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ABSTRACT 

  While performing fatigue reliability analysis of the 

butt-welded joints it is vital to estimate the Stress Concentration 

Factor (SCF) at these joints. A common approach adopted by 

industry to estimate the SCF at weld toes is to perform Finite 

Element Analysis (FEA) of the welded joints for different pipe 

sizes, flanges, valves etc. The SCF are calculated for each size 

by separately when required and are very time 

consuming. Although FEA is known for its accurate SCF 

calculation, but due to its high computational expense and time-

consumption, SCF evaluation for different parameters makes the 

aforementioned method quite laborious. As an alternative 

response surface models (RSM) may be used for accurate 

estimation of SCF. The two basic steps in constructing a RSM 

are training and testing. The first corresponds to fitting a model 

to the intelligently chosen training points, while the second step 

involves comparing the predictions of the RSM to the actual 

response. This paper examines the applicability of 12 different 

RSMs for estimating SCF. The training and testing data is 

generated using FEA in ANSYS. In order to compare the 

accuracy of the RSMs, three metrics, namely, Root Mean Square 

Error (RMSE), Maximum Absolute Error (AAE), and Explained 

Variance Score (EVS) are used. A case study illustrating the 

applicability of the proposed approach is also presented. 

 
 

1. INTRODUCTION 

Stress Concentration is a localized increase in stress around 

the stress raisers or irregularities in a geometry. The stress value 

around these irregularities is generally higher than the nominal 

stress. Tubular butt weld connections with unequal thickness and 

transition on outer diameter are quite common in offshore and 

subsea piping and its components including valves, fittings, 

connectors etc. Estimating the stress concentration factors at 

these weld joints plays crucial role for both static stress and 

fatigue reliability assessment. Though these SCF values for 

simpler geometries can be calculated using some empirical 

methods, Finite Element Analysis is more reliable and accurate 

to capture minor details or complex geometries. However, FEA 

can be computationally expensive, time consuming and might 

require skilled analysts to get more reliable and accurate results. 

Furthermore, FEA techniques are afflicted with the following 

constraints: 

 

1.    The accuracy and computing time required to solve a FEA 

simulation is dependent upon the finite element size (mesh 

density). This implies that simulations of finite element models 

constructed with fine mesh size deliver accurate results, 

nevertheless the simulations generally take longer computing 

time and vice-versa [1].  

2.    Generally, three types of error are attributed to FEA, namely: 

user error (which emanates due to inexperience of the analyst), 

modeling error (which arises due to erroneous representation of 

the real world phenomenon) and discretization error (originating 

due to inadequate mesh density which is unable to capture the 

solution appropriately) [2]. While the former two errors are in 

the hands of the analyst, the latter is inherent to FEA and must 

be separately quantified by the analyst for an accurate solution. 

Thus, quantification of discretization error increases the 

accuracy of FEA results however it further adds to the time 

required to run a FEA simulation.  

 

In order to overcome the aforementioned shortcomings 

of FEA, if a group of models have similar geometrical features 

and only the dimensional parameters of these features are 

changing, then by doing limited number of assessments using 

FEA or from the data already available from previous analyses, 
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Response Surface Models (RSMs)  may be used to closely 

predict the SCF for any values of dimensional parameters for 

these weld joints. Previously, authors have used RSM to predict 

Stress Intensity Factor (SIF) for assessing fatigue degradation of 

offshore piping [3,4,5]. Thus, the main objective of this 

manuscript is to predict SCF of welded joints using RSMs. 

Different Machine learning (ML) algorithms are compared to 

each other and finally the most accurate model is used to estimate 

the SCF values. 

 

 The remainder of the paper is structured as follows: In 

Section 2, the manuscript discusses the SCF definition and 

various methods used to evaluate it. Thereafter in Section 3, a 

small discussion regarding the RSM is made. Subsequently, in 

Section 4, an illustrative case study is presented. Finally, 

conclusion and recommendations are provided in Section 5. 

 

 

2. STRESS CONCENTRATION FACTOR 

2.1 Definition 

A stress concentration factor (SCF) can be defined as a 

stress magnification at a detail due either to the detail itself or 

to a fabrication tolerance, with the nominal stress as a reference 

value [6]. Numerically it can be written as: 

  

SCF  =
Actual (or) peak stress  at the hotspot

Nominal stress 
 

 

Stress concentrations at the tubular butt weld connections are due 

to eccentricities and transitions resulting from different sources. 

These may be classified as concentricity (difference in tubular 

diameters), differences in thickness of joined tubulars, out of 

roundness and center eccentricity. The resulting eccentricity may 

be conservatively evaluated by a direct summation of the 

contribution from the different sources. [7] 

 

2.2 SCF Evaluation 

SCFs due to misalignment at butt welds in plates were 

presented by Maddox [7] and have been included in fatigue 

design rules for plated structures for many years. A simple butt 

weld between two plates, as shown in Figure 1, is considered as 

an introduction to the derivation of SCFs for butt welds. It is 

assumed that the plates are welded together from plates of the 

same size, with an eccentricity, δ, and without angular 

misalignment [8]. The plates are subjected to a membrane 

loading per unit width N = σnominal *t, where σnominal is nominal 

stress and t = thickness of the plates. 

 

 
Figure 1. Typical buttweld in Unstiffened Plates [6] 

The stress concentration, frequently referred to at an unstiffened 

plate weld joint, is given as: 

 
 

Researchers have used analytical expressions for stress 

concentration factors for these connections are presented based 

on classical shell theory [9]. Several approximate formulas of 

SCF for various types of welded joints were based mainly on 

numerical results obtained using the finite element FE and the 

boundary element BE methods [11, 12, 13]. In the recent years 

researchers have tried to estimate SCF using ML [14, 15, 16] and 

the results seems to be promising. 
 

 

 

 

3. RESPONSE SURFACE MODELS 

3.1 Introduction 

Response Surface Models (RSMs) (also known as 

surrogate models or meta models) are data-driven models that try 

to predict the complex input/output (I/O) behavior of an 

underlying system, by using a limited set of computationally 

expensive simulations (CES) [17]. The two basic steps in 

constructing a RSM are training and testing. The first 

corresponds to fitting a model to the intelligently chosen training 

points, while the second step involves comparing the predictions 

of the MM to the actual response [18]. RSMs act as a ‘curve fit’ 

to the training data (generated by an expensive simulation code, 

FEA in this case) and thereafter may be used to estimate the 

quantity of interest without running the expensive simulation 

code. The RSMs must not be mistaken as a simplified version 

(with low reliability) of the CES; conversely, MMs emulate the 

behavior of the CES as accurately as possible, coupled with low 

computational cost [19]. The main idea of using RSMs as a 

replacement to the FEA is based on the fact that, once built, the 

RSMs will be faster than the FEA, while still being usefully 

accurate [20]. In the aforementioned context, RSMs may be used 

to predict the SCF of welded joints. 

 

3.2 Different RSMs Employed 

The most commonly used RSMs in the engineering 

domain are parametric machine learning models (such as linear 

and polynomial regression), and non-parametric models such as 

support vector regression (SVR),  Gaussian Process Regression 

(GPR), Gradient boosting, Gaussian Process Regression, k-NN, 

Decision tree etc. The mathematical background and theory of 

the various MMs used in this manuscript are discussed briefly in 

the sub-sections of [21].  

In this paper uses 12 different surrogate models, namely 

multi-linear regression (MLR), LASSO regression, Ridge 

regression, Bayesian  ridge, kNN, Decision tree regressor, 

Random Forest, AdaBoost, Gradient boosting, Bagging, 

Gaussian Process Regression (GPR), and support vector 

regression (SVR) is used to estimate the SCF of Butt welded 

joints. The performance of 12 algorithms is compared using three 
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different metrics namely, Root Mean Square Error (RMSE), 

Maximum Absolute Error (MAE), and EVS are used. GPR 

emerged as the best fit, hence it was finally used to estimate 

estimate the SCF. 

 
 

4. CASE STUDY 

4.1 SCF Calculation 

In this manuscript SCF calculation is performed using two 

different methods. First is using FEA and second is RSM. These 

methods are expounded in the following sub-sections. For a 

typical buttweld transition for joining pipe ends of unequal 

thickness (same ID), as Per ASME B31.8 (Appendix I) [7] 

Mandatory end Preparations for joining pipe ends by 

buttwelding, acceptable design for unequal wall thickness is 

given by the limits on certain dimensional parameters are given 

below and shown in Figure 2. Figure 2 also shows the two 

possible hotspots for the given butt-weld joint. 

 

α can vary from 14⁰ to 30⁰ 

x can vary from 0 to 0.5t 

Max. allowed δ =2.38 mm 

 

 
Figure 2. Typical buttweld transition for joining pipe ends of 

unequal thickness (same ID) 

 

4.1.1 Finite Element Modelling 

A finite element model is prepared using the 

commercially available FEA software ANSYS 19.2 [22]. The 

finite element model of the buttweld joint with transition from 

larger pipe OD to smaller pipe OD is modeled as shown in 

Figure. 3. The material and Geometric properties used during the 

analysis is shown in Table 1 in Annex A. The weld cap is also 

modeled with a flank angle of 15⁰ and toe radius of 5mm. The 

extent of the local model has been chosen such that effects due 

to the boundaries (fixed point) on the structural detail considered 

are sufficiently small and reasonable boundary conditions can be 

formulated. 

 

Two different mesh sizes were used in the analysis, with 

the mesh around the weld being more refined than rest of the 

geometry. The reason for a finer mesh at the weld toe is to obtain 

mesh convergence and a more accurate solution. Higher order 

elements with hex-dominant meshing are used for building the 

model. The material behavior is assumed to be linear elastic. 

Meshing details for one of the models is shown in the Figure 3. 

 

 
Figure 3. Finite element model for the butt weld transition 

with refined mesh at weld area. 

 

A uniaxial tensile load is applied on the smaller pipe 

side and fixing the larger side. Boundary conditions for one of 

the models are shown in the Figure 4. 

 

 
 

Figure 4. FEM model showing the boundary conditions  

 

Based on the peak stress values obtained at hotspots A 

and B as shown in the Figure 5, SCF at these hotspots were 

calculated by dividing the peak stress from FEA with analytical 

nominal stress at that cross-section. FEA stress results and SCF 

calculations for one of the models with configuration (d = 200 

mm, t = 30 mm, x= 3 mm, α= 30⁰) or (t/d=0.15, α= 30⁰ and x/t 

=0.1) is shown in the Figure 5. 

 

SCF at Hotspot  =
Actaul stress at hotspot (FEA) 

Nominal stress 
  

 

Similarly, FEA has been done for different models by changing 

the variables α, x and t as shown in the Figure 2. δ is maintained 

as 2.38 mm in all the models. SCF calculated for all these 

different models are recorded in Table 2 and Table 3. 
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Figure 5. Stress analysis results from FEA showing the peak 

stresses at hotspots. 

 
 

4.1.2 Response Surface Model 

Two different data sets corresponding for hotspot A and hotspot 

B generated from FEA are used to train and test the performance 

of different RSMs. The dataset is shown in Table 2 and Table 3 

in Annex A. A correlation matrix for the data set is shown in 

Figure 6 and 7. From Figure 6, it can be seen that angle and t/d 

have positive correlation with SCF while x/t has a negative 

correlation coefficient with SCF. Furthermore, it can be seen 

from Figure 7 that all the input variables have positive 

correlation with SCF, with x/t being the most correlated variable 

to SCF. For both the hotspots, ‘x/t’ is most correlated variable to 

SCF. However, hotspot A is having a negative correlation unlike 

hotspot B.  This is because the stress raiser at the weld toe for 

hotspot A would flatten more with increase in value of ‘x’, thus 

decreasing the SCF. This is the other way around for the hotspot 

B, thus resulting in positive correlation. 

 
Figure 6 Correlation Coefficients Between Different 

Variables for Hotspot A 

 
Figure 7 Correlation Coefficients Between Different 

Variables for Hotspot B 

4.2 Result Discussion 

Since, we had limited number of data, therefore K-fold 

cross validation technique was used to evaluate different ML 

models. In order to compare the accuracy of the regression 

algorithms, three metrics, namely, Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Explained Variance 

Score (EVS) are used. Mathematically, these are written as: 

𝑅𝑀𝑆𝐸 =
√

(∑ (𝑦𝑖−�̂�𝑖)
2

 𝑛
𝑖=1 )

𝑛
   

 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−�̂�𝑖|𝑛

𝑖=1

𝑛
             (1) 

 

 

𝐸𝑉𝑆 = 1 −
𝑉𝑎𝑟(𝑦𝑖−�̂�𝑖)

𝑉𝑎𝑟(𝑦𝑖)
  

The regression model which has lowest value of RMSE and 

MAE and for which EVS are closer to 1 is the most accurate 

model. The value of the three metrics for 12 algorithms for the 

analysis has been shown in Table 4 (for hotspot A) and Table 5 

(for hotspot B). From Table 4 and Table 5, it is seen that Gaussian 

Process (highlighted by red color) is the most accurate algorithm 

as it has lowest errors (i.e. RMSE, MAE) and scores (EVS) 

closest to 1. 

As, GPR is the most accurate algorithm out of all the 

competing ones, so the values of the actual Relative Volume 

(from experiments) and the predicted Relative Volume for three 

validation datasets have been plotted and presented in Figure 10, 

11 and 12.  
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Table 4: Different RSMs Comparison for Hotspot A 

Response Surface Model RMSE MAE EVS 

MLR 0.063 0.043 0.976 

LASSO 0.0147 0.109 0.783 

Ridge 0.106 0.081 0.908 

BayesRidge 0.062 0.042 0.977 

SVM 0.101 0.069 0.944 

kNN 0.217 0.0185 0.865 

Tree 0.151 0.135 0.809 

RandomForest 0.07 0.059 0.984 

Bagging 0.065 0.058 0.984 

AdaBoost 0.172 0.162 0.872 

GaussianProcess  0.047 0.033 0.984 

GradientBoosting 0.106 0.086 0.962 

 

Table 5: Different RSMs Comparison for Hotspot B 

Response Surface Model RMSE MAE EVS 

MLR 0.053 0.044 0.887 

LASSO 0.173 0.161 0.538 

Ridge 0.108 0.098 0.744 

BayesRidge 0.053 0.044 0.886 

SVM 0.103 0.09 0.7 

kNN 0.146 0.132 0.726 

Tree 0.022 0.02 0.985 

RandomForest 0.013 0.011 0.992 

Bagging 0.012 0.009 0.993 

AdaBoost 0.02 0.016 0.981 

GaussianProcess  0.008 0.008 0.994 

GradientBoosting 0.009 0.008 0.993 

 

 
Figure 8 Actual vs. Predicted SCF value for Hotspot A 

 
Figure 9 Actual vs. Predicted SCF value for Hotspot B 

As can be seen from Figure 8 and Figure 9 that there are 

very few outliers and in general the trend between the actual and 

predicted SCF is almost linear, thus indicating good prediction 

accuracy of the GPR. Furthermore, in the future work authors 

wish to adaptively train the Gaussian Process regression to 

further increase the accuracy of the model. 

 

5  CONCLUSION 

The manuscript proposes the use of RSMs as a replacement 

to computationally expensive and time consuming FEA to 

predict the SCF of the welded joints. The viability of twelve 

different RSMs, was tested in the manuscript. Two different 

datasets (each having 54 instances) corresponding to different 

hotspot positions was used to train and test the different RSMs. 

The GPR models was found to be most accurate and was thus 

used to estimate the value of SCF with good accuracy. This 

proposed model can be used for SCF prediction for pipe welds 

with unequal thickness but within the limits specified for 

mandatory end preparations for acceptable design discussed in 

Section 4.  

 In the future work the accuracy of the GPR model can be 

further increased by adaptively training the model. Also, more 

geometric variables like weld toe radius, flank angle, undercuts 

and weld defects can be introduced in the analysis model. 
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ANNEX A 
 

 

Tab1e 1. Material and Geometry Properties of the model  
 

Material Properties Value Geometrical Properties 

(refer Figure 1) 

Value 

Modulus of Elasticity 200 GPa Offset at ID (δ) 2.38 mm 

Poisson Ratio 0.3 Weld transition angle (α) 14⁰ to 30⁰ 

Yield Stress/Tensile Stress 250 GPa/ 460 GPa 

  

Thickness (x) 0 to 0.5 t 

 

 

 

Tab1e 2. SCF at Hotspot A calculated from FEA 

 

SCF - Hotspot A 

α  

(angle) 
t/d 

x/t 

0 0.1 0.2 0.3 0.4 0.5 

14⁰ 

0.2 1.84 1.64 1.46 1.29 1.15 1.02 

0.15 1.76 1.57 1.39 1.22 1.07 1.00 

0.1 1.60 1.42 1.25 1.10 1.01 1.00 

22⁰ 

0.2 2.17 1.95 1.73 1.53 1.35 1.17 

0.15 2.08 1.86 1.63 1.45 1.25 1.05 

0.1 1.86 1.64 1.44 1.26 1.08 1.00 

30⁰ 

0.2 2.74 2.18 1.95 1.73 1.50 1.32 

0.15 2.50 2.06 1.82 1.61 1.38 1.20 

0.1 2.17 1.78 1.57 1.37 1.15 1.00 
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Tab1e 3. SCF at Hotspot B calculated from FEA 

 

SCF - Hotspot B 

α  

(angle) 
t/d 

x/t 

0 0.1 0.2 0.3 0.4 0.5 

14⁰ 

0.2 1.41 1.56 1.69 1.82 1.92 2.01 

0.15 1.40 1.54 1.66 1.79 1.88 1.97 

0.1 1.38 1.50 1.61 1.72 1.79 1.84 

22⁰ 

0.2 1.42 1.56 1.70 1.82 1.91 2.00 

0.15 1.41 1.55 1.68 1.81 1.89 1.90 

0.1 1.41 1.53 1.64 1.75 1.82 1.87 

30⁰ 

0.2 1.47 1.57 1.70 1.83 1.92 2.03 

0.15 1.47 1.56 1.69 1.82 1.90 1.99 

0.1 1.47 1.55 1.66 1.77 1.80 1.84 

 

 

 

 


