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Abstract. Fused deposition modeling (FDM) is the most prevalent thermoplastic additive 
manufacturing technology. Many input parameters and their settings have a significant impact 
on the quality and functionality of FDM parts produced. To enhance the quality of parts, it is 
critical to be able to predict surface roughness distribution in advance. The development of 
artificial neural network (ANN) models to forecast the impact of main FDM process factors on 
the part quality in terms of surface roughness while utilizing ABS (Acrylonitrile butadiene 
styrene) material is described in this work. Taguchi L9 orthogonal array was used to plan the 
experiments. Different printing input parameters such as layer thickness, orientation angle, and 
infill angle are used in the experiments. In terms of controllable input parameters, ANN is used 
to construct a predictive mathematical model. The effects of various printing settings on 
surface roughness were investigated using analysis of variance (ANOVA), main effect plots, 
and contour plots. Experiment findings and regression value are used to validate the models. 
The model has shown to be capable of adequately predicting responses within a maximum 
percentage error of 4.664 percent of arithmetic roughness average (Ra), which is a good 
agreement. 

Keywords: Fused deposition modelling; artificial neural network; Surface roughness; process parameter 

1.  Introduction 
Additive manufacturing (AM) is a cutting-edge technology that creates a product directly from a 3D 
CAD model using a layer-based manufacturing process. FDM is among rapid prototyping 
technologies that uses flexible thermoplastic filament extruded via a heated outlet to build 
components. It uses a range of process parameters throughout the part's production [1–4]. Acrylonitrile 
butadiene styrene, polylactic acid, polyetherimide (Ultem), Polyether Ether Ketone, polycarbonate, 
and fiber-reinforced thermoplastics are among the thermoplastics and reinforced thermoplastic 
materials that may be printed using FDM [5–8]. FDM offers a great deal of versatility when it comes 
to producing thermoplastic components with complex 3D geometry in a reasonable period of time, 
making it a viable option for applications in the aerospace, automotive, and medical industries [9–11]. 
Despite these advances, there is still an insufficient knowledge of the connections between 
manufacturing process factors and the final mechanical characteristics of such parts, which is 
hindering further progress and application of this technique.  
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Several studies have been conducted by various researchers to explored the role of printing factors on 
surface roughness. For instance, Pramanik et al. [12] conducted experimental study on improvement of 
surface roughness of ABS FDM printed components and identified substantial influencing factors such 
as print speed, extruder temperature, bed temperature, infill concentration, and layer thickness. To 
predict and analyze the electroplating effect on FDM components surface quality and size at various 
surface angles, Sugavaneswaran et al. [13] used NACA 0012 air foil methods. According to Huang et 
al. [14], layer resolution, fill mode, and processing material have a substantial impact on top surface 
roughness, whereas layer resolution has a considerable impact on side surface roughness. Surface 
roughness is mostly impacted by air gap and less influenced by raster angle, as detected by Mishra et 
al. [15], and raster width and chemical treatment successfully minimize surface roughness of FDM 
ABS built parts. According to Dezaki et al. [16], the build direction of FDM devices had a substantial 
effect on the surface texture, and the infill design and density of FDM objects manufactured with PLA 
materials had a direct effect on the part quality and mechanical characteristics [17]. 

Reddy et al. [18] approved that layer height and build inclination, rather than material infill, were 
the most critical parameters impacting printing quality of FDM components. Print orientation angle 
had the main effect on FDM produced PLA components, as reported by Buj-Corral et al. [19]. Bintara 
et al. [20] conducted research on the surface quality of FDM printed components using Polylactic Acid 
material and found that surface roughness was prominently influenced by layer height, i.e. the higher 
layer height, the rougher the surface is. According to Sammaiah et al. [21], the optimal output of the 
surface quality of a FDM printed component is founded at higher infill concentration and lower layer 
height, with rising layer height also result in increased surface roughness. The layer height has a 
substantial effect on the surface texture and dimensional tolerances of printed items utilizing the FDM 
3D Ultimaker printer PLA thermoplastics according to Mendricky et al. [22]. Rendering to Altan et al. 
[23], layer height was determined to be the most significant element in improving ultimate tensile and 
lowering surface roughness of PLA products manufactured by FDM. 

Rajesh et al. [24] used the Taguchi S/N ratios optimization technique to improve the quality 
characteristics in terms of ultimate tensile  and surface roughness for ABS products printed using 
FDM, and found that when surface roughness is considered, temperature plays an  essential role, with 
the lower the temperature, the smoother the surface texture. Manoharan et al. [25] compared 
experiment and predicted tensile strength during FDM printing components utilizing RSM and ANN 
approaches. The authors concluded the RSM approach predicted less improvement than the ANN 
approach. Pazhamannil and his research fellows [26] used an ANN to estimate the ultimate tensile of 
produced components using FDM at various nozzle temperatures, layer height, and infill rates. 

Several pieces of research used various prediction approaches to enhance the feature of FDM 
printed components. However, few studies have observed at the effect of printing settings and the 
application of ANN to forecast FDM component quality. Based on a literature review, this study aims 
to enhance the performance of FDM printed products using experimental and ANN prediction with 
three input factors such as layer height, orientation angle, infill angle, and surface roughness as the 
output response. 

2.  Materials and methods 

2.1 Sample preparation 
The quality of built part attributes as well as their manufacturing efficiency is heavily influenced by 
printing settings. It is important to investigate the impact of inputs, printed parameters, and out 
variables on the quality of printed components.  The adjustable input parameters in this study were 
layer thickness (mm), orientation angle (˚), and infill angle (˚).  
Table 1 illustrates the three input variables of the experiment, and their actual level values. As 
indicated in Figure 1, the test specimen utilized in this experiment was constructed using Solid works 
CAD modelling software based on the American steel testing and manufacturing (ASTM) D638 
standard [27].      
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Table 1. Controllable input parameters and their levels. 

Input parameters Levels 1 Levels  2 Levels 3 

Layer thickness (mm) 0.1 0.2 0.3 

Orientation angle (˚) 0 15 30 

Infill angle (˚) 0 30 30 

 
Figure 1. The geometry of the test specimen 

2.2 Experimentation setup: Design of experiment and specimen fabrication 
Taguchi's experiment design gives an effective method for studying the experiments with the least 
number of experimentation. A Taguchi L9 (33) orthogonal array was used to create an experimental 
design matrix (Table 2) based on specified process parameters and their levels. As indicated in Figure 
1, the test specimen utilized in this experiment was constructed using Solid Works CAD modelling 
software per the ASTM D638 standard [27] with 3.2 mm thickness. The design format, which was 
initially in .SLDPRT file format, is changed to .STL file format once the specimen is designed. 
Additionally, the STL file is imported into CURA, a process control software for Ultimaker 3D 
printer. This program is used to slice a CAD model into layers, build support structures, change 
process parameter values, and virtually alter the parts location in the 3D printer's bed. For printing 
samples (Figure 2(a)), which were generated using design of experiment (DOE) method, an FDM 
Flash forge creator pro is utilized as shown in Figure 2(b). Each fabricated part's surface roughness was 
measured at five separate locations on the top and bottom surfaces, with the average results utilized for 
analysis. The surface roughness of the manufactured items was measured using laser scanning 
microscopy (VK –X 200 K, Keyence, Japan).  

     
             (a)                      (b) 

 Figure 2. (a) Parts fabricated by FDM machine; (b) FDM Flash forge creator pro 
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Table 2. L9 orthogonal array design of experiments (DOE) and results 

Exp. 
trials 

 Layer thickness  
(mm) 

Orientation angle 
(˚) 

Infill angle  
(˚) 

Surface Roughness (Ra) 
(µm) 

1  0.1 0 0 0.3265 
2  0.1 15 30 0.5925 
3  0.1 30 60 0.5988 
4  0.2 0 30 1.0545 

           1.2165 5  0.2 15 60 
6  0.2 30 0         1.2095 
7  0.3 0 60         1.3375 
8  0.3 15 0          1.3425 
9  0.3 30 30                 1.6542 

2.3 ANN modelling 
ANNs are inspired by biological neural systems. In this approach, the weighted sum of inputs coming 
at each neuron is processed through an activation function to create an output signal. To increase or 
decrease the net input to the activation function, the weighted sum is given an extra bias input. The 
network design and connections between the processing units play a big role in the functions 
synthesized this way [28]. The majority of ANN designs are feed-forward networks, which are usually 
trained using the error back-propagation method from input data. The independent variables are 
represented by each input node, while the dependent variables are represented by the output nodes. 
Hidden layers are utilized for computing and are used to execute nonlinear changes on the input space 
[29]. 

The independent factors in this study are layer thickness, orientation angle, and infill angle, 
whereas the dependent variable is surface roughness. The data used to train the network is taken from 
Table 2. Figure 3 shows the three inputs, ten hidden layer, single output layer, and output (surface 
roughness) of a three-layer feed-forward network. Table 3 shows the ANN design and learning 
variables used in this investigation, and the neural network model was generated using the neural 
network toolbox (version 6.0) in the MATLAB R2019a computational environment. 

 
Figure 3. Schematic of the neural network 

Table 3. Learning factors selected for ANN 

Network type Feed forward neural network 
Training function Train levenberg-Marquardt(LM) 
Adaption Learning function LEARNGD (Gradient descent) 
Performance function Mean square error 
Network topology 3-10-1 
Transfer function TANSIG 
Number of Hidden Layers 1 
Number of Neurons 10 
Training method Back-propagation 
Number of Epochs 100 
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3.  Results and discussion 

3.1 Effect of process parameters on surface roughness 
The research looks at three FDM process factors. Surface roughness experimental data (Table 2) were 
evaluated via analysis of variance (ANOVA) to find out the key factors influencing performance 
metrics. The mean surface roughness was studied using an ANOVA with a 95% certainty interval. The 
F – value and P-value from the ANOVA table are utilized to verify for significance. The F-test and P-
test work on the concept that the bigger the F value and the smaller the value for a given process 
parameter, the significant the influence on the performance characteristic owing to that process 
parameter modification. Table 4 shows the ANOVA table with comprehensive analysis. Factors with a 
very modest probability (Prob > F value less than 0.05) are considered significant in the ANOVA table 
and are included in the regression model, whereas factors with a probability (Prob > F value) higher 
than 0.1 are considered unimportant and are omitted from the model. 

Table 4. ANOVA tables of surface roughness 

Source 
DF Adj SS Adj MS F-Value P-Value 

(Prob > F  ) 
Remark  

Regression 3 1.42681 0.47560 25.18 0.002 Significant 
Layer thickness (mm) 1 1.32202 1.32202 69.99 0.0001 Significant 
Orientation angle (˚) 1 0.09226 0.09226 4.88 0.078 insignificant 
Infill angle (˚) 1 0.01254 0.01254 0.66 0.452 insignificant 
Error 5 0.09444 0.01889    
Total 8 1.52126      

3.1.1 Effect of layer thickness. Figure 4 shows the main effects plot of process parameters on surface 
roughness. It was observed that layer thickness has a substantial impact on responses than orientation 
angle and infill angle. In Figure 3, when comparing equivalents with low-level and high-level layer 
thickness, it is obvious that the low-level layer thickness enhances the material's surface roughness. 
Table 4 shows that layer thickness has a substantial influence on surface roughness since P-value is 
less than 0.05. Figure 5(a) illustrates Ra contour plots against layer thickness and orientation angle 
(30° infill angle), while Figure 5 (b) shows Ra contour plots against layer thickness and infill angle 
(15° orientation angle). The plots in the figure show the interaction analysis between layer thickness 
vs. orientation angle and infill angle. As illustrated, the lowest surface roughness is achieved at a layer 
thickness of 0.10 mm to 0.15 mm, as shown in this plot. We also noticed that when layer thickness 
enlarged, the surface roughness increased. 

3.1.2 Effect of orientation angle. In Figure 4, the impact of the orientation angle on the material's 
surface roughness can be observed in the second plot from the left. This parameter has a negligible 
impact on part quality. The low-level orientation angle, in contrast, enhances the surface roughness of 
printed components. As given in Table 4, because the p-value is greater than 0.05, the orientation 
angle has a minimum effect on surface roughness. The plots in Figure 5(a) and (b) also indicate that 
optimum surface quality is achieved between 0° and 5° orientation angle. Surface roughness was also 
shown to be larger at high orientation angles. 

3.1.3 Effect of infill angle. The outcome of infill angle on the surface roughness can be seen in the 
third plot from the left in Figure 4. This parameter has a negligible effect on part quality. The surface 
roughness of printed components is improved by the lower level infill angle. The infill angle has a 
minimum effect on surface roughness than the other two factors, as seen in Table 4. The plots in 
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Figure 5(b) and Figure 5 (c), with 0.2 mm layer thickness, indicate that acceptable surface quality is 
attained between 0° and 5° orientation angle. 

 
Figure 4. Plots of main effects showing influence of process parameters on Ra 
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Figure 5. Contour plots of Ra against (a) layer thickness and orientation angle, (b) layer thickness and infill 
angle, and (c) orientation angle and infill angle 
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3.2 ANN prediction result 
To obtain a good regression value range, the network is trained by modifying the default training 
settings. When the error, or the gap between the expected and predicted output, is below a given 
threshold value, or when the number of iterations or epochs is over a designated threshold value, the 
ANN is stopped training. The regression value (R) near  to 1  specifies  that  relationship  is  close  and 
value  near  to  0  represents  random  relationship. Figure 6 shows the regression plots generated using 
ANNs, with R = 0.99915 indicating the best fitness after repeated training. This shows that the 
predicted results of the ANN model appear to be in agreement with the experimental findings. Figure 
7 shows comparison graphs between observed and ANN predicted values. Error percentage for ANN 
was computed individually by associating the predicted values with the test results. As demonstrated 
in Table 5, the ANN model performed satisfactorily, with all forecasts falling within 5% of the 
experimental value, indicating its potential for future use. 

 
Figure 6. Regression plots for surface roughness obtained using ANN 
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6  1.2095 1.20642 0.255 
7  1.3375 1.33770 0.015 
8  1.3425 1.40512 4.664 
9  1.6542 1.60008 3.272 
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Figure 7. Comparative plots of experimental and prediction result for Ra 

4.  Conclusion 
An experimental investigation and ANN model prediction was presented in this study to estimate 
surface roughness for the influence of layer thickness, orientation angle, and infill angle on FDM 
produced ABS components. The DOE L9 orthogonal array was used in all of the tests to alter the input 
parameters at various levels.   The neural network toolbox in MATLAB R2019a was utilized to create 
the ANN model. The experimental results were used to train and test the developed ANN model. In 
terms of relative error and quality of fit, the model's prediction performance was found to be adequate. 
As a result, the suggested model may be used to fabricate FDM parts. From this research, the 
following findings may be drawn: 

• The thickness of the layer has the greatest impact on surface roughness (Ra). The 
orientation angle and infill angle, in contrast, have mainly minor on Ra. 

• The lowest surface roughness is obtained with a layer thickness of 0.10 mm to 0.15 mm, an 
orientation angle of 0 to 5°, and an infill angle of 0 to 5°. 

• Low layer height, orientation angle, and infill angle are all effective ways to get a smooth 
surface. 

• The maximum error percentage (4.664%) and goodness of fit 0.994 (R= 0.99915) in 
training were found in the statistical study of the ANN result for surface roughness, which 
is acceptable accord with the experimental data. 
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