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Abstract: Thin-walled cylindrical shell storage tanks are pressure vessels in which the walls of the
vessel have a thickness that is much smaller than the overall size of the vessel. These types of
structures have global applications in various industries, including oil refineries and petrochemical
plants. However, these storage tanks are vulnerable to fire and explosions. Therefore, a parametric
study using numerical simulation was carried out, considering the internal liquid level, wall thickness,
material yield strength, constraint conditions, and blast intensity, with a diameter of 100 m and height
of 22.5 m under different blast loads using the finite element analysis method. The thickness of the
tank wall is varied as 10 mm, 20 mm, 30 mm, and 40 mm, while the fill level of internal fluid is
varied as 25, 50, 75, and 100%. The blast simulation was conducted using LS-DYNA software. The
numerical results are then compared with analytical results. The effects of blast intensity, standoff
distance, wall thickness, and fill level of internal fluid on the structural behaviour of the storage tank
were investigated and discussed.

Keywords: thin-walled cylindrical shell; storage tank; blast impacts

1. Introduction

Thin-walled cylindrical shell storage tanks are found in many commercial and indus-
trial applications. These tanks are important facilities in the oil and gas and petrochemical
industries, for they store large volumes of flammable, explosive, toxic, and harmful mate-
rials. With the rapid development of the global economy and the strategic demand and
production demand of energy, the volume and quantity of storage tanks are increasing, and
consequently, the scale of tank farms is expanding, showing characteristics of large-scale
integration and coexistence of multiple tanks [1–3]. These storage tanks are subjected to
internal pressure, which subjects the tanks to a uniform loading, considering that the tanks
have an inner-radius-to-wall-thickness ratio of 10 or more [4]. In the last few decades, a
number of major industrial accidents have occurred around the world [5,6]. Blast loading to
the exterior of a cylindrical shell pressure vessels imposes severe consequences [7]. Despite
the high risk of explosions in the oil and gas industry, little related research can be found in
the literature, especially on the effect of tank dimensions and standoff distance from blast
on the behaviours of thin-walled cylindrical shells.

The explosions happen when the stored hydrocarbon-air mixtures present above the
liquid state are exposed to adequate amounts of energy [8]. Because of these devastating
explosions, a few researchers have carried out studies and reviews to investigate the main
causes of storage tank accidents. According to Chang and Lin [9], among 242 tank accidents
from 1960–2003, 74% happened in petroleum refineries, oil terminals, and storage. In total,
33% of the cases were caused by lightning, and another 30% were caused by human error.
A review of the literature shows that hydrocarbon explosions caused 70% of the accidents
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in offshore installations as well. Accidents are prone to happening during maintenance,
repair, and loading or unloading. Other research found that 27% of the accidents were
due to human error, including operations and maintenance [10]. Thus, understanding
how these types of thin-walled structures respond to relevant loading conditions is im-
portant for the design of safe and economical liquid-containment shell storage tanks [2].
However, hardly any progress has been made in understanding the dynamic response
of liquid storage tanks under blast loading [11]. A review of the literature shows that
several researchers [6,12–14] have investigated the influence of blast intensity, tank fill
conditions, and tank bottom constraints on tanks’ failure mode, resultant displacement
and deformation, structural energy, circumferential strain, and longitudinal strain. More-
over, small-scale model experiments have been mostly conducted to study the response of
thin-wall cylindrical tanks subjected to blast load [3,6], and the findings have been verified
using numerical simulations. However, in order to study the dynamic response of large
thin-walled cylindrical tanks, the applicability of numerical simulations has been widely
discussed. Hence, recent advances in numerical simulation have provided a powerful tool
to examine increasingly complex problems involving explosive blast loading [15–17].

Mittel et al. [11] carried out a parametric study by varying the dimensions of the small
thin-walled cylindrical tank height-to-radius ratio (0.5 to 2.6), percentage liquid filling (50%
to 100%), thickness of tank wall (1 mm to 10 mm), and scaled distance of the explosive
material (0.5 to 2.5 m/kg1/3). The numerical simulations of the study show that there is
a significant influence of the thickness of the tank wall and the height-to-radius ratio on
plastic yielding. The study demonstrated the importance of studying the influence of the
dimensions of the tank on the overall performance of the tank. In addition, there are very
few studies in the literature on the use of numerical simulations to study the dynamic
response of large thin-walled cylindrical tanks where the diameter of the tank is greater
than the height of the tank. For example, Lu et al. [6] have discussed the applicability of
numerical simulations for a thin-walled cylindrical tank which has diameter of 100 m and
height of 22.5 m. Authors [6] have studied the structural response by varying the internal
liquid level, constraint conditions, and blast intensity while maintaining constant tank wall
thickness, height, and diameter. For more comprehensive reviews and the latest studies on
thin-walled pressure vessels, the reader can refer to [18–20]. However, the literature does
not report clear and exact statements regarding the influence of a tank’s dimensions and
the distance from the blast on the overall performance of a thin-walled cylindrical shell
storage tank under blast loading. Thus, the aim of the present investigation is to study the
behaviour of a thin-walled cylindrical shell storage tank with a diameter of 100 m and a
height of 22.5 m under different blast loads using the finite element analysis method. The
thickness of the tank wall is varied as 10 mm, 20 mm, 30 mm, and 40 mm, while the fill level
of the internal fluid is varied as 25, 50, 75, and 100%. The outline of the remaining sections
is: Section 2 provides the theoretical background of the analytical approach; Section 3
introduces the materials and methods adopted in this study; Section 4 presents the results
and discussion; and the conclusion is presented in Section 5.

2. Theoretical Background

Cylindrical pressure vessels are commonly used in the oil and gas industry to carry
both liquid and gases under pressure. When the vessels are exposed to this pressure, the
materials comprising the vessels will be subjected to longitudinal and hoop stress. The
important assumptions to be considered in deriving the equations of hoop and longitudinal
stress are:

• Plane sections remain plane.
• Radius-to-thickness ratio greater than or equal to 10 with uniform and constant

wall thickness.
• Linear elastic, isotropic, and homogeneous material.
• Uniform stress distribution throughout the wall thickness.
• Negligible fluid weight.
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The circumferential stress in a thin-walled cylindrical shell storage tank can be deter-
mined using the following Equation (1):

σh =
Pr
t

(1)

where P is internal pressure, r is mean radius of the cylinder, and t is wall thickness.
The longitudinal stress in a pressurised thin-walled cylindrical shell storage tank can

be expressed using the following Equation (2):

σL =
Pr
2t

(2)

The equivalent tensile stress known as Von Mises stress can be computed using
Equation (3). This stress can be used to estimate the yielding of materials under complex
loadings. The Von Mises failure criterion is one of the most-used failure criteria for ductile
materials such as structural steel.

σv =
√

σh
2 + σL2 − σhσL (3)

where δh and δL are the hoop stress and the longitudinal stress, respectively.

3. Materials and Methods

The research methodology adopted in this study is discussed in the following sections.

3.1. Storage Tank Geometry

The main parameters influencing the structural behaviour of a thin-walled cylindrical
storage tank are namely the height of the tank, the outer diameter, the wall thickness, and
the yield strength of material. The material of the tank has a density of 7850 kg/m3 and a
Poisson ratio of 0.28. The additional modelling parameters for the thin-walled storage tank,
provided by an oil and gas company operating in Malaysia, are presented in Table 1. The
model with all the different parameters was subjected to internal pressure resulting from
hydrocarbon product with a density of 800 kg/m3. In this study, a storage tank with higher
capacities was selected for modelling, as there is a global trend in storage capacities greater
than 20 × 104 m3 and diameters greater than 100 m in the oil and gas industry [21,22].

Table 1. Design parameters for the thin-walled cylindrical storage tank.

Tank Height 22.5 m

Outer Diameter 100 m

Wall Thickness 10 mm 20 mm 30 mm 40 mm

Material Yield
Strength, fy 235 MPa 275 MPa 355 MPa 440 MPa

Young’s
Modulus, E 206 GPa

Density, ρ 7850 kg/m3

Poisson Ratio 0.28

Constraints Fixed bottom plate and free at top

3.2. Numerical Modelling

The numerical simulation for the selected parameters consists of three stages, namely
pre-processing, simulation, and post-processing. During the pre-processing stage, ANSYS
Workbench 2019 R19.1 software from ANSYS, Inc. (Washington County, PA, USA) was used
for developing the geometry, assigning the material properties, loading, and finalising the
boundary conditions of the model. The definitions of all properties and design parameters
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must be precise and accurate to ensure the case study is correctly simulated in the software.
The model geometry was then meshed into smaller elements connected by nodes to perform
the finite element analysis (FEA). Generally, the sensitivity analysis shows that a smaller
mesh will produce results with higher accuracy, but consequently, it will lead to higher
processing time and cost. Hence, as the wall thicknesses of the tank are much smaller
than the other geometric parameters, the tank was meshed using shell elements [17]. The
model is a simplified representation of the storage tank, with the tank wall and base plate
modelled as SHELL181 elements to increase the analysis accuracy and the efficiency of
the simulation. The SHELL181 element has four nodes with three translational and three
rotational degrees of freedom at each node, and linear interpolation is used within the
element [23]. In explicit dynamics, by default, coarse relevance centre, high smoothing,
and slow transition were selected. The elements should have a uniform size to ensure the
meshing quality. To ensure accuracy of the results, convergence and mesh independence
analysis was conducted first. The optimum set of element sizes was adopted when the
maximum displacement of the tank had insignificant influence when coarser element
sizes were tested in the numerical model. As a result, the maximum element size in the
numerical simulation was 13 mm × 20 mm, considering a maximum number of 128 K-
nodes/elements. The thicknesses of the shell elements were defined as of 10 mm, 20 mm,
30 mm, and 40 mm, respectively, based on the specifications in API 650 [22]. Once the
geometry, meshing, load assignment, and boundary conditions were found satisfactory,
the analysis was done to solve the model using the governing equations. The outputs
such as forces, stresses, and deformations of the model were generated based on different
loading cases. The post-processing is the stage where the output from the simulation is
reviewed. The results in different forms, such as contour, graphs, and tables, will provide
the necessary information on the model properties. In this study, more emphasis was
placed on the resultant deformation and Von Mises stress of the cylindrical storage tank.
The proposed tank and meshing details are presented in Figure 1.
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3.3. Blast Modelling

Using the parametric study presented in the previous section, the optimum thin-
walled pressure vessel design was determined. The optimum model was then subjected to
blast loading with different intensities from different distances. Ansys LS-DYNA 2019 R19.1
software from ANSYS, Inc. was used in the blast simulation, as the high impact velocity of
the blast causes higher stress, strain rate, local deformation, and pressure in a short duration.
The detonation was modelled using the Lagrange approach, as this approach normally
requires a lesser mesh count as compared to the Eulerian approach and has a much shorter
computational time. The material assigned will be embedded within the mesh and move
along with the mesh. The blast loading in the finite element model of this study is modelled
using Load Blast Enhanced (LBE), which is a fully Lagrangian approach used for air blast
loads from conventional explosives. The air blast pressure was simulated empirically
based on experimental data from The conventional weapons effects blast loading model
(ConWep), converted into polynomials through classical scaling laws as reported in [24],
and then applied to the nodes of a Lagrangian structure. The cylindrical steel tank was
modelled using a material of Mat Piecewise Linear Plasticity keywords, where the strain
rate parameters C and P of Cowper – Symonds relation are set to 40 and 5, respectively,
to take the plastic deformation and the strain rates into consideration. The termination
time was set to 0.25 s with a timestep of 0.0005 s to capture the effect of blast load [25]. The
waveform of the blast is described using the Friedlander waveform, where the pressure of
the blast wave is described as a function of time as presented in Equation (4) [26].

P(t) = Pse−
t

t∗

(
1− t

t∗

)
(4)

where Ps is the overpressure (pressure above ambient pressure) and t* is the duration of
the positive phase, when the pressure is higher than the ambient pressure.

The flammable gas volumes adopted in this study were 15,600 m3 and 4000 m3. These
volumes had blast intensities of 1500 kg and 380 kg of Trinitrotoluene (TNT), respectively.
The proposed standoff distances of the blast from the storage tank were 12.5 m and 25 m,
respectively, at a three-meter height, assuming an explosion from gas leakage, and the
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structural responses of the tank under 100 and 0% fill were investigated. The blast scaling
law or cube root scaling law, proposed by Hopkinson, was used to represent the relationship
between the weight of the explosive charge and the standoff distance from the explosive
charge centre. The usage of the scaling law shown in Equation (5) is to predict the effects of
large-scale explosions by conducting experiments on an adequately scaled specimen.

Z =
R

W
1
3

(5)

where R is the distance from the explosive charge centre and W is the weight of the
explosive charge.

The blast pressure generated from LS-DYNA was validated using analytical methods
from the commonly used empirical equations, such as the Brode equation [27]. The peak
overpressure calculated from the analytical method was compared with the blast pressure
obtained from simulations as a check. The Brode equations presented in Equations (6) and (7)
are based on differential equation formulations for pressure more than 10 bars and pressure
ranging from 0.1 to 10 bars, respectively.

Pso =
6.7
Z3 + 1 f or Pso > 10 bar (6)

Pso =
0.975

Z
+

1.455
Z2 +

5.85
Z3 − 0.019 f or 0.1 < Pso < 10 bar (7)

where Z is the scaled distance in m/kg1/3.

4. Results and Discussion

This section presents the results obtained through the numerical simulation and the
validation of the results using the analytical approach suggested in [27,28].

4.1. Parametric Study of a Thin-Walled Cylindrical Shell Storage Tank

In this section, the numerical modelling of the storage tank, developed based on the
different specifications defined in Section 3, is presented.

4.1.1. Total Deformation of Different Wall Thickness versus Fill Level

In this section, static analysis was used to determine the relationship between the wall
thickness and internal fill levels on the total deformation of the tanks. Figure 2 shows the
comparison of the maximum total deformation of different wall thicknesses versus fill level.
The thicknesses of the shell elements were defined as 10 mm, 20 mm, 30 mm, and 40 mm,
respectively, based on the specifications in API 650. The inner face of the wall was subjected
to hydrostatic pressure of 25, 50, 75, and 100% fill level based on a fluid density of 800 kg/m3

and a kinetic viscosity of 1.9 mm2/s. Based on these defined conditions, a parametric study
was conducted to investigate the effect of shell thickness and fill level on the maximum
deformation and Von Mises stress of the tank. The result of the analysis shows that the
total deformation on the tank increases with increasing the wall thickness. The maximum
wall deformation was determined as 0.24 m, corresponding to 100% fill level. Similarly, the
effects of wall thickness on the total deformation were also investigated. Figure 3 depicts
the maximum total deformation for different fill levels as a function of tank thickness.
The graph shows that the total deformation of the tank decreases when increasing the
wall thickness, with the maximum deformation recorded as 0.24, corresponding to wall
thickness of 0.01 m at 100% fill level. The maximum displacements of the tank as a function
of wall thickness, presented in Figure 2, are in good agreement with the findings reported
by Jiang et al. [3]. Because of the hydrostatic force incurred by the stored hydrocarbon
products and the assigned support at the bottom plate, the storage tank will experience
maximum deformation at the lower part of the tank, which is 5 m from the bottom plate as
shown in Figure 4. The deformation and fill level were found to have a linear relationship
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in every shell thickness defined. The thinner the wall of the tank, the steeper the gradient of
the graph, indicating that the deformation of tanks with a lower thickness is more sensitive
to the changes of fill level. It can be seen that the tank will deform the most when it is 100%
filled as compared to other partial fill levels. As expected, the deformation increases with
higher fill levels and decreases with thicker tank walls. However, the deformations are very
minimal and do not impact the serviceability and structural integrity of the tank. Thus,
more focus is given to the equivalent stress known as the Von Mises stress and its variation,
with respect to the yielding stress of the storage tank, as discussed in the following section.
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4.1.2. Von Mises Stress versus Fill Level of Different Tank Thicknesses

The variations of Von Mises stress versus the fill level of different tank thicknesses and
various wall thicknesses are presented in Figures 5 and 6, respectively. The comparison of
the Von Mises stress between an analytical approach and numerical modelling is focused
on a storage tank with 100% fill level, as the usage of simplified equations assumed a
uniform stress distribution throughout the surface of the tank. Based on the comparison
between the analytical method and the numerical results, it was found that the results are
generally in good agreement with each other, having similar values and having almost the
same trend for the different tank thicknesses. The highest percentage difference between
the numerical results and the analytical value of equivalent stress was observed to be
17%, when the shell thickness is 10 mm and the fill level is 100%. As the shell thickness
of the tank increases, the difference between the numerical and analytical values reduces.
The efficiency of each steel grade is also evaluated based on the Von Mises stress at 100%
fill level to ensure the storage tank will not yield under normal usage. For a large-scale
storage tank, the yield strengths of S235 steel and S275 steel are easily exceeded with a
tank thickness of less than 20 mm. This is in accordance with API 650′s specification for
EN 10025 S 355 J0, J2, and K2 structural steel plates, with the minimum yield strength
being 355 MPa. The S450 structural steel will permit the usage of 20-mm-, 30-mm-, and
40-mm-thick plates, while S355 permits 30 mm and 40 mm plate thicknesses. By using the
higher steel grade of S450, adequate structural capacity will be achieved even with 20-mm
wall thickness. The response of the finite element model with the 20-mm tank wall and
base plate made of S450 structural steel subjected to blast load will be discussed in the
following section.
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4.2. Validation of Blast Modelling Using Analytical Equations

Blast simulations of an S450 storage tank with 20-mm wall thickness were carried
out for each case defined in Section 3 with a run of 0.25 s and with a time step of 0.005 s.
Time history of the incident pressure is measured from the selected tank segment facing
the blast, centred 4.69 m from the bottom plate. The incident pressures of each blast case
were then compared with the value obtained from the analytical method for validation
purposes. A typical segment of a tank with the meshing details used is shown in Figure 7.
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Figure 7. Typical segment of the tank where incident pressure is measured.

Figure 8 shows the incident blast pressure versus time graph of all blast cases. The
peak pressure time history for each blast case showed a similar trend to the Friedlander
waveform, with the peak pressure at arrival time followed by exponential decay. The peak
blast pressure values from numerical modelling and the Brode equation were then com-
pared to find the discrepancies between the analytical approach and numerical approach.
The influence of distance on the blast positive pressure phase presented in the figure is in
good agreement with [28].
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Table 2 summarises the scaled distance, arrival time, and peak pressures determined
through the numerical simulations and the empirical equations. From the table, it was
found that the scaled distance and arrival time obtained from the model have an inversely
proportional relationship; as the scaled distance increases, the arrival time will decrease.
The comparison of the results between the blast pressure from the numerical and the
analytical approach is presented in Table 3. Practically, the formulas often used to calculate
overpressure are the Henrych formula [29], the Brode formula [30] and the Friedlander
formula [31], and in this paper, the blast pressure generated from the LS-DYNA simulation
was validated using the Brode equation. Generally, the comparison of the results shows that
the percentage of difference between the numerical modelling and the analytical approach
varies from 5.6 to 12%. The maximum percentage difference of 12% is found when the
blast intensity is 1500 kg TNT equivalent with a standoff distance of 25 m, as depicted in
Table 3. It is apparent that the results obtained from the numerical modelling are in good
agreement with the analytical approach.
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Table 2. Scaled distance and arrival time of the analysis carried out.

Blast Intensity of
TNT Equivalent (kg)

Standoff Distance
(m)

Scaled Distance
(m/kg1/3) Arrival Time (s)

380 12.5 1.7258 0.0115

380 25 3.4515 0.0374

1500 12.5 1.0920 0.0079

1500 25 2.1840 0.0270

Table 3. Comparison between blast pressures from numerical and analytical approaches.

Blast Intensity
of TNT

Equivalent (kg)

Standoff
Distance (m)

Peak Pressure
from Numerical

Modelling,
(N/m2)

Peak Pressure
from Brode
Equation,

(N/m2)

Percentage
Difference with

Numerical
Modelling

380 12.5 240,102 217,268 9.5%

380 25 57,695 52,789 8.5%

1500 12.5 623,599 658,689 5.6%

1500 25 147,095 129,409 12%

4.3. Tank Deformation after the Blast Impact

Once the validation of the blast pressure of the model was conducted successfully,
the finite element model described in the previous section was loaded under various blast
conditions, including a blast intensity of 1500 kg TNT equivalent at blast distances of 12.5 m
and 25 m for fill levels of 100 and 0%, respectively. The deformed shapes of the tanks at
0.25 s after the blast for different blast conditions are illustrated in Figures 9–12. Generally,
the storage tank showed almost the same pattern of displacement with different fill levels
despite the existing difference in the magnitudes. In Figure 9, the deformed shapes of
the storage tank at both fill levels subjected to 1500 kg TNT equivalent blast load from a
distance of 12.5 m are found to have the maximum concave deformation at the lower part
of the tank. However, in Figure 10, when the distance from the blast was increased to 25 m,
the maximum deformation was found to be at the upper part of the tanks. For a blast load
of 380 kg TNT equivalent, the maximum deformations when the blast distance was 12.5 m
were found to be located at the upper side of the tank as shown in Figure 11, while for the
loading case with a blast distance of 25 m, the tank deformation was at its middle panel
as shown in Figure 12, which faced the explosion source. The difference in the location of
maximum deformation is because of the different propagation of blast waves cause by the
varying blast distance and blast intensity.

Based on the summary of tank displacement at 0.25 s, which is the termination time of
the analysis presented in Table 4, the tank structure will experience greater displacement at
a higher blast intensity and shorter distance from the blast. The maximum displacement
observed on the tank was 443.5 mm, corresponding to a blast loading of 1500 kg TNT
equivalent and a standoff distance of 12.5 m. The variation of fill level didn’t affect the
maximum displacement much, as the highest percentage difference of deformation between
100% fill and 0% fill is merely 0.85%. This is because the density of 800 kg/m3 is relatively
low and does not affect the displacement significantly. The summary of the maximum
tank displacements based on simulations is presented in Table 4. The deformation process
and stress and strain distribution of the cylindrical shell are similar to that in the study
of Paul et al. [32] and Jian et al. [3], in which the resistance of a thin-walled cylindrical
shell with fixed ends is attributed to the axial tension and dynamic pulse buckling of the
loaded surface.
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Table 4. Summary of maximum tank displacement at 0.25 s.

Blast Conditions Standoff Distance (m) Fill Level
(%)

Maximum
Displacement (mm)

1500 kg TNT Equivalent 12.5 100 443.5

1500 kg TNT Equivalent 12.5 0 439.7

1500 kg TNT Equivalent 25 100 195.8

1500 kg TNT Equivalent 25 0 194.7

380 kg TNT Equivalent 12.5 100 105.0

380 kg TNT Equivalent 12.5 0 104.4

380 kg TNT Equivalent 25 100 106.4

380 kg TNT Equivalent 25 0 105.6

4.4. Tank Resultant Displacement under Blast Impacts

Besides studying the tank deformation after the blast, the resultant displacement of
the tank summated from different displacement vectors throughout the explosion was
also measured and analysed. The resultant displacement throughout the whole analysis
of 0.25 s is measured at seven measuring points, namely S1–S7, at the tank surface facing
the blast loading. The locations of the measuring points are shown in Figure 13, while the
corresponding coordinates of each reference point are shown in Table 5.
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Table 5. Z-coordinates of measuring points.

Measuring Points Z-Coordinate (m)

S1 0

S2 3.75

S3 7.5

S4 11.25

S5 15

S6 18.75

S7 22.5

The resultant displacement versus time functions under blast intensities for different
TNT equivalent masses at various fill levels and from various distances are presented in
Figures 14–17. Generally, one can observe that the resultant deformation for the different
loading cases started with zero (as the blast wave had not reached the structure), and then
it increased and fluctuated when the blast wave hit the structure. In general, the location of
maximum displacement was always found to be at S7, which is at the top of the tank, as it
is the furthest point from the support, which is at the base of the tank. Similar observations
were also reported in [3]. The only exceptional case was when the blast intensity was
1500 kg TNT equivalent with a standoff distance of 12.5 m (Figure 14), in which the highest
deformation was experienced at S3, located at a 7.5-m height, approximately at one-third of
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the total tank height. Generally, it was found that at higher-scaled distances, the maximum
resultant displacement occurred at the top of the tank wall, while the lower part of the tank
was subjected to greater displacement mostly in the case of low-scaled distances. The blast
intensity and standoff distance have a great influence on the storage tank’s displacement,
as presented in Figures 14–17. The displacement of the tank wall increases at a lower
standoff distance of the same blast intensity as compared to a greater distance. In addition,
the results show that under the same standoff distance, the tank wall will deform with
greater intensity if a higher blast intensity is applied. Further, the simulation results shows
that the fill level has comparatively negligible effects on the overall deformation because
the hydrocarbon product contained by the tank has a density of 800 kg/m3, which is
relatively low.
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4.5. Tank Equivalent Stress under Blast Impacts

This section discusses equivalent stress under blast loading. The equivalent stress
of the tank was measured and compared with the yielding stress of the tank wall for
S450 steel, with a yield stress of 440 MPa. The time history of Von Mises stresses on the
tank wall throughout the analysis period of 0.25 s was measured at six elements, namely
E1–E6, at the tank surface facing the blast loading. The locations of the measuring elements
are shown in Figure 18, while the coordinates of the elements along the Z-axis are presented
in Table 6.
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Figure 18. Location of the elements measured for equivalent stress.

The variation of equivalent stress versus time for a blast intensity of 1500 kg TNT
equivalent mass at standoff distances of 12.5 m and 25 m for different fill levels are presented
in Figures 19–22. The graphs indicate that the highest Von Mises stresses for the different
loading cases are always observed at element E2, as it is closer to the charge of the blast.
The first surface that will be loaded from the blast wave is the building’s front façade. This
observation is in good agreement with the findings report by [28], as the first surface that
will be loaded from the blast wave is the front façade of the structure. Therefore, this region
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should be given extra attention. It was found that the fill level has minimal influence on
the Von Mises stress as well, as the pressure from the low-density hydrocarbon product
contained is insignificant compared to the blast pressure. The maximum equivalent stress
of each pressure was compared with the yield strength of S450, which is 440 MPa. The
graphs show that the tank was unyielding under the lower blast intensity of 380 kg TNT
equivalent mass at the standoff distances of 12.5 m and 25 m. However, when the tank was
subjected to a blast with an intensity of 1500 kg TNT equivalent mass, the Von Mises stress
exceeded the yield stress of the material. The summary of the maximum equivalent stress
of the storage tank under various blast loadings is shown in Table 7.
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Table 6. Z-coordinates of the elements.

Elements Z-Coordinate (m)

E1 0–1.875

E2 3.75–5.625

E3 7.5–9.375

E4 11.25–13.125

E5 15–16.875

E6 18.75–20.625

Table 7. Table summary of maximum equivalent stress of the storage tank under blast loadings.

Blast Intensity of
TNT Equivalent (kg)

Standoff
Distance

(m)

Fill
Level
(%)

Maximum
Equivalent Stress

(MPa)

Location of
Maximum

Equivalent Stress
Time (s)

1500 12.5 100 516.57 E2 0.0189

1500 12.5 0 516.56 E2 0.0189

1500 25 100 467.27 E2 0.0484

1500 25 0 467.15 E2 0.0484

380 12.5 100 387.21 E2 0.0354

380 12.5 0 386.16 E2 0.0354

380 25 100 188.47 E2 0.0639

380 25 0 188.49 E2 0.0639
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5. Conclusions

This paper explored the behaviour of thin-walled cylindrical shell storage tanks
subjected to blast loading using finite element methods. First, to better understand the
mechanical behaviour of a thin-walled cylindrical tank, a parametric study was carried
out on the storage tanks considering different material grades as well as various wall
thickness and fill levels. The thicknesses of the shell elements were defined as 10, 20, 30,
and 40 mm, respectively, based on the specifications in API 650. The inner face of the wall
was subjected to hydrostatic pressure of 25, 50, 75, and 100% fill level based on a fluid
density of 800 kg/m3 and kinetic viscosity of 1.9 mm2/s. Next, the parametric study was
validated using simplified empirical equations of the thin-walled cylindrical storage tank.
The numerical simulation was conducted using LS-DYNA, where the structural behaviours
of the storage tank, such as blast pressure, deformed shape, resultant displacement, and
equivalent stress, were obtained. The outcomes of the results show that the deformation of
the tank increases with higher blast intensity, and it reduces with a greater blast standoff
distance. Generally, the maximum displacement of the tank occurs at the top of the tank.
The results show that Von Mises stress on the tank increased at higher blast intensity and
lower standoff distance. The study also suggests that the thin-walled storage tank will
yield under the blast condition of a 1500-kg TNT equivalent mass explosion at standoff
distances of 12.5 m and 25 m. The results also show that the fill level has comparatively
minimal influence on the displacement and the equivalent stresses of the tank, as the
fluid contained has a comparatively low density. The material grade of S450 with a wall
thickness of 20 mm was found to be the most efficient under the blast loads effects.
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