANFIS parameters.

9. Discussion: Consideration of AICD
differential prediction reliability

The Equiflow AICD is available in four different designs
(Range 1 to Range 4). Each design is configured to work
effectively in specific viscosity ranges spanning the spectrum
of light to heavy crude oil typically found in subsurface
reservoirs. This means that for each design and at a specified
differential-pressure value, the flow rate gradually increases as
viscosity increases over about a specific 1-cp value increment
until it reaches a maximum flow rate. Beyond that maximum
flow rate, at higher viscosities, flow rate for that AICD
design will slowly decline. Fig. 3 illustrates such a trend
with the experimental data, identifying the device tested as
an Equiflow Range 3 AICD, because at a given differential
pressure by increasing the oil viscosity from 1 to 99 cp the
flow rate increases, and then flow rate decreases when oil
viscosity increases to 229 cp. These observed trends (Fig.
3) demonstrate that the specific AICD device tested works
optimally with crude oil of viscosity between 1 and 99 cp.

Fig. 16 shows the relationships between viscosity, flowrate

and differential pressure of Equiflow AICD using developed
models when crude oil density is equal to 0.87 gr/cm3.
Fig. 16(a) and Fig. 16(b) show that the AICD performance
model and the multi-linear regression models are unable to
accurately reflect the optimum performance design concept
built into an Equiflow AICD. For any given differential
pressure value, as the viscosity increases, the flow rate also
increases with these two models, which is incorrect and leads
to substantial prediction errors. The machine-learning models
are however able to capture the key design behavior of AICDs.
A comparison between Fig. 16(d) and Fig. 16(f) shows that
both ANN and ANFIS models predict differential pressure
accurately and both models are able to display the optimum
viscosity of Equiflow AICD. Fig. 16(g) shows that the trained
SVM model is able to accurately capture the AICD design
concept of optimum viscosity in a smooth manner. The SVM
model is able to provide reliably accurate differential-pressure
predictions making it superior to the other models developed
and tested. Fig. 16(e) shows that ANFIS-GA model is able
to show the optimum viscosity but it cannot be used as a
reliable model to predict the differential pressure of Equiflow
AICD compared to other developed models. According to
Fig. 16(c), although it seems that quadratic multiple linear
regression model is able to model the optimum viscosity of the
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Fig. 16. Relationship between viscosity, flow rate and differential pressure at crude oil density of 0.87 g/cm3 using (a) the optimized AICD performance
model (b) Multiple Linear Regression (c) Full Quadratic Multiple Regression (d) Developed ANFIS (e) Optimized ANFIS-GA (f) developed ANN (g) designed
SVM.

Equiflow AICD accurately, the linear structure of this model
causes some errors in prediction of differential pressure of the
Equiflow AICDs because the relationship between flow rate
and differential pressure is not linear.

It is apparent that the machine learning models perform
substantially better than mathematical models. However, key
factors that affect the accuracy of machine learning models are
the number of experimentally derived training and testing data
points available and the distribution of those data points. When
the available data points are too few or poorly distributed,
machine learning models may perform in an inferior way
to the mathematical models. In some cases, very few data
points may generate statistically unsound results that are not
physically justifiable. In such cases where the data set is very
small, mathematical models should be relied upon to model
the performance of Equiflow AICDs.

10. Conclusions
In this study, several machine-learning models including

ANN, ANFIS, ANFIS-GA and SVM, together with multiple
regressions and a mathematical model are developed and
implemented to predict differential pressure for ranges 2, 3
and 4 Equiflow downhole autonomous inflow control devices
(AICDs). A set of ninety experimental data records were
compiled in field-like conditions to develop the models. These
data are divided into two subsets: a training subset of 80%
of the data records were utilized to construct and train the
models; and, a testing subset made up of the remaining
20% of data records. The testing subset was utilized to
independently test and verify the performance and accuracy
of the constructed models. Viscosity, density, flow rate and
the range of AICDs are the input variables and the differ-
ential pressure is the prediction output (dependent variable)
of the models. Statistical and graphical analyses reveal that
all the machine-learning models perform better than multiple

regression mathematical models. The full quadratic multiple
regression model is the only mathematical model able to
deliver credible differential-pressure prediction performance
for the Equiflow AICDs. The most accurate and reliable model
relative to the other developed models is the SVM model.
The ANN model performed better than the ANFIS model. A
genetic optimization algorithm (GA) worked well in finding
the optimum tuning parameters for the mathematical models
but did not improve on the prediction performance of ANFIS
when evaluated in a hybrid ANFIS-GA configuration.
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