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Non-normal Data Simulation using Piecewise Linear Transforms
Njål Foldnes a,b and Steffen Grønnebergb

aUniversity of Stavanger; bBI Norwegian Business School

ABSTRACT
We present PLSIM, a new method for generating nonnormal data with a pre-specified covariance matrix 
that is based on coordinate-wise piecewise linear transformations of standard normal variables. In our 
presentation, the piecewise linear transforms are chosen to match pre-specified skewness and kurtosis 
values for each marginal distribution. We demonstrate the flexibility of the new method, and an 
implementation using R software is provided.

KEYWORDS 
Simulation; non-normal data; 
kurtosis; sem simulation

It is well known that multivariate normally distributed data are 
rare in the social sciences (Cain et al., 2017; Micceri, 1989). 
Nevertheless, statistical estimation procedures and inferences 
that are based on multivariate normality are routinely used in 
data analysis in the educational and behavioral sciences. The 
study of whether this practice leads to approximately valid 
inference, i.e. whether methods based on the normality 
assumption are robust to non-normality, is most often based 
on a simulation design. Such simulation studies are thus 
important in evaluating various statistical procedures in struc-
tural equation modeling (SEM) and in multivariate statistics in 
general. A main concern in the context of SEM is to be able to 
generate random samples from a distribution whose covar-
iance matrix is controlled. In addition, most simulation tech-
niques control some other aspects of the simulated data, such 
as skewness and kurtosis.

In the present study, we introduce a new and flexible simu-
lation technique for non-normal data that matches a pre- 
specified population covariance matrix, and which also allows 
researchers to specify values for some univariate moments. Our 
approach is based on transforming univariate normal variables 
using piecewise linear (PL) functions.

Let us limit our attention to PL functions HðxÞ that are 
continuous, so that their graphs consist of a finite number of 
line segments that are glued together at the end points. Figure 1 
depicts one such PL function, where four line segments with 
different slopes are joined together. Now, assume Z is 
a standard normal variable, Z,Nð0; 1Þ. Consider the random 
variable Y :¼ HðZÞ, which is generally non-normal. Since Y is 
based on two analytically simple and well-known concepts, 
that of a standard normal variable and that of piecewise linear-
ity, many aspects of the distribution of X are amenable to 
analytical and computational treatment. For instance, there 
are exact and computationally tractable formulas for the 
mean, variance, skewness, and kurtosis of Y . The same tract-
ability holds for the bivariate case. That is, define Y1 :¼ HðZ1Þ

and Y2 :¼ HðZ2Þ, where ðZ1;Z2Þ is a bivariate normal vector. 
Then, as outlined below, we may use straightforward formulas 

to calculate the covariance between Y1 and Y2. In the following, 
we refer to the piecewise linear simulation approach as PLSIM.

This article is organized as follows. We next review simula-
tion techniques for non-normal data with pre-specified popu-
lation covariance matrix. We then present our method 
formally, and include some illustrations in this discussion. 
A data illustration is thereafter given. We finally discuss 
strengths and limitations of PLSIM. Some R (R Core Team, 
2020) code is provided in the text, and complete R code is 
provided in the supplemental material.

Simulating multivariate data with pre-specified 
covariance matrix

Given the importance of variances and covariances in factor 
analysis and SEM, it is not surprising that several methods have 
been proposed for drawing random samples from multivariate 
distributions whose covariance matrix is fixed. The most pop-
ular approach is the transform of Vale and Maurelli (1983), 
which starts with a multivariate normal vector and then applies 
polynomial transforms in each coordinate. The polynomials 
are so chosen as to produce given univariate skewness and 
kurtosis in the resulting vector. If feasible, the method identi-
fies the correlation matrix in the multivariate normal vector 
that ensures that the polynomially transformed variables have 
the required covariance matrix. A thorough theoretical study 
of the Vale-Maurelli (VM) transform is given by Foldnes and 
Grønneberg (2015). The VM transform is the default method 
for generating non-normal data in commercial software such 
as EQS (Bentler, 2006) and LISREL (Jöreskog & Sörbom, 2006), 
and in the R package lavaan (Rosseel, 2012).

Recently, several alternative methods that also control the 
moments have been developed. The independent generator 
approach proposed by Foldnes and Olsson (2016) is available 
in the R package covsim (Grønneberg et al., 2021), and can 
match pre-specified univariate skewness and kurtosis. It offers 
more flexibility than VM, since many possible marginal dis-
tributions are attainable. Based on the independent generator 
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idea, Qu et al. (2019) recently proposed a method which con-
trols multivariate skewness and kurtosis, available in the R 
package mnonr (Qu & Zhang, 2020).

Both VM and the independent generator approach allows 
the asymptotic covariance matrix of the empirical covariances 
to be exactly calculated (Foldnes & Grønneberg, 2017). This 
means that the population-level properties of standard errors 
and fit statistics in SEM models may be exactly calculated using 
well-known formulas (Browne, 1984).

The above methods have in common with PLSIM that 
only some lower-order moments of the univariate distribu-
tions are controlled. Mair et al. (2012) offered a different 
approach, based on the concept of a copula. A copula is 
a multivariate distribution with uniform marginals on [0,1]. 
In general, multivariate distributions may be split up into 
a copula component and the univariate distributions. In the 
Mair et al. (2012) approach the marginals are specified 
together with the copula class, but in a final step the simu-
lated vector is obtained by pre-multiplication with a matrix 
in order to reach the target covariance, leading to perturba-
tions in the marginal distributions. We are aware of two 
approaches that allow complete control over the univariate 
distributions. First, the NORTA method of Cario and Nelson 
(1997), which is implemented in package SimCorMultRes 
(Touloumis, 2016). In common with VM and PLSIM, it is 
based on generating multivariate normal data and then 
transforming each variable according to univariate specifica-
tions. A limitation of this method is that it can only produce 
data with a normal copula. Second, the VITA method of 
Grønneberg and Foldnes (2017), implemented in package 
covsim (Grønneberg et al., 2021), fully specifies the marginal 
distributions. In addition, since VITA is based on regular 
vine distributions, the user may specify for each variable pair 
the (conditional) copula. The VITA approach is particularly 
suited for ordinal data simulation, as recently demonstrated 
by Foldnes and Grønneberg (2021).

Piecewise linear simulation: the univariate case

In this section, we consider a random variable that is stochas-
tically represented as a PL function of a standard normal 

variable Z. A general expression for a PL function consisting 
of d line segments is 

HðxÞ ¼
Xd

i¼1
½aixþ bi�Ifγi� 1 < x � γig; (1) 

where γ0 ¼ � 1; γd ¼ 1. The indicator function IfAg evalu-
ates to 1 if A is true, and to 0 otherwise. The γ are breakpoints 
where function evaluation shifts from one affine function to 
another. The d line segments have slopes denoted by ai and y- 
intercepts denoted by bi. The requirement that HðxÞ be con-
tinuous means that biþ1 ¼ ðai � aiþ1Þγi þ bi for i ¼ 1; . . . ; d. 
Therefore, HðxÞ is parameterized by the a and γ vectors, in 
addition to b1 (a total of 2d parameters).

As an example, consider the graph in Figure 1, which 
depicts the following function, where d ¼ 4: 

H1ðxÞ ¼

0:552 � x � 0:127 if x< � 0:674
0:258 � x � 0:325 if � 0:674 � x< 0
0:585 � x � 0:325 if 0 � x< 0:674
2:185 � x � 1:404 if x > 0:674

8
>><

>>:

: (2) 

In this example the breakpoints are � 0:674; 0, and 0:674. The 
breakpoints are regular in the sense that they correspond to 
quantiles of regularly spaced probabilities (:25; :5, and :75) for 
the normal distribution. Note that all the slopes in this example 
are positive, so that H1 is a monotone function.

We now assume that Z,Nð0; 1Þ is a standard normal vari-
able, and define the random variable 

Y ¼ HðZÞ ¼
Xd

i¼1
½aiZ þ bi�Ifγi� 1 <Z � γig: (3) 

The cumulative distribution and density functions of Y may be 
deduced following straightforward arguments (See also 
Foldnes & Grønneberg, 2015, Prop.1). For instance, the density 
may, without further assumptions, be calculated as 

f ðyÞ ¼
Xd

i¼1
jaij
� 1ϕððy � biÞ=aiÞIfγi� 1 < ðy � biÞ=ai � γig;

(4) 
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Figure 1. Graph of the continuous piecewise linear function H1ðxÞ
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Figure 2. The density of Y ¼ H1ðZÞ
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where ϕðÞ is the density function of a standard normal variable. 
Figure 2 depicts the density of H1ðZÞ. It is evident that the four 
line segments in H1ðZÞ contribute separately to the density, 
producing rather pronounced shifts in the density curve.

In order to calculate the moments of Y , it is useful to first 
obtain the conditional moments mi

k :¼ EðZkjγi� 1 <Z � γiÞ, that 
is, the moments of a truncated normal variable. These may be 
obtained with the following recursive formula (Burkardt, 2014; 
Orjebin, 2014), where we initialize by mi

� 1 ¼ 0 and mi
0 ¼ 1: 

mi
k ¼ ðk � 1Þmi

k� 2 �
γk� 1

i ϕðγiÞ � γk� 1
i� 1 ϕðγi� 1Þ

ΦðγiÞ � Φðγi� 1Þ
;

where ΦðÞ is the cumulative distribution function of a standard 
normal variable. Now, to calculate the k-th moment of Y , we 
apply the following formula, which is derived in Appendix A: 

EðYkÞ ¼
Xd

i¼1

Xk

j¼0

k
j

� �

ak� j
i bj

iðΦðγiÞ � Φðγi� 1ÞÞm
i
k� j: (5) 

Using this formula, the first four centralized moments of 
Y ¼ H1ðZÞ from Equation (2) are 

EðYÞ ¼ 0; EðY2Þ ¼ 1 

EðY3Þ ¼ 2; EðY4Þ ¼ 8:

In other words, Y is a zero mean unit variance random variable 
whose skewness is EðY3Þ=EðY2Þ

3=2
¼ 2 and whose excess kur-

tosis is EðY4Þ=EðY2Þ
2
� 3 ¼ 5.

We have shown how to calculate the moments of a given 
PL random variable. However, in simulation applications we 
need to move in the opposite direction: We first specify the 
moments, and then we search for a PL function that generates 
the pre-specified moments. That is, we use a fast numerical 
routine to calibrate H1ðxÞ, based on the formula in Equation 
(5). For given breakpoints, slope values a and y-intercepts b, 
this equation allows us to calculate the first four moments of 
Y ¼ HðZÞ. If we are given pre-specified values μ, σ2, ~μ3, and ~μ4 
for mean, variance, skewness, and excess kurtosis, respec-
tively, we can therefore use numerical optimization to 
minimize 

ðEðY3Þ=EðY2Þ
3=2
� ~μ3Þ

2
þ ðEðY4Þ=EðY2Þ

2
� ~μ3Þ

2 

as a function of a1; . . . ; ad. The above expression is not depen-
dent upon the specific b-values, but we assume that these are 
such that HðxÞ is continuous in each optimization step. The 
final step involves shifting the bi so that EðYÞ ¼ μ, and scaling 
the ai so that EðY2Þ ¼ σ2 þ μ2. The optimization routine has 
been implemented in the function rPLSIM in package covsim 
Foldnes and Grønneberg (2020b). The default setting of 
rPLSIM is to use three regularly spaced break-points. We 
here demonstrate how one may request a sample of size 1000 
from a population with skewness 2 and excess kurtosis 5, where 
the PL function is forced to be monotonous: 

library(covsim)
library(psych)#for sample skew/kurtosis

set.seed(1)
res <- rPLSIM(N = 10^3, sigma.target = 1, skewness = 2,  
+ excesskurtosis =5, monot = TRUE)
sim.sample <- res[[1]][[1]]# a simulated sample
skew(sim.sample)
kurtosi(sim.sample)
res[[2]]$a; res½½2��$b#print slopes and intercepts

In the output below we see that the sample skewness and 
excess kurtosis values are close to the population values. Also, 
in the second element of the output we can inspect the fitted 
slope and intercept values, which agree with the values in 
Equation (2): 

[1] 1.973825
[1] 4.987873
[1] 0.5519887 0.2583700 0.5849776 2.1849716
[1] −0.1271060 −0.3251488 −0.3251488 −1.4043284

Matching pre-specified mean, variance, skewness, 
and kurtosis

In the example above the slopes a1; . . . ; a4 and the y-intercepts 
b1; . . . ; b4 were carefully chosen so that Y ¼ H1ðZÞ has mean 
zero, unit variance, skewness 2 and excess kurtosis 5. One 
reason for choosing the first four moments in this way was to 
produce a condition of non-normality where the VM trans-
form is not helpful, since the third-order Fleishman polyno-
mial cannot produce skewness 2 in combination with excess 
kurtosis of 5. Using the lavaan package for calibration of 
Fleishman polynomials yields: 

library(lavaan)
res <- simulateData(“x1~~x2,” skewness = 2,  
+ kurtosis = 5)
lavaan WARNING: ValeMaurelli1983 method
+ did not convergence,
+ or it did not find the roots 

So the skewness 2, kurtosis 5 case illustrates that there are 
conditions in which VM is infeasible but that are still within 
reach of PLSIM.

Given the flexibility of piecewise linear functions, it is not 
surprising that even with the same breakpoints, there are other 
PL functions that produce the same first four moments as 
H1ðxÞ. For instance, we may relax the monotonicity constraint: 

res <- rPLSIM(N = 10^3, sigma.target = 1,
+ skewness = 2, excesskurtosis =5, monot = FALSE)
res[[2]]$a[[1]] 

[1] 0.8500105 −0.9079488 1.2142742 2.1681442 

The result is a non-monotonous function H2ðxÞ depicted in 
Figure 3, which ensures that Y2 ¼ HðZÞ also has zero mean, unit 
variance, skewness 2 and excess kurtosis 5. The density of Y2 is 
depicted in Figure 4. We observe that although Y1 and Y2 share 
the first four moments, their densities are quite dissimilar.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL 3



To further illustrate the flexibility of piecewise linear trans-
forms, we next specify skewness 2 and excess kurtosis 4. With 
the default breakpoint settings, as also used in H1ðxÞ, our 
routine did not identify a PL that attained these skewness 
and excess kurtosis values. To find a valid PL function the 
breakpoints therefore need to be altered, either by introdu-
cing more line segments, or by keeping d = 4 and changing the 
location of the breakpoints. In our case, the latter was a viable 
option: 

g <- list(c(−2,0.5, 2))
res <- rPLSIM(N = 10^3, sigma.target = 1,
+ skewness = 2, excesskurtosis =4,
+ monot = FALSE, gammalist = g)  
res[[2]]$a[[1]] 

[1] 1.350564 0.201702 2.284732 1.398601

For the set of feasible breakpoints γ1 ¼ � 2; γ2 ¼ 0:5, and 
γ3 ¼ 2, the function H3ðxÞ depicted in Figure 5 produces the 

density for Y3 ¼ H3ðZÞ depicted in Figure 6. This density has 
skewness 2 and excess kurtosis 4. Note that, although we did 
not constrain the routine to monotonous solutions, the result is 
still monotonous in this special case.

The generality of univariate PLSIM

As exemplified above, PLSIM accommodates a much larger 
class of univariate marginal distributions than those provided 
under the VM transform. In fact, PLSIM may approximate to 
arbitrary precision the distribution F of any continuous ran-
dom variable X. For, given the quantile function 
F� 1ðuÞ ¼ inffx : FðxÞ ¼ ug, 0< u< 1, then F� 1ðUÞ,X, pro-
vided U is a uniform variable on ½0; 1�. Therefore, 
F� 1ðΦðZÞÞ,X, where Z,Nð0; 1Þ (Shorack & Wellner, 2009, 
Theorem 1, p. 3). With increasing number of breakpoints we 
can approximate the function F� 1ðΦðxÞÞ using a PL function 
HðxÞ arbitrarily well. It then follows that HðZÞ will converge in 
distribution to F as the number of breakpoints increases, pro-
vided the breakpoints and line segments are suitably chosen.
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Figure 3. Graph of the piecewise linear function H2ðxÞ.
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Figure 4. The density of Y ¼ H2ðZÞ.
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Figure 6. The density of Y ¼ H3ðZÞ.
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The bivariate case

In the previous section, we demonstrated how a PL function 
HðxÞ could be fitted to accommodate univariate moments for 
the random variable Y ¼ HðZÞ. In this section we move to the 
bivariate case where we consider 2-dimensional random vectors 

Y ¼ ðY; ~YÞ0 ¼ ðHðZÞ; ~Hð~ZÞÞ0;

where each coordinate is a PL transform of a standard normal 
variable. Moreover, Z and ~Z are assumed to be bivariate nor-
mally distributed and have correlation ρ. We assume, without 
loss of generality, that HðxÞ and ~HðxÞ are such that Y ¼ HðZÞ
and ~Y ¼ ~Hð~ZÞ each has zero mean and unit variance.

Next  consider  the  covariance/correlation   between  
Y ¼ HðZÞ ¼

Pd
i¼1½aiZ þ bi�Ifγi� 1 <Z � γig and 

~Hð~ZÞ ¼
P~d

j¼1½~aj~Z þ ~bj�If~γj� 1 < ~Z � ~γjgÞ. For less notational 
burden, we let Ri;j denote the rectangle ðγi� 1; γi� � ð~γj� 1;~γj�. 
Then, 

Xd

i¼1
½aiZ þ bi�Ifγi� 1 <Z � γig

X~d

j¼1
½~aj ~Z þ ~bj�If~γj� 1 < ~Z � ~γjg

¼
Xd

i¼1

X~d

j¼1
½aiZ þ bi�½~aj ~Z þ ~bj�IfðZ; ~ZÞ 2 Ri;jg

¼
Xd

i¼1

X~d

j¼1
½ai~ajZ~Z þ ai~bjZ þ bi~aj~Z þ bi~bj�IfðZ; ~ZÞ 2 Ri;jg:

This gives 

CovðHðZÞ; ~Hð~ZÞÞ ¼ EðHðZÞ~Hð~ZÞÞ (6) 

¼
Xd

i¼1

X~d

j¼1
½ai~ajEðZ~ZIfðZ; ~ZÞ 2 Ri;jgÞ þ

ai~bjEðZIfðZ; ~ZÞ 2 Ri;jgÞ þ

bi~ajEð~ZIfðZ; ~ZÞ 2 Ri;jgÞ þ

bi~bjEðIfðZ; ~ZÞ 2 Ri;jgÞ�

¼
Xd

i¼1

X~d

j¼1
½ai~ajEðZ~ZjðZ; ~ZÞ 2 Ri;jÞ þ

ai~bjEðZjðZ; ~ZÞ 2 Ri;jÞ þ

bi~ajEð~ZjðZ; ~ZÞ 2 Ri;jÞ þ

bi~bj� � PððZ; ~ZÞ 2 Ri;jÞ:

Procedures for calculating the moments 

EðZ~ZjðZ; ~ZÞ 2 RÞ and EðZjðZ; ~ZÞ 2 RÞ

of a truncated bivariate normal variable is a well-studied pro-
blem (e.g., Leppard & Tallis, 1989). In our implementation we 
use the R package tmvtnorm (Wilhelm & Manjunath, 2015) to 
calculate these moments.

It is important to notice that the expression in Equation (6), 
in addition to being dependent upon the slopes, y-intercepts 
and breakpoints in HðxÞ and ~HðxÞ, also depends on an addi-
tional parameter, namely ρ, the intermediate correlation 
between Z and ~Z. We emphasize this in notation by writ-
ing CovðHðZÞ; ~Hð~ZÞ; ρÞ.

We next illustrate the dependency of CovðHðZÞ; ~Hð~ZÞ; ρÞ on 
ρ. We consider the three PL functions H1ðxÞ;H2ðxÞ, and H3ðxÞ
introduced in the previous section. For values of ρ between � 1 
and 1, we calculated the correlation CovðH1ðZÞ;H2ð~ZÞ; ρÞ, 
CovðH1ðZÞ;H3ð~ZÞ; ρÞ, and CovðH2ðZÞ;H3ð~ZÞ; ρÞ. In Figure 7 
we graphically depict the dependence of the correlations upon 
the correlation ρ between Z and ~Z. Clearly, combining H1ðxÞ
and H2ðxÞ yields the largest possible range of correlations, 
although there is no way to produce a correlation below �
:68 for this pair of PL transforms. Combining H2ðxÞ and H3ðxÞ
yields the smallest range, with the lowest attainable correlation 
being � :55. The figure demonstrates that not all correlations 
are attainable once the univariate specification of skewness and 
excess kurtosis have been given.

The PLSIM simulation procedure

In the previous sections, we demonstrated how a PL function 
could be fitted to accommodate univariate moments of the 
simulated variable Y ¼ HðZÞ, and how to calculate the covar-
iance among two such variables. We now move to the full 
multivariate case and consider p-dimensional random vectors 
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Figure 7. The correlation among piecewise linear transforms of bivariate normal 
variables with correlation ρ.
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Y ¼ ðH1ðZ1Þ;H2ðZ2Þ; . . . ;HpðZpÞÞ
0; (7) 

where each coordinate HiðZiÞ is a PL transform of a standard 
normal variable,1 Zi,Nð0; 1Þ. We assume, without loss of 
generality, that the HiðxÞ functions (i ¼ 1; . . . ; p) have been 
calibrated so that HiðZiÞ has zero mean and unit variance. We 
also assume that Z ¼ ðZ1; . . . ;ZpÞ is multivariate normally 
distributed with standardized marginals and a covariance 
matrix equal to �Z. Note that �Z is in fact a correlation matrix 
containing pðp � 1Þ=2 non-redundant off-diagonal elements.

The steps in PLSIM are as follows:

(1) The user specifies

(a) Univariate properties (e.g., skewness and excess kur-
tosis) of each marginal variable Y1; . . . ;Yp.

(b) A target correlation matrix �.

(2) The PL functions H1; . . . ;Hp are calibrated to match the 
properties specified in step 1(a). 

(3) For each correlation ρi;j, 1 � i< j � p in �, we numeri-
cally determine a correlation ρZ

i;j among Zi and Zj so that 
HiðZiÞ and HjðZjÞ have correlation ρi;j. 

(4) The matrix �Z is formed from entries ρZ
i;j. A random 

sample from the multivariate normal distribution with 
zero mean and covariance matrix �Z is drawn. We 
apply the functions HiðxÞ, i ¼ 1; . . . ; p, coordinate- 
wise to the random sample to obtain our PLSIM sample.

There are two ways the above procedure may fail to com-
plete. First, in Step 2, we may fail to identify a HiðxÞ for some 
i ¼ 1; . . . ; p, that reaches the given skewness and kurtosis 
values. Although we may then change the breakpoint locations 
or increase the number of breakpoints, it is computationally 
burdensome to run PLSIM with, say, 20 breakpoints in each of 
40 variables. In the R implementation provided in the supple-
mental material, the default number of breakpoints is 3, which 
are regularly placed ( � 0:674; 0; 0:674) so that each line seg-
ment is associated with the same probability :25. In our experi-
ments, this seems to offer a reasonable compromise between 
computational tractability and flexibility across various skew-
ness, kurtosis and correlations combinations.

The second way the above PLSIM procedure may fail, is in 
Step 4, should �Z be negative definite. That is, it may happen 
that �Z is not a proper correlation matrix. The reason for this is 
that we, for computational simplicity, calibrate the entries in 
�Z independently. The alternative is full simultaneous calibra-
tion of all the entries, under the additional restraint of positive 
definiteness. However, we did not find this option viable in our 
numerical experiments. The issue of the intermediate matrix 
not being a proper correlation matrix arises also in the VM 
procedure. We here propose a simple solution to this problem, 
which is applicable to both PLSIM and VM. If �Z is negative 
definite, we calculate its nearest correlation matrix TZ. There 
are various approaches to defining TZ, and in our current 

implementation we use the method proposed by Higham 
(2002), as implemented in package Matrix (Bates & Maechler, 
2019). Then, in Step 4, we replace �Z by TZ. This means that 
the target covariance � is no longer reached. However, we may 
correct this by pre-multiplying the PLSIM vector Y by 

P ¼ �1=2M� 1=2;

where M is the implied covariance matrix of 
Y ¼ ðH1ðZ1Þ; . . . ;HpðZpÞÞ

0, when the Zi, ði ¼ 1; . . . ; pÞ have 
covariance TZ. The square root matrices are symmetric and 
such that M1=2M1=2 ¼ M and �1=2�1=2 ¼ �. Note that, due to 
Equation (6), exact calculation of M is straightforward. In most 
cases P will be fairly close to the identity matrix, so that the 
marginal distributions will be only slightly modified by pre- 
multiplication. So the pre-specified marginal properties, e.g., 
skewness and kurtosis, will still be closely matched, while the 
covariance matrix will be exactly matched. To summarize, to 
avoid the problem of negative definiteness, we rewrite Step 4 
above as follows:

4. The matrix �Z is formed, with elements ρZ
i;j. If �Z is 

negative definite, let TZ denotes its closest positive defi-
nite matrix. Draw a random sample from the multivari-
ate normal distribution with zero mean and covariance 
matrix �Z (or TZ when needed). Apply the functions 
HiðxÞ, i ¼ 1; . . . ; p, coordinate-wise to the random sam-
ple. If TZ was used, the final random sample is obtained 
by post-multiplying the random data matrix 
by �1=2M� 1=2.

On the asymptotic covariance matrix for PLSIM

As argued by Foldnes and Grønneberg (2017), it is desirable in 
a simulation study to specify non-normality more precisely 
than just reporting univariate skewness and kurtosis. Ideally, 
the full asymptotic covariance matrix Γ of the 
empirical second-order moments should be computed in 
each simulation condition. For SEM, access to Γ means that 
the population-level properties of standard errors and fit sta-
tistics may be exactly calculated using well-known formulas 
(Browne, 1984). For PLSIM, we here show that there are closed 
form formulas available from Γ. Unfortunately, no presently 
available implementation of these formulas are able to calculate 
these quantities within either an acceptable running time, or at 
an acceptable numerical precision. New implementations will 
be needed for calculating Γ for PLSIM. In light of this future 
availability, we here sketch how Γ can be obtained.

Consider a random p-dimensional vector Y whose expecta-
tion is zero and whose fourth-order moments exist. Let � be 
the covariance matrix of Y . Then Γ is defined as the pðpþ
1Þ=2� pðpþ 1Þ=2 matrix with elements 

Γij;kl ¼ EðYiYjYkYlÞ � �ij�kl;

where all or some indices are allowed to be equal. To obtain 
Γ under PLSIM, we need to perform calculations for the 
expectation similar to the deductions in Equation (6). The 

1H1;H2; . . . ;Hp denote general functions of the form of Equation (1), and not the specific illustrative functions defined in the previous sections.
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full expression for EðHiðZiÞHjðZjÞHkðZkÞHlðZlÞÞ is a linear 
combination of elements of the type 

EðZiZjZkZl � IfðZi;Zj;Zk;ZlÞ 2 RgÞ

¼ EðZiZjZkZljðZi;Zj;Zk;ZlÞ 2 RÞPððZi;Zj;Zk;ZlÞ 2 RÞ; (8) 

where R is a four-dimensional rectangle defined by four pairs of 
breakpoints in HiðxÞ;HjðxÞ;HkðxÞ; and HlðxÞ, and again indices 
are allowed to be equal. We therefore need to calculate higher- 
order moments of a truncated multivariate normal vector, and 
there exist both exact recursive and non-recursive formulas for 
this task. A numerical routine implementing the recursive for-
mulas is found in package MomTrunc (Galarza et al., 2021), and 
succeeds in calculating a subset of the required moments at an 
acceptable speed and precision. However, in our experiments, 
tri- and four-variate moments as calculated by MomTrunc are 
sometimes not satisfactory, a finding echoed by Ogasawara 
(2021), who developed non-recursive formulas which can be 
used to calculate higher-order moments of a truncated normal 
vector to arbitrary precision. Unfortunately, the only available 
implementation for the formulas in Ogasawara (2021), which is 
given in the supplementary material of Ogasawara (2021), takes 
an excessive long time to terminate in one of the cases we need, 
namely when all indices in Equation (8) are distinct, and genuine 
four-dimensional integration is required. There is therefore no 
available implementation of an algorithm capable of computing 
Γ in reasonable time, and we therefore do not provide a function 
to calculate Γ in our implementation. This will be added when 
future efficiency improvements in the procedure proposed by 
Ogasawara (2021) is made available. A rough approximation to 
Γ can be obtained, as always, by direct simulation from PLSIM.

Limitations

As argued above, the univariate generality of PLSIM is only 
limited by computational considerations. However, this is not 
the case in terms of multivariate dependency properties, as 
PLSIM takes a multivariate normal random vector and apply 
only coordinate-wise transformations. Since the transforma-
tion from Z to Y has no interaction between the coordinates, 
this restricts the multivariate dependency properties of Y , as 
shown in Foldnes and Grønneberg (2015).

Recall that the copula of a continuous random vector 
ðX1; . . . ;XpÞ

0 is the distribution of ðF1ðX1Þ; . . . ; FdðXpÞÞ
0

where F1; . . . ; Fp are the marginal cumulative distribution 
functions of X1; . . . ;Xp. In the case where each of the coordi-
nate-wise transformations H1; . . . ;Hp are monotonous, the 
copula of the PLSIM random vector Y of Equation (7) is 
exactly normal, meaning that it has the same copula as the 
multivariate normal vector Z.

A recent discovery (Grønneberg & Foldnes, 2019) warns 
against the widespread practice of using VM in robustness 
studies for ordinal SEM. In many relevant cases encountered 
in the simulation literature, VM has the normal copula, which 
in ordinal SEM has the unfortunate consequence of making 
the ordinal vector generated by discretizing a VM random 

vector numerically equal to a discretization of an exactly 
normal random vector. The distribution of the manifest vari-
ables in ordinal SEM is a function only of the copula of the 
latent continuous vector at certain points (Foldnes & 
Grønneberg, 2019, 2020a, 2021; Grønneberg & Foldnes, 
2021; Grønneberg & Moss, 2021). Since PLSIM will have 
a normal copula when each H1; . . . ;Hp are monotonous, the 
discovery of Grønneberg and Foldnes (2019) also applies to 
PLSIM. Therefore, PLSIM for simulation studies with ordinal 
SEM is not recommended, and if used, must be used for non- 
monotonous H1; . . . ;Hp. One important exception is if 
a normal copula is desired. For instance, Grønneberg and 
Foldnes (2021) employed a simple bivariate PLSIM distribu-
tion to illustrate that ordinal SEM estimation is biased unless 
knowledge of all latent marginal distributions is provided. In 
that case, profiting from PLSIM’s marginal flexibility, 
a bivariate vector Y was constructed who followed a two- 
factor model, while the bivariate generator vector Z followed 
a one-factor model. Since Y had a normal copula, all normal 
theory methods based on discretizing Y estimate features of Z 
and not Y , illustrating the impossibility of identifying even 
the number of factors in ordinal SEM without latent marginal 
knowledge.

In general, PLSIM distributions are contained in the class 
investigated by Foldnes and Grønneberg (2015), as Y is the 
coordinate-wise transformation of a continuous random vec-
tor Z, where each transformation is piecewise strictly mono-
tonous over a finite set of intervals. In PLSIM, we have that Z is 
multivariate normal with standardized marginals, and the 
transformations are straight lines in each interval segment. 
When some of the coordinate-wise transformations are non- 
monotonous, the copula of Y is not exactly normal, but the 
multivariate distribution is still strongly connected to the nor-
mal generator variable Z, and for example, Y cannot have what 
is known as tail dependence, see Section 3.3 of Foldnes and 
Grønneberg (2015).

The main limitation of PLSIM is therefore its close connec-
tion to the normal distribution in terms of copula properties. 
This limitation may be remedied by replacing the normal 
random vector with another class of distributions capable of 
detailed control of lower moments, and with computationally 
feasible formulas for conditional distributions over rectangles. 
As mentioned above, calculating the fourth-order moments 
contained in Γ leads to serious computational challenges even 
when Z is multivariate normal. It therefore seems that such 
extensions would either be restricted to very simple distribu-
tional classes which would limit its usefulness, or would 
depend on as of yet unavailable numerical methods.

A comparison of Fleishman polynomials and PLSIM

As discussed above, PLSIM and VM are similar in terms of 
multivariate dependency, as both are generated by coordinate- 
wise transformations of a normal random vector. We here 
further inquire into the univariate distributional differences 
between PLSIM and VM. In the latter procedure, the marginal 
distributions are generated by third-order polynomial 
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transformations as proposed by Fleishman (1978). Third-order 
polynomials f ðxÞ grow more quickly to �1 as x! �1 than 
PL functions, who involve only a simple scale-and-shift of the 
identity function. In this sense PL functions are more stable 
transformations compared to Fleishman polynomials, yet they 
preserve the capability of approximating general functions to 
arbitrary precision. The stability concerns the tails of the 
resulting univariate distributions. As implied from Equation 
(4), PL functions have the same tail behavior as a normal 
distribution. That is, when y!1, PL density approaches 
zero as adϕððy � bdÞ=adÞ, and when y! � 1, the density 
goes to zero as a1ϕððy � b1Þ=a1Þ. That is, in PL functions, the 
tail behavior is still driven solely by the quick decrease to zero 
of ϕðyÞ ¼ ð2πÞ� 1=2 expð� y2=2Þ. This is not the case for VM, 
which has heavier tails due to the third-order transformation. 
Whether heavier tails are desirable, and whether considera-
tions as jyj ! 1 are relevant or not, depends on the 
application.

Let us consider in a concrete example the relation between 
a normal (Z), a PL (YPL) and a Fleishman (YF) variable. The 
simplest case of a Fleishman polynomial is the standardized third- 
order transformation ðZ3 � μ3Þ=σ3. We have μ3 ¼ EZ3 ¼ 0 and 

σ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
VarZ3
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EZ6 � ðEZ3Þ
2

q

¼
ffiffiffiffiffiffiffiffi
EZ6
p

¼
ffiffiffiffiffi
15
p

. Therefore, 

YF ¼ Z3=
ffiffiffiffiffi
15
p

. The excess kurtosis of YF is extreme, namely 
EY4

F � 3 ¼ ð15� 1=2Þ
4EZ3�4 � 3 ¼ ð15Þ� 2EZ12 � 3 ¼ 46:2 � 3 ¼

43.2. The density of YF is y7!ϕðð15Þ1=6y1=3Þð15Þ1=6
ð1=3Þy� 2=3. 

While the term y� 2=3 quickens the convergence to zero, the y1=3 

term inside ϕ slows down convergence, and this is the dominant 
term. We also fitted, using breakpoints � 3; � 2; � 1; 1; 2; and 3, 
a PL function HðxÞ so that YPL ¼ HðZÞ had zero mean, unit 
variance, skew zero, and excess kurtosis 43.2. Figure 8 depicts the 
density curves of the three densities. Clearly, although the 
Fleishman and the PL distribution have common moments up 
to the fourth order, their distributions differ markedly. Both 
distributions are more peaked and more heavy-tailed than the 
standard normal distribution. But the peakedness of the 
Fleishman polynomial is much more pronounced than that of 
the PL distribution. Moreover, although not depicted in the figure, 
for extreme values, the tails of the Fleishman polynomial are fatter 
than those of the PL distribution. To illustrate this point, we 
simulated n¼ 107 sample from both distributions, and found 
that the 99th-percentiles for the PL and Fleishman data were 
2:75 and 3:8, respectively (see the supplemental material).

Illustration

Let us illustrate PLSIM with a real-world example. The datasets 
package contains the dataset attitude, based on a survey given to 
employees in a large financial organization related to satisfaction with 
their supervisors. For 30 randomly chosen departments the propor-
tion of favorable responses for each item was collected in the attitude 
dataset. The correlation matrix and the marginal sample skewnesses 
and excess kurtosi are given Table 1. Our aim here is to construct 
a 7-variate distribution whose correlation matrix and marginal skew-
ness and excess kurtosis values match exactly the values in Table 1. 

library(datasets)
attach(attitude)
s <- skew(attitude)
k <- kurtosi(attitude)
sigma <- cor(attitude)
set.seed(1)
res <- rPLSIM(100, sigma.target = sigma,  
+ skewness = s, excesskurtosis = k)
sim.sample <- res[[1]][[1]]

Note that the VM approach as implemented in lavaan is not up 
to this task, since it can not match the skewness and excess 
kurtosis of variable learning. However, with three regularly spaced 
thresholds, monotonous PL functions may be identified (Step 2) 
for each of the seven variables that match skewness and excess 
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Figure 8. Graph of the density of Z and the standardized version of Z3 when Z,Nð0; 1Þ.

Table 1. Correlation matrix and marginal skewnesses and excess kurtosi for the attitude dataset.

Rating Complaints Privileges Learning Raises Critical Advance

Rating 1 :825 :426 :624 :590 :156 :155
complaints 1 :558 :597 :669 :188 :225
privileges 1 :493 :445 :147 :343
learning 1 :640 :116 :532
raises 1 :377 :574
critical 1 :283
advance 1

skewness −0.358 −0.215 0.379 −0.054 0.198 −0.866 0.850
kurtosis −0.766 −0.677 −0.411 −1.223 −0.599 0.166 0.466
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kurtosis exactly. In Step 3 we fit each pair of variables separately, 
and in Step 4 the correlations are aggregated into:  

�Z ¼

1 :834 :440 :643 :605 :165 :163
1 :570 :611 :678 :196 :233

1 :509 :451 :156 :353
1 :656 :123 :559

1 :397 :588
1 :309

1

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

This matrix is positive definite, so we need not pre-multiply by 
P. A sample of size n ¼ 100 was simulated using PLSIM, with 
resulting scatter plots and univariate densities depicted in 
Figure 9.

Finally, let us inspect sample estimates of kurtosis with respect 
to the pre-specified kurtosis values. In a generated sample, sample 
kurtosis will differ substantially from the specified kurtosis value. 
The latter holds at the population level but not in samples. To 
illustrate, we generated 1000 samples, each of size 30, from 
PLSIM. In each sample univariate kurtosis was estimated for 
each of the seven variables. The results are depicted in 
Figure 10, where each panel is associated with one variable. It is 
seen that sample excess kurtosis varies substantially across sam-
ples. In each panel, the vertical red line indicates population 
excess kurtosis. Small-sample bias of the kurtosis estimator is 

manifested for most variables, with general downward bias in 
our case. Let us also consider the b2;p statistic (Mardia, 1970) for 
multivariate kurtosis. Qu et al. (2019) proposed a simulation 
method where samples are generated from a distribution with 
pre-specified multivariate kurtosis. In our development of 
PLSIM, we control the univariate kurtosi, but we have no control 
over multivariate kurtosis. Over the same 1000 samples described 
above, we calculated b2;p, with results given in Figure 11. The red 
line represents this statistic calculated in the attitude dataset. It is 
seen that the PLSIM datasets have lower b2;p values than the 
original attitude data. This illustrates that we do not control 
multivariate kurtosis with our method.

Conclusion

We have presented a new method to simulate univariate and 
multivariate non-normal data. We employ piecewise linear 
transforms of standard normal variables. This method is flex-
ible since we may manipulate the slopes of the line segments in 
order to reach pre-specified skewness and kurtosis values. This 
is possible since the fourth-order moments of the transformed 
variable is exactly computable. The same holds for pairs of 
piecewise linearly transformed variables, i.e., the covariance 
may be calculated using exact formulas. This means that we 

Figure 9. Plots for n ¼ 100 dataset simulated from PLSIM.
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may pairwise calibrate the correlation among the two standard 
normal variables in order to reach a given covariance among 
the transformed variables.

PLSIM has been implemented in R and is available in 
package covsim. We have demonstrated that PLSIM may be 
used in cases (e.g., skewness 2 and excess kurtosis 4) where 
the Vale-Maurelli procedure fails. PLSIM supports a flexible 
class of univariate distributions, since its framework is based 
on choosing arbitrary number and placement of break-
points, and arbitrary line segments between the breakpoints. 
In our implementation the default number of line segments 
is four, separated by regularly spaced breakpoints. We have 
deduced the formulas necessary to exactly compute the 
asymptotic covariance matrix of the generated second- 
order moments under PLSIM. However, at the present 
time the needed routines to calculate moments of the trun-
cated multivariate normal distributions are too slow for 
practical use. However, we project that this situation will 
be soon remedied, given the present active development 
around truncated multivariate moments in the field of mul-
tivariate statistics. We also proposed a simple correction to 
the case of negative definiteness of the intermediate correla-
tion matrix, based on finding the nearest positive definite 
matrix. This correctional step may likewise be useful for 
extending the generality of the Vale-Maurelli procedure.
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Appendix

Calculating the moments of Y ¼ HðZÞ

Consider the random variable Y ¼ HðZÞ. Then 

Yk ¼
Xd

i¼1
½aiZ þ bi�Ifγi� 1 <Z � γig

 !k 

¼
Xd

i¼1
½aiZ þ bi�

kIfγi� 1 <Z � γig

¼
Xd

i¼1

Xk

j¼0

k
j

� �

ak� j
i bj

iZ
k� jIfγi� 1 <Z � γig:

Now, since 

EðZkIfγi� 1 <Z � γigÞ ¼

EðZkIfγi� 1 <Z � γigjZ � γi� 1ÞΦðγi� 1Þ þ

EðZkIfγi� 1 <Z � γigjγi� 1 <Z � γiÞðΦðγiÞ � Φðγi� 1ÞÞ þ

EðZkIfγi� 1 <Z � γigjγi <ZÞð1 � ΦðγiÞÞ ¼

EðZkjγi� 1 <Z � γiÞðΦðγiÞ � Φðγi� 1ÞÞ

the k-th moment is 

EðYkÞ ¼
Xd

i¼1

Xk

j¼0

k
j

� �

ak� j
i bj

iEðZ
k� jIfγi� 1 <Z � γigÞ

¼
Xd

i¼1

Xk

j¼0

k
j

� �

ak� j
i bj

iEðZ
k� jjγi� 1 <Z � γiÞðΦðγiÞ � Φðγi� 1ÞÞ:

To evaluate this expression we need to calculate the conditional moments 
mk :¼ EðZkjγi� 1 <Z � γiÞ, that is, the k-th moment of a truncated normal 
variable. Mean and variance formulas are provided in Johnson et al. 
(1994). Higher-order moments may be obtained with the following recur-
sive formula (Burkardt, 2014; Orjebin, 2014), where we initialize by 
m� 1 ¼ 0 and m0 ¼ 1: 

mk ¼ ðk � 1Þmk� 2 �
γk� 1

i ϕðγiÞ � γk� 1
i� 1 ϕðγi� 1Þ

ΦðγiÞ � Φðγi� 1Þ
:

To sum up, we may calculate EðYkÞ by first using the above recursive 
formula to calculate the conditional moments m1; . . . ;mk. Then we apply 
the formula 

EðYkÞ ¼
Xd

i¼1

Xk

j¼0

k
j

� �

ak� j
i bj

iðΦðγiÞ � Φðγi� 1ÞÞmk� j:
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