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Abstract. This paper summarizes a master’s thesis project which explored whether the 
characteristics of Acoustic Emission Testing (AET) signals can be used to detect yielding in steel 
samples undergoing a three-point bending test.  A subset of existing data from a three-point 
bending test was exported and used as input. Data was processed by utilizing and developing 
tools to visualize and analyse the signal characteristics, primarily through a parameter-based 
approach. Signals were visualized, and parameters were optimized to identify and classify signal 
types. According to the obtained results, some limitations on classification were experienced due 
to the length of the hit data recorded. Though the work reported in this article lead to a reliable 
method for detecting yielding, the developed algorithms were not successful in identifying 
characteristics that could be used to detect yielding.   

1.  Introduction 
In the North Sea and other parts of the world, an increasing number of offshore jacket platforms have 
exceeded their original design life. It is important to maintain the structural integrity of jacket platforms 
as their economic life is extended. On the Norwegian continental shelf (NCS), the platforms at Ekofisk 
field, for instance, were originally designed to serve for 20 years [1], but in some cases used for twice 
as long. The field is a good example of the fact that the service life of oil and gas facilities are often 
significantly longer than what was originally intended. Therefore, there is a need to find and improve 
methods that can provide safe operation beyond the original service life of the facility.  

New inspection techniques have been constantly developed to secure the use of these assets. In the 
oil and gas industries, some of the important methods can be taken into consideration, such as online 
monitoring of environmental data, improving analysis tools, developing inspection technologies, re-
analysis tools and planning inspection strategy. Current developments of sensor technology to monitor 
real-time structural conditions opens new opportunities for offshore structures. Improved sensor 
properties like robustness, accuracy, efficiency and reducing cost shall enhance the capability to capture 
the structural response with high data quality. For example, offshore jacket structures, that used to 
support oil and gas exploration and production facilities, need to sufficiently resist the external loads 
such as gravity loads, environmental loads, accident loads as well as seismic and ice loads at certain sea 
locations.  

Monitoring of Offshore Jacket Structures is typically performed with periodic manual inspections by 
various Non-Destructive Testing (NDT) techniques based on risk-based inspection (RBI) and mainly 
done by either Remote Operated Vehicle (ROV) or divers [2]. Inspection is used to characterize the 
condition of the structure to assess structural failures and take appropriate actions [3]. In the period 
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between non-destructive inspections, cracks can initiate, propagate, and catastrophic failure can occur 
due to the conventional testing based on only gathering information periodically. It depends on the 
inspection frequency, while the acoustic emission (AE) method can potentially detect active cracks if 
the structure is installed with a continuous monitoring system. In critical welds, remote monitoring is 
utilized, because conventional NDT techniques cannot provide an early warning of fracture propagation. 
Continuous monitoring of AE signals is considered to be a monitoring method which can extend the 
safe use of offshore platforms [4]. It can also – for redundant structures – replace or reduce the extent 
of traditional inspection activities.  

Remote structural integrity monitoring using AET is a method to detect active fatigue cracks and 
fatigue damage initiation [5]. For instance, condition-based Maintenance (CBM) can utilize sensors to 
measure assets’ status over time in its operation. However, there are some limitations using this method, 
for instance, it is costly to install the monitoring equipment and operators must be trained properly in 
order to use the technology effectively and interpret the signals from the sensors. In addition, the sensors 
might not work in harsher operating environments and can have trouble in detecting fatigue damage [6]. 

AE signals are detected by deformation/crack growth, which is recorded by sensors placed around 
an element. In [4], it is reported that the signal amplitude from crack growth can be measured within a 
distance of up to 5 meters between sensors. According to [4], acoustic emissions are the elastic energy 
waves released by a material undergoing deformation. When external stress is imposed on a component, 
AE signals reflect the internal stress redistribution within a material. Here, the stress can be hydrostatic, 
pneumatic, thermal, or bending. The signal is effective to identify crack growth and propagation during 
fatigue tests. Signal discrimination between legitimate sources (for instance, cracks, corrosion, weld 
discontinuities) and spurious noise sources (such as mechanical friction, weather, engines/machinery, 
loose parts and other marine environments), as well as noise reduction, are significant for a successful 
application of AE. Signal discrimination and noise reduction are more crucial in applications to detect 
corrosion activity because in comparison to crack propagation, the corrosion process is slower, and 
signal strength is weaker [3]. According to Lee et- al. [3] different defects would leave unique 
characteristic signatures of AE waveform as illustrated in Figure 1. A suitable testing process and 
analysis procedure for AE data is essential to acquire a dependable level of structural flaw detection for 
a successful AET application.  

 
Figure 1. Wave forms (signatures) and their unique representation of type of defect [3]. 

The goal of the project reported in this article is to study whether the characteristics of signals 
collected by AET can be used to detect yielding. The work is limited to detection of yielding effect in 
the specimens based on data from a previous experimental test [7], for which an algorithm was 
developed in Python to evaluate the signals. Then, the AET data was processed to analyze parameters 
and signals characteristics.  

The article consists of the following sections: Section 2 describes the testing setup and experiments. 
In Section 3 discussion of the test results on relationship between stress, amplitude and signal strength 
vs. time, comparison of signal from two sensors and observations of wave types, Fast Fourier 
Transformation (FFT) of selected signals and wave statistics across several tests are presented. Finally, 
some conclusions are drawn up based on the results. 
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2.  Experiment 

2.1.  Materials and experimental set-up 

The experimental part of the work reported in this article is based on the selected data collected in a 
previous master’s thesis [7]. In this experiment, a flat steel quality S355J2, according to EN 10025-2 [8] 
and NORSOK M120 MDS-Y05 [9], was used. The sample dimensions are given in Table 1  

Table 1. Dimensions of specimens used in the experiment [10]. 
Specimen samples Thickness (mm) Width (mm) Length (mm) 
A1 (with coating) 14,74 30,10 500 
A3N (without coating) 14,72 29,82 500 
B1N (without coating) 19,76 29,61 500 
B2NR (Reversed, without coating) 29,40 19,74 500 

The test specimens A1, B1N and A3N were tested under a normal force that was applied on the width 
surface. In the case of A3N specimen, a fan was attached as an external noise source that has specific 
frequency (44 – 54 dB and 55 – 138 kHz). The specimen B2NR, i.e., reversed dimension of sample 
B2N, was tested under a normal force on the width surface (29,4 mm) with thickness 19,74 mm. The 
experiment, in this case, was repeated on the same B2N specimen with the force that was applied in 
different side of the specimen. The reason to do this was because the specimen would be deformed after 
the first test. Then, in the second attempt, the specimen would be plastified and therefore, different AE 
results would be recorded and analyzed [7]. 

A 3-point bending test (Figure 2(a)) was conducted at the desired load using a test machine (Figure 
2 (b) [7]) that allows a complex combination of forces including tension, compression and shear when 
it bends or flexes. The data used in this work was collected from AEwin software (given access by DNV) 
by exporting from the experiments that were done in [7]. For each of the experiments, there were 
multiple files that cover relative timestamps and signal amplitude. Due to AEwin software setup, each 
hit contains 1024 data points. The signal and time units in .csv file were recorded in volts (V) and 
seconds (s), which were subsequently converted into micro volts (µV) and microseconds (µs) to easily 
interpret the signal as the interval between the data points in the .csv files are 0.1 µs (logging frequency). 
 

        
 

Figure 2. (a) Illustration of bending test on steel specimen (b) Set-up of 3-point bending machine. 

2.2.  Parameter-based signal analysis 
Among the two approaches to signal analysis, i.e., parameter-based and signal-based, the 
aforementioned approach was used in this study because signal-based approach demands advanced 
backgrounds. The data analysis of the experimentally recoded signal was programmed in Python, which 
allows visualization of the results. The developed Python code consists of three programs (1) Process 
Signal – to collect and connect the data from AEwin (2) Signal Output – to help in illustrating the 
complete waveform of each experiment without repeating signal processing, and (3) Display Detected 

(b) 
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Waveform – to process detected waveforms and export plots of the waveforms. The block diagram in 
Figure 3 shows the workflow of the signal processing scheme. 

 
Figure 3. Block diagram (flowchart) of signal processing. 

3.  Results and discussion 
As mentioned earlier, the investigation was conducted by parameter-based characterization of the signal 
waveform, such as rise duration, signal duration, peak duration, fall duration etc. (illustrated in Figure 
4). It involved changing the parameters (threshold, peak threshold and zero duration), executing the 
program and reviewing the results multiple times until the output showed an identifiable classification 
of signal types. For example, if the threshold value was set too low, the waveform would be selected 
from start to end duration, while nothing would be selected if set too high. Zero duration also has a 
significant impact on selecting the signal; this value determines how long the signal can drop below the 
threshold before the signal is ended. If too low, crucial signals could be terminated early and if set too 
high, signals could get merged and not properly classified. 

 
Figure 4. Illustration of waveform characteristics (parameters such as: duration, rise duration, fall 

duration, peak duration, signal threshold, peak threshold, max amplitude). 
During this process, it was discovered that a fixed threshold value would not work efficiently across 

the merged data as the signal amplitude varied considerably. To combat this problem, the threshold and 
peak threshold values were changed to be a percentage of the absolute maximum signal amplitude in 
the set of data points, for example 10% of 1000 µV. Then, the threshold value for this set would become 
100 µV. This change gave better results overall, but also resulted in selecting some weak signals that 
were not of interest. 

After experimenting with different values for these three parameters, most of the tests were done by 
setting threshold value to 10%, peak threshold to 80% and zero duration to 12 µs, though it was 
understood that zero duration is too short, and it is not physical time.  During analysis, specimen B1 was 
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the main sample used for evaluating signal data. In this section, the relationship between stress, signal 
strength and amplitude vs. time were studied, and the waveform output from the developed program 
was discussed. Derived parameters (include duration, rise duration, fall duration, peak duration, max 
amplitude, frequency) from the output of signal waveforms were evaluated to have a better 
understanding of the signal characteristics.  

3.1.  Relationship of stress, amplitude and signal strength with time 
Figures 5 (a), (b) and (c) depict the variation of stress, amplitude and signal strength as a function of 
time for the tested specimens A1, A3N, B1 and B2NR, respectively. As shown in all cases, the signal 
activity increases, both in number and signal strength, the closer one gets to the yield value. This high 
activity or intensity, which can be measured as energy, signal strength, absolute energy or similar per 
time unit, can be used to determine whether yielding occurs or not. From the plots, the number of signals 
started to increase after 240 s in A1, 220 s in B1 and 100 s in B2NR. This is because specimen A1 had 
a preservation coating layer, and the cracking of this generated significantly more signal data during the 
test. B2 is a reversed specimen, and it took lesser time to get to the yield point, and the signal strength 
was also weaker than the other specimens since it was already deformed once before this test was done. 

Since this approach is not very precise, an effort was made to look further into the details of the 
signal waveform to check for indicators of material deformation. The signal strength itself is not a good 
indicator as the sensor proximity can affect this condition. Number of signals per time unit is not precise 
either as can be seen from the high number of signals observed in A1 which was due to the coating layer 
cracking and not only yielding [7]. Identifying many waveforms of a specific type around the same time 
can be a solution for this obstacle. 

  

  
Figure 5. Plots of stress, amplitude and signal strength vs time for (a) Specimen A1, (b) Specimen B1 

and (c) Specimen B2NR. 

3.2.  Comparison of signal from two sensors 
Results from the scatter plot and waveform plot, in Figure 6 and Figure 7, respectively, show that signal 
type A, which has a crack like wave-form (Figure 1B), is the most identified signal during the three-
point bending test. Specimen A1 generated a multitude of signal type B, C and E, while specimen B1 
showed much less activity. This discrepancy is most likely caused by A1 having a coating layer that 
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rubs or cracks open during material deformation as the specimens are the same material and dimensions 
[16]. The majority of signals are of type A in both test A1 and B1, and the algorithm is not able to 
identify the difference between cracking in coating and the material yielded/deformed. 

 

 

 

 

Figure 6. Scatter plot from (a) Test A1, Channel 1 (b) Test A1, Channel 2, (c) Test B1, Channel 1 and 
(d) Test B1, channel 2. 

(a) 

(b) 

(c) 

(d) 
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Comparing the waveform plot in Figure 7 with the relationship between stress, amplitude and signal 
strength vs time plots discussed earlier (Figure 5), the results show that in test A1, the intensity of activity 
increases from 240 s and the activity with the highest amplitude is at 411 s. The intensity in test B1 
increases from 220 s; the highest amplitude was recorded at 223 s. As stated earlier, the high activity or 
intensity can be used to determine whether yielding occurs or not. 

 

 

Figure 7. Waveform plot from (a) A1 test and (b) B1 test. 

3.3.  Observation of waveform types in test B1 
Reference of signal types A, B, C and E below (Figure 8) were registered from test B1, with zero 
duration of 5 µs. It is observed that no shape of signal type D was identified/visualized, which could be 
due to discontinuity in the signal waveforms that were recorded. This type of signal represents the 
waveform characteristics of yielding in the material. The expected signal characteristic of type D would 
be a combination of two A signals where the latter has at least twice the maximum amplitude of the 
previous. 

 

(a) 

(b) 

(a) 
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Figure 8. Comparison of the signal types from test B1 (a) Signal type A (in yellow), (b) Signal type B 
(in green), (c) Signal type C (in pink) and (d) Signal type E (in orange). 

(b) 

(c) 

(d) 
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As can be observed from plots in Figure 9, signal A rises to a peak value within the first 1
3
 of the 

duration with a short peak duration. Signal type B contains a diamond shape highlighted in green, with 
a rise duration equal to fall duration and short peak duration. In contrast, signal type C has a hexagon 
shape with fast rise and fast fall duration and long peak duration. Signal type E (Figure 9(d)) shows the 
signal rising to peak value through the last 2

3
 of signal duration. In other words, this signal has long rise 

duration and short fall duration. 
 

  
 

 
Figure 9: Signal types and wave form characteristics (a) Very fast rise duration, very short peak and 
long fall duration, (b) Equal rise and fall duration, very short peak duration and (c) Fast rise and fall 

duration, long peak duration.  

3.4.  Fast Fourier Transformation of selected signals 
The developed signal processing program helps to capture and display detected waveforms with an 
amplitude greater than a specific threshold and enable the function to examine the frequency content of 
the signal. Fast Fourier Transformation (FFT) converts the signal in a time-domain to a frequency 
domain. The transformation breaks down the time-based waveform into sinusoidal terms, with unique 
intensity, frequency, and phase. FFT can locate intensity of a frequency which can help to determine if 
the intensity is high around the natural frequency of the material.  

For A1 specimen threshold was set at 2000 mV and B1 threshold was set at 500 mV, resulting in 
numerous waveform plots for each execution. The two figures (Figure 10 and 11) were selected based 
on the highest absolute signal values for specimens A1 and B1. Results from the signal measured in A1 
specimen shows that the intensity spikes around 2 kHz and 15 kHz. In specimen B1, the intensity of the 
recorded signal increases around 8 kHz and 42 kHz. There is an abundance of interesting data to be 
analyzed in the frequency domain and time did not allow for in-depth studies in this project. 



COTech & OGTech 2021
IOP Conf. Series: Materials Science and Engineering 1201  (2021) 012034

IOP Publishing
doi:10.1088/1757-899X/1201/1/012034

10

 
 
 
 
 
 

 

Figure 10. FFT signal from test A1. 

 

Figure 11. FFT signal from test B1. 



COTech & OGTech 2021
IOP Conf. Series: Materials Science and Engineering 1201  (2021) 012034

IOP Publishing
doi:10.1088/1757-899X/1201/1/012034

11

 
 
 
 
 
 

3.5.  Waveform statistics across several tests 
Statistics across several tests are collected and given in Tables 2 and 3. The data in the tables show a 
relationship between signal type and the number of hits per waveform. The results indicate that signal 
A was the most abundant type while type C is the least. The only exception was that no signal type B 
and C were identified in test B1 from sensor 1 (left-hand sensor in Figure 3(a)). The specimen in test 
A1 has the highest hits in all signal types, which can be due to the layer of coatings that crack and 
generates more activity during specimen deformation. Since in the experiments, a force was applied to 
the point with equal distance between the two sensors, the sensors should record similar waveform data. 
 

Table 2. Number of hits per waveform type from sensor 1 for zero duration of 12 µs. 
Test ID Number of hits per waveform type 

A B C E Unknown Sum 
A1 4364 37 9 202 411 5023 
A3 561 7 0 65 114 747 
B1 111 0 0 5 6 122 
B2N 284 3 1 19 40 347 

 
Table 3. Number of hits per waveform type from sensor 2 for zero duration of 12 µs. 

Test ID Number of hits per waveform type 
A B C E Unknown Sum 

A1 4306 58 5 209 430 5008 
A3 505 5 1 40 56 607 
B1 172 1 0 16 33 222 
B2N 235 2 3 7 17 266 

4.  Conclusions 
Observing the promising trends of AE technology, the study reported in this article attempted to develop 
methods and algorithms to analyze the AE signal characteristics for use in monitoring offshore 
structures. The process started with merging signal data extracted from AEwin, and computer programs 
were developed to help identify relevant waveforms. Upon processing and highlighting the original data, 
the different signal signatures were categorized. An algorithm with a defined set of rules was applied to 
this data and signals to enable grouping the signals and visually representing in waveform and scatter 
figures. The program managed to create visualizations of waveforms to look for signal properties that 
could identify signal types. The main conclusions drawn from the study are: 

1. The complexity of signal processing was greater than anticipated. Developing tools for 
classifying signals required a lot of effort leaving limited time to analyze and understand the 
signals. For instance, a waveform representing yielding was not identified even on tests that 
were expected to contain it. The program is ready to do the analysis, but depending on how the 
yield waveform is captured, the classification algorithm may need to be adjusted to 
appropriately identify this type. 

2. The work reported in this article managed to identify many different categories of signals and it 
is believed that with better test-data, the program should be able to identify signal characteristics 
with even more precision. After implementation and testing in multiple iterations, the results 
showed good improvement and more signals were correctly classified. As many signals were 
not classified, a need for a configurable margin of error became apparent. However, there is still 
a need to develop efficient algorithms to leverage collected data and characterize data signatures 
that are sensitive to operational, environmental, and sustainable processes. 

3. AET is to some extent capable to detect yielding, as can be seen in Figures 5(a) and (b), where 
the signal intensity increases at the yield point.  
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4. Coated specimens (at least brittle preservation coating) produce a high number of crack-like 
waveforms compared to non-coated specimens. This can be seen by comparing tests A1 and 
A3, in Tables 2 and 3. Other coating types may behave differently.   

5. When comparing signals arriving at two sensors an equal distance from the point of force 
application, the number of signals of each type are comparable, but not precisely the same. 
Differences can, for instance, be explained by sensors being different and not picking up signals 
in the same way.  

6. The data used in this project had a cut-off such that signals were limited to 1024 data points 
where 256 of them were ahead of the signal threshold point. This was too short to see the full 
shape of many of the recorded signals.   

7. In hindsight, a zero duration of 12 µs is too short and will result in chopping a signal pulse into 
several signals – which is not physical.  

 
It is shown that the development of field monitoring for offshore structures can lead to enhancements 

in sensor technology and monitoring systems and further provide a reliable standardization for a set of 
instructions and design of the AE technology. However, there is a need to develop efficient algorithms 
to leverage collected data and characterize data signatures that are sensitive to operational, 
environmental, and sustainable processes. 
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