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Abstract
The irregularity of peak and valley stress values of loading histories is the main
impediment for accurate fatigue-based structural health monitoring. Since the
available fatiguematerial data (e.g., S-N curves) have been derived by cyclic load-
ing tests, and the existing damage accumulation models can be implemented on
structures under cyclic loading, cycle-counting algorithms for the transforma-
tion of a spectrum loading into an equivalent cyclic one are necessary for deter-
ministic fatigue damage estimation and life prediction. The existing four cycle-
counting algorithms have an inherent disadvantage; the sequence of the derived
cycles is unknown, and the loading sequence effect on the fatigue damage esti-
mation and life prediction cannot be accounted for (linear damage summation).
The present work proposes a new damage estimation algorithm containing two
modules: a new cycle-counting algorithm and a new damage summation algo-
rithm. Unlike the existing methods, the proposed algorithm takes into account
the loading sequence effect and has a solid physical base because it simulates
the nonlinear damage accumulation with a multi-linear damage summation
procedure. With the aid of a new concept of inserting fictitious loading cycles
in the irregular spectrum, the proposed cycle counting module counts loading
cycles that correspond to loading loops with an algorithm that is easily appli-
cable in engineering practice. According to the author’s knowledge, nonlinear
damage accumulation estimation in structures under an irregular loading spec-
trum is carried out for the first time. The effect of the loading sequence to high-
low two-stage random loading, low-high two-stage random loading, decreas-
ing amplitude multi-stage random loading, increasing amplitude multi-stage
random loading, and alternating amplitude random loading is examined and
discussed.

1 INTRODUCTION

A service loading of infrastructures subjected to environ-
mental loads consists of irregular stress histories. The
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loading spectra contain reversals instead of loading cycles
(Figure 1). Existing methods for structural health monitor-
ing and structural integrity of structures subjected to spec-
trum loading are classified into two categories: (a)machine
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F IGURE 1 (a) “Irregular” loading history, that is, loading
history containing reversals, (b) “cyclic” loading history, that is,
loading history containing full cycles

learning (ML) algorithms, and (b) fatigue damage-based
methods.

1.1 ML algorithms in structural
integrity and health monitoring

Application of artificial intelligence (AI) in civil/structural
engineering was pioneered by Adeli and colleagues in the
mid-1980s, in a field known to be skeptical and averse to
new technologies (Adeli & Al-Rijleh, 1987; Adeli & Bala-
subramanyam, 1988a, 1988b; Adeli & Paek, 1986a, 1986b;
Paek & Adeli, 1988, 1988b). Those early research articles
were followed by a seminal book titled Expert Systems for
Structural Design—A New Generation (Adeli & Balasubra-
manyam, 1988).
The first journal article on civil/structural engineering

applications of neural networks was published by Adeli
and Yeh (1989). A year later, Adeli and Yeh (1990) pre-
sented an explanation-based ML in engineering design.
Hojjat Adeli is known as one of the founders of knowledge
engineering as established by the noted biographer Wein-
gardt (2010). These early highly influential and trailblazing

works have had a profound impact on the application of AI
in civil/structural engineering over the past 35 years,which
is why Hojjat Adeli is widely recognized as the father of AI
and ML in civil engineering.
In the early 1990s, Adeli pioneered the fields of computa-

tional intelligence (CI) through amultiparadigm approach
and adroit integration of three separate CI or soft com-
puting paradigms, that is, neural networks, genetic algo-
rithms, and fuzzy logic (Adeli &Hung, 1994;Hung&Adeli,
1993, 1994). His book Machine Learning–Neural Networks,
Genetic Algorithms, and Fuzzy Systems (Adeli & Hung,
1995) was the first authored book that presented and inte-
grated the three main fields of CI in a single volume and
demonstrated how amulti-paradigm approach could solve
the ML problems more effectively. Later, Ahmadlou and
Adeli (2010) developed a robust classifier, the enhanced
probabilistic neural network with local decision circles.
More recently, Rafiei and Adeli (2017a) developed a new

and powerful neural dynamic classification algorithm that
has been used successfully to solve complicated classifi-
cation problems such as damage detection in high-rise
building structures (Rafiei & Adeli, 2017b) and earth-
quake prediction (Rafiei & Adeli, 2017c). Deep neural net-
work learning has been the subject of intense research in
recent years (Lara-Benıtez et al., 2020; Leming et al., 2020;
Sorensen et al., 2020). Adeli and colleagues have employed
deep neural network learning algorithms for the solution
of various complicated pattern recognition and data min-
ing problems such as concrete mixed design (Rafiei et al.,
2017a) and estimation of concrete compressive strength
(Rafiei et al., 2017b). A novel work onML-aided global and
local health condition assessment of structures, structural
integrity, and health monitoring has been recently pub-
lished (Rafiei & Adeli, 2018).
An early example of health monitoring of steel struc-

tures is the work of Hampshire and Adeli (2000) who used
distributed optical fiber sensors to monitor the behavior
of steel structures. An early important work on the appli-
cation of ML in structural health monitoring employing
a multi-paradigm approach is the MUSIC and dynamic
wavelet neural network model for damage detection of
high-rise buildings (X. Jiang & Adeli, 2007). Park et al.
(2007) introduced terrestrial laser scanning as a new
approach for health monitoring of structures. A review
of articles on SHM up to 2014 was presented by Qarib
andAdeli (2014), feature extraction and classification tech-
niques for SHM were presented by Amezquita-Sanchez
and Adeli (2015), and signal processing techniques for
SHM by Amezquita-Sanchez and Adeli (2016). Oh et al.
(2017) presented an evolutionary learning-based strain
sensing model for SHM of high-rise buildings.
Among the most recent work, N. Wang et al. (2020)

presented damage segmentation and measurement of
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glazed tiles in historic buildings using deep learning. Yu
and Zhang (2020) describe a feature tracing algorithm
for bridge deflection monitoring. M. Wang and Cheng
(2020) discussed a convolutional neural network (CNN)
integrated with a conditional random field for pipe defect
segmentation. Deng et al. (2020) also discussed concrete
crack detection with handwriting script interferences
using CNN. S. Jiang and Zhang (2020) described real-time
crack assessment using deep learningwith awall-climbing
unmanned aerial system. J. Liu et al. (2020) presented
automated pavement crack detection and segmentation
using CNN. Other recent developments on ML methods
for structural health monitoring have been published by
Athanasiou et al. (2020) and Zhang and Aoki (2020).

1.2 Deterministic fatigue damage-based
methods

Available fatigue models for damage accumulation esti-
mation and life prediction can only be applied on cyclic
loading histories. Since the loading on structures under
environmental conditions (wind, wave, earthquake, etc.)
has random nature, the first step for deterministic fatigue-
based estimation of damage accumulation and life predic-
tion is the transformation of the irregular loading history
into a history containing loading cycles. The second step
is the calculation of the fatigue damage of each loading
cycle and the summation of the finite amounts of damage
of each cycle.
For the first step, four transformations (or cycle count-

ing) algorithms, namely, level-crossing counting, peak
counting, range counting, and rainflow counting, have
been proposed for fatigue life prediction (ASTM, 2011).
Most of the counting algorithms do not have a solid phys-
ical base. Among them, the rainflow counting algorithm
(Matsuishi & Endo, 1968; Richards et al., 1974) seems to
provide the most accurate results (Carpinteri et al., 2017)
because it composes loading cycles that correspond to
closed stress-strain hysteresis loops. Although consider-
able progress has been achieved in damage models for
uniaxial (Pavlou, 2018) and multiaxial (Carpinteri & Spag-
noli, 2001) fatigue, the life prediction with all the available
applicable methods is still based on the rainflow cycle
counting (Matsubara &Hayashida, 2021; Pham et al., 2021;
Stellmach et al., 2021; Xie et al., 2021). Rainflow algorithms
are also used for the prediction of an equivalent number of
cycles during an earthquake (Stafford & Bommer, 2009).
Since the area of closed stress-strain hysteresis loops
expresses the energy consumption for causing fatigue
damage in the material structure, they can be considered
as damage events. However, there is not a unique process
for counting closed stress-strain hysteresis loops. The orig-

F IGURE 2 The tracks of the raindrops (dotted lines) in the
irregular loading history compose the full loading cycles 0-3-0, 2-1-2,
4-5-4, and 6-7-6

inal version of rainflow method can be implemented via
a complicated algorithm that counts the cycles as routes
of raindrops on the roof of a pagoda that has the profile of
the loading history (Figure 2). Therefore, it demands big
computer core storage when it is applied to long loading
histories. The several variations of the rainflow method
have variable complexity but yield comparable results.
The second step in damage accumulation simulation

is carried out with the aid of a linear or several non-
linear fatigue damage summation models. The linear
model, known as Miner’s rule (Miner, 1945), is used in
all structural design codes American Institute of Steel
Construction ((AISC), Eurocode, DNV-GL, etc.) because
of its simplicity. However, it is inconsistent with the
nonlinear material mechanisms during fatigue. For this
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reason, it cannot consider the load interaction effects in
damage accumulation.
Although the design codes have adopted only Miner’s

uniaxial fatigue model, the fatigue life prediction under
multiaxial loads is usually carried out by fatigue criteria
for the transition from multiaxial stress state to equiva-
lent uniaxial one (Macha&Niesłony, 2012). On the derived
equivalent uniaxial stress histories, the rainflow cycle
counting and Miner’s linear summation are applied. Pio-
neering works on multiaxial fatigue have been published
by Carpinteri and Spagnoli (2001), Carpinteri et al. (2015),
Fatemi and Socie (1988), Sharifimehr and Fatemi (2019),
and Papadopoulos (1994). A recent review of multiaxial
fatigue models can be found in Dantas et al. (2021).

An alternative approach for fatigue life prediction esti-
mation is based on frequency-domain fatigue-based meth-
ods (e.g., Yue et al., 2021). This approach uses a variation
of Miner’s linear rule and can be used for a quick approxi-
mation of the fatigue life. It is usually adopted for the pre-
liminary design of steel structures.
Apart from Miner’s linear rule, several nonlinear dam-

age models have been published in the last decades. Pop-
ular models of the period 1975–2005 have been published
by Hashin and Rotem (1978), Pavlou (2002), Subramanyan
(1976), and so forth. The most recent models can be
found in the publications of Q. Liu et al. (2020), Pavlou
(2018), Aeran et al. (2017), Rege and Pavlou (2017), Si-Jian
et al. (2018), and Theil (2016). The nonlinear models are
grouped into several categories (Fatemi&Yang, 1998): two-
stage linear models, life curve modification models, mod-
els based on the crack growth process, continuum dam-
age mechanics models, and energy-based models. Two
detailed reviews of the most important fatigue damage
accumulation models have recently been published by
Hectors &DeWaele (2021) and Zhu, Hao, et al. (2019). Fur-
ther relevant works on fatigue damage accumulation have
been published by Correia et al. (2017), X. Liu et al. (2019),
Zhu, Liao, et al. (2019), Zhu et al. (2018), Horas et al. (2017),
and so forth.
The functional form of the nonlinear fatigue damage

models for a constant amplitude loading with stress ampli-

tude σ is the following:

𝐷 =

(
𝑛

𝑁(𝜎)

)𝑞(𝜎)

(1)

where 𝐷 is the damage function taking values from 𝐷 =

0for undamaged material to 𝐷 = 1 for material failure,
𝑞(𝜎) is a function of the stress amplitude, 𝑛 is the number
of the applied loading cycles, and 𝑁(𝜎) is the life (in load-
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Although the nonlinear models are advantageous
because they take into account the loading sequence
effects, none of them has been adopted by the design codes
because of their complexity. Due to the repeated expo-
nential damage summation in thousands loading cycles
(Equation 2), the accumulated numerical error is very
large and the application on real loading spectra is use-
less. Only results on simple two-stage until four-stage
stepwise constant amplitude loadings are available. In
most of the published research, only ratios of exponents
𝑞(𝜎𝑖)∕𝑞(𝜎𝑖−1) exist. Only in the works of Rege and Pavlou
(2017) and Pavlou (2002), the models containing full func-
tion 𝑞(𝜎) can be found, but the verification of these mod-
els has also been carried out in two-stage stepwise constant
loadings.
In the present work, a new algorithm for nonlinear

fatigue damage accumulation estimation on structures
under spectrum loading is proposed. The algorithm con-
tains two tools: a new cycle counting algorithm and a new
damage summation method. The proposed counting algo-
rithm inserts suitable fictitious full loading cycles on an
irregular spectrum loading and transforms it into a sub-
stitute loading history that contains full loading cycles.
Obviously, the substitute loading history includes the dam-
age effect of both the original spectrum loading and the
fictitious loading cycles. The damage of the substitute
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history and the damage of the inserted fictitious cycles
can be calculated because their loads are cyclic. The dam-
age of the original spectrum loading can be obtained by
the compensation of the calculated damages of the load-
ing cycles of the substitute history and the fictitious ones.
The proposed damage summation method is based on the
multilinear transformation of the nonlinear damage accu-
mulationmodel. This approach is advantageous because it
preserves the applicability of the linear summation (within
the finite linear damage bands) and performs nonlinear
damage summation with the aid of weighting functions.
With the proposed algorithmic tools, nonlinear damage
accumulation estimation on spectrum loading is carried
out for the first time. The method has five advantages: (a)
It takes into account the loading sequence effect in fatigue
damage accumulation estimation, (b) it provides applica-
ble nonlinear damage summation, (c) it is consistent with
the nonlinear material mechanisms during fatigue, (d) it
can be used for reliable fatigue life prediction in structures
under spectrum loading, (e) it can be used for develop-
ing reliable inspection plans (shorter inspection intervals
when the damage accumulation rate is high), (e) it can be
used for real-time structural health monitoring. Because
of the lack of environmental loads, a random generation
command in Wolfram Mathematica is used for generating
spectrum loadings. Implementation of the proposed algo-
rithm is carried out in various types of random loading,
that is, high-low two-stage random loading, low-high two-
stage random loading, decreasing amplitude multi-stage
random loading, increasing amplitudemulti-stage random
loading, and alternating amplitude random loading. The
obtained results are compared with results from the exist-
ing standard method of the rainflow counting algorithm
and Miner’s linear damage summation. From the derived
results, important conclusions about the loading sequence
effect on fatigue damage accumulation are obtained.

2 THE NEW COUNTING ALGORITHM

The idea behind the new algorithm is to add proper fic-
titious discrete loading cycles (Figure 3b) in the irregular
history (Figure 3a) that can transform it into a regular (sub-
stitute) one (Figure 3c), and then to remove the effect of
the added fictitious cycles from the cycles of the substitute
cyclic history.
The proposed algorithm is described in Figure 4. For the

sake of simplicity, the transformation steps are applied to
the elementary irregular history of Figure 4a. The selected
loading history in Figure 4a does not contain loading
cycles, and direct implementation of fatigue models is
impossible.

From the physical point of view, the correspond-
ing stress-strain diagram in Figure 4a includes three
closed stress-strain hysteresis loops (Figure 4b). Since
the strain energy within the area of each hysteresis loop
is irreversible and causes deterioration in the material
microstructure, it is considered a damaging event. There-
fore, in Figure 4b, three damaging events can be counted:
loop σ2-σ1, loop σ0-σ3, and loop σ4-σ5. The correspond-
ing loading cycles σ2-σ1-σ2, σ0-σ3-σ0, and σ4-σ5-σ4 in
Figure 4c can approximately cause the same fatigue dam-
age as the irregular loading history in Figure 4a. Although
this physical process for loading cycle counting is rea-
sonable, the integration of the hysteresis loops cannot be
applied in real service loading histories that usually con-
tain millions of loading reversals. In engineering practice,
it is not possible to record the stress-strain hysteresis loops
of structures. The rainflow algorithm is a valuable tool
for loading cycles counting but the process of the routes
of raindrops on a pagoda roof with an irregular profile is
complicated and requires a large computer storage capac-
ity. On the other hand, the linear damage summation of
the derived cycles neglects the loading sequence effect.
An alternative, much simpler algorithm, which counts
loading cycles based on loading loops, is demonstrated in
Figures 4d–g. On the valleys of the original loading his-
tory, we add the fictitious loading cycles σ2-σ0-σ2 and σ4-
σ0-σ4 (Figure 4d). The obtained loading history σ0-σ1-σ0-
σ3-σ0-σ5-σ0 is not irregular anymore, but the correspond-
ing fatigue damage is larger than the fatigue damage of the
original irregular history because it includes the damage
of the fictitious loading cycles. Figure 4e demonstrates the
counted damaging events of the cyclic loading history of
Figure 4d that include the damaging events of the ficti-
tious cycles signed by “–,” that is, it includes the fictious
damaging events. Then, the fictitious damaging events are
deducted (Figure 4f) from the substitute cyclic history,
yielding the damaging events in Figure 4g. It is obvious that
the corresponding loading cycles of the damaging events
of the Figure 4g are same as the loading cycles in Figure 4c
counted by the stress-strain loops of Figure 4b. In order to
get the above results, the deduction of the fictious damag-
ing events should follow the following rules:
If the stress 𝜎𝑣

𝑗
of any valley 𝑗of the original loading his-

tory fulfills the condition

|||𝜎max𝑗+1
− 𝜎𝑣

𝑗

||| > |||𝜎max𝑗−1
− 𝜎𝑣

𝑗

||| (3)

then the fictitious damaging event is deducted from the
damaging event of the stress 𝜎max

𝑗−1
, and the resulted load-

ing cycle has maximum stress 𝜎max
𝑗−1

and minimum stress
𝜎min
𝑗−1

= 𝜎𝑣
𝑗
(Figure 5a):
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F IGURE 3 (a) Irregular loading history, (b) fictitious cycles, and (c) substitute cyclic loading history physical

If

|||𝜎max𝑗+1
− 𝜎𝑣

𝑗

||| < |||𝜎max𝑗−1
− 𝜎𝑣

𝑗

||| (4)

the fictitious damaging event is deducted by the dam-
aging event of the stress 𝜎max

𝑗+1
, yielding a loading cycle

withmaximum stress 𝜎max
𝑗+1

andminimum stress 𝜎min
𝑗+1

= 𝜎𝑣
𝑗

(Figure 5b). For stress peaks and valleys in the compres-
sive area, the same procedure can be applied (Figure 6).
The real service spectra usually contain knee points and
plateaus that should be removed before the implementa-
tion of the proposed algorithm. Since themean stress 𝜎𝑚 of
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F IGURE 4 (a) Elementary irregular loading history, (b)
stress-strain hysteresis loops, (c) loading cycles corresponding to the
stress-strain hysteresis loops, (d) insertion fictitious loading cycles
into an irregular spectrum, (e) loading cycles of the substitute
loading history (continue line) and fictitious loading cycles (dotted
line), (f) compensation of the loading cycles of the substitute history
and the fictitious loading cycles, and (g) derived loading cycles
equivalent to the original loading history

F IGURE 5 Rules for deduction the fictitious damaging events
from the substitute loading history: (a) increasing successive stress
peaks in the original spectrum, and (b) decreasing successive stress
peaks in the original spectrum

the majority of the derived loading cycles is 𝜎𝑚 ≠ 0, equiv-
alent stress amplitudes should be calculated in order to
consider the mean stress effect. To this end, well-known
mean stress effect rules like, for example, Goodman’s can
be implemented:

Δ𝜎𝑖

Δ𝜎
𝑒𝑞

𝑖

+
𝜎𝑚𝑒𝑎𝑛
𝑖

𝑆𝑢
= 1 (5)

After the implementation of the algorithm, a huge num-
ber of cycles with stress amplitude Δ𝜎𝑒𝑞 less than the
fatigue endurance limit 𝑆𝑒 exist. These loading cycles
should be removed because they do not contribute to the
damage accumulation. In the obtained loading history,
which contains discrete loading cycles, a fatigue damage
accumulation model should be applied. Linear models do
not take into account the loading sequence effects. It is well
known that the reason of the loading sequence effects is the
plastic zone sizes produced by the maximum values of the
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F IGURE 6 Fictitious loading cycles in loading histories with
compressive stress peaks and valleys

stress sequence. Therefore, for nonlinear damage accumu-
lation prediction, the sequence of the derived discrete load-
ing cycles should follow the sequence of the stress peaks
of the original loading history. All the above steps for the
transformation of an irregular loading history into a his-
tory containing loading cycles is demonstrated in the flow
chart of Figure 7.

2.1 Comparison with the rainflow
counting method

All the published counting methods are based on the
assumption that the surface of the closed stress-strain hys-

teresis loop expresses the consumed mechanical energy
to cause fatigue damage in a material structure. How-
ever, they do not count the surface of the closed hysteresis
loops but the stress range composing loading loops. Since
the real-time surface integration of hysteresis loops dur-
ing service is practically impossible, this approach, though
approximate, is useful due to its simplicity. Furthermore,
it yields acceptable results for engineering purposes. The
stress range is not a sufficient parameter to measure the
area of a closed stress-strain hysteresis loop. The harden-
ing exponent, the mean stress, the strain rate, and the tem-
perature are additional necessary parameters that should
be accounted for the estimation of the mechanical energy
causing fatigue damage in the material structure. There-
fore, all the known countingmethods count closed loading
loops, not closed hysteresis loops. Since the creation of a
closed loading loop by assembling several loading reversals
from different places of the loading history is not unique
and straightforward, the several counting methods count
different loading cycles. The existing four concepts and
their variations are based on different algorithms that dif-
fer in complexity. The selection of a counting algorithm is
a compromise of the computational cost and the required
accuracy. It seems that rainflow method yields the most
accurate results but the corresponding algorithm of com-
posing cycles from the tracks of rain drops (Figure 2) is
the most complicated. The rainflow method is considered
the standard counting method in fatigue design packages
and structural health monitoring systems and has been
adopted by most of the design standards.
The proposed counting algorithm of inserting fictitious

loads to transform an irregular spectrum to a cyclic one
counts loading cycles that correspond to closed loading
loops too. In most of the irregular loading patterns, like in
Figure 4a, the proposed algorithm, though much simpler,
counts the same loading cycles as the rainflow method.
However, in few loading patterns, the existing counting
algorithm and the rainflow count different closed loading
loops (Figure 8a,b).
If we assume that the area within a closed stress-

strain hysteresis loop is proportional to the stress range
Δσ = σmax–σmin, the sum of the derived stress ranges by
rainflow (σ1–σ0) + (σ3–σ4) + (σ5–σ2) in Figure 8a is equal
to the sum of the derived stress ranges by the proposed
method (σ1–σ0) + (σ3–σ2) + (σ5–σ4) in Figure 8b.

3 THE NEWDAMAGE SUMMATION
ALGORITHM (MULTILINEAR DAMAGE
SUMMATION)

The last module in the algorithm in Figure 7 contains the
damage summation algorithm.The structural design codes
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F IGURE 7 Proposed concept for cycle counting algorithm
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F IGURE 7 Continued
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F IGURE 7 Continued

(AISC, Eurocode, DNV-GL etc.) use theMiner’s linear rule
because of its simplicity. Although the available nonlin-
ear models provide a realistic simulation of the fatigue
damage accumulation and take into account the loading
sequence effect, they cannot be applied to irregular loading
spectra because the repeated exponents on exponents in
Equation (2) yields a very large error even for few tens of
loading cycles.

To overcome these disadvantages, the discretization of
the nonlinear damage evolution into finite multi-stress
damage bands where the damage curves can be approxi-
mated by linear segments with different slopes is proposed
herein. Within the multilinear iso-stress damage curves
that preserve the damage memory of the material, linear
damage summation can be performed.
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F IGURE 7 Continued

Any point within the area of a damage envelope cor-
relates with three parameters: Damage function D, stress
amplitude σ, and normalized number of loading cycles
n* = n/N (Figure 9).
During the service life of a real structure, a very large

number of stress reversals composes the stress history. The
damage increment due to a single loading cycle has an
extremely small value. For estimation of the total damage
accumulation, the non-linear summation of an extremely
large number of damage increments of the loading cycles
composing the loading spectrum should be carried out.
Since even small differences always exist between the
actual values and the calculated ones of the damage incre-
ment, direct implementation of the Equation (2) to million
loading cycles yields error accumulation and inaccurate
results.
In order to minimize the numerical error, the diagram

of the damage evolution (Figure 9) is divided into damage
bands (Figure 10). To each damage band, straight segments
approximate the curved damage lines (iso-stress curves).
Each straight segment has a certain slope, expressing the
corresponding damage accumulation rate within the cor-
responding damage band (Figure 11). The slope of each
straight line represents the material memory of the dam-
age accumulation in the past.
The size of the bands is arbitrary, like the size of the finite

differences and finite elements in structural analysis. More
bands result in better accuracy. Dense discretization of the
envelope at the early stage of fatigue damage accumulation
(e.g., in the areaD< 0.1) is a good practice. An optimization
for determining the band height can be carried out but it

is beyond the scope of the present work. The minimum for
the number of bands is 2. The damage increment ΔD due
to a small number of loading cycles Δn/N with a certain
stress amplitude 𝜎

𝑖
is:

Δ𝐷 =
Δ𝑛

𝑁
tan𝜑𝑖 (6)

where 𝜑𝑖 is the slope of the straight segment corre-
sponding to the stress amplitude 𝜎

𝑖
in a certain damage

band.
According to Miner’s rule, the damage increment Δ𝐷𝑀

for the same normalized number of loading cycles Δ𝑛 ∕𝑁
is

Δ𝐷𝑀 =
Δ𝑛

𝑁
tan 45𝑜 (7)

Then, the combination of Equations (6) and (7) yields:

Δ𝐷 =
tan𝜑𝑖
tan 45

Δ𝐷𝑀 (8)

Taking into account the above equation, the ratio

𝑤𝑖 =
tan𝜑𝑖
tan 45

(9)

can be considered as a weight coefficient for correction
of the Miner’s damage calculation Δ𝐷𝑀 within a damage
band. Therefore, within a certain finite damage band 𝑗,
the damage summation Δ𝐷𝑗 can be performed linearly by
using the weight coefficients𝑤𝑖𝑗 of the stresses 𝑖within the
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F IGURE 8 (a ) Rainflow algorithm counted the closed loading loops σ0-σ1-σ0, σ4-σ3-σ4 and σ2-σ5-σ2, (b ) the proposed algorithm
counted the closed loading loops σ0-σ1-σ0, σ2-σ3-σ2 and σ4-σ5-σ4

damage band 𝑗:

Δ𝐷𝑗 =

𝑘∑
𝑖=1

𝑤𝑖𝑗

𝑛𝑖
𝑁𝑖

= 𝑤1𝑗

𝑛1
𝑁1

+ 𝑤2𝑗

𝑛2
𝑁2

+⋯+𝑤𝑘𝑗

𝑛𝑘
𝑁𝑘

(10)
The total damage can be calculated by the summation of

damage increments of all damage bands

𝐷 =

𝑛𝑏∑
𝑗=1

Δ𝐷𝑗 (11)

or

𝐷 =

𝑛𝑏∑
𝑗

𝐷𝑗 =

𝑛𝑏∑
𝑗

𝑘∑
𝑖=1

𝑤𝑖𝑗

𝑛𝑖
𝑁𝑖

(12)

where 𝑛𝑏 is the selected number of bands. With the aid of
Equation (1), the weight coefficient 𝑤𝑖𝑗 can be derived by
the following formula:

𝑤𝑖𝑗 =
𝐷𝑗 − 𝐷𝑗−1

𝐷
1∕𝑞(𝜎𝑖)

𝑗
− 𝐷

1∕𝑞(𝜎𝑖)

𝑗−1

(13)

Using the above concept, the damage summationwithin
a band can be considered linear. The damage memory of
the material is taken into account by the use of the weights
𝑤𝑖𝑗 . Therefore, although the damage accumulation within
a damage band is linear, the actual damage accumulation
estimation for the whole stress history is non-linear. The
proposed method is summarized in a pseudocode listed in
the Appendix.
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F IGURE 9 Schematic representation of the damage D versus
the normalized number of cycles n/N for several values of stress
amplitude σ (iso-stress curves)

F IGURE 10 Discretization of the damage accumulation
curves into four bands

4 IMPLEMENTATION OF THE
PROPOSED ALGORITHM TO AN
OFFSHOREWIND TURBINE STRUCTURE

Real-time structural health monitoring of offshore wind
turbine structures is based on loading series recordings on
critical spots of the structure. Typical load recordings are
the blade bending and torsion moments, both at the blade

F IGURE 11 Approximation of the continuous damage
accumulation curves of each band by straight segments with a
constant slope

root and the monopile base. The fatigue loads have har-
monic (wave inputs) and stochastic (wind inputs) compo-
nents (Figure 12).
With the aid of numerical methods, the loading series

recordings are transformed into stress series for each crit-
ical spot. Since many critical locations exist, a huge vol-
ume of stress values due to the environmental loads are
obtained. The stress spectra are irregular; therefore, an ini-
tial filtering for knee point and plateau removal is carried
out first. Then a counting algorithm is applied, and a series
of full loading cycles is derived for each stress spectrum.
Equivalent stress amplitudes are calculated with the aid
of multiaxial fatigue criteria and removal of loading cycles
with smaller amplitude than the fatigue endurance limit
is carried out. The remaining cyclic stresses are sorted in
the same sequence with the stress peaks of the original
stress spectrum. Finally, a damage summation algorithm
is applied, and damage accumulation estimation is carried
out.
Because of the lack of environmental stress series, a gen-

eration of random stress values with the aid of Mathemat-
ica is carried out for the sake of application of the proposed
algorithm. Several loading scenarios are selected in order
to examine the corresponding loading sequence effects.
For the sake of calculations, a typical S-N diagram for steels
is used (Figure 13) according to DNV-GL (2015) standards
for S-N curve extrapolation for offshore structures. For the
implementation of the proposed multilinear damage sum-
mation, the iso-stress family of the damage curves is dis-
cretized into 𝑛𝑏 = 11 damage bands. For better accuracy
in the damage accumulation estimation, the discretization
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F IGURE 1 2 Real-time structural health monitoring for
critical spots

F IGURE 13 S-N curve

is denser at the early stage of the fatigue damage accu-
mulation period, that is, for D < 0.1 where the material
consumes most of its fatigue life. Optimization of the dis-
cretization of the damage envelope is beyond the aims of
the present work. The formula for the weight coefficient

for the 11 damage bands is:

𝑤𝑖𝑗 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.025

0.0251∕𝑞(𝜎𝑖 )
f or 𝐷 ≤ 0.025

0.05−0.025

0.051∕𝑞(𝜎𝑖 )−0.0251∕𝑞(𝜎𝑖 )
f or 0.025 < 𝐷 ≤ 0.05

0.1−0.05

0.11∕𝑞(𝜎𝑖 )−0.051∕𝑞(𝜎𝑖 )
f or 0.05 < 𝐷 ≤ 0.1

0.2−0.1

0.21∕𝑞(𝜎𝑖 )−0.11∕𝑞(𝜎𝑖 )
f or 0.1 < 𝐷 ≤ 0.2

0.3−0.2

0.31∕𝑞(𝜎𝑖 )−0.21∕𝑞(𝜎𝑖 )
f or 0.2 < 𝐷 ≤ 0.3

0.4−0.3

0.41∕𝑞(𝜎𝑖 )−0.31∕𝑞(𝜎𝑖 )
f or 0.3 < 𝐷 ≤ 0.4

0.5−0.4

0.51∕𝑞(𝜎𝑖 )−0.41∕𝑞(𝜎𝑖 )
f or 0.4 < 𝐷 ≤ 0.5

0.6−0.5

0.61∕𝑞(𝜎𝑖 )−0.51∕𝑞(𝜎𝑖 )
f or 0.5 < 𝐷 ≤ 0.6

0.7−0.6

0.71∕𝑞(𝜎𝑖 )−0.61∕𝑞(𝜎𝑖 )
f or 0.6 < 𝐷 ≤ 0.7

0.8−0.7

0.81∕𝑞(𝜎𝑖 )−0.71∕𝑞(𝜎𝑖 )
f or 0.7 < 𝐷 ≤ 0.8

1.0−0.8

1.01∕𝑞(𝜎𝑖 )−0.81∕𝑞(𝜎𝑖 )
f or 0.8 < 𝐷 ≤ 1.0

(14)
For the exponent 𝑞(𝜎𝑖) in the nonlinear damage function

(Equation 1), the following formula (Rege & Pavlou, 2017)
is adopted:

𝑞(𝜎𝑖) =
( 𝜎𝑖
𝑆𝑢

)−0.75
(15)

where 𝑆𝑢 is the ultimate stress of the material. For the
selected steel, the typical value 𝑆𝑢 = 900 MPa is used.
The first loading spectrum consists of a uniform block

of random peaks and valleys in the range of values 𝜎 ∈
[0, 500]MPa (Figure 14a). The proposed algorithm yields
the damage accumulation versus the number of cycles
shown in Figure 14b. In the same figure, a plot of the dam-
age accumulation curve derived by the rainflow counting
and Miner’s linear damage summation is included. The
nonlinear damage accumulation nature is clearly demon-
strated in the results of the proposed algorithm. For the
selected random loading, the predicted fatigue life by the
proposed algorithm is 29,735 cycles, while the predicted life
by the rainflow counting and Miner’s linear summation is
30,412 cycles. This result indicates that although the exist-
ing standard method is linear, the accuracy of the life pre-
diction is excellent. The deviation of the predicted fatigue
life with respect to the existing method is 2.23%. However,
the existing method overestimates slightly the fatigue life.
According to the author’s opinion, the reason for the good
agreement between the proposed nonlinear algorithm and
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F IGURE 14 (a) Uniform random spectrum loading, (b)
damage accumulation simulation and fatigue life prediction with
the aid of the proposed and the existing method

the existing linear is the fact that the effects of overloads
and underloads cancel each other in a random loading
history. Unlike this finding, the implementation of the
proposed method to high-low two-stage random loading
spectrumof Figure 15a resulted in large life prediction devi-
ation between the proposed and the existing method. The
results are demonstrated in Figure 15b and show that the
existing method overestimates the fatigue life (deviation
18.77%). This finding indicates that ignoring the nonlin-
ear nature of the damage accumulation yields inaccurate
life prediction in loading spectra containing loading blocks
of decreasing stress range. According to the results of this
example, the loading sequence has a significant effect on
the damage accumulation. The use of the existing method
to loading spectra, which causes overloading of a structure
at the early life, yields an unsafe prediction of the fatigue
life and should be avoided. If we inverse the sequence
(Figure 16a) of the loading blocks of the previous case,
good agreement between the results of the proposed and
the existingmethod is obtained (Figure 16b). The deviation
between the predictions of the proposed and the existing

F IGURE 15 (a) High-low two-stage random loading, (b)
damage accumulation simulation and fatigue life prediction with
the aid of the proposed and the existing method

method is just 1.43%. It seems the existing method under-
estimates slightly the fatigue life and can provide safe and
slightly conservative results. Implementation of the model
is carried out to multi-stage spectrumwith decreasing ran-
dom stress range (Figure 17a) and to multi-stage one with
increasing random stress range (Figure 18a). The corre-
sponding results are demonstrated in Figure 17b for the
high to low multi-stage spectrum and in Figure 18b for the
low to high one. These findings indicate the same trend
like the results of the corresponding high-low and low-
high two-stage loadings.
There is a large deviation of 59.16% between the results

of the proposed and the existing method for the high
to low multi-stage spectrum, and the existing method
overestimates the fatigue life. Unlike this result, a good
agreement (deviation 2.18%) between the life prediction
of the proposed and the existing method for the low to
high multi-stage spectrum is obtained, and the existing
method underestimates slightly the fatigue life. Finally,
the proposed method is implemented to multi-stage spec-
trum with alternating random stress range (Figure 19a).
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F IGURE 16 (a) Low-high two-stage random loading, (b) damage accumulation simulation and fatigue life prediction with the aid of the
proposed and the existing method

F IGURE 17 (a) Decreasing amplitude multi-stage random loading, (b) damage accumulation simulation and fatigue life prediction with
the aid of the proposed and the existing method

F IGURE 18 (a) Increasing amplitude multi-stage random loading, (b) damage accumulation simulation and fatigue life prediction with
the aid of the proposed and the existing method
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F IGURE 19 (a) Alternating block amplitude multi-stage random loading, (b) damage accumulation simulation and fatigue life
prediction with the aid of the proposed and the existing method

TABLE 1 Loading spectra and comments on the obtained results

Loading type
Range of randomstress values
(MPa)

Deviation of the
predicted fatigue life
with respect to the
existing method Comments

One-stage random
loading

0–500 −2.23% Good agreement between the results of the
proposed and the existing method. The
existing method overestimates slightly
the fatigue life

High-low two-stage
random loading

First block: 10–100
Second block: 10–55

−18.77% Quite large deviation between the results
of the proposed and the existing method.
The existing method overestimates
considerably the fatigue life

Low-high two-stage
random loading

First block: 10–60
Second block: 10–110

1.43% Good agreement between the results of the
proposed and the existing method. The
existing method underestimates slightly
the fatigue life

Multi-stage spectrum
with decreasing
random stress range

First block: 150–195
Second block: 80–104
Third block: 30–39
Fourth block: 20–26
Fifth block: 10–13

−59.16% Quite large deviation between the results
of the proposed and the existing method.
The existing method overestimates
considerably the fatigue life

Multi-stage spectrum
with increasing
random stress range

First block: 15.0–37.5
Second block: 22.5–56.25
Third block: 30.0–75.0
Fourth block: 45.0–112.5
Fifth block: 60.0–150.0

2.18% Good agreement between the results of the
proposed and the existing method. The
existing method underestimates slightly
the fatigue life

Multi-stage spectrum
with alternating
random stress range

First block: 25.0–100.0
Second block: 12.5–50.00
Third block: 25.0–100.0
Fourth block: 12.5–50.0
Fifth block: 25.0–100.0

−1.53% Good agreement between the results of the
proposed and the existing method. The
existing method overestimates slightly
the fatigue life
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TABLE 2 Processing time and fatigue life prediction for combinations of the proposed tools with the rainflow counting method and
Miner’s linear damage rule

Counting method
Damage
accumulation model Loading spectrum

Processing
time

Predicted
fatigue life
(cycles)

Rainflow method Miner’s rule One-stage random loading 13.845 h 30,412
High-low two-stage random loading 53.610 h 5,898,138
Low-high two-stage random loading 50.532 h 5,181,081
Multi-stage spectrum with decreasing random stress range 3.911 h 622,642
Multi-stage spectrum with increasing random stress range 32.228 h 3,761,711
Multi-stage spectrum with alternating random stress range 43.017 h 4,711,222

Proposed counting
method

Proposed damage
accumulation model

One stage random loading 426 s 29,735
High-low two-stage random loading 1939 s 4,791,344
Low-high two-stage random loading 2053 s 5,255,528
Multi-stage spectrum with decreasing random stress range 134 s 254,186
Multi-stage spectrum with increasing random stress range 1341 s 3,843,340
Multi-stage spectrum with alternating random stress range 1761 s 4,639,711

Rainflow method Proposed damage
accumulation model

One stage random loading 14.404 h 29,629
High-low two-stage random loading 54.991 h 4,791,188
Low-high two-stage random loading 53.081 h 5,255,410
Multi-stage spectrum with decreasing random stress range 4.087 h 254,171
Multi-stage spectrum with increasing random stress range 34.333 h 3,843,192
Multi-stage spectrum with alternating random stress range 46.427 h 4,639,582

Proposed counting
method

Miner’s rule One-stage random loading 498 s 31,222
High-low two-stage random loading 2299 s 4,918,511
Low-high two-stage random loading 2490 s 5,008,198
Multi-stage spectrum with decreasing random stress range 153 s 282,107
Multi-stage spectrum with increasing random stress range 1537 s 3,518,918
Multi-stage spectrum with alternating random stress range 2082 s 4,677,101

The comparison of the fatigue damage accumulation and
life prediction results is demonstrated in Figure 19b. These
findings indicate that the alternating stress range in a
sequence high-low-high-low-high causes the cancellation
of the overloading effects by the underloading ones and
yields good agreement in the life predictions between the
proposed nonlinear algorithm and the existing linear one.
The description of the selected loading spectra and the
main conclusions are summarized in Table 1. The impact
on the processing time and the fatigue life prediction of
several combinations of the proposed tools with the exist-
ing countingmethod andMiner’s linearmodel are summa-
rized in Table 2. Results for the combination ofMiner’s rule
and rainflow method, proposed damage summation tool
and proposed counting method, proposed damage sum-
mation rule and rainflow method, and Miner’s rule and
proposed counting method have been presented for the
selected six loading cases: one-stage random loading, H/L
two-stage loading, L/H two-stage loading, multistage spec-
trum with decreasing stress range, multistage spectrum

with increasing stress range, multistage spectrum with
alternating stress range. The computation was carried out
with the software Wolfram Mathematica version 12.3 in
a PC with processor Intel(R) Core(TM) i7-5600U CPU @
2.60 GHz 2.59 GHz and installed RAM 8.00 GB. The pro-
cessing time in seconds has been obtained with the aid of
the command AbsoluteTiming[expr].

5 CONCLUSION

A new nonlinear algorithm for fatigue damage accu-
mulation estimation and life prediction for structures
under irregular loading spectra is proposed. The new
algorithm has two modules: (a) a new cycle counting
method, and (b) a new multilinear damage summation
method. The results of the new algorithm are com-
pared with the results of the existing rainflow counting
method and Miner’s linear damage summation rule that
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is adopted by the design codes Eurocode, AISC, and
DNV-GL.
Unlike the existing standard method, the proposed

method is consistent with the nonlinear material mech-
anisms during fatigue and takes into account the load-
ing sequence effects. Therefore, apart from realistic fatigue
damage estimation and life prediction, it can be adopted
for reliable real-time structural healthmonitoring. It is also
suitable for developing inspection plans that are consistent
with the aging mechanisms of the materials.
The proposed method has been implemented into six

representative loading types: (a) uniform random load-
ing, (b) high-low two-stage random loading, (c) low-
high two-stage random loading, (d) multi-stage spectrum
with decreasing random stress range, (e) multi-stage spec-
trum with increasing random stress range, and (f) multi-
stage spectrum with alternating random stress range. The
obtained results have indicated good agreement in life pre-
diction between the proposed and the existingmethod only
in spectrum loadings where the overloading effects are
canceled by the underloading ones. Indeed, the deviation
of the results in the spectrum loading type (a) and (f) was
only 2.23% and 1.53%, respectively, with a trend the existing
method to overestimate slightly the fatigue life. The imple-
mentation of the proposedmethod into two-stage low-high
and multistage low-high loading spectra has also provided
very good agreement between the proposed and the exist-
ing method with a trend the existing method to underes-
timate slightly the fatigue life. Unlike the later findings,
the implementation of the proposed algorithm into two-
stage high-low and multistage high-low loading spectra
has resulted in large deviation between the proposed and
the existing method. The deviation of the results in the
spectrum loading type (b) and (d) has been 18.77% and
59.16%, respectively. These results have indicated that the
existingmethod overestimates considerably the fatigue life
and yields unsafe predictions to loading spectra of decreas-
ing stress amplitude. All in all, the proposed algorithm has
demonstrated its ability to predict the loading sequence
effects and especially the fatigue life reduction of struc-
tures under loading spectra that cause overloading at the
early stages of structures’ life where the design codes yield
unsafe life prediction. The novel elements of the proposed
method are the new counting and nonlinear damage sum-
mation algorithms for spectrum loading histories. The pro-
posed method has almost the same reliability as the rain-
flow method and much better numerical efficiency. The
new multilinear damage summation algorithm provides
for the first time the advantages of the nonlinear fatigue
life prediction in spectrum loading andpredicts the loading
sequence effects. However, the method is limited to uniax-
ial fatigue. Expansion of the method to multiaxial fatigue
is the next step.
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APPENDIX: PSEUDOCODE OF THE PROPOSED
METHOD
*** Data
*** sigmaR is the matrix of random peaks and valleys

before filtering
*** sigmaA is the matrix of random peaks and valleys

after knee point and plateau removal
*** Se is the fatigue endurance limit of the material
*** Su is the ultimate stress of the material
*** Ni is the number of cycles up to failure according to

the SN curve
*** ns is the number of random stress values
*** nc is the number of counted stress cycles
*** Generation of random values for sigma (with the aid

of Wolfram Mathematica symbolic programming)
SigmaR[i] = Random number with certain minimum

and maximum values
*** Knee point removal and plateau removal (with the

aid of Wolfram Mathematica symbolic programming)
ABB :=Table[If[(sigmaR[[i+ 2]] - sigmaR[[i+ 1]])*(sig-

maR[[i + 1]] - sigmaR[[i]]) > 0, sigmaR[[i + 1]] = sig-
maR[[i]]], {i, 1, ns}];
sigmaA[i] = Delete Duplicates in ABB[i];
*** Counting algorithm
*** sigmaAP is a peak stress value before cycle counting
*** sigmaAV is a valley stress value before cycle counting
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*** sigmaCP is the peak value of the counted stress cycle
*** sigmaCV is the valley value of the counted stress

cycle
i = 0
For i = 0 to ns
i = i+1
If sigmaA[i ] > sigmaA[i+1] then sigmaAP[i] = sig-

maA[i] else sigmaAV[i] = sigmaA[i]
sigmaCP[i] = sigmaAP[i]
If (sigmaAP[i+1]- sigmaAV[i ]) > (sigmaAP[i-1]- sig-

maAV[i]) then
(sigmaCV[i-1]= sigmaAV[i] and sigmaCV[i+1]= 0) else
(sigmaCV[i-1] = 0 and sigmaCV[i+1] = sigmaAV[i])
Next i
*** Equivalent stress amplitude according to Goodman’s
Rule
*** sigmaCMEAN is the mean stress of a loading cycle
*** sigmaCAMP is the amplitude of a loading cycle
*** sigmaCEQ is the equivalent stress amplitude of a

loading cycle
sigmaCMEAN[i] = (sigmaCP[i]+sigmaCV[i])/2
sigmaCAMP[i] = (sigmaCP[i]-sigmaCV[i])/2
sigmaCEQ[i] = sigmaCAMP[i]*(1- sigmaCMEAN[i]/

Su)ˆ-1
*** Removal of loading cycles with equivalent amplitude
less than the fatigue endurance limit Se
For i = 0 to ns
If sigmaCEQ[i] < Su then sigmaCEQ[i] = 0
Next i

*** Number of cycles up to failure according to the SN
Curve
*** Nf is the number of cycles up to failure according to
Basquin’s rule for SN curve simulation
*** b and C are the coefficients of Basquin’s rule
sigmaCEQ[i]*Nf[i]ˆb = C
For i = 0 to ns
Nf[i] = 10ˆ(Log(C/ sigmaCEQ[i])/b)
Next i
*** Nonlinear damage summation
*** nb is the number of damage bands
*** j is the band index
*** i is the stress cycle index
*** D is the calculated damage 0 < D < 1
*** q is the exponent of the continuous nonlinear dam-

age rule
D = (n/Nf)ˆq
D[0] = 0
For i = 1 to nc
If D[i–1] < 1/nb then j = 1 else
If 1/nb < D[i–1] < 2*(1/nb) then j = 2 else
If 2*(1/nb) < D[i–1] < 3*(1/nb) then j = 3 else
⋮If (nb–1)*(1/nb) < D[i–1] < nb*(1/nb) then j = nb else
Print i; Print “FAILURE”
q[i] = (sigmaCEQ[i]/Su)ˆ–0.75
w[i,j] = (D[j] – D[j–1])/ (D[j]ˆ(1/ q[i]) – D[j–1]ˆ(1/ q[i]))
ΔD[i] = w[i,j]*(1/ Nf[i])
D[i] = D[i–1]+ ΔD[i]
Next i
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