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1 Introduction

The bound states of heavy quarks and antiquarks, so called heavy quarkonium, constitute a
unique laboratory to scrutinize the physics of the strong interactions (for a broad overview
see ref. [1]). In particular, studying their production in relativistic heavy-ion collisions
promises vital insight into the properties of quarks and gluons under the extreme condi-
tions of high temperature and density which are present shortly after the Big Bang (for a
recent review see ref. [2]). In contrast to the earliest moments of the universe, a heavy-ion
collision produces energetic debris that are not in static thermal equilibrium (for selected
perspectives see, e.g., refs. [3–7] and references therein). At the time of incident, hard
partonic scatterings may convert the vast amounts of kinetic energy of the incoming pro-
jectiles into particles with high velocity or large masses (compared e.g. to the characteristic
scales of QCD ΛQCD/pQ � 1). It is here where the constituents of quarkonium particles
are born. On the other hand, the lighter particles, which are created for example from the
fragmentation of the strong initial glasma color fields, quickly thermalize locally and form
a liquid-like and expanding quark-gluon plasma. One challenge in this field of study is to
understand how the hard particles, which are produced in the initial stages, propagate in
the presence of the quasi-thermal hot environment formed by the light degrees of freedom.

Quarkonium in equilibrium with its surroundings has been studied thoroughly in the
past using lattice QCD simulations and effective field theories (for some recent works
see [8–12]), potential models (see e.g. [13, 14]), QCD sum rules [15] and holography (see
e.g. [16–18]). In recent years, thanks to advances in real-time methods, the focus has shifted
into the realm of non-equilibrium physics, heavily motivated by the phenomenologically
relevant setting of relativistic heavy-ion collision. A fruitful exchange of ideas between the
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high-energy nuclear physics community and the condensed matter physics community (see
e.g. [19–21]) has given momentum to the ongoing development of an open quantum systems
description of heavy quarkonium (for the most recent works see e.g. [22–33]) in contact
but not necessarily in equilibrium with its hot environment (for a recent review see [34]).
A central ingredient in the development of these real-time descriptions is the inherent
separation of scales between the heavy-quark rest mass and the other characteristic scales,
such as energy density and the QCD scale ΛQCD. In vacuum, this separation of scales has
helped to establish that the physics of heavy quarkonium bound states may be captured
reliably by a non-relativistic potential description. Formalized in the effective field theories
Non-relativistic QCD (NRQCD) and potential NRQCD (see [35] for a review), it has been
established, at least in a weakly-coupled context, to what extent such a potential picture is
also applicable at finite temperature [36–38]. The determination of the interaction potential
non-perturbatively using lattice QCD simulations is an active field of ongoing research [39–
44]. Recent work on quarkonium as open-quantum system has shown how the real- and
imaginary part of this in general complex valued static heavy quark potential govern the
evolution of quarkonium states in a hot medium [27, 32]. While the in-medium real part
informs us about the screening of the interaction between the heavy quark-antiquark-pair,
the imaginary part encodes how scattering with gluons of the surrounding medium over
time leads to color decoherence.

The complex static interquark potential at finite temperature thus plays a vital role in
the real-time description of quarkonium bound states. It is now understood that we may
access its values non-perturbatively, by inspecting the rectangular real-time Wilson loop

W�(t, r) =
〈

Tr
[
Pexp

[
ig

∫
C�(r,t)

dxµAµ(x)
]]〉

, (1.1)

which resides on the path that a pair of static color sources traces out as it evolves in
real-time. Aµ refers to the gauge field of the strong interactions, and, as a correlation
function, the Wilson loop is evaluated in path-ordered fashion, indicated by the operator
P. Its gauge invariance follows from taking the color trace, denoted above by Tr. As
was shown in detail in [45], if the time evolution of a pair of color sources, described by
W�(t, r), proceeds according to a static Schrödinger equation, we may use it to define the
corresponding potential via

V (r) = lim
t→∞

i∂tW�(t, r)/W�(t, r). (1.2)

In the context of the present paper, we consider times larger than the time corresponding
to multiple gluon mediated exchanges as late times. These gluon mediated exchanges
may at late times then be collectively replaced by an instantaneous interaction potential.
In practice, evaluating eq. (1.2) often presents technical difficulties. In turn it has been
worked out (see e.g. ref. [46]) that the values of the potential may be reliably and efficiently
extracted from the spectral function of the Wilson loop instead. The spectral function
is the unique real-valued function describing the different incarnations of quantum field
theoretical correlation functions such as of time ordered, retarded, or Matsubara type.
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If a time independent potential emerges at late times according to (1.2), one can show
that there must exist a lowest lying peak structure of skewed Breit-Wigner form in the
spectral function, whose position and width encode the real and imaginary part of the
potential respectively. Around the peak maximum, we may describe it with the following
functional form

ρ�(r, ω) = eIm[σ∞](r)

π

|Im[V ](r)|cos[Re[σ∞](r)]− (Re[V ](r)− ω)sin[Re[σ∞](r)]
Im[V ](r)2 + (Re[V ](r)− ω)2 (1.3)

+ c0(r) + c1(r)tQQ̄(Re[V ](r)− ω) + c2(r)t2
QQ̄

(Re[V ](r)− ω)2 + · · · .

The values of the static potential have been investigated in the past through conventional
lattice QCD simulations. However, the fact, that these simulations are carried out in Eu-
clidean time, necessitates the solution of an ill-posed inverse problem to extract the spectral
function, often attacked using methods of Bayesian inference (see e.g. [47]). While robust
estimates of the real part of the potential have been obtained in this fashion, access to the
imaginary part is still severely limited. The reason is that the determination of a spectral
width requires significantly higher input data quality than that of spectral peak positions.

In this study, we set out to investigate the complex interquark potential in a genuine
real-time setting. Since the notorious sign problem of the quantum path integral prohibits
its direct numerical evaluation in Minkowski-time, we will have to agree to a compromise.
In case of this study, it amounts to neglecting the quantum fluctuations in the theory and
simply focusing on the statistical fluctuations, wherein such statistical fluctuations may
be introduced through a thermal medium. I.e., we will resort to the classical statistical
approximation of Yang-Mills theory to investigate the binding properties of a pair of static
color charges at finite temperature. The classical statistical treatment of gauge fields has
a long history in the context of research on Baryogenesis (see e.g. ref. [48] and references
therein), reheating in the early universe in refs. [49–52] and more recently in the study of
the overoccupied glasma in the early stages of relativistic heavy-ion collisions (for a review
see ref. [4]). The static interquark potential has been studied in the classical statistical
approximation first in ref. [53]. Here, we will extend and improve on those results, based
on work presented in A. Lehmann’s doctoral thesis [54].

While the non-equilibrium properties of several phenomenologically relevant systems
can be captured quantitatively by classical statistical simulations, we can only expect to
gain qualitative insight in the case of thermal equilibrium. The reason is the classical
Raleigh Jeans divergence. Thermal modes saturate the spectrum of any classical statis-
tical computation and in turn the effects of, e.g., charge screening, dominated by modes
around the cutoff, become dependent on this UV cutoff. Viewed through the lens of lattice
perturbation theory, one furthermore predicts [55–57] that the Debye mass changes with
the square root of the temperature at fixed lattice spacing

(mlPT
D )2 = 2g2TNc

Σlat
4πas

, Σlat = Γ2
( 1

24

)
Γ2
(11

24

) √3− 1
48π2 , (1.4)

which is in contrast to the full quantum theory, where the Debye mass is proportional to
the temperature itself.
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The absence of a well-defined continuum limit precludes us, e.g., from attaching physi-
cal units to the simulations. There exist prescriptions of how to make possible a continuum
limit by amending the classical simulation with a perturbative treatment of modes close to
and above the lattice cutoff (see e.g. [58, 59]). For our purposes of qualitatively identifying
the form of the interaction potential, the naive implementation suffices, however. Keeping
these caveats in mind, classical statistical simulations, as one of the very few direct real-
time methods available, promise vital insight into the dynamics of binding of color sources
in Yang-Mills theory and provide guidance to understand the fully quantum theory so far
only accessible through the lens of static Euclidean lattice QCD simulations.

In the following section 2, we discuss the differences in treatment of static sources
between conventional Euclidean lattice QCD simulations and those carried out in the clas-
sical statistical approximation. Section 3 briefly describes the numerical methods used in
our study before we present our findings in section 4. The paper closes with a conclusion
and outlook in section 5.

2 Static sources in lattice gauge theory

The study of the binding properties of static charges in the presence of a medium of
light charge carriers goes back to the works of Debye and Hückel [60]. From general
thermodynamic considerations and use of linear response theory, they deduced classically
that in such a system the interactions between the static charges will be screened, i.e., the
long-ranged Coulomb interaction will become short ranged with a characteristic screening
radius given by the temperature dependent density of light charge carriers. The study of the
real-part of the interquark potential in conventional lattice QCD supports this conclusion
also for the strong interactions, showing clear signs for a bound state sustaining real-part
of the potential in vacuum and a gradual weakening of its values towards a screened form
at high temperatures [40].

What would be the intuitive expectation for a classical theory of strong interactions?
In the ~→ 0 limit, Yang-Mills theory may be seen as a non-linear extension of Maxwell’s
electrodynamics. Since charges interact in electrostatics, there is no a priori reason to sus-
pect otherwise in the non-linear theory. Irrespective of the sign of the interaction, we would
expect that its strength is encoded in the finite real-part of a classical interaction potential.

The results of ref. [53] hence are puzzling. The authors set out to study the static
potential in classical statistical lattice gauge theory based on the real-time Wilson loop
introduced in section 1. They observe that its values are purely real. According to eq. (1.2),
if the Wilson loop goes over into a single exponential behavior at late times it depends on
the values of the potential as

lim
t→∞

W�(r, t) ∼ exp
[
− itV (r)

]
. (2.1)

A purely real W�(r, t) thus corresponds to a purely imaginary V (r).
Does this mean that the real-part is screened to such small values that it is practically

invisible? Or does it mean that there are no interactions between color sources present at
all in the classical statistical theory? In this study, we propose and show that the potential
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between static color sources is complex. It possesses a non-vanishing real and imaginary
part. The previously observed absence of a real part originates from subtle differences in
how static sources have to be treated in the quantum versus the classical theory.

In fully quantum lattice gauge theory, the physics of static color sources are conven-
tionally investigated by computing the expectation value of the trace over the Wilson loop
W�(−iτ, r) in the Euclidean path integral. At first, simulations of the gauge (and possibly
also light fermion) degrees of freedom are carried out, which are oblivious of the physics of
the static sources that we wish to investigate. It is the evaluation of the Wilson loop itself
that introduces these charges into the system. How is this accomplished? To not encumber
us with technical difficulties, let us assume that we are in spatial axial gauge, so that only
the temporal stretches of the Wilson loop remain relevant.

The Wilson loop emerges in the infinite mass limit of the meson-meson correlator

Dabcd
> (τ,r) = 〈Mad(τ = 0, r)

(
Mbc)†(τ,r)〉, Mab(r= |x−y|, τ) =Qa(x, τ)Q̄b(y, τ). (2.2)

Note that we are dealing here with a four-point function with respect to the heavy quark
fields, i.e. there are four color indices to take care of. As a Gedankenexperiment, let us
explore the evolution of a specific color singlet state at initial time τ = 0 into some other
color singlet state. The fact hat we do not care about which particular singlet (e.g. red-
antired or blue-antiblue) is reached at time τ allows us to sum over all possible singlets.
This is achieved by taking the trace over the color indices of the quark fields at time τ ,
corresponding to b and c in eq. (2.2).

What about the initial state? If we wish to specify a particular singlet, say red-antired,
it can be described in the language of the 3 ⊗ 3̄ representation of SU(3) as a matrix Mab

with a single unit entry on the diagonal, e.g. M0 = diag[1, 0, 0]. This matrix arises from
the outer product of the two three-dimensional complex color vectors associated with the
quark and antiquark color state. In the context of the four-point function D> it would
amount to evaluating

∑
c,d

∑
a,bMadδbcD

abcd
> =

∑
b,c δbcD

0bc0
> , remembering that we sum

over all singlets in the final state.
Taking the infinite mass limit we end up with the Wilson loop, which, in the gauge we

chose, corresponds to two temporal Wilson lines

W ad
� (−iτ, r = |x2 − x2|) (2.3)

= 1
Zno src

∫
D[A]

∑
b,c

exp
[
ig

∫ τ

0
dτ ′A0(x1, τ

′)
]
ab
δbcexp

[
−ig

∫ τ

0
dτ ′A0(x2, τ

′)
]
cd
e−Sgluon[A]

The sum over all possible singlet final states simply amounts to matrix multiplying the two
Wilson lines at time τ .

The object conventionally considered in the literature is the normalized trace over
the above matrix W ab. This prescription amounts to the average over the three different
possible singlets with 1 = M0 +M1 +M2 = diag[1, 0, 0] + diag[0, 1, 0] + diag[0, 0, 1]

Tr[W�(−iτ, r = |x2 − x2|)] (2.4)

= 1
Zno src

∫
D[A] 1

Nc
Tr
[
1 exp

[
ig

∫
dτ ′A0(x1, τ

′)
]

exp
[
−ig

∫
dτ ′A0(x2, τ

′)
]]
e−Sgluon[A]
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This choice reflects the fact that we have no practical means to determine the color of the
singlet in the initial state, translating into a 1/Nc chance for any of them (cf. unpolarized
scattering). This object constitutes a true observable as it is genuinly gauge invariant,
while the individual traces over the matrices Mi are in fact gauge dependent.

In the Euclidean theory the role of the above Wilson loop trace is to implement a
reweighting of the simulated system without static sources to a system with static sources,
present at exactly those spatial positions, at which the temporal stretches of the Wilson
loop start and end

Tr[W�(−iτ, r = |x2 − x2|)] (2.5)

= 1
Zno src

∫
D[A]exp

[
−Sgluon[A]− g

∫
d4xReTr

[
A0(x)M̃

(
δ(3)(x− x1)− δ(3)(x− x2)

)]]
= 1
Zno src

∫
D[A]exp

[
−Sgluon[A]− g

∫
d4xReTr [A0(x)j0(x,x1,x2)]

]
= Zsrc(τ, r)

Zno src
.

The matrix M̃ denotes a 3×3 matrix that arises when absorbing the two exponentials into
the exponent of the Feynman weight, forming an effective action in the presence of sources.
It is this possibility to introduce a posteriori the sources into the system, that makes
conventional lattice QCD simulations so versatile. One set of numerical simulations can be
reused to investigate multiple different physics scenarios, simply by a choice of observable.

Can the Wilson loop fulfill its role in the same fashion in a real-time setting? In general
the answer is no. A counterexample can be found when considering SU(2) gauge theory.
There the trace over the Wilson loop remains purely real

Tr
[
W

SU(2)
� (t, r)

]
(2.6)

= 1
Zno src

∫
D[A] 1

Nc
Tr
[
1 exp

[
ig

∫
dτ ′A0(x1, τ

′)
]
exp

[
−ig

∫
dτ ′A0(x2, τ

′)
]]

purely real

eiSgluon[A]

6= 1
Zno src

∫
D[A]exp

[
iSgluon[A]−ig

∫
d4xReTr

[
A0(x)M̃

(
δ(3)(x− x1)− δ(3)(x− x2)

)]
complex phase

]
.

I.e. the trace cannot be absorbed into the complex Feynman weight of the path integral to
constitute a source term, as x1 6= x2. In SU(2) the sum over initial states washes out any
remnants of an imaginary part in the Wilson loop. I.e. for any matrix X ∈ SU(2) with
Pauli decomposition X = 1cos(r) + i~n~σsin(r) with |~n| = 1 we find for M0 = diag[1, 0] and
M1 = diag[0, 1] that

1
2Tr

[
(M0 +M1)X] = 1

2
{

(1 + 1)cos(r) + isin(r)(M0~n~σ +M1~n~σ)
}

= cos(r). (2.7)

As long as we only consider the gauge invariant linear combination of all color singlets in
the initial state, we do not gain access to the information stored in the imaginary part of the
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individual traces. In SU(3) gauge theory on the other hand the phases in the decomposition
of a group element [61] do not cancel out and one can find a matrix M̃ , which allows us to
fulfill eq. (2.6).

In this study we will scrutinize both the gauge invariant Wilson loop, as well as the
gauge dependent quantities in which the trace is taken over just one of the different matrices
Mi in the initial state with the goal to extract information about the interquark potential.
Note that considering a gauge dependent quantity is not apriori meaningless, as has been
shown in the study of the heavy quark potential in conventional lattice gauge theory.
There, instead of the gauge invariant Wilson loop, it is common to study the Wilson line
correlator in Coulomb gauge, which harbors both gauge dependent contributions as well
as gauge independent information related to the potential, thus constituting a suitable
quantity to extracts the potential values from.

Now let us turn to the role of the Wilson loop in the classical statistical approximation,
which is quite different from that in the quantum theory. Here, we do not evaluate the
path integral itself but instead evolve fields via deterministic classical equations of motion,
while their initial values are drawn from a statistical ensemble. The first difference, we must
note, is that computing an observable on the field configurations evolved in that way is not
the same as evaluating the observable inside the full path integral. Hence, evaluating the
Wilson loop on the classical equations of motion does not amount to the same reweighting
we have seen taking place in the full quantum theory. I.e., evaluating the Wilson loop here
leaves the gauge fields still oblivious of the presence of the static sources.

As has been shown in detail in [62], the classical equations of motion emerge naturally
in the derivation of the classical statistical approximation from the full path integral. We
may write the classical limit of the partition function for the gauge fields in the presence
of fermions, denoted by Q(x), as Zsrc in the following form

Zsrc =
∫
DA(t = 0)

∫
DΠ(t = 0)ρ(A,Π, t = 0)δ

(
DµF

µν [A]− jν
)
. (2.8)

What is left of the full path integral is an integration over the statistical distribution ρ of
the classical field A and its conjugate momenta Π at initial time. The dynamics of the
fields at later times are determined by the classical equation of motion, housed in the delta
function term, featuring the covariant derivative Dµ = ∂µ − igAµ.

The coupling of fermionic degrees of freedom to the gauge fields in the classical statis-
tical approximation introduces a current jaµ, coupled to the classical gauge field degrees of
freedom. This current is intimately related to the fermion propagator

jaµ(x) = g

2Tr
[
〈[Q̄(x), Q(x)]〉AγµT a

] T/mQ�1
= g

2Tr
[
〈Q̄(x)Q(x)〉AγµT a

]
. (2.9)

The gauge coupling g appears together with the generators of the gauge group T a

and the gamma matrices γµ, required for coupling the fermions to the gauge field. For
heavy fermions, the states, over which the expectation value is taken, do not contain any
heavy quark particles. Thus, the commutator reduces to the forward correlation func-
tion where only creation operators act on the states from the left. Applying the Foldy-
Tani-Wouthuysen transform to separate the contents of the four component Dirac spinor
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Q = (ψ, χ) into two two-component Pauli spinors, one finds that only the zeroth component
of the current remains relevant. Its expression further simplifies to

ja0 (x) = g

2Tr
[
〈ψ†(x)ψ(x)〉AT a − 〈χ†(x)χ(x)〉AT a

]
+O

(
m−1
Q

)
. (2.10)

All other spatial components of this current are suppressed and therefore the information
of the static sources only enters via the color density ja0 . It makes its appearance in the
classical theory as a source term on the r.h.s. of Gauss’s law

Da
i F

ab
0i = jb0(x), (2.11)

written here concisely using the color components of the covariant derivative Dµ=∂µ− igAµ
and the field strength tensor Fµν = [Dµ, Dν ]. Being interested in the physics of color singlet
states, we initialize the system with two static sources placed at x1 and x2 and select a color
combination encoded in the 3× 3 matrices M̃q and M̃−q. We arrive at the proper Gauss’s
law for the gauge fields in the presence of two static sources in the classical statistical
approximation

Da
i F

ab
0i

m→∞= g

2Tr
{
T b
(
M̃qδ

(3)(x− x1) + M̃−qδ
(3)(x− x2)

)}
. (2.12)

The matrix’ entries may be ordered as “red, green, blue”. For a color-anticolor structure
relevant to describe an overall color singlet state, we may then choose e.g. a red anti-red
rr̄-configuration, which we would represent by M̃q= diag[+1, 0, 0] and M̃−q= diag[−1, 0, 0].
This proper Gauss’s law, as part of the equations of motion, implements the back-reaction
of the sources onto the gauge fields. In turn, missing the source term amounts to neglecting
this back-reaction all together.

As we will see in the following sections, this fact allows us to understand the absence
of a real part in the potential observed in ref. [53]. In that study, the propagating static
color sources, described by the Wilson loop, did not lead to a back-reaction onto the gauge
fields, which in turn did not allow them to build up a force among them. On the other
hand, scattering of the medium gluons with the heavy quarks does not require such a back
coupling and thus a finite imaginary part was found.

In the present study, we will carry out simulations of the Wilson loop in classical
statistical gauge theory in the presence of sources, i.e., based on the discretized counterpart
of the proper Gauss’s law of eq. (2.12). It allows us to reveal the presence and values of
the real part of the static potential. In addition, we investigate whether the back-reaction
changes the behavior of the imaginary part of the potential found in ref. [53].

3 Numerical methods

Let us briefly recollect the standard techniques of classical statistical lattice gauge theory
for the gluon field degrees of freedom. Our starting point is the anisotropic Wilson plaquette
action [63, 64] in the presence of a static charge density ja0 (x). We place it on a hypercubic
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lattice with spatial and temporal lattice spacing as and at respectively

S[U ] = 1
g2

∑
t

at
∑
x

a3
s

(∑
i

2
(asat)2 ReTr

[
1− P0i(x)

]
−
∑
i,j

1
a4
s

ReTr
[
1− Pij(x)

]
+Aa0(x)ja0 (x)

)
. (3.1)

The plaquettes are defined as elementaryWilson loops Pµν(x)=Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x)
and are composed of the gauge links Uµ(x) = exp[iaµgAaµ(x)T a], which contain the dis-
cretized gauge field Aaµ(x) and the generators of SU(3), denoted by T a. In the classical
theory, the gauge coupling g can be absorbed into a redefinition of the gauge fields and
will therefore be set to unity in the following. The plaquettes are related to the gauge field
strength tensor Pµν(x) = exp

[
iaµaνF

a
µνT

a] and in turn allow us to explicitly define the
electric fields as Ei(x) = Eai (x)T a = F a0i(x)T a.

In order to simulate this system in a reliable fashion, we go over to a Hamiltonian for-
mulation, where only space remains discretized and time becomes continuous. The strategy
aims at formulating the equations of motion in canonical form, which in turn enables the
deployment of symplectic time-stepping prescriptions, such as the O(∆t2) accurate leap-
frog algorithm for separable Hamiltonians. The canonical form of the equations of motion
are obtained by choosing a suitable gauge. In temporal gauge with U0(x) = 1, the dynam-
ical degrees of freedom are the gauge group valued spatial links Ui(x) and their generator
valued conjugate momenta Eai (x), residing on individual time slices. The Hamiltonian
according to the plaquette action reads

H =
[
LE − LM

]
=
∑
x

∑
i,a

a3
s

2
(
Eai (x, t)

)2 +
∑
i,j

1
as

ReTr
[
1− Pij(x, t)

]
= 1
as

∑
x

∑
i,a

1
2
(
a2
sE

a
i (x, t)

)2 +
∑
i,j

ReTr
[
1− Pij(x, t)

] = 1
as
H̄, (3.2)

where in the last line we have introduced the dimensionless H̄, explicitly recovering that
the units of H are that of the inverse spatial lattice spacing. The dynamics of the gauge
fields is described via the spatially discretized e.o.m.

U̇i(x, t) = iasE
a
i (x, t)T aUi(x, t), (3.3)

Ėai (x, t) = 2
a3
s

ImTr

∑
j 6=i

T aUj(x, t)
[
S@j + SAj

] . (3.4)

Here, S@j and SAj denote the backward and forward staple, which are the leftovers of the
full backward and forward plaquettes where the link Uj has been removed, i.e., they yield
the backward and forward plaquette once multiplied with the link Uj from the right or
left respectively. In addition to these equations of motion, the functional derivative of the
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lattice action with respect to the A0 component of the gauge field leads to Gauss’s law in
the presence of static sources

G(x, t) = 1
asat

∑
i

[
Ei(x, t)− U †i (x, t)Ei(x, t)Ui(x, t)

]
− 1
at
ja0 (x)T a = 0. (3.5)

If consistent initial conditions are chosen such that they fulfill eq. (3.5), then the evolution
equations eq. (3.4) will preserve this property. When implemented as discrete time stepping,
the dynamics will lead to small deviations from Gauss’s law, which we check to remain
insignificant at all times.

In order to generate the collection of stochastic initial conditions according to the
classical density matrix at temperature T = 1/β [65–67], we modify the strategy origi-
nally devised in [68] and its implementation as outlined in e.g. [69] to include the proper
Gauss law.

The thermal probability distribution of the degrees of freedom follows the Boltzmann
weight P [E,U ] ∝ exp

[
− βH[E,U ]]. As the Hamiltonian is separable, the electric field

contribution is independent of the links and it appears at first sight that the Eai s are
simply Gaussian distributed. Gauss’s law however distinguishes among the electric fields
those that are physical and those that are not. Hence we will have to not only stochastically
draw values of Eai according to

Eai = ηai , 〈ηai 〉 = 0, 〈ηai ηbk〉 = σ2δabδik, σ2 = 1
a3
sβ
, (3.6)

but in addition project to the physical subspace of electric fields by subsequently mini-
mizing, via gradient descent, the functional

∑
x,a Tr[T aG(x, t)]2. The expression G(x, t),

defined in eq. (3.5), at this step contains the charge anti-charge density introduced in
eq. (2.12). Note that it is only here in the projection of the initial conditions where the
effect of the static sources enters the gauge field dynamics, as it is here where Gauss’s law
is enforced.

With a first set of projected electric fields at hand, we may proceed to compute the
corresponding spatial links. To this end, we evolve some arbitrary initial set of links
according to eq. (3.4) based on the quasi-thermal electric fields found above. This allows
them to mutually equilibrate with a temperature, which however is not yet the desired
one. To reach the thermal steady state between Eai and Ui, defined by β, the electric fields
need to be redrawn, projected and evolved with the links several times. The outcome of
this procedure in turn is used as one of the realizations of the thermal initial conditions for
the actual real-time evolution of the gauge fields. Since the steady state is characterized
by a constant energy, we have made sure that the mutual equilibration between links and
electric fields is realized well enough, so that any remaining changes in the energy are below
percent level.

In temporal gauge the computation of the Wilson loop simplifies considerably, as the
temporal links are unit matrices. Due to time translational invariance in thermal equi-
librium, we compute the real-time Wilson loop spanning from the initial time slice to the
time slice, which the simulation has currently reached. To this end we keep a copy of the
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initial conditions in memory and form the following products

W j
x(r, t) =

r/as∏
l=0

Uj(x + aslĵ, 0)

r/as∏
l=0

Uj(x + aslĵ, t)

† . (3.7)

We will in the following determine not only the expectation value of the trace over the
Wilson loop, denoted conventionally as 〈 1

Nc
Tr[W ]〉 = 〈W 〉, but at the same time the gauge

dependent traces in the presence of the matrices Mi, denoted by 〈Tr[MiW ]〉 = 〈MiW 〉.
In case that the sources are set to zero, the Wilson loop expectation values do not

depend on the axis direction and position of it starting point so that 〈W no src
� (r, t)〉 =∑

x
∑
j〈W

j
x(r, t)〉/

∑
x
∑
j 1. On the other hand in the presence of sources, we choose to

place one of them at the origin and the second one along the x-axis at distance rsrc,
such that the Wilson loop at only a single position and with a single spatial extent is
computed over time 〈W src

� (rsrc, t)〉 = 〈W x
0 (rsrc, t)〉. The lack of geometric averaging in this

case leads to significantly larger statistical uncertainties in the observable, which in turn
need to be compensated for by collecting more statistics for the ensemble average over
initial conditions.

As discussed in section 1, the interaction potential between the static charges may be
computed using the spectral function of the Wilson loop. While in standard Euclidean
lattice simulations this requires to solve an ill-posed inverse problem, in a real-time sim-
ulation we only have to carry out a Fourier transform. To minimize the computational
cost, we exploit that the Wilson loop at positive and negative times is related by complex
conjugation W�(t, r) = W ∗�(−t, r) in order to carry out a discrete Fourier transform on
its values in an interval [−tmax, tmax]. Since the discrete Fourier transform is defined for
periodic signals, it is paramount that the simulation has progressed far enough so that the
values of the Wilson loop at the latest time have decayed close enough towards zero. This
is realized in most cases except for the smallest spatial separation distances which may
lead to ringing artifacts in the resulting spectral functions. The further the amplitude of
the signal has decayed over time the weaker the ringing becomes. As is well known, such
ringing can be taken care of by introducing appropriate windowing functions. We deploy
the well established Hann window function [70] to the real-time correlation functions at
the lowest and next to lowest spatial separations in order to avoid such ringing artifacts.
We have checked that this procedure does not introduce a bias onto the estimation of the
potential beyond the statistical uncertainties.

With the spectral function of the Wilson loop at hand we are in a position to investi-
gate the binding properties of static color charges in lattice Yang-Mills theory in classical
thermal equilibrium.

4 Numerical results

The main results of our study are computed based on lattices with N = 32 grid points in
each spatial direction (The source code for our simulations is freely available under an open
access license, hosted at the Zenodo repository [71]). We set the spatial lattice spacing to
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β as src Nruns

4 1 NO 500
6 1 NO 200
8 1 NO 80
10 1 NO 80
12 1 NO 80
16 1 NO 80
20 1 NO 80
20 1 YES 1200
24 1 NO 80
28 1 NO 80
32 1 NO 80

Table 1. Parameters used in the simulations underlying our extraction of the proper static inter-
action potential in classical lattice gauge theory.

unity as = 1 and work with a time stepping ∆t = 0.1. Each realization of the microscopic
classical dynamics, started from an independent stochastically drawn set of Nruns initial
conditions, is evolved up to times Nt∆t = 1200, both in the absence and in the presence of
sources. The number of available configurations used in the computation of observables is
listed in table 1. To generate the thermal initial conditions we draw and project the electric
fields Ninit = 20 times and each time evolve them with the gauge fields for Ntherm = 150
steps using the above ∆t. Supplementary plots showcasing the initialization as well as the
conservation of the Gauss’s law and energy can be found in appendix A.

4.1 Simulations without explicit source term

As a first step, we reproduce and refine the results of [53], in which the thermal real-time
Wilson loop was studied in the absence of an explicit source term in Gauss’s law. In order
to resolve the changes due to variation in the system temperature, we choose ten values of
β = 1/Tas between 4 and 32 (see also table 1). Using slightly different conventions than
in [53], our choice of β = 4 corresponds to βL = 16 in the work of Laine and Tassler. As
a representative example, we plot in figure 1 the Wilson loop’s expectation value at β = 4
along real-time t evaluated at several different spatial distances r/as = 1 . . . 10 (darker
to lighter lines). β = 4 corresponds to the highest temperature considered in this study
and the falloff of the Wilson loop is thus the most rapid, requiring 500 independent initial
conditions to reach the level of statistical uncertainty, indicated by the errorbands.

The top panel of figure 1 displays the real-part of the conventional trace of the Wilson
loop 〈W no src

� (r, t)〉. The bottom panel shows its imaginary part. As expected from ref. [53],
the Wilson loop trace in the absence of static sources is purely real within statistical
uncertainty. A first inspection of this logarithmic plot by eye indicates that at late times it
decreases approximately as a single exponential. It is this exponent that has previously been
identified with the imaginary part of the potential between static quark-anti-quark sources.

In order to extract the potential from the trace of the Wilson loop, we proceed to scru-
tinize its spectral function, computed via discrete Fourier transform, plotted as individual
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Figure 1. Real- (top) and imaginary (bottom) part of the trace of the real-time Wilson loop
evaluated at different spatial on-axis separation distances between r = 1 . . . 10as on Nx = 32
lattices with β = 4 in the absence of a back-reaction between static sources and the surrounding
medium. The real part of the Wilson loop is positive and exhibits clear exponential damping, while
the imaginary part is compatible with zero.

datapoints in figure 2 for six different spatial separation distances r/as = 2, 4, 6, 8, 10 and
12. We plot as range of frequencies ωas ∈ [−0.25, 0.25], where the relevant structure en-
coding the potential is present. The full frequency range extends to the much larger values
given by π/∆t (not shown). In agreement with figure 1, the spectral function is purely real
and exhibits a single dominant peak located at vanishing frequency, whose width increases
with spatial separation distance of the underlying coordinate space Wilson loop.

The solid lines correspond to the best fit according to eq. (1.3), using 15 of the dis-
crete points of the spectral function above and below the peak maximum. The skewed
Breit-Wigner shape predicted on general grounds in [45] matches the data very well with
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Figure 2. Discrete Fourier transform (colored points) of the trace of the real-time Wilson loop
evaluated at different spatial on-axis separation distances between r = 2 . . . 12as on Nx = 32 lattices
with β = 4 in the absence of a back-reaction between static sources and the surrounding medium.
Solid lines indicate the best fit result of the dominant peak structure at zero frequencies.

χ2/d.o.f. ≈ 1.5 . . . 2. Changes in the fitting range do not significantly change its outcome.
In order to assign uncertainties to the extracted values of the potential we have deployed a
ten bin Jackknife, whose variance underlies the relatively small errorbars shown in figure 3.

In order to crosscheck the results obtained from the spectral function analysis, we have
also carried out exponential fits to the late time behavior of the coordinate space Wilson
loop. We see that at small separation distances r/a < 6 where the single exponential
decay of the Wilson loop is well resolved, both methods agree. At larger spatial separation
distances, it becomes more and more difficult to select by eye an appropriate fitting regime,
leading to exponential fit values for ImV that are slightly larger than those from the spectral
function analysis, an effect we attribute to excited state contamination. Considering the
agreement with the exponential fit at small distances and the fact that the DFT based
extraction shows very small dependence on the fitting range, we deem it reliable enough in
the context of the currently available input data quality.

Tabulating the values of the peak position and width for different separation distances
provides us with an estimate of the static quark interaction potential in the absence of a
back-reaction of those sources onto the gauge fields. Carrying out the same procedure at
different values of β, we elucidate the temperature dependence of the potential which is
plotted in the top panel of figure 3. What we obtain from the width are positive numbers.
These correspond to the magnitude of the imaginary part. Its values are surely negative, as
they lead to a damping of the amplitude of the Wilson loop over time. With the imaginary
part in the full quantum theory possessing a trivial dependence on temperature, we plot
here its values divided by the system temperature.

We find an imaginary part, which increases monotonously with temperature. Based
on the state-of-the-art extraction procedure using the Wilson loop spectral functions, the
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Figure 3. (top) Imaginary part of the static quark potential evaluated at different temperatures
β = 4 . . . 32 on Nx = 32 lattices in the absence of a back-reaction between static sources and the
surrounding medium. (bottom) Comparison of the results at the four highest temperatures to the
corresponding values from lattice perturbation theory.

values of Im[V ] obtained here are robust at the current level of statistical uncertainty up to
r/as = 16 for β ≥ 16, while the loss of signal to noise ratio limits the extraction to smaller
distances for lower values of β.

Qualitatively similar to the predictions of HTL perturbation theory in the fully quan-
tum case, we find two distinct regions. One, at small distances (here r/as < 8), which
features a relatively steep increase and a convex shape. The other at subsequently larger
distances, with a much weaker slope and a concave behavior that appears to lead to a
flattening of the values of ImV at larger distances.

We may compare the simulation results also quantitatively to the predictions from the
classical limit of lattice perturbation theory. Leveraging equation (3.23) from ref. [53], we
compute the values of |ImV |/g2T for the β values in our study (see the supplementary
material for an explicit implementation in Mathematica). The outcome is plotted in the
top panel of figure 3 as gray solid lines. Laine and Tassler evaluated the corresponding
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Figure 4. Comparison of the modified traces of the Wilson loop 〈MiW 〉 plotted relative to the
values of the simple trace 〈W 〉 evaluated at β = 4 on Nx = 32 lattices in the absence of a back-
reaction between static sources and the surrounding medium. Very good agreement between the
values is found.

β = 4 imaginary part for the first four spatial distances. We see that while the qualitative
behavior appears similar, quantitative differences exist. In general the perturbative values
are smaller than those obtained from the lattice. In addition the perturbative ImV reaches
its asymptotic value at earlier distances compared to what we observe in the simulation.
It is not surprising that also the large distance asymptotic value is smaller in the weakly
coupled case, as ImV(r→∞) is related to single heavy quark energy loss in the medium. A
strongly coupled environment intuitively induces energy loss more efficiently than a weakly
coupled one.

As last item in this section let us return to the discussion of section 2 regarding
the different color traces of the Wilson loop and how they are related to the in-medium
potential. Here in the absence of sources not only is the full trace 〈W 〉 purely real but also
all of the combinations 〈MiW 〉. Interestingly the latter are fully consistent with the Wilson
loop within errors as shown for the three lowest spatial distances in the top panel of figure 4.
Agreement of the underlying variable within errors translates naturally into an agreement
of the values of the imaginary part of the potential extracted from the different traces of the
Wilson loop We can thus confirm that in the absence of sources any of the three modified
traces provides us with the same outcome as the overall trace that is conventionally used.

4.2 Simulation with explicit source terms

In this section we advance toward the main result of our study, the determination of the
proper interaction potential between static color sources in classical lattice gauge theory
at finite temperature. As discussed in section 2 the missing ingredient in studies so far was
the inclusion of the back-reaction of the static sources on the gauge fields. Now with source
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terms explicitly present, we have to carry out separate simulations for each of the different
spatial separation distances we wish to observe the static color sources at. In addition, it
is not possible to average the Wilson loop over axis-directions and spatial positions, which
requires a factor of up to 10 times higher statistics in order to reach satisfactory results.
We therefore restrict the study to one single temperature given by β = 20. Our choice is
motivated by the fact that at this β, in simulations without explicit source terms present,
thermal effects are already visible, while at the same time a sufficient signal-to-noise ratio
can be obtained. We must however caution the reader that at this value of β the physical
size of our grid does not yet allow an accurate reproduction of deep IR physics, such as e.g.
manifest in a finite sphaleron rate (cf. ref. [72]). We have checked that our results do not
change significantly between Nx = 24 and Nx = 32 indicating that the effect of the mirror
charges is subdominant for the physics of binding here.

As discussed in section 3, the novel element in this study is the treatment of the
thermal initial conditions in order to take into account the change in Gauss’s law due to
the sources. We choose to deploy M̃q = M1 = diag[0, 1, 0] in eq. (2.12), as our initial color
configuration and have checked explicitly (see appendix A) that the proper Gauss’s law is
preserved by the dynamical evolution.

In figure 5, we show the resulting real- (top) and imaginary part (bottom) of the trace
of the Wilson loop at different spatial separation distances r/as = 1 . . . 10 (darker to lighter
solid lines) at inverse temperature β = 20. As noted in table 1, the expectation values are
computed from Nruns = 1200 simulations, carried out with independently drawn initial
conditions. The simple modification in the initial conditions has fundamentally changed
the behavior we observe.

Not only does the imaginary part of the Wilson loop now show finite values, Re[〈W 〉]
and Im[〈W 〉] both exhibit oscillatory behavior with a monotonously decreasing amplitude
also. Note that the former starts from unity while the latter starts from zero at the origin,
consistent with the transformation properties of the Wilson loop under time reversal. A
first inspection by eye hints at the presence of at least two sinusoidal contributions to the
dynamics. The exponential suppression of the amplitude of the Wilson loop with increasing
spatial separation distances is also present here, which leads to a quickly deteriorating signal
to noise ratio at increasing r/as.

While the decrease in amplitude hints at the presence of a finite imaginary part of the
potential, the oscillatory component bodes well to identify a real-part of the interaction
potential as well.

Let us proceed to a quantitative extraction of the potential for which we first compute
the spectral function of the Wilson loop via DFT. In figure 6 we plot the corresponding
values (colored symbols) for positive frequencies in the limited domain between ωas ∈
[0.045, 0.12] where we locate one of the two dominant features of the spectrum, which is
directly related to the potential. The results for six spatial separation distances are plotted
between r/as = 1 and 6 (darker to lighter color).

Due to the significantly lower signal to noise ratio, the data points here show much
more variation than in the case without sources. Since the amplitude of the r/as = 1, 2
Wilson loop has not yet decayed significantly at the final time tas = 1200 of our simulation,
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Figure 5. Real- (top) and imaginary (bottom) part of the trace of the real-time Wilson loop
trace 〈W 〉 evaluated with sources placed at different spatial on-axis separation distances between
r = 1 . . . 10as on Nx = 32 lattices with β = 20. In the presence of back-reaction, both quantities
show finite values and exhibit a combination of oscillatory and damping behavior.

the naive Fourier transform would exhibit ringing around the lowest lying peak. We thus
have applied the Hann windowing function in time to the coordinate space Wilson loop
before the DFT. We find that also in the case with sources present, the lowest lying spectral
structure, around its maximum, can be captured well with the skewed Breit-Wigner form
of eq. (1.3), as shown by the best fit results as solid lines. Both the peak position and the
peak width show a clear dependence on the separation distance.

By determining the peak positions and widths at β = 20, we arrive at the central result
of this study, the values of the real- and imaginary part of the proper static interquark
potential, shown in figure 7. As expected by the presence of a finite imaginary part in
the coordinate space Wilson loop 〈W src

� 〉(r, t) and its damped oscillatory behavior, we do
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Figure 6. Discrete Fourier transform (colored points) of the real-time Wilson loop evaluated in
the presence of sources placed at different spatial on-axis separation distances between r = 1 . . . 6as

on Nx = 32 lattices with β = 20. For clarity only the positive frequencies of the mirror symmetric
function are shown. Solid lines indicate the best fit result of the lowest lying peak structure around
its maximum, relevant for the extraction of the static quark potential.

indeed find finite values for the real-part, as shown in the top panel of figure 7. The errors
are dominated by the fit uncertainty of the seven-parameter χ2 fit according to eq. (1.3),
which has been carried out for ten Jackknife bins.

Since classical lattice gauge theory does not capture the physics of confinement, one
may expect to find a Coulombic behavior at very small distances corresponding to the tree-
level short range interaction in Yang-Mills theory. Since we are observing the system at
finite temperature, a hot medium of color charges fills the space between the static sources
and in analogy with the well-known Abelian theory, we thus expect that the interactions
are screened. And indeed using the simple ansatz −A

r exp[−mDr] + const. it is possible to
reproduce the dependence of Re[V ] on the spatial separation distance r very well (dashed
green line). Such a Debye screened behavior is qualitatively very similar to what has been
observed also in the fully quantum theory deep in the deconfined phase.

The value of mD we observe is in good agreement with that predicted by lattice
perturbation theory according to eq. (1.4):

(mDas)(β = 20) = 0.25(5) (mlPT
D as)(β = 20) = 0.275 (4.1)

In the bottom panel of figure 7, we plot the absolute value of the imaginary-part
of the proper potential as colored symbols, again divided by the temperature. A very
similar picture emerges as in the simulations without explicit sources. The imaginary part
increases monotonously with separation distance. Plotting the results from simulations
without explicit inclusion of sources at the same temperature as light gray symbols, we
actually find very good agreement at those distances where the extraction in the presence
of explicit back-reaction is reliable. We thus reconfirm the results of [53] for the imaginary
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Figure 7. Real- (top) and imaginary (bottom) part of the static quark potential evaluated in
the presence of sources at β = 20 on Nx = 32 lattices. As expected from the behavior of the
real-time Wilson loop we now find both a finite real- and imaginary part. The former exhibits clear
signs of screening as indicated by the Debye fit (dashed gray line). The latter shows the expected
monotonous increase with spatial distance. Results in the absence of sources are shown as gray
symbols and reveal a very good agreement of Im[V ] between the simulations with and without
back reaction.

part, observing no significant effect of the back-reaction on the physics of scattering between
static sources and medium constituents in the value of Im[V ].

Interestingly, the values of the imaginary part, we obtain in lattice simulations, are
significantly larger than those predicted by lattice perturbation theory (compare to fig-
ure 3). On the other hand, the Debye mass, governing the behavior of the real-part comes
out at a very similar value. It would be interesting to explore, whether the agreement for
Im[V ] improves significantly when extending the perturbative calculation of ref. [53] to one
higher order.
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Figure 8. (top) The spectral function of the trace of the Wilson loop evaluated for different
strengths of the color charge q = 1, 2, 3. We find that the position of the lowest lying spectral
peak shifts linearly with the charge, as expected in the Abelian theory. (bottom) Comparison
of the coordinate space Wilson loop for charges of the same magnitude but flipped signs. One
finds agreement in the real-part and a flip of sign in the imaginary part, indicating that indeed
Re[V ]→ −Re[V ] as the sign of the charge changes.

Let us carry out some additional consistency checks to ascertain that the quantity we
extracted above truly plays the role of a potential. We will focus here on its dependence on
the color charge. From the classical Abelian potential we expect that Re[V ] should scale
linearly with the charge. This entails that multiplying the matrix M̃ in the Gauss law
eq. (2.12) with a prefactor q should lead to values of the real-part of the potential that also
scale with q. In addition, switching the signs in eq. (2.12) should lead the Wilson loop to
become its complex conjugate.

As shown in figure 8, the potential we extract here exhibits all the expected hallmarks.
In the top panel, we show the low frequency part of the spectral functions for different
values of the charge prefactor q = 1, 2, 3. The relevant change that q introduces into the
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Figure 9. Comparison of the real-part of the Wilson loop trace 〈W 〉 (solid) in coordinate space to
the modified traces 〈MiW 〉 (gray symbols) at the shortest distance r/a = 1 (top) and an interme-
diate distance r/a = 5 (bottom). We find that their values do differ beyond statistical errors. The
trace based on the matrix M1, which is used in the Gauss law exhibits a different evolution than
those based on M0 and M2.

spectrum is a linear shift of the position of the lowest lying peak, corresponding to a linear
dependence of the value of Re[V ] on q. When changing the sign of the charges involved,
the Wilson loop turns into its complex conjugate as shown in the lower panel, reflecting
the fact that Re[V ]→ −Re[V ] as q → −q.

So far we have only considered the overall trace of the Wilson loop for the extraction
of the proper in-medium potential. Our discussion in section 2 revealed that in SU(2)
gauge theory we would not have access to all the necessary information in that case, as
the imaginary part of the Wilson loop trace in SU(2) vanishes. Instead we would need to
investigate the gauge dependent modified traces 〈MiW 〉. We will do so here within SU(3)
gauge theory and show that even though they are gauge dependent, they encode the same
information on the real-part of the potential as the overall gauge independent trace.

We start with an inspection of the coordinate space values of the different traces over
the Wilson loop in figure 9. The overall trace 〈W 〉 is plotted as colored solid line, while
the quantities 〈MiW 〉 are given as gray symbols. The top panel shows the results at the
smallest spatial distance r/a = 1, while in the bottom panel we present r/a = 5. We
find that the behavior of the overall trace is different from that of the modified traces.
Interestingly the trace over the matrix M1, which is the matrix that also enters the Gauss-
law, exhibits behavior different from the traces over M0 and M2. The latter two agree
within errors. These differences however do not spell doom for a robust extraction of the
in-medium potential, as we can see when going over to the spectral function in Fourier
space in figure 10.
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Figure 10. Comparison of the spectral function of the Wilson loop trace 〈W 〉 (solid) in coordinate
space to the modified traces 〈MiW 〉 (gray symbols) at the shortest distance r/a = 1 (top) and an
intermediate distance r/a = 5 (bottom). We find that while they do show differences in behavior
at the higher lying frequencies, all modified traces exhibit a lowest lying peak at the same position.
In addition the data for M1 can be brought into good agreement with the overall trace by a simple
overall multiplicative factor. This indicates that all of these quantities consistently encode the same
real- and imaginary part of the potential.

Each panel of figure 10 contains the spectral functions of the full trace 〈W 〉 as colored
solid line, while the modified traces are given as gray lines with different dashings. On the
top we show the results for r/a = 1 and on the bottom for r/a = 5. The most important
conclusion we may draw from these spectra is that all different traces exhibit a lowest
lying peak at the same frequency. This in turn reassures us of the physical meaning of the
real-part of the potential extracted via the overall trace.

What about the imaginary part? At first sight it might appear that the lowest lying
peak in the spectral function of 〈M1〉 is wider than for 〈W 〉. However we have checked
explicitly that the curves can be brought into agreement within statistical uncertainties
by a simple multiplicative factor. With the difference explained by an overall factor and
keeping in mind that such a factor does not affect the values of the imaginary part obtained
by a fit with the skewed Breit-Wigner formula of eq. (1.3), we find that all modified traces
also encode the same imaginary part of the potential.

The study of the modified traces 〈MiW 〉 confirmed that while the coordinate space
values of these quantities differ, they do encode the same real- and imaginary part of the
potential through their spectral functions. Thus by focussing on the trace with the matrix
that corresponds to the color charge in Gauss’ law (which also exhibits the best overlap
with the ground) will we be able to extract the potential reliably in SU(2) gauge theory.
For SU(3) the conventional trace over the Wilson loop already suffices.
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5 Conclusion

Classical statistical simulations of gauge fields in the presence of static sources provide us
with qualitative insight into the dynamical binding mechanisms of heavy quarks under the
strong interactions. In this paper, we have revisited how the presence of static sources
affects the classical equations of motion, leading to an explicit source term in Gauss’s Law,
which was absent in previous works.

In order to scrutinize the binding of color sources, we extract the static potential
acting between them, based on the state-of-the-art approach of computing the Wilson loop
spectral function and carrying out a skewed Breit-Wigner fit to its lowest lying structure.
In the absence of back-reaction this method allows us to confirm the results of a finite
imaginary part first presented in [53] and extend them to larger spatial separation distances
and a broader temperature range.

By employing the proper form of Gauss’ Law in the presence of static sources, we
observe significant changes in the dynamics of the Wilson loop already on a qualitative
level. Its values become complex and show oscillatory behavior which directly translate
into finite values of the real-part of the static potential. We investigate its behavior at
β = 20 and find that it is well described by a Debye screened form. The imaginary part of
the potential interestingly appears not to be affected by the inclusion of the back-reaction
when compared to a simulation where the explicit back-reaction through the Gauss’s law
was absent. The values of the Debye mass we observe are compatible with those predicted
by lattice perturbation theory. One possible reason for this agreement could lie in the fact
that our limited volume did not allow us to explore the full IR effects that otherwise modify
the long-distance behavior of Re[V ]. A follow up study on significantly larger volumes is
thus called for.

We have in addition scrutinized different treatment of the initial color states in the
Wilson loop, using either the conventional overall trace 〈W 〉 or the modified traces 〈MiW 〉.
While in the absence of sources all of these quantities show the same values within uncer-
tainty, we find that their values differ in coordinate space in the presence of sources. These
difference however can be attributed solely to their UV behavior and we have shown that
they encode the same real- and imaginary part of the potential via a careful inspection of
their low-frequency spectral functions. In turn we are able to extract the potential consis-
tently from 〈MiW 〉 in case where the overall trace 〈W 〉 does not provide access to all the
relevant information, such as in SU(2).

In the future we will consider alternative approaches to determining the interaction
potential, as e.g. those put forward in the context of Euclidean lattice gauge theory in
ref. [73]. That study makes close contact to our intuition honed in classical electrodynamics.
The authors propose to compute the expectation values of the energy momentum tensor and
to inspect its spatial components. This stress tensor encodes in a gauge invariant fashion
the force acting locally on the faces of a given volume element. Integrating the net force up,
allows one to compute the underlying potential. While this approach has been implemented
with success in the Euclidean theory, the fact that the current discretizations of the energy
momentum tensor are not conserving in Minkowski time, prevents us from utilizing it
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straight away. It actually requires the development of a new conserving discretization
scheme, which is currently work in progress.

Having elucidated the physics of static sources in the presence of classical statistical
gauge fields in this study, we set out to compute the interaction between very heavy but
still dynamical quarks in classical statistical lattice gauge theory in the future using a real-
time implementation of the effective field theory NRQCD (for preliminary work in this
direction see [74]).

A Supplemental figures

In order for the reader to judge the fidelity of our numerical simulations, we present
here representative plots concerning the thermalization procedure, the conservation of the
Gauss’s law as well as conservation of energy. The first three figures are based on β = 4
simulations in the absence of explicit sources from the Gauss’s law. The remaining ones
refer to the β = 20 simulations in the presence of sources.

Constructing the thermal initial conditions constitutes a major numerical cost in the
classical statistical simulation of gauge fields. As shown in figure 11 the total energy of
the electric fields and spatial links after multiple mutual equilibration cycles approaches an
asymptotic value, characteristic for that ensemble of thermal initial conditions. In order
to keep the cost as low as possible we have chosen to draw and project the initial electric
fields Ninit = 20 times, after which the asymptotic state appears well realized.

And indeed, when we observe the relative change in the total energy over the whole
dynamical simulation, as plotted in the top panel of figure 12, we find that its value remains
constant down to the sub-permille level. This in turn both tells us that thermal equilib-
rium between electric fields and links was reached and that the leap-frog time-stepping as
symplectic solver realizes its potential to preserve energy in the discretized e.o.m..

The last check to be made in classical statistical simulations of Yang-Mills fields is
whether the discretized dynamics preserve the Gauss’s law. And while the time stepping
introduces a finite deviation as shown in the bottom panel of figure 12, it remains fully
insignificant over the whole time period of the simulation. Note that the starting value of
around 5×10−13 arises from our choice of tolerance in projecting the electric fields to their
physical values.

The simulations in the presence of explicit sources show similarly robust behavior. In
figure 13 we show the change in total energy over the Ninit = 20 thermalization cycles after
which the asymptotic value is well established.

Taking a look at the evolution of the relative change in total energy during the actual
simulation in the top panel of figure 14, we find again that any residual change is on a
below the per-mille level and thus as insignificant as in the case without sources.

The proper Gauss’s law, the vital new ingredient in the determination of the proper
interaction potential between static sources in lattice gauge theory, also turns out to be
well preserved over the whole simulation time. As shown in the bottom panel of figure 14
it remains below 10−13 at all evolution steps. Again the start value of around 4× 10−14 is
related to the tolerance of projecting the initial electric fields to their physical subspace.
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Figure 11. Thermalization of the initial conditions in the absence of sources at β = 4.
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Figure 12. Energy conservation (top) and Gauss’s Law preservation (bottom) in the absence of
sources at β = 4.
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Figure 13. Thermalization of the initial conditions in the presence of sources at spatial distance
r=a at β = 20.
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Figure 14. Energy conservation (top) and Gauss’s Law preservation (bottom) in the presence of
sources at spatial distance r=a at β = 20.
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