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Abstract. The purpose of this numerical study was to investigate the burst performance of a type 
III composite overwrapped pressure vessel (COPV) using finite element methods. An Aluminum 
overwrapped composites pressure vessel was modeled from four layers of carbon fiber/epoxy 
ply with 0.762 mm and arranged in two different sequences and orientations. The overwrap 
composite pressure vessel burst performance was examined by applying an internal pressure of 
55 MPa on a ply arrangement of [-15°/0°/+15o/90°] and other research findings on [+55o/-55o] 
as an optimum filament winding angle were used for comparison purpose. Moreover a ply level 
orientation effect analysis, which is a superior feature of ABAQUS, was used for the composite 
modelling. The designed ply sequence and orientation exhibit a higher burst pressure at [0o] ply 
and minimum at [90o] ply orientation. The vertical COPV design displays a maximum stress 
along the axial direction that leads to the consideration of maximum vessel thickness to be along 
axial direction for burst resistant design of COPV.  

Keywords: Burst, Composite design, fiber orientation, Ply sequence, Pressure vessel 

1.  Introduction 
Composite pressure vessels are increasingly being used in the renewable energy sector, primarily as a 
storage container for compressed natural gas (CNG). The restrictions on metallic pressure vessels due 
to weight and corrosion problemshas increased the demand of composite pressure vessel opens for the 
wide research opportunities to supply an optimized composite pressure vessel [1]. Usually, compacted 
hydrogen air is kept in Type I pressure vessel (metallic cylinders), whose  storage capacity is limited to 
a pressure below 25 MPa. The capacity limitation and hydrogen embrittlement for raising micro-cracks 
in the cylinder is one of the factors not to use Type-I pressure vessel at large scale. The fiber reinforced 
composite were developed by overwrapping a fiber in the hoop direction of metallic fiber emerged as 
Type II pressure vessel to fill the gap of the less weight demand of such structure. 

However, there is still a significant demand for weight reduction of pressure vessels by automotive 
industry, which is not met yet by existing types of hydrogen storage vessels to enhance usage of 
compressed gas as source of energy [2]. Type III: Metal liner (usually aluminum) and Type IV: Polymer 
liner (typically polyamide or polyethylene-based) with complete composite overwrap containers have 
been introduced to suit market demand for least weight and increased storage capacity. Such types of 
pressure vessels are produced through either polar, helical or hoop types of filament winding method 
[1],[2]. In the overwrapped pressure vessel, an inside layer is used as a mandrel and fiber with strength 
of 5-6 GPa and low density is used as an overwrapping material to cove the liner in the hoop and axial 
directions. The hoop and axial filaments are wound to bear axial and hoop loading of the cylinders. The 
pattern of ply in the hoop and axial direction can be determined by the designer. Depending on the liner 
types used for production  of vessels, the vessel with metallic liner is labeled as type-III while type-IV 
vessel is produced with polymer liner like, Linear Low Density Polyethylene (LLDPE) and High 
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Density Polyethylene (HDPE) [2], [3]. The fact that composite pressure vessels are corrosion-resistant 
and provide reduced weight for the same volume of type-I (metallic vessel) is one of the reasons for the 
huge attraction of composite pressure vessel (COPV). However, composite pressure vessels demand a 
serious evaluation of mechanical design, appropriate materials, and manufacturing methods selection, 
and testing requirements are major challenges of the product that hinder the mass production and 
utilization of COPV [3].  

One of the remarkable characteristics of COPV is the demand for the complex mechanical property; 
there should be proper attention to the interchangeability between the inner liner and lamina of the 
composite. Usually, the metal type liner is utilized as inner section of the vessel to act as a wall to fluid 
infiltration. Although there is the widespread use of overwrapped COPV, the design development and 
manufacturing of many overwrapped pressure vessels is at a primitive stage. Consequently, various 
research efforts have been undertaken on the performance analysis of COPV through different numerical 
and experimental techniques that qualify the product for the designed purpose. Burst strength evaluation 
of COPV is one of the major attentions that attract scholars to outline the optimum design parameters 
[1]–[3].  

The current study deals with the evaluation of burst strength of thin cylindrical pressure vessels and 
the failure phenomena evaluation owing to circumferential or hoop stress along their direction in the 
pressure vessel construction. Accordingly , the study aims  to:  

• determine the axial and hoop stress developed on four plies with an aluminum liner made 
pressure vessel, 

• determine the developed displacement and elastic strain on the overwrapped composite pressure 
vessel made from the Aluminum liner by overwrapping a carbon/epoxy fiber oriented at 15o/0o/-
15o /90o and +55/  55 to produce a cylindrical pressure vessel 

• evaluate the optimum winding angle used to resist the burst pressure on each plies and 
• compare the obtained simulation results with the other measured experimental works. 

2.  Theoretical analysis of burst strength for pressure vessels 
Construction machinery trucks, ship body building, aerospace part construction, and other dome-type 
civil structures are made of shell-type structures. Moreover, the pressure vessel of compressed gas or 
chemical container is made from shell structures [3]. Since the vital engineering structures are made 
from shell structures that are suspected to be exposed to bursting phenomena, numerous investigations 
have been conducted to discover the optimum method that can precisely foresee the rupture pressure 
vessels. To determine the specific value of the burst pressure and the precise place of rapture, a number 
of theoretical models, concepts, and procedures are established [4]. Typically, a restricted analysis is 
performed to acquire the basic design parameters, and then the design is advanced through many 
fabrication and burst iterations procedures, resulting in a significant investment cost for experimental 
investigation. Although finite element analysis (FEA) is a very strong method for pressure vessel 
research, it necessitates a lot of computing capacity.  

Through an estimation based on the average equivalent plastic strain development over the thickness 
by arc length approach, FEA can be used to pinpoint the specific region of failure, as a result, pressure 
vessels are constructed with a thickness proportionate to the vessel's radius and pressure, and inversely 
proportional to the maximum permitted normal stress of the material used in the container's walls [5]. 
Pressure vessels are exposed to longitudinal forces within the walls of the vessel. The normal stress in 
the walls of the vessel is proportional to the pressure and radius of the vessel and inversely proportional 
to the thickness of the walls. When the stress level in the wall surpasses some stated failure criterion, 
pressure vessels fail. As a result, it is crucial for designers to study and quantify stresses in pressure 
vessel features [6]. FEA is a potential tool to conduct an accurate prediction of any type of stress that 
leads to the bursting of composite pressure vessels. According to experiments  [7], the majority of burst 
testing data is between Tresca and von Mises burst pressure projections, necessitating the adoption of 
an alternative prediction. Zhu et al [8]  proposed a novel multiaxial yield criteria based on average shear 
stress to achieve this goal. For advanced prediction of isotropic hardening material, the average shear 
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stress yield (ASSY) is established as a multi-axial yield theory, whereas the Tresca and von-Mises yield 
theories are used for the prediction of lower and upper bounds of burst pressure, respectively [4]. Several 
attempts to develop alternate equations for measuring burst pressure have been attempted, in which 
some of them discussed here.  

In the literature, different equations are recommended to calculate burst pressure. For instance, 
Cooper [9] determined  the burst pressure  using equation (1).  

 
D

t
Pb ult

n *2
*3*2 2

)1( σ+−

=    (1) 

Where, Pb = burst pressure of vessel, ultσ  = ultimate tensile strength, t = thickness, n = strain 
hardening exponent and D is mean diameter of vessel.  

The alias sum of square criterion (ASSC)[9] recommends also equation (2) to calculate the burst 
pressure at the mean diameter as:. 
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On the other hand, Barlow [10] stated that the burst pressure development across a composite 
pressure vessel can be calculated using equation (3). 
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And ASME Boiler code also provides a method of mean burst pressure (Pm) assessment that is given by  
equation (4) [10] 

   







+
−

=
1
1* 2

2

k
kP ultm σ  (4)                                                                                                   

Where k stands for the pressure vessel's diameter ratio (Do/Di). According to the criterion of maximal 
stress [11], the mean burst pressure can be determined by equation (5). 

 ( )1* −= kP ultm σ   (5)                                                                                                   

On the other hand, the European standard states equation (6) [9] to be used to evaluate the burst 
pressure phenomena of metallic vessel.  
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Where f = stress in the nominal design, z = coefficient of weld, ea = thickness of investigation and 
Dm = mean diameter of the pressure vessel. 

In the equations given above (equation (1) to (6)) it is observed that the burst pressure is a function 
of vessel diameter, wall thickness, material hardening and the ultimate tensile strength of the material 
used. ASSY as a new theory is a failure analysis criterion that includes the von-Mises equivalent stress 
criterion, the maximum primary stress criterion, the von-Mises equivalent strain criterion, and the 
maximum tensile strain criterion. Assessing failure pressure of composite pressure vessels requires 
applying theories of failure alike Tsai-Wu failure theory that stated in equation (7), which is used to 
predict the burst pressure of composite materials [12]. 
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In this equation; F1, F2, F11, F22, F12, F66 are determined based on the used composite materials strength 
parameters given as: 
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In the contemporary design analysis of either metallic or composite pressure vessel analysis, 
numerical methods are favored in many ways to obtain an optimized and efficient results with less cost 
of time. One of the most powerful numerical tools for studying the mechanical behavior of pressure 
vessels under internal pressure to failure is the commercial software ABAQUS [13]. An experimental 
and numerical-based study reported by [14] verified that +55o ply orientation provides an optimal wound 
pattern for the construction of pressure containers that can withstand a burst and then first-ply failure of 
the composite pressure vessel determined by using finite element method (FEM) in ANSYS. 

One of the major opportunities and benefits of composite materials is the flexibility offered for user-
defined fiber placement. Using commercial software such as ABAQUS and ANSYS, an ideal design for 
less material utilization and improved strength can be achieved by rearranging sequence  and orientation 
of plies, these commercial software programs can anticipate the failure of the first ply in a laminated 
composite [15]. The first-ply failure (FPF) that triggers the last-ply failure (LPF), i.e. bursting stage, in 
composite pressure vessels can be determined, for instance, using the acoustic emission approach. 
Because thermal stresses occur at high temperatures, the composite material's strength reduces for 
succeeding plies [16].  Hence, Type III and IV composite pressure vessels produced with an inner liner 
made of aluminum and LDPE respectively, the inner pressure at high-temperature increases the speed 
of the last ply rapture of fiber reinforced composite made pressure vessel with inner liner of LDPE [17].    

Even though pressure vessel made by filament winding provides outstanding performance, they have 
their complexity while analyzing the whole geometry. Moreover, the variation of fiber angles due to the 
fiber path design leads to a variety of thicknesses [18]. First Order Shear Deformation Theory (FOSDT) 
and Third Order Shear Deformation Theory (TOSDT) in FEM approach were successful tools to predict 
the transverse shear strains and stresses that cause the laminar de-lamination for failures to happen at 
end pole opening and junctions of pressure vessel structure [19].  The future investment for hyper 
pressure utilization of composite pressure vessels needs structural health monitoring that is used for first 
lamina rapture remediation or decision for last lamina failure. The binding matrices crack initiation or 
the load bearer fiber breakage can be recorded by acoustic emission sensor and strain sensing devices 
[20]. 

3.  Numerical modeling and bursting study  

3.1.  Modeling of composite pressure vessels  
The vertical overwrapped pressure vessel shown in Figure 1 is used for numerical analysis in this work. 
The pressure vessel is drawn with a 4 mm thick aluminum liner of  1000 mm length and a 200 mm 
diameter, as the inner core and carbon/epoxy plies overwrapping the liner. The commercial software 
ABAQUS 6.14 was chosen to model and simulate the pressure vessel's geometry. The material 
properties given in Table 1 and 2 are adopted from [21] and used to model the composite pressure vessel. 
The ply sequence from inner to outward consisted of aluminum (AL6060) alloy at the inner side with a 
subsequent four layers of carbon/Epoxy reinforced plies with respective fiber patterns as shown in 
Figures 2 (a) and (b).  
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Table 1. Characteristics of carbon fiber reinforced polymer composite (CFRPC) material and AL6061 

Materials  Density (kg/m3) E1 (GPa) E2 (GPa) N12 G12 τ (MPa) 
CFRPC 1570 135 8 0.27 3.8  
AL 6061 2700 74.12 74.12 0.3 27 600 

 
Table 2.  Carbon fiber reinforced polymer composite strength properties  

Materials  Xt [MPa] Xc  [MPa] Yt [MPa] Yc [MPa] S [MPa] 
CFRPC 1860 1470 76 85 98 

NB: Xt , Xc, Yt , Yc are tensile and compressive strengths in X and Y directions resp., and S is the shear strength of CFRP.  

3.2.  FEM modelling details  
The FEM analysis is performed on the 1/8th section part of Figure 1(a) to reduce the 
computational resources. The dimension of the model, the loading and boundary condition 
definitions as well as the meshed model are shown in Figure 1 (b), (c) and (d), respectively. 

 
Figure 1. (a) 3D model of COPV, (b) dimension layout, (c) Loading and boundary condition, and (d) 

Meshed model 

3.3.  Ply stacking Sequence Modelling  
The overwrapped composite was modeled and simulated by the five layers that are arranged as shown 
in Figure 2 (a) and (b) with a ply orientation of   [+55/-55]2, [ + 15o/0o/90o] and the inner core of 
aluminum liner oriented at [0o] from the x-axis. Because of the COPV's symmetrical features, only the 
1/8th segment depicted in Figure 1(d) is used for finite element modeling, which helps to reduce 
computational time and improve efficiency. In this study, the pressure vessel is sketched by shell 
structure with S4R element type. The FEA for Test 1 is undertaken at a ply sequence of [-
15o/0o/+15o/90o] and Test 2 is conducted at the ply sequence of [-55o/+55].  The FEM model consists of 
282 elements and 342 nodes that help to reduce the CPU time of the conventional computer used in this 
study. Tables 3 and 4 list the parameters used in the finite element modeling of the aluminum 
overwrapped composite pressure vessel. 
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Figure 2. (a) Ply orientation of Test-1 , and and (b) Test-2 of COPV 

 

Table 3. Details of Stack sequence of the COPV design for Test-1  
No. Sel. Ply Name  Region  Material  Thickness, 

mm 
CSYS Rotation 

angle 
Integration 
point  

1  √ Aluminium@0 (Picked) Aluminum 4  <Layup> 0 3 
2 √ Orientation@-15 (Picked) Composite  0.762 <Layup> -15 3 
3 √ Orientation@0 (Picked) Composite  0.762 <Layup> 0 3 
4 √ Orientation@15 (Picked) Composite  0.762 <Layup> 15 3 
5 √ Orientation@90 (Picked) Composite  0.762 <Layup> 90 3 

Table 4. Details of Stack sequence of the COPV design for Test-2 
No. Sel. Ply Name  Region  Material  Thickness, 

mm 
CSYS Rotation 

angle 
Integration 
point  

1  √ Aluminium@0 (Picked) Aluminum 4  <Layup> 0 3 
2 √ Orientation@55 (Picked) Composite  0.762 <Layup> 55 3 
3 √ Orientation@-55 (Picked) Composite  0.762 <Layup> -55 3 
4 √ Orientation@55 (Picked) Composite  0.762 <Layup> 55 3 
5 √ Orientation@-55 (Picked) Composite  0.762 <Layup> -55 3 

4.  Discussion of Results 
The present numerical burst strength analysis is carried out on composite overwrapped pressure vessel 
designed with a geometrical dimension of 1000 mm long and a cylinder radius of 100 mm vertical 
erected pressure. A broad range of researchers have focused on the study of structural performance either 
on the axial body of the cylindrical or the dome part of pressure vessel, [22]–[24].. In this study, the 
whole part of the overwrapped composite pressure vessel with effective computation techniques has 
been studied numerically in two scenarios of Test-1 and Test-2 categories which are given in Table 3 
and 4. Burst pressure is a pressure that a vessel can absorb before the total rapture of the whole structure. 
The failure of fiber leads to laminar failure of vessels. The fiber pattern is also a critical parameter on 
the stress-bearing capacity of the pressure vessel [25].  

The structural performance of Aluminum overwrapped composite pressure vessel made of four plies 
that is oriented as shown in Table 3 of Test-1 has been conducted by loading with internal pressure of 
55 MPa and using appropriate boundary conditions for vertically erected type pressure vessel, 
consequently, a maximum of 893.1 MPa of In-Plane Principal stress, shown in Figure 3 (a) is induced 
in the COPV made by Test-1 category ply orientation. The hoop and axial stress developed in this 
category is 272 MPa and 893 MPa, as shown in Figures 3b and 3 (c), respectively. 
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Figure 3. Stress distribution of COPV for Test-1 (a) Max. In -plane stress (b) hoop stress  and (c) axial 
stress  

 
Figures 4 (a)-(c) show the Test-1 category evaluation of strain level for overwrapped composite 

pressure with the highest induced in-plane principal strain of 1.21 percent, and the fiber (E11) and hoop 
(E22) direction strains of 1.20 percent, which are similar in values but not in distribution. 

 
Figure 4. Strain distribution of COPV for Test-1 (a) Max.In-plane strain (b) hoop strain (c) axial strain 

4.1.  Ply-wise failure assessment of overwrapped composite pressure vessel: Test-1 category 
While Tsai-Wu failure theory is a gauge that was applicable for analyzing composite structure [24], 
maximum strain and stress is considered in this study, to compute the burst pressure and effect of ply 
orientation by the internal pressure on the Aluminum liner. The last ply strain (burst strain) shown in 
Figure 5 and last ply stress (burst stress) that is shown in Figure 9 indicates that Test-1 ply orientation 
is stronger than Test-2 ply orientation.   

 
Figure 5. Max. In-plane principal strain on the last ply: Burst strain.  
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4.2.  Ply-wise failure assessment of overwrapped composite pressure vessel: Test-2 category 
According to current research on the best filament winding angle for wound composite pressure vessels, 
+55o is the best angle [26]. This optimum winding angle is used as a benchmark in this study to compare 
the burst performance of the proposed ply orientation shown in Table 3.  This optimal winding angle for 
filament-wound composite pressure  induced max. In-plane stress, shown in Figure 6 (a), exhibits about 
1553 MPa which is higher than Test-1 type ply orientation :[-15o/0o/+15o/90o]. Similarly, the hoop and 
axial stress shown in Figure 6 (b) and (c) are around 243.9 MPa and 1553 MPa respectively. The induced 
strain showed in Figure 7 (a)-(c) are 2.2%, 2.1%, and 2.2 respectively. Figure 8  depictes the structural 
burst performance of Test-2 ply sequence and orientation is less than the proposed ply sequence in Table 
3. From this graphical result, the induced axial and hoop stress indicate a clue for design consideration 
that higher thickness of the dome of the vessel can better absorb higher pressure along the axial direction. 

The laminate failure by burst pressure is the most dangerous mode of failure of COPV. Accordingly, 
diverse explorations were shown to develop an optimum parameter that increases their burst pressure 
[24]. Since ply orientation and sequence is one of the major parameters for increasing the burst pressure 
of vessels, an alternative novel ply sequence and orientation was proposed in this study. The stacking 
sequence proposed in Test-1 category for the design of ply orientation at [-15°/0°/+15o/90°] shows better 
performance than that of Test-2 design of ply orientation at [+/-55]. 

 
Figure 6. (a) Max.In-plane stress, (b) hoop stress, (c) axial stress, distribution of COPV for test-2  

 
Figure 7. (a) Maximum In-plane principal strain, (b) hoop strain, (c) axial strain of COPV for test-2 
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Figure 8. Last ply strain for LPF 

The maximum stress-bearing capacity which is proportional to burst pressure of each ply for Test-1 
and 2 ply sequence is depicted in Figure 9. The ply orientation at [0o] and [15o], second and first ply 
exhibit maximum in-plane stress of 1625 MPa and 1506 MPa, while the second ply orientation at [-55°] 
and fourth ply orientation at [+55°] results about 486.2 MPa and 464.3 MPa respectively.  From the 
induced maximum stress shown in Figure 9, the performance of the two category ply sequence and 
patterns for Test-1 and Test-2 show dissimilar stress-bearing capacity trends. Since the composite 
structure is strong along the fiber direction, that coincides with the result obtained at [0o], and fiber 
strength increases with decreasing orientation, which is also shown by the result of ply that is oriented 
at [15o]. Moreover, the obtained result is a clear indication for the maximum stress decrement as the ply 
orientation increases i.e. at [0o] the max. stress is 1625 MPa while at [90o] it is about 161 MPa. As the 
COPV wound angle raises the induced stress becomes lower values, this indicates that there is a direct 
relationship between burst and stresses. The increase of ply orientation angles resulted in a decrease in 
burst pressure. Nonlinearity response design for multidimensional dynamic loading has sparked a lot of 
research interest, as well as a rise in composite product demand from various industries [27]. 

 
Figure 9. Max. In-plane stress distribution for Test1 and 2 ply sequence 
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5.  Conclusions 
The burst performance of type III composite overwrapped pressure vessels was investigated using the 
finite element approach in this computational study. Al 6060 liner was overwrapped by four layers of 
carbon fiber reinforced polymer composite in two distinct ply sequences and orientations, labeled as 
Test-1 and Test-2, and the stated parameters were studied using FEM. The hoop and axial direction 
stresses, as well as the maximum stress and strain, were examined. The acquired results were used to 
investigate the effect of internal pressure on ply orientation in the two test categories. Test-1 category 
ply sequence [-15o/0 o /+15 o /90 o] has a higher strength in burst pressure than that of the ply sequence 
[-55 o /+55 o]. The obtained maximum stress corresponds to the fact that a higher degree of ply orientation 
results in the lowest burst pressure. Since the axial direction of the proposed vertical COPV has the 
highest stress, the vessel's shell thickness should be in this direction to absorb the burst pressure. This 
numerical analysis contradicts with the literature's conclusion about the best winding angle for burst-
resistant vessel design. The obtained burst pressure exceeds experimental test results on [-/+55] ply 
orientation, although the current paper lacks experimental validation. ABAQUS-based FEM is a strong 
design tool that provided the flexibility to knob the composite overwrap pressure vessel to model an 
overwrapped dissimilar material properties as a single component. Moreover, a ply level orientation 
analysis is a superior feature of ABAQUS to be used for such composite modeling. Finally, while the 
numerical results obtained from this work can be used to better understand the structural behavior of 
overwrap composite pressure vessels, the proposed innovative ply sequence and orientation will require 
further testing. 
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