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ABSTRACT. In this thesis we present a sophisticated, non-standard treatment of com-
plex analysis using modern tools from measure theory and advanced analysis. This
approach opens the path to deep and powerful results, including the regularity theorem
and the global solution to the inhomogeneous Cauchy-Riemann equation on a disc and
on the complex plane. Moreover, the resulting theory is suitable for generalisation to
the further study of Riemann surfaces, and of complex geometry more generally.
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0. INTRODUCTION

The aim of this thesis is a development of complex analysis in the plane using tech-
niques from measure theory and advanced analysis. Although this approach to complex
analysis is more sophisticated than the standard one and requires substantial additional
background, it has the benefit of allowing us to prove much more powerful and general
results. This greater generality also makes the definitions and results readily extend-
able to the study of Riemann surfaces and higher-dimensional complex analysis and
geometry.

Chapter 1 covers some necessary background about the linear algebra of complex
vector spaces. This is applied in Chapter 2 to the introduction of complex tangent
vectors, covectors and differential forms on smooth manifolds. Further notions about
smooth manifolds are also discussed in Chapter 2, including orientability, measurable
sets and measurable differential forms. The available tools from measure theory allow us
to develop integration on smooth manifolds that are not necessarily second countable,
as discussed in this chapter, culminating with a proof of Stokes’ theorem in this more
general setting. Chapter 3 contains a development of advanced analysis in Euclidean
space, focusing on locally integrable functions and their smooth regularisation using
mollifiers, and on linear differential operators.

In Chapter 4, we use many of the tools and results developed in the previous chapters
to prove numerous impressive and compelling results involving integration on subsets
of C, mind-blowing properties of holomorphic functions, and solutions to the inhomo-
geneous Cauchy-Riemann equation. We start with some basic facts about holomorphic
functions, and use polar coordinates to establish the local integrability of 1/z on C.
Using Stokes’ theorem, we prove the Cauchy integral formula and Cauchy’s theorem for
the general case of C! functions. We then prove the existence of a local solution of the
inhomogeneous Cauchy-Riemann equation for C* functions, and also Montel’s theorem,
among other results. Using the full power of the material developed in Chapter 3, we
prove the outstandingly deep and cool fact that a weak solution to the homogeneous
Cauchy-Riemann equation is equal almost everywhere to a holomorphic function, which
in turn implies the regularity theorem for solutions of the inhomogeneous equation. Fol-
lowing this, we establish the mean value property about holomorphic functions and a
generalised version of Riemann’s extension theorem. We conclude with a treatment of
complex power series and their notorious and renowned consequences: among others,
the global solution to the inhomogeneous Cauchy-Riemann equation on a disc and on
C, the identity theorem, the open mapping theorem and the maximum principle.

It is assumed that the reader has a solid background in real analysis, topology and
basic measure theory, in addition to being familiar with the notion of a smooth manifold.

The general presentation of the material is based on [2]. However, the proofs of
all results in this thesis have been constructed completely independently by the author
without reference to any source, except for a very small number of isolated cases in
which a trick was required that the author could not have been expected to work out
in isolation within a reasonable period of time. Even in these very few cases, only a
small push in the right direction sufficed for the author to complete the proof, since in
searching for the right argument she had already acquired a deep and comprehensive
understanding of the problem, and she would tell her supervisor off quite hard if he tried

to reveal slightly more information than necessary.
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The author is nevertheless very thankful for her supervisor’s guidance and patience.



1. LINEAR ALGEBRA

1.1. Real and Complex Vector Spaces, Realifications and Complexifications.
Let F be R or C, and let ¥V and W be two vector spaces over F. Recall that then the
set of F-linear maps from V to W is denoted by Hom(V, W), and it is itself a vector
space over F. The (algebraic) dual space of V is defined to be V* := Hom(V,F). If V

has finite dimension n € N and eq,...,e, € V is a basis for V, then we can define the
linear functionals Ay, ..., A\, in V* characterised by
(1 ifj=k
Ai(er) =07 = ’ L ked{l,....,n}.
i(ex) k {O itk J { }
These n linear functionals then form a basis for the vector space V*, called the basis
dual to eq, ..., e,. It follows that the dual space of V has the same dimension as V.

For each vector v € V, we can define the map
G V' —=F, f— f(v).
This map is linear, since for f,h € V* and c € F,
go(cf +h) = (cf +h)(v) = cf(v) + h(v) = cgo(f) + gu(h) .
Thus, g, € (V*)*. We then obtain a map
oV =V, veg,.

Proposition 1.1. IfV is a vector space over F of finite dimension n € N, then the map
¢ as defined above is an isomorphism of vector spaces.

Proof. We first show linearity of ¢. Let u,v € V, and ¢ € F. Then, for all f € V*

(¢(cu+v))(f) = Geuro(f)
= f(cu+v)
=cf(u) + f(v)
= cgu(f) + 90(f)
= (cgu + 90)(f)
= (co(u) + o(v))(f)

so ¢(cu + v) = cp(u) + ¢(v). To show injectivity of ¢, assume v € V and ¢(v) = 0.
Then, g, =0, so

v=A(v)ey + - An(v)en,
=go(M)er + -+ gv()\n)
=0.

For surjectivity, let g € (V*)*, and v := g(A)er + - + g(A\n)e, € V. Then, for all
fevs

9(f) = g(fle) A + -+ flen)\n)
= fler)g(Mi) + -~+f(€n)g(kn)
= f(v)
= 9.(f),



%0 9= gy = B(v). O

If V has dimension 1 and v € V' \ {0}, then for all u € V there is a unique ¢ € F such
that u = cv, since v is a basis for V. We then define  := c¢. This defines a map

Yy V=T, u»—>g,
v

which is linear, since it is just the basis for V* dual to v. We may denote the map 1,

by v

Remark 1.2. Suppose now that V is infinite-dimensional with basis {e4}aca, Where
A is an (infinite) indexing set. Then, every vector v € V can be written uniquely as a
finite linear combination

v=1lle; + -+ "y,
where m € N, {j1,...,jm} C A, and v/1,... v/m € F. We may then define v® := 0 for
a ¢ {j1, - ,Jm}. Then, we can again define linear functionals {A\,}aca C V* by
Ao (V) =0
for each o € A and v € V, characterised by
Aalesg) = 05, a,BeA.

However, these linear functionals are not a basis for V*, since they fail to span it: any
finite linear combination

A" Ay T,
(where m € N, {j1,...,jm} C A, and @’',...,a’™ € F) will send every vector e, with
a ¢ {j, - ,jm} to 0; and thus the linear functional

m

m
f:V—=F, Zvjk’ejk r—)Zvj’“,
k=1

k=1
which has f(e,) = 1 for all @ € A, cannot be spanned by {\,}aca. For each vector
v € V, we may again define the linear map g, € (V*)* by
go: V' =F, [ f(v),
obtaining again a linear map
oV =V, veg,.

However, in this case ¢ is not an isomorphism, since, as we now show, it is not surjective.
Let {vs}sep C V* be a basis for V* containing {\, }seca (such a basis exists because the
set {Aa}aca is linearly independent), and define h € (V*)* to be the linear map on V*
characterised by

1 forall f e {vs}tpen \ {Nataca-

If A is in the image of ¢, then there is a vector v € V with g, = ¢(v) = h, and then for
alla € A

M) {o for all f € {Mataca,

v = (V) = gu(Aa) = h(Xa) =0,

so v = 0. However, since h # 0 and ¢ is linear, we cannot have ¢(0) = h. Thus,

h ¢ o(V).
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Proposition 1.3. Let V be a vector space over C, with addition map + :V XV — V
and scalar multiplication map - : C X V — V. Then, the set V together with + and the
restriction of - to R X V is a real vector space Vr. If {€a}taca s a basis for V, where
A is a suitable indezing set, then the set {ea}aca U {i€ataca is a basis for Vg. As a
consequence, Vg has dimension dim Vg = 2dim V.

Proof. Since Vg has the same addition map as V, to show it is a vector space we only
need to check the axioms that involve scalar multiplication, namely that if u,v € Vg
and a,b € R,

(i) a(bv) = (ab)v,

(i) 1lv = v,

(iii) a(u +v) = au + av,

(iv) (a +b)v = av + bv.

All these axioms follow from the fact that ) is a complex vector space and R is a subfield
of C. Thus, Vg is a real vector space. Consider the set {es}aca U {i€s}taca C Vr.
Observe that this is a disjoint union, since if o,/ € A and e, = ie,, then we either
have 1 = —i = 0if a # o/, or 1 —i = 0 if & = o, which are both false. Moreover, if
a,a/ € A and ie, = iey, then we must have o = o, which shows that {ie,}aca has
cardinality |A|. Thus, the union {e,}aca U {i€q }aca has cardinality 2|A| = 2dim V. To
show that {es}aca U {i€s}aca spans Vg, consider an arbitrary vector v € Vg. Since
Vr =V as sets, we have v € V. Thus, v has a representation

— ip. VI
v=v"ej; + +v'"e;,,

for some m € N, {ji,...,jm} C A, and v',... v/m € C. For k € {1,...,m}, let
a’* := Re(v’*) and b* := Im(v’*). Then,
v = (a + ibjl)ejl + o+ (P + z'bjm)ejm
= ajlej1 + bjliejl +-+ aj’"ejm + bj’"z'ejm ,

where a’*,b/s € R for all k € {1,...,m}. It remains to show that the set {e4}aca U
{i€a}aca C Vg is linearly independent. To see this, observe that every finite linear
combination C' of vectors in {es}aca U {i€s taca with real coefficients can be rewritten
as a finite linear combination of vectors in {e, }aea Wwith complex coefficients, by simply
writing each sum ae,, + bie, as (a + ib)e,, for a,b € R and a € A. Thus, if C' = 0, then
by linear independence of {e,}aca all these complex coefficients a + ib are zero, hence
so are all their real and imaginary parts a and b, which were the real coefficients in C'.

This concludes the proof that {e,}aca U {i€s}taca is a basis for Vg, and since this basis
has cardinality 2dim V, we have dim Vg = 2dim V. O

Definition 1.4. For a complex vector space V, the associated real vector space Vg given
by Proposition 1.3 is called the realification of V| or the underlying real vector space of

V.

Proposition 1.5. Let V be a real vector space with addition map + :V XV — V and
scalar multiplication map - : R X V — V.
(i) The abelian group V &V, together with the scalar multiplication map
2 Cx(VaeV)=VaV, (a+ib)(u,v):=(au—bv,av+bu),

fora,b € R and (u,v) € V&V, is a complex vector space Vc.
6



(ii) The map
t:V—=>Ve, v (v,0),

15 injective and linear with respect to vector addition and to multiplication by scalars
in R, that is, for allu,v € V and c € R,

t(cu +v) = c(u) + o(v).

Proof. (i) Since V@V is an abelian group with respect to +, it only remains to check
the vector space axioms that involve multiplication by scalars, that is, that for all
u,v,u,v" €V and z,w € C,

(1) 2(w(u, v)) = (zw)(u,v),

(2) 1(u,v) = (u,v),

(3) 2((u,v) + (W', 0")) = 2(u, v) + (', v),

(4) (= +w)(u,v) = 2(u,0) + w(u,v).

Let z = a + ib and w = ¢ + id, where a,b,c,d € R. For (1), we have

z(w(u,v)) = (a +ib)(cu — dv, cv + du)

(
= (acu — adv — bev — bdu, acv + adu + beu — bdv)
= ((ac — bd)u — (ad + be)v, (ac — bd)v + (ad + be)u)
= (ac — bd +i(ad + be)) (u, v)
= (zw)(u, v).
For (2),
L(u,v) = (lu — Ov, 1v 4+ Ou) = (u,v) .

For (3),

Z((“?”) + (ula Ul)) =

= (au + au' — bv — ', av + av’ + bu + bu')

a+ib)(u+u' v+ ")

(
(
= (au — bv, av + bu) + (au’ — bv', av’ + bu')
(a+ib)(u,v) + (a +ib) (v, V")

= 2(u,v) + z(u',v).

Finally, for (4),

(z4+w)(u,v) = (a+c+i(b+d))(u,v)
= (au + cu — bv — dv,av + cv + bu + du)
= (au — bv,av + bu) + (cu — dv, cv + du)
= (a +ib)(u,v) + (c +id)(u,v)
= z(u,v) + w(u,v).

7



(ii) Let u,v € V. Then, if t(u) = ¢(v), we have (u,0) = (v,0), which implies u = v.
Thus, ¢ is injective. Moreover, if u,v € V and ¢ € R, we have

t(cu+v) = (cu+v,0)
= (cu,0) + (v,0)
= (cu — 00, c0 + 0u) + (v, 0)
= ¢(u,0) + (v,0)
=c(u) + t(v) .

Remark 1.6. Since the map
LV =V, v (v,0)

in Proposition 1.5 (ii) is injective and its image is the set S := {(v,0) |v € V} C Vg, for
each v € V we may denote the element (v,0) € S by v. Then, if u,v € V and ¢ € R,
the notations u+ v € V¢ and cv € V¢ have two possible interpretations: if addition and
scalar multiplication take place in V, then u + v = (u + v,0) and cv = (cv,0); and if
they take place in V¢, then u+v = (u,0)+ (v,0) and cv = ¢(v,0). However, by linearity
of ¢, these two interpretations are actually the same, hence there is no ambiguity in the
notation. Then, for each u,v € V and z,w € C, we may write zu + wv to denote the
element z(u,0) + w(v,0) € Ve. We can then write an arbitrary element (u,v) € V¢ as

(u,v) = (u,0) + (0,v) = (u,0) + i(v,0) = u +iv.

This representation is unique, since if (u,v) = «’ 4 @’ for some v/, v" € V, then (u,v) =
(u',v"), hence u = v’ and v =v'.

Definition 1.7. Let V be a real vector space. Then, the associated complex vector space
Ve given by Proposition 1.5 (i) is called the complexification of V. If w = u +iv € Vg,
for u,v € V, we call Re(w) := v and Im(w) := v the real part and the imaginary part
of w respectively. We also call w := u — iv the conjugate of w.

Proposition 1.8. Let V be a real vector space, and let {€4}aca be a basis for V, where
A is a suitable indexing set. Then, the set {eq}aca, regarded to be a subset of the com-
plezification V¢ (that is, the set {(eq,0)}aca C V), is a basis for V. As a consequence,
dim V(c =dim V.

Proof. We first show that {e,}aca spans V. Let w = u + iv € Vg, for some u,v € V.
Then,

— 01 J — k1 k
u=ue; +---+ure;, and v=0v"ey +---+0v"e,,

for some n,m € N, {j1,...,jn, k1,.. ., km} C A, and w?*,... uf" o™ ... v*» € R; and
then,

. ; ok k
w:ujlejl —|—-+u]"6]n+2(1) 16k1 +"'+/U mekm)
=ulle; + -+ ue; +ivkley, + -+ vFme

J1 In k1 km 5

so w can be written as a linear combination (with complex coefficients) of vectors in
{€a}aca. Moreover, if C' := 27'e;, +- -+ 2/"e;, € V¢ is an arbitrary linear combination
8



of vectors in {eq }aca, for 271, ... 2" € C, and C = 0, we have
0=2z"ej + -+ 27"e;,
= (" +ib")ej, + -+ (T + b ey,
=dl'ej +...+de;, +i(bej, + ...+ be;),
where a’t := Re(z7*) and W/ := Im(z’*), for k € {1,...,n}. Thus, as vectors in V,
aej, +...+a’e;, =0 and Vle; +...+ Ve, =0,

which implies a’* = b* = 0 for all k € {1,...,n}, by linear independence of {e,}aca in
V. Thus, z/* = 0 for all k € {1,...,n}, which proves linear independence of {e,}aca in
Ve. Thus, {e}aca is a basis for V¢, which implies dim V¢ = A = dim V. O

Definition 1.9. Let V and W be complex vector spaces. Then, a map ¢ : V — W
is said to be a conjugate linear isomorphism if it is bijective and for all u,v € V and
z€C,

¢(zu +v) = 2¢(u) + ¢(v) .
Proposition 1.10. Let V be a real vector space. Then, the map
¢ Ve = Ve, w—w

18 a conjugate linear isomorphism.

Proof. Let w,w’ € V¢, and suppose w = u + iv and w' = v’ + ', for u,v,u/,v" € V. If

¢(w) = ¢(w'), then

W=w = u+iv=1u+iv
= u—iv=u —iv
= wu=u and v=1,
so w = w'. Thus, ¢ is injective. Moreover, w € V¢ and
P(w) =u—iv=u+iv=w,
which shows surjectivity of ¢. Furthermore, if 2 = a + ib € C, for a,b € R, then

dlzw +w') = 2w + v’

= (a+ib)(u+iv) +u + i

=au — bv+ o +i(av + bu + V')
=au—bv+u —i(av + bu+ ")
= (a —ib)(u — iv) + v’ — i’
=zw +w
= Zp(w) + ¢(w').
0J

For the remainder of this text, if S is any set, we will denote by 1g the identity

function S — S.
9



Proposition 1.11. Let V and W be two real vector spaces. If a, f € Hom(V, W), then
the map

Ma, B) : Ve = We, u+iw— alu) —pv)+i(B(u) + a(v))
is (complex) linear. Moreover, the map A : [Hom(V,W)|c — Hom(Ve, We) sending an

element a+ 18 € [Hom(V, W)]c to the map N a, ) € Hom(Ve, We) defined above is an
1somorphism of vector spaces.

Proof. We omit the proof that A(a, 8) is linear, since it can be done by direct compu-
tation.

To show that A : [Hom(V,W)|c — Hom(V¢, Wc) is bijective, it suffices to find
an inverse, that is, a map A~ : Hom(Vc, We) — [Hom(V, W)]c such that A1 o X =
Ligromvw))e and AeA™ = Tgomewe)- An element f € Hom(Ve, W) is a complex linear
function mapping each pair u+iv € V¢ to some f(u+iv) = fi(u+iv)+ifo(utiv) € We,
where fi(u+iv) := Re(f(u+iv)) and fo(u+iv) := Im(f(u-+1iv)) are both vectors in W.
We thus obtain from f two functions f; and f; mapping V¢ to W. Since f is complex
linear, for each u + v € V¢ we have

—folu+iv) +ifi(u+iv) =i(fi(u+iv) +ifs(u+iv))
=if(u+iv)
= f(i(u +iv))
= f(—v+iu)
= fi(—v +iu) +ifo(—v +iu),
(1) —folu+ ) = fi(—v+iu) and fi(u+iv) = fo(—v +iu)

for all u 4 iv € V¢ (note that these two equalities are actually equivalent). We define
the functions

LV =W, o fi(v+i0),

~

fo: V=W, v fo(v+10).
Then, for all u,v € V and ¢ € R,

Filcu+v) +ifa(cu+v) = ficu+ v +1i0) + ifa(cu + v + i0)
= f(cu + v +10)
= f(c(u+10) + v +i0)
=cf(u+10)+ f(v+10)
= c(fi(u+140) +ifo(u+10)) + fi(v +140) + if2(v +140)
= cfi(u+10) + fi(v +i0) +i(cfo(u +10) + fo(v +i0))

= cfl(u) + fl(U) + Z(CfQ(u) + f2(v)) )

which shows that f; and f, are (real) linear, that is fi. fo € Hom(V, W). We can now
define the map

A1 Hom(Ve, We) — [Hom(V, W)le,  f+ fitifs.
10



We check that A and A™! are indeed inverses. If a + i3 € [Hom(V, W)]c, then we have

—

A "Lo M) (@ +i8) = AL (M, B) = Ma, B)1 + M@, B)s .
Observe that for all v € V,

—

N, B)1(v) = A, )1 (v + i0) = a(v) — B(0) = a(v),
M, B)a(v) = Ma, B)a(v + i0) = B(v) + a(0) = B(v),

so A(a, B)1 = a and /\m2 = [ as elements in Hom(V, W). This shows that A™1o X =
L itom(v,w)e- Furthermore, if f € Hom(Ve, W), then

AeA™H(f) = )‘(fl + Zf2) = A(fla fz)
For u 4+ 1v € V¢, we have
Mfr, o) (u+iv) = fi(u) = fo(v) +i(fa(u) + fi(v))
= filu+i0) = fo(v+i0) + il folu+i0) + (v +i0))
= fi(u+1i0) 4+ f1(0 4 ) +i(fo(u+140) + f2(0+iv)) (by (1))
= f(u+10) + f(0 +iv)
= f(u+iv),

which shows that indeed A( 11, fQ) = f, hence Ae A™! = Tome e Thus, A is bijective,
and linearity can be shown by direct computation. [

Remark 1.12. (i) Using notation from Proposition 1.11, for each a+if € [Hom(V, W)]|c
we obtain a map A(a, ) € Hom(Ve, We). Defining A(«, ) := Ma, —3), we have
Mo, B)(w) = Ma, B)(w)  for all w € Ve.

(ii) As one can check, for any o € Hom(V, W), the map « is injective if and only if
the map A(a) := A, 0) : Vo — W is injective, and « is surjective if and only if
A(«) is surjective.

(iii) As a complex vector space, C can be regarded to be the complexification of R (not

as a field, since a priori the product of two elements in R¢ is not defined). Then,
we have

(V*)c = [Hom(V,R)|¢c =2 Hom(V¢, Re) = Hom(Ve, C) = Vo)™ .

1.2. Exterior Products.
Throughout Subsection 1.2, we let F := R or C and we fix a vector space V' over F.

Definition 1.13. A function 6 : V x V — F is said to be bilinear if it is linear in each
entry, that is, if for all u,v,w € V and c € F,
O(u+ v, w) = 0(u,w) + 6(v,w),
O(u, v+ w) = 0(u,v) + 0(u, w),
O(cu,v) = cO(u,v) = 0(u,cv).
The set of bilinear functions on ¥V x V, which we denote by V* ® V*, is a subspace

of the vector space (over F) of F-valued functions on V x V. We call V* ® V* the tensor

product of V* with itself, and we also call an element in V* ® V* a 2-tensor on V.
11



Definition 1.14. Let 0 € V* ® V*. The 2-tensor 6 is said to be symmetric if for all
u,v €V, 0(v,u) = 6(u,v). Moreover, 6 is said to be alternating (or skew-symmetric) if
for all u,v € V, O(v,u) = —0(u,v). We call this last equality the alternating property.
An alternating 2-tensor on V is also called a 2-covector on V.

We denote the set of 2-covectors on V by A?2V*. As one can check, A?V* is a subspace
of V* @ V*.
Proposition 1.15. Let o, B € V*. Then, the function
(@AB): VXV —=TF, (u,v)—au)fv)—a)s(u),
s a 2-covector on V.

Proof. Bilinearity follows directly from linearity of @ and 8. Moreover, for each (u,v) €
YV x V, we have

(@A B)(v,u) = a(v)B(u) — a(u)f(v) = —(a A B)(u,v),
so the alternating property is fulfilled. O

Proposition 1.16. For all o, 3,7 € V* and c € F,
(a+B)Ay=ary+BA7y,
(ca) N B =claAp),
aNpf=—-0ANa.
Proof. For each (u,v) € V x V, we have

((a+ B) A (u,v) = (o + B)(u)y(v) — (o + B)(v)y(u)
= (a(u) + B(u)y(v) = (a(v) + B(v))y(u)
= a(u)y(v) + Bu)y(v) — a(v)y(u) = Bv)y(u)
= (@A) (u,v) + (BAY)(u,v)
=(aANy+BAY)(u,0).
The two remaining equalities are proved similarly by direct computation. O

Remark 1.17. It follows from Proposition 1.16 that for «, 3,y € V* and ¢ € F, we also
have

aN(B+y)=aAB+aAy,
aN(cf)=clanp).

Proposition 1.18. (i) IfdimV =1, then A?V* = {0}.

(ii) If dimV = 2 and {e1,ea} C V is a basis for V with dual basis {a*, a?} for V*, then
{a' A a?} is a basis for A2V*, with 0 = 0(e1, es) a* A a? for each § € A*V*. As a
consequence, dim A2V* = 1.

Proof. (i) Suppose that dimV = 1 and {e} C V is a basis for V. Since A?V* is a
vector space, it is nonempty; and for each § € A*V* and (u,v) = (ae,be) € V x V,
for a,b € F, we have

O(u,v) = 0(ae,be) = abl(e,e) =0,

since 6(e, e) = 0 by the alternating property. Thus, 6 = 0.
12



(ii) Suppose now that V has dimension 2 and {e;, es} is a basis for V with dual basis
{a!, a?} for V*. Then,

(' Aa?)(er, er) = al(er)a’(ez) — al(ex)a?(er) =1,

soa' Aa? #£0. If € A*V* and (u,v) € V X V, we have

O(u,v) = B(a’ (u)er + a*(u)eq, ' (v)er + a?(v)e)
= a'(u)a'(v)f(er, e1) + a'(u)a®(v)f(ey, e)
+042(U) Hv)0(ea, e1) + a®(u)a?(v)f ez, e)
al(w)a?(v)0(er, e5) — @ (u)a' (v)f(ey, ea)

= 9(61,62)(04 A a?)(u,v),

so 0 = O(ey, ea)(a’ A a?). Thus, since the singleton {a! A a?} C A*V* is linearly
independent and spans A?V*, it is a basis for A2V*, and hence dim A?V* = 1.
O

Proposition 1.19. Suppose V is a vector space over R. Then,
V'@V )e = VERVE
and
(A*V*)e =2 A2V

Proof. Consider the map
o (V'RV)e = VERVE,

0+ i ((u Vv, @+ i) — O(u, @) — 0(v,0) — pu(u, 8) — p(v, @)
+i(0(u, 0) + 0(v, @) + pu(u, @) — p(v, ?7))> ,

for ,p € V" ® V* and u,v,u,v € V. It is left to the reader to check that for each
0,1 € V*®V*, the function ¢(0 + ip) : Ve X Ve — C is indeed bilinear, and that ¢ is a
linear map of vector spaces. The map

N IVERVE = (VR V),

T ((u, v) = Re(7(u +1i0,v + ZO))> + Z((% v) = Im(7(u+i0,v + ZO») ’

for 7 € VE®@VE and w,v € V, gives the inverse of ¢. It is also left to the reader to check
that the restrictions (b‘(A?v*)C and ¢_1‘A2VE give an isomorphism (A?V*)c 2 A?V;. O

We now assume that dimV < 2. We set A°V* :=F, AlV* := V* and APV* := {0}
(the trivial vector space over IF) for p € Z>3. For p € Z>(, we call APV* the pth esterior
power of V*, and we call an element in APV* a p-covector on V. For ¢ € A°V* = F and
a € APV* for p € Zsg, we define ¢ A o := ca =t a Ac € APV*. For a € APV* and
p € N1V*, for p,q € Z>o with p+ g > 3, we define a A := 0 € APT7V*, Then, for every

D,q € Z>p and o € APV* and € A7V, the wedge product a A 3 is well defined and an
13



element in APT9V*, and if @ € APV*, € AV* and v € A"V* for r € Z>p, we have (as
one can check)

(a+a)ANB=aAB+aNn(,

aN(B+B)=anB+aAp,

(ca) NB=claNB)=aA(cf), forcel,
aNB=(-DPEANa (anticommutativity),

(aANB)ANy=aNA(BAY) (associativity).

Moreover, if F = R (and still assuming dimV < 2), we have (APV*)c = APV{ for all

p € Z>q (the case of p =2 is given by Proposition 1.19, and the remaining cases follow
directly from previously established isomorphisms).

Proposition 1.20. Let V and W be two vector spaces over F. A linear map L : V — W
induces for each p € {0,1,2} a linear map L* : APW* — APV* given by
(i) L*c:=c force AW* =T, if p=0;
(i) (L*a)(v) := a(L(v)) fora € ' W* =W* andv eV, if p=1;
(iii) (L*B)(u,v) := B(L(u), L(v)) for B € A*W* and u,v €V, if p = 2.
Proof. For (i), we have L* = 1y, the identity map on F = A°V* = A°WW* which is linear.

For (ii) and (iii), it is left to the reader to check that L*a € A'V* and L*f € A?V*, and
that the resulting maps L* : AYW* — A'W* and L* : A2W* — A2V* are linear. O

Definition 1.21. We call the map L* : APYW* — APV* in Proposition 1.20 the pullback
map of L, and for o € APW* we call L*a € APV* the pullback of a.

Proposition 1.22. Suppose V and W are two vector spaces over F, and let L : V — W
be a linear map. If p,q € {0,1,2} such that p+q < 2, and if « € APYW* and € NIW*,
then

L*(a A ) = (L) A (L*P)

as (p + q)-covectors on V.

Proof. The case when p = 0 or ¢ = 0 follows from linearity of the pullback map L*.
The only remaining case is when p = ¢ = 1. If @ € A'W* and 8 € A'W?*, then for each
u,v €V,

(L™ (e A B))(u, 0) = (e A B)(L(u), L(v)
(
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2. SMOOTH MANIFOLDS

In this section, we generalise some definitions and results from the theory of smooth
manifolds, and also introduce new ones. It should be remarked that unless otherwise
specified, we will not assume smooth manifolds to be second countable, only Hausdorff,
locally Euclidean (of one unique dimension) topological spaces with a smooth differen-
tiable structure.

It should also be remarked that throughout this text, a neighbourhood of a point p
i S, where S is a topological space containing the point p, is intended to mean an open
subset of S containing p.

2.1. Tangent and Cotangent Vectors.

Definition 2.1. Let Q C R" be open, and let !, ..., 2" be the standard coordinates on
R™. For j € {1,...,n}, we say that a function f : Q — C has a partial derivative with
respect to 27 at a point p € Q if the (real-valued) functions u := Re(f) and v := Im(f)
both have a partial derivative with respect to 27 at p. We then define

of _ Ou _Ov

@(p) = @(p) +Z@(P) eC

(we would write % instead of % if Q C R). Note that if f has a partial derivative with

respect to 27 at all points in ), then we obtain a new complex-valued function % on
Q. If Q C C is open, we may regard € as an open subset of R?, and we obtain a similar
definition of the partial derivatives of a function f : 2 — C with respect to the standard

coordinates z and y on C.

Definition 2.2. Let €2 be an open subset of R" or C, and consider a function f : Q@ — R
or C. Then,

(i) f is said to be C if f is continuous on ;
(ii) for k € N, f is said to be C¥ if f is continuous and has continuous partial derivatives
of all orders up to k on §2;

(iii) f is said to be C* if f is continuous and has continuous partial derivatives of all
orders on €, that is, if f is C* for all k € Ny.

For k € Ny U {oo}, the set of C* real- or complex-valued functions on (2 is denoted by
Ck(Q,R) and C*(€2, C) respectively, or just C*(Q) if there is no possibility of confusion.

Note that for all k, ¢ € Ny U {oo}, if k£ > ¢ (defining co > m for all integers m), then
C*(Q,F) C CYQ, F), where Q is an open subset of R" or C and F is R or C.

We have the following two propositions, which we state without proof.

Proposition 2.3. Let F be R or C, and let k € Ny U {oco}. Then, for an open subset
Q of R™ or C, the set C*(Q,F) is a vector space over F under the usual operations of
function addition and of scalar multiplication of functions by numbers in F.

Proposition 2.4. Let Q be an open subset of R™ or C, and let F be R or C. Then, a
function f € CH(Q,F) is real-differentiable, regarding C to be R? if C is the domain or

target space.
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Let M be a smooth manifold of dimension n € Zx, and let F be R or C. For an
open subset U C M, denote by Cg°(U) the algebra of smooth F-valued functions on U.
For each p € M, we define an equivalence relation ~,, on the set

{feCRU)|U C M is a neighbourhood of p}

given by

f~pg9g <= [ =g onsome neighbourhood of p,
for each two functions f and g in this set. The equivalence class [f] of a C* function f
on a neighbourhood of p is called the germ of f at p. We call the set of germs of C'*°
functions at p the stalk of C*° at p, and denote it by C3°(M), or Cg5,(M) if we wish to
specify the field F. If [f], [g] € C;°(M) for some C* functions f : U — Fandg:V — F
on neighbourhoods U and V' of p, we define

) )+ 09l =], + 9l ]
) [T lol =S|y 9lpay 1
(iii)  ¢[f] :=[cf] for each c € F.

One can then check that these operations are well defined and give C5°(M) the structure
of an algebra over F, which is in particular a vector space over F. A tangent vector over
F at p, or a real (if F = R) or complex (if F = C) tangent vector at p, is defined
to be a linear functional v : C3°(M) — F that fulfils the Leibniz rule, that is, for all
/1, l9] € G2 (M)
v([f1-[g]) = v([fDg(p) + f(p)v(lg]) -

Thus, the set of tangent vectors over F at p, which for now we denote by Ty ,M, is a
subset of the dual space (C5°(M))*. In fact, direct computation shows that if u,v €
TepyM C (C3°(M))* and a,b € F, then au + bv € Ty, M (that is, au + bv also fulfils
the Leibniz rule), which, together with the fact that 0 € Ty, M, means that Ty, M is
actually a subspace of (C;°(M))*. Moreover, we have the following proposition:

Proposition 2.5. Let M be a smooth manifold and let p € M. Then,
(TrpM)c = T, M .

Proof. Consider the map
gb : (TR,pM>(C — TC,PM7

utiv e ([f] 0 u(Re(£)]) = v([m () + iCu(m(]) + o(Re(£)]) )

where u,v € Tg, M and [f] € C&,(M). If f : U — C is smooth on a neighbourhood U of
p, then Re(f) and Im(f) are smooth real-valued functions on U; and if f ~,, g for some
other smooth complex-valued function ¢ on a neighbourhood of p, then Re(f) ~, Re(g)
and Im(f) ~, Im(g) as real-valued functions. This shows that ¢(u + iv) is well defined
as a map from Cg5 (M) to C. One can also check that ¢(u + iv) is linear and fulfils
the Leibniz rule, so that indeed ¢(u + iv) € T, M. Linearity of ¢ can also be checked
explicitly. The map
d)_l : T(C,pM — (TR,pM)(Ca

wis (0] = Re(w([h+i0])) ) + (8] = Im(w([h+0)) ), [h] € CF5,(M),

gives the inverse of ¢. 0
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We now fix a smooth manifold M of dimension n and a point p € M.

Using the correspondence given by Proposition 2.5, we may denote by 1), M the vector
space of real tangent vectors at p, and by (7, M )¢ the vector space of complex tangent
vectors at p. We call T,M the tangent space (to M) at p, and (T,M )¢ the complezified
tangent space (to M) at p. We also call Ty M := (T,M)* the cotangent space (to M) at
p, and ((T,M)c)* = (T; M)c the complexified cotangent space (to M) at p. We may call
elements in 77 M and (T, » M )c real and complex cotangent vectors at p respectively.

Again letting F be R or C, if v € Tp,M and f is a C°° F-valued function on a
neighbourhood of p, we may write v(f) to denote v([f]). We define the differential of f
at p to be the (real or complex) cotangent vector (df), € (1F,M)* given by

(df)p(u) ==u(f), weTlp,M.

If (U,¢) = (U,x,...,2") is a chart about p in M and f is an F-valued function on
a neighbourhood V' of p, for each j € {1,...,n} we define

of| _ofeo)

oxJ » orJ

#(p)

if the partial derivative on the right-hand side exists, where the function fo¢—! is defined
on the open subset ¢(U NV) of R", and 77 is the jth standard coordinate on R". One
can then check that for each j € {1,...,n} the map

0
oxJ »
is well defined, linear and fulfils the Leibniz rule, so that %‘p € Trp M. Note that the

notation 5% ‘p as an element in Tr,,M = (T,M)c may also mean the element 52 , 110,
% , € M. However, for each [f] € CZ5,(M), regarding %‘p to be a real tangent

vector, we have

0

OxJ
so there is no ambiguity in the notation. Since we know from the theory of smooth
manifolds that {%L)}?:l C T,M is a basis for T,M and {(d2?),}7_, C Ty M is a basis
for Ty M, it follows from Proposition 1.8 that these are also bases for the respective
complexifications (T, M )¢ and (Ty M )¢ = ((T,M)c)*. Moreover, the basis {(dz?),}7_, C
((T,M)c)* is dual to the basis {%!p}?zl C (T,M)c. Note that if u + iv is a vector in
(T,M)c, for uw,v € T,M, then for each j € {1,...,n}

(), + i0)(u + iv) = (d) () + ) (0
— () + iv(a?)
= (u + iv) (2’ +i0)
= (d(2? +1i0)),(u + iv),

so we may also denote by (dz?), € ((T,M)c)* the differential at p of z7 as a C*
complex-valued function at p.
Let again (U,¢) = (U,x',...,2") be a chart about p in M, and f be a smooth
F-valued function on a neighbourhood V' of p. Since {%}p i1 C TrpM is a basis for
17
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for

O(m(f))

+1 -
» oxJ

9(Re(/f))

vio) (1) = 25 -

oxJ

)
p
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T, M, for each v € Ty, M we have v = > " ji!p for some unique v',...,v" € F.

j:lv OxI
Thus,
o(f) = (287 p)(f) >y

Then, if g is a C' F-valued function on some neighbourhood W of p, we may define

p

n

L R
v(g) = Z UJ%

j=1

p

As one can check, the number v(g) € F is independent of the choice of chart about p,
and if ¢ is smooth it agrees with our previous definition of v(g). We can then define the
[F-linear map

(dg)y : TrpyM —F, (dg),(u) :=ulg), uweTp,M.

We call (dg), € (Tr,M)* the differential of g at p, thus extending the definition of the
differential of a smooth function on a neighbourhood of p to the case when the function
is only C*.

Definition 2.6. Let M and N be smooth manifolds, and let F': M — N be a C! map.
For each p € M, we define the differential of F' at p to be the F-linear map of vector
spaces

Fop  TrpM = Trpp)N,  (Fepu)([f]) == o(f o F),
for each v € Ty, M and [f] € CR% ) N.

Remark 2.7. (i) In Definition 2.6, if Q@ C N is the domain of f, then the function
foF is C! on the open subset F71(Q) C M, so v(f o F) is defined. Moreover,
one can check that (F,,v)([f]) is independent of the choice of representative for
[f] and hence well defined, and that F, ,v is indeed a tangent vector (over FF) at
F(p) in N. We may write F, instead of F, if there is no possibility of confusion.

(ii) The differential Fj, is either a map T,M — TpyN or (T,M)c — (TrpN)c,
depending on our choice of F. Denoting the former by FEP and the latter by Ffp,
one can check that for all v € T,M

C N _ R -
Fo(v+i0) = F, (v) +10,
or in other words,
Fopoty=trg) ° F,
as maps T,M — (Trp)N)c, where v, : T,M — (T,M)c and tpy) @ TpepyN —

(Trp)N)c are the inclusion maps.

Proposition 2.8. Let F': M — N be a C' map of manifolds, with m := dim M and
n:=dimN, and letp € M. If (U, z*,....2™) and (V,y',...,y") are charts about p in
M and about F(p) in N respectively, then the n x m matriz representing the differential
F, : Ty pyM — Ty ppy N with respect to the bases {2 |, Y7y for Te,M and {%klp(p)}zzl
Jor Ty py N is given by

or! ‘ ... ort
ozl p ozx™ |p
: : )
OF™ ‘ . OF™
Ooxl p ozx™ |p

where for each k € {1,...,n} we let F*:=y*o F: F7}(V) - RCF.
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Proof. By facts from linear algebra, we know that for j € {1,...,m} and k € {1,...,n},
the kth element in the jth column of the matrix A representing F, with respect to the
chosen bases is the coefficient multiplying 8%’“ | P(y) in the representation of F.(5%,) with

respect to the basis {a%elF(p) Yoy for Ty pp) N, that is,
0 0
J ( (8953 p))(y ) oxJ

Remark 2.9. One may use Proposition 2.8 to show that, in notation from Definition
2.6, if g is a C'' F-valued function on a neighbourhood of F(p) in N, then we also have

(Fipv)(g) = v(ge F).
Definition 2.10. Let M be a smooth manifold. We define the tangent bundle of M by
T™ := ] T,M,

peEM

R

kOF——.
(y" o F) = 5

p

p

OJ

and the complexified tangent bundle of M by
(TM)c == | J(T,M)c.

peEM

We also define the projection maps
Hprp : TM — M, py(u) :=p ifue T,M for pe M;
ey - (TM)e = M, g (v) :=p ifve (T,M)c forpe M.
We now recall the definition of a C*° vector bundle of rank r € Z,.

Definition 2.11. Let r € Z>o. A C* wvector bundle of rank r is a triple (F, M, II)
consisting of C"*° manifolds £ and M and a smooth surjective map Il : £ — M such
that

(i) for each p € M, the preimage II"'({p}) C E, called the fiber at p and denoted
merely by ITI7!(p), is a real vector space of dimension r;

(ii) for every point p € M there exist a neighbourhood U C M of p and a diffeomor-
phism ¢ : [T71(U) — U x R", where U x R" has the product manifold structure
and 7 : U x R — U is the projection map onto U, such that IT = 7o on II-1(U)
and for every g € U the restriction

Pliorg (@) = {g} xR

is a vector space isomorphism. The open set U is then called a trivialising open
set for E, and the map ¢ is called a trivialisation of E over U.

It is assumed that the reader is familiar with the usual construction of a topology and
C* manifold structure on the tangent bundle 7'M of a smooth n-manifold M, and with
the proof that (T'M, M, Ilzy,) is then a smooth vector bundle of rank n. We proceed
analogously for the case of (T'M)c. For each chart (U, ¢) = (U, z',...,2") on M, a
vector v € H(_:,}M)C(U) is in (T,M)c for exactly one p € U, with p = Il (v). Since
(T,M)c is an n-dimensional complex vector space with basis {2 ‘p}?:p by Proposition
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1.3 it is also a real vector space of dimension 2n with basis { 8IJ| P udi 8x7| i

Thus, we have
= J e
v E (a (v) 5 |, p)

=1
for some unique o’ (v),(v) € R, j € {1,...,n}. In fact, for each j € {1,...,n} we
have a’(v) = Re(v(z?)) = Re((dz?),(v)) and V(v) = Im(v(2?)) = Im((da?),(v)). We
may then consider the map

¢ : My, (U) = ¢(U) x R C R,

v (2 o i) (V), -, (2" o Lirane) (v), a' (v), b (v), ..., a"(v),b" (V).
Since ¢ is a bijection, we may use it to transfer the topology of ¢(U) x R*" to H(’TIM)C(U),

. 0
+ M(U)Z%

that is, we can define the open sets in H(TM) (U) to be the preimages under ¢ of the
open sets in ¢(U) x R?". We then define the collection

B:={AC (TM)c|A is open in H(_TIM)C(U) for some chart (U, ¢) on M} .

It can be shown that B fulfils the necessary conditions to be the basis for a topology
on (T'M)c, and that (T'M)c¢ with this topology is Hausdorff. Moreover, it follows from
the construction of this topology that for each chart (U, ¢) on M the subspace topology
on the open subset H(_TIM)C(U ) C (T'M)c is the same as the one we transferred using

the bijection ¢ : H(}lM)C(U) — ¢(U) x R*™ (the proof relies on the fact that if (V) is

another chart on M, then the map
pot (I, (TM) (UNV)) = oIl (TM Unv))

is a homeomorphism). Thus, ¢ is a homeomorphism from an open subset of (T'M)c to
an open subset of R3", so (H(TlM) (U), @) is a chart on (T'M)c. One can also check that if
{(Uas ¢a)}aca is an atlas in the differentiable structure of M, for a suitable indexing set
A, then {(H(’TlM)C(Ua), ®a) taca is an atlas in (T'M )¢ and hence makes the complexified
tangent bundle of M a C'*° manifold of dimension 3n. Moreover, IIizap. : (TM)c — M
becomes a C* surjective map of manifolds, and the triple ((TM ), M, (rap.) becomes

a C* vector bundle of rank 2n: for each chart (U, ¢) = (U, z',...,2™) on M, the open
subset H(_TIM)C(U ) C (T'M)c is a trivialising open set for (T'M )(c, With trivialisation

((¢~" x Lpzn) o 925) H(_TM) (U) = U xR>™,

v = (Hran. (v), Re(v(z)), Im(v(zh)), ..., Re(v(z™)), Im(v(z™))) .
Definition 2.12. Let M be a smooth manifold. We define the cotangent bundle of M
by

T°M:= | T;M
peEM
and the complezified cotangent bundle of M by
(T"M)c = U (T, M)c
peEM

We also define the projection maps
Mpeps : T°M — M, pep(u) :i=p if u € Ty M for p € M;

Mipeanye - (T"M)e — M, Tpeane(v) :=p ifve (T, M)c for pe M.
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For a smooth n-manifold M, we construct a topology and a differentiable structure
on T*M and (T*M )¢ in an analogous way to the cases of TM and (T'M )¢ respectively.
Then, T*M and (T* M )¢ become smooth manifolds of dimensions 2n and 3n respectively,
and the triples (T*M, M, p+yr) and ((T*M)c, M, 17« pr).) become smooth vector bun-
dles of ranks n and 2n respectively. For each chart (U, ¢) on M, we obtain charts
(M7 (U), ¢) on T*M and (T, (U), éc) on (T*M)c defined by

$ 11 (U) = 6(U) x R”,
HT*M(U,)>)

0 ) ( 0
U ~
s pg () Oz
0
) (G, )
T+ e () x H(r* aye (v)

u — ((¢ o HT*M)(“): U(%
d)C T*M (U) = o(U) x R*",
) (G, )
I arye (v) X I e (v)
for v e 11}

for u € 111, (U), and
(6 Tir-an)(0), Re (v o
o I (ps s elv
(T ozt

0

R —
(<) (U). The subsets I}, (U) C T*M and H(_Tl*M)C(U) C (T*M)¢ are also

trivialising open sets with respective trivialisations

(67" x Lgn) 0 @) : gy (U) = U x R

and A
(07" x Dgan) 0 dc)  Migpy (U) = U x R*".

Recall that if (F, M,II) is a smooth vector bundle of rank r € Z>o and U C M is
open, a section of E (or of (E, M,11)) over U is a map s : U — E such that Il s is the
inclusion map ¢ : U — M, that is, such that for all p € U, s(p) € [I"(p). f U = M, we
may only say that s is a section of E. Since for each p € M the fiber II7(p) is a real
vector space, if s and t are two sections of F over U and ¢ € R, we may define the sections
s+t and cs of E over U by (s +t)(p) := s(p) + t(p) and (cs)(p) := cs(p) respectively
for each p € U. This gives the set of sections of E' over U the structure of a real vector
space. If s is a section of E over U and f : U — R is a function, we may also define the
section fs of E over U by (fs)(p) :== f(p)s(p) for each p € U. For k € Z>o U {0}, a
section s : U — F is said to be C¥ if it is C* as a map of manifolds. The set ['*(U, E)
of C* sections of E over U is a subspace of the vector space of sections of E over U. If
s € THU,E) and f : U — R is a C* function, one can show that fs € I*(U, F), and
as a result ['*(U, E) is also a module over the ring CE(U) of C* real-valued functions
on U. A frame for E over U is a collection {sy,...,s,} of sections of E over U such
that for each p € U the collection {si(p),...,s.(p)} C II7!(p) is a basis for the (real)
vector space IT71(p). If {s1,...,s,} is a frame for E over U, then each section s for E
over U can be written as Z;Zl [?s; for some unique real-valued functions fi, ..., f, on
U. A frame for E over U is said to be C* if all the sections in the frame are C*. If U is
a trivialising open set for E with trivialisation ¢ : II"}(U) — U x R" and {ey,...,e.}
denotes the standard basis for R", then for each p € U we may use the vector space
isomorphism Pli-ry * I Y(p) — {p} x R" to map the basis {(p,e1),...,(p,e,)} for

{p} X R" to a basis for the fiber IT"!(p). Then, for each j € {1,...,r} we can define
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ti(p) == ¢ ' ((p,e;)), and we obtain a frame {¢y, ...t} for E over U. As one can check,
the frame {¢,...,t,} is C*, and we call it the C* frame over U of the trivialisation .
We recall the following two propositions:

Proposition 2.13. Let (E, M,II) be a smooth vector bundle of rank r € Zsq, and let
U C M be open. If {s1,...,8:} is a C* frame for E over U and k € Z>y U {0}, then
a section s of E over U is C* if and only if s = 22:1 fis; for some C* real-valued
functions f1,...,f" on U.

Proposition 2.14. Let (E, M,II) be a smooth vector bundle of rank r € Z>q, let Q@ C M
be open, and let s : Q — E be a section of E over Q. For k € Z>oU{oc}, the following
statements are equivalent:

(i) s is C* on Q;

(ii) for each trivialising open set U C M with trivialisation ¢ : 1171 (U) — U x R”
such that QN U # (), the section 8| ot of E over QN U can be written as 8lony =
Y [ tjl oy for some C* real-valued functions f',...,f" on QN U, where
{t1,...,t.} is the C* frame over U of the trivialisation ¢;

(iii) for each p € Q there exists a trivialising open set U C M with trivialisation
o : I 1 (U) = U x R" such that p € U and the section 8|y Of £ over QN U can

be written as S| ony = Z;Zl 17 'tj’QmU for some C* real-valued functions f1,..., f"
on QN U, where {ty,...,t.} is the C* frame over U of the trivialisation .

For a smooth vector bundle (E, M,II) of rank r € Zsy and an arbitrary subset
A C M, we may also define a section of E over A to be a map s : A — E such that
for all p € A, s(p) € II7!(p). The set of sections of E over A is also a real vector
space and a module over the ring of real-valued functions on A. Even though A is not a
manifold in general, it is a topological space with the subspace topology inherited from
M, so we may define a section s of E over A to be continuous if it is continuous as a
map s : A — E. The set T°(A, E) of continuous sections of E over A is a subspace
of the vector space of sections of F over A, and a module over the ring of continuous
real-valued functions on A. The notions of frame for E over A and continuity of such a
frame are defined exactly as for the case when A C M is open. Moreover, we have the
following proposition:

Proposition 2.15. Let (E, M,1I) be a smooth vector bundle of rankr € Zx, let A C M,
and let s : A — E be a section of E over A. Then, the following statements are
equivalent:

(i) s is continuous on A;

(ii) for each trivialising open set U C M with trivialisation ¢ : T71(U) — U x R”
such that ANU # (), the section 5] st of E over ANU can be written as S ant =
Z;Zl 17 tj|AmU for some continuous real-valued functions f*,..., f" on ANU,
where {tq,...,t.} is the C™ frame over U of the trivialisation ¢,

(iii) for each p € A there exists a trivialising open set U C M with trivialisation
@ II"YU) = U x R" such that p € U and the section S|y OF E over ANU can
be written as S|y = Z;=1 fi -tj|AmU for some continuous real-valued functions
[l fmon ANU, where {t1,...,t,} is the C™ frame over U of the trivialisation

@Y.
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Definition 2.16. Let M be a C'*° manifold, and let A C M.

(i) A (real) vector field on A, or a vector field over R on A, is defined to be a section
u:A—TM of TM over A. A complex vector field on A, or a vector field over C
on A, is a section v : A — (T'M)¢ of (T"M)¢ over A.

(ii) A (real) differential form of degree 1 on A, or a (real) 1-form on A, or a 1-form
over R on A, is a section w : A — T*M of T*M over A. A complex differential
form of degree 1 on A, or a complex 1-form on A, or a 1-form over C on A, is a
section 7 : A — (T*M)¢ of (T*M)c over A.

A real or complex vector field v on A, and a real or complex 1-form w on A, are defined
to be continuous if they are continuous as sections of the corresponding smooth vector
bundles. If A C M is open and k € Z>o U {oo}, then v and w are defined to be C* if
they are C* as sections of the corresponding smooth vector bundles.

Definition 2.17. Let M be a smooth manifold and f a C'* F-valued function on an open
set U C M. Then, the differential of f is defined to be the real (if F = R) or complex
(if F = C) 1-form df on U mapping each p € U to the differential (df), € (Tp,M)* of f
at p.

2.2. Differential Forms on Smooth Curves and Surfaces.
Throughout Subsection 2.2, we fix a smooth manifold M of dimension n € {1,2}, and
we let F denote R or C.

For each point p € M, since dim7,M = n < 2, we may consider the exterior
powers A"T* M and A™(T,M)g = (AT M)c for r € Zso. We identify A°TM = R and
AU T,M)¢ = C with {p} x R and {p} x C respectively, to distinguish them from AT M
and A°(T, M)z for some different point ¢ € M. If n = 1, then by Proposition 1.18(i) the
vector spaces A*TyM and A*(T,M)¢ are trivial, and we write A*T*M = {p} x {0} (as
a real vector space) and A*(T,M)% = {p} x {0} (as a complex vector space). If n = 2
and (U,z',2%) is a chart about p in M, then by Proposition 1.18(ii) the spaces A>Ty M
and A*(T,M)¢ are 1-dimensional with respective bases {(dz"), A (dz?),} C A>T M (for
(dzh)p, (dz?), € Ty M) and {(dz"),A(dx?),} € A*(T,M)¢ (for (dz')y, (da?), € (T M)c).

Remark 2.18. For a point p € M and r € Z>g, we write A"(T,M)§ to denote the rth
exterior power of (1, M)c, instead of writing A"(T; M)c, since we have only defined the
notation A"V when V = W* for some vector space W over F.

We defined in Subsection 2.1 the cotangent bundle 7% M and the complexified cotan-
gent bundle (T*M)¢ of M, which we may also write as

1% e 1% . * _ *
AT M= | JANT;M = | TyM =TM
pEM peEM

and

A(T*M)c == | ANT,M)e = | (Ty M) = (T*M)e

pEM peEM

respectively. As we have seen, A'T*M and A'(T*M)c are smooth manifolds, and also

smooth vector bundles together with their respective projection maps ILip-ppn @ T*M —
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M and Hpepry. @ (T"M)c — M. We now define the sets

AT M = | ATy M = | ({p} xR) = M xR,

peEM peEM

A(T* M) == | A(T,M)e = | ({p} xC) =M x C,
pEM peEM
NT*M = | ATy M
peEM
N (T*M)e == | ] A(T,M).

pEM

The respective maps ITyor«ar, ITao(r+an)e, a2+ ar and 27 ar). projecting each of these
sets onto M are defined analogously to the cases of T*M and (T*M)c. For r € {0, 1,2},
we call A"T*M the rth exterior power of T*M, and A™(T*M )¢ the rth exterior power
of (T*M)c. We give the sets A°T*M = M x R and AY(T*M)c = M x C the product
topologies and product manifold structures of M x R and M x R? respectively, and
the triples (A°T*M, M, I yop+p) and (A°(T*M)c, M, o+ ar).) become smooth vector
bundles of ranks 1 and 2 respectively, with global trivialisations given by the identity

maps on IT o, (M) = M xR and HX(}(T*M)C(M) = M x R? respectively. If n = 1, then

as sets A*T*M = J,c,,({p} x {0}) = M x {0} and A*(T*M)c = U,ep ({0} x {0}) =
M x {0}, so we may transfer to both A?T*M and A*(T*M )¢ the topology and differ-
entiable structure from M, and we may also regard the triplets (A2T*M, M, o7« p)
and (A?(T*M)c, M, Hpz(r+an).) as smooth vector bundles of rank 0 with global trivial-
isations. If n = 2, then the procedure to give A?T*M and A?*(T*M)c topologies and
smooth manifold structures is analogous to the cases of TM, (T'M )¢, T*M and (T*M)c,
using the fact that for each chart (U, ¢) = (U, z',2?) on M we obtain bijections

HAQT*M(“)))

Q;(C : H/_\21(T*M)C(U) — ¢(U) X Rza

¢ 3k, (U) = o(U) x R,

0

wrs (@ Teran),u s :

" Ox?

I 2 5 (w)

and

0
(s ((¢°HA2(T*M)C)(U)>RG ( (ﬁ
T g2 gy (©)
AZ(T* M)

o (5 )
Ox?
Then, A*T*M and A?*(T*M)¢ become smooth manifolds of dimensions n+1 = 3 and n+
2 = 4 respectively, and the triples (A*T*M, M, Hpzp-ys) and (A*(T*M) ¢, M, I p2 (7 1))
become smooth vector bundles of ranks 1 and 2 respectively.

In conclusion, for each r € {0, 1,2} we obtain smooth manifolds A"T*M and A" (T*M )¢
of dimensions n + (Z) and n + 2(’;) respectively (where we let (;) :=0), and the triples
(A"T*M, M, I nrpeps) and (A" (T*M)c, M, I xr (7 a1y ) are smooth vector bundles of ranks
(:f) and 2(:) respectively.

0

Y

)

HA2(T*M)C(”
0
» 902
A2(T* M) (v)

II II

A2(T* M) (v)
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Definition 2.19. For A € M and r € {0, 1,2}, we define a (real) differential form
of degree r on A, or a (real) r-form on A, or an r-form over R on A, to be a section
w:A— ANT*M of the smooth vector bundle (A"T*M, M, IIyrpsps) over A. We also
define a (complex) differential form of degree r on A, or a (complex) r-form on A, or an
r-form over C on A, to be a section 7 : A — A"(T*M)¢ of the smooth vector bundle
(A"(T*M)c, M, IIar =1y, ) over A. If o is a real or complex r-form on A and p € A, we
denote the value of o at p by 0,. The r-form o is said to be continuous (on A) if it is
continuous as a section, and if A C M is open and k € Z>o U {oo}, then o is said to
be C* (on A) if it is C* as a section. We denote by E(A,F) the space of continuous
r-forms over F on A, and if A C M is open, we denote by E¥(A,F) the space of C¥
r-forms over [F on A.

Remark 2.20. Note that Definition 2.19 generalises Definition 2.16(ii).

Remark 2.21. Since A°T*M =R = {p} x R and A(T,M)z = C = {p} x C for each
p € M, if A C M then we may identify real or complex 0-forms on A with real- or
complex-valued functions on A respectively, via

w foifw,=(p, f(p)) forall p e A,

for each real or complex O-form w and each real- or complex-valued function f on A,
respectively. Moreover, it follows from Proposition 2.15 that a real or complex 0-form w
on A is continuous as a section if and only if its corresponding function f is continuous
on A, and if A C M is open and k € Z>o U {oo}, it follows from Proposition 2.14 that
w is C* as a section if and only if f is a C* function on A.

Remark 2.22. As we saw in Subsection 2.1, if (F, M, II) is a smooth vector bundle and
A C M, then the real vector space of sections of E over A is also a module over the ring
of real-valued functions on A, the space I'’(A, E) is a module over C3(A), and if A C M
is open and k € Zso U {oo}, then T*(A, F) is a module over C§(A). If r € {0,1,2} and
w is a complex r-form on A C M, then for each complex-valued function f : A — C we
may also define the complex r-form fw on A by (fw), := f(p)w, for each p € A, since
the fiber A"(T,M){ is a complex vector space. Then, E2(A, C) becomes also a module
over C2(A), and if A C M is open and k € Zsq U {oo}, then E¥(A, C) is a module over
CE(A).

Definition 2.23. Let A C M and r € {0,1,2}. If w is a complex differential form of
degree r on A, we define the real part of w, denoted Re(w), to be the real r-form on A
given by

(Re(w)), := Re(wy) € A’”(T;‘M) , pEA,
where at each point p € A we regard w, € A"(1,M)¢ to be its corresponding element in
(A"(TyM))c = A"(T,M)g, so that Re(w,) € A"(T; M) is defined. Similarly, we define
the imaginary part of w, denoted Im(w), to be the real r-form on A given by

(Im(w)), := Im(w,) € A (T, M), peA.
Definition 2.24. Let A C M, and suppose w and 7 are differential forms over F on A,

of degrees r and s respectively, for r,s € {0,1,2} and r + s < 2. We then define the
wedge product w A T of w with 7 to be the (r + s)-form over F on A given by

(WAT)y =wp ATy

for each p € A.
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Remark 2.25. Using notation from Definition 2.24, it follows from the properties of
the wedge product of an r-covector with an s-covector on a real or complex vector space
that if @ is another r-form on A and 7 another s-form on A, then
(WHO)ANT=WATH+OAT,
WA(T+T)=wATH+WAT,

(fu)yAT=flwAT)=wA(fr), forany function f: A —F,
WAg=gANw=guw, for any O-form g: A — T,
wAT=(-1)"TANw (anticommutativity),

and if t € {0,1,2} with r + s+t <2 and o is a t-form on A, then
(WAT)ANoT=wA (T Ao) (associativity).

Proposition 2.26. Let A C M and r,s € {0,1,2} withr +s < 2. Ifw € EY(A,F) and
T € ENA,F), thenwAT € E, (A, F). Moreover, if A C M is open and k € ZsoU{oc},
then for each w € EF(A,F) and T € EF(A,F) we have w AT € EF_ (A, F).

Proof. The case when r» = 0 or s = 0 follows from Remarks 2.21 and 2.22. The only
remaining case is when r = s = 1. If n = 1 then w A 7 is the zero 2-form over F on
A, and for n = 2 the result can be proved using Propositions 2.15 and 2.14, by direct
computation of w A 7 on the intersection of A with each coordinate open set in M. The
details are left to the reader. Il

Definition 2.27. Suppose F : M — N is a C* map of smooth manifolds of dimensions
dim M,dim N € {1,2}. If r € {0,1,2} and w is an r-form over F on a subset A C N,
we define the pullback of w (under F) to be the r-form F*w over F on F~1(A) ¢ M
defined by
(F'w)p = (Fp) wrg), p€F(A),

that is, for each point p € F~'(A) we use the differential F, : Tp,M — Ty p)N,
which is a linear map of vector spaces, to pull back the r-covector wp(,) on Tf pg) N to
an r-covector (Fl ) wpp) =: (F*w), on Tr,M.

Remark 2.28. Using notation from Definition 2.27, if S C A then for each p € F~1(S)

we have
(F*<wfs>)p - F*’p>*(w‘S)F(p)

(
= (Flp) wr(p)
(F*w)p

- <(F*w>|F—1(s>) )

p
so F* <w|S> = (F*w)’F_l(S) as r-forms on F~1(S).

Remark 2.29. Note that in Definition 2.27, if » = 0 then w is an F-valued function f
on A, and for each p € F~!(A) we have

(E"f)p = (Fep) " (F(F(p) = F(F(p)),

so the O-form F*f on F~'(A) is the composition function fo F : F71(A) — F. This

shows in particular that if f is a continuous 0-form on A, then its pullback F*f = fo F
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is a continuous O-form on F~!'(A) C M; and if A C N is open, k,{ € Z>o U {cc},
¢>1, Fis C* and f is a C* O-form on A, then F*f = fo F is a C™%¢ 0-form on
F~1(A) c M.

Proposition 2.30. Let F': M — N be a C' map of smooth manifolds of dimensions

dim M,dim N € {1,2}, let Q C N be open, and let f : Q2 — F be a C' function. Then,
on F~1(Q),

Fr(df) = d(F"f).
Proof. Let p € F71(Q) and v € Ty, M. Then,

(E™(df))p(v) = ((F.p)"(df) rp)) (v)

F*m“)

so (F*(df)), = d(F*f),. 0

Proposition 2.31. Let F': M — N be a C' map of smooth manifolds of dimensions
dim M,dim N € {1,2}, and let AC N. Ifr,s € {0,1,2} withr +s <2, and w and T
are differential forms over F on A of respective degrees r and s, then

F*(wAT)=(F'w) A (F*T)
as (r + s)-forms on F~1(A).
)

Proof. For each p € F~1(A),
(
(
= ((Fip)'wrp)) A ((Fip) Trp))  (by Proposition 1.22)
(
(

OJ

Proposition 2.32. Let M and N be smooth manifolds of dimensions m and n respec-
tively, with m,n € {1,2}. Suppose F : M — N is a C' map, let A C N, and let w be
an r-form over F on A, for r € {0,1,2}. Then,

(i) iof w is continuous, the r-form F*w on F~1(A) is also continuous;
(ii) if A C N is open, k.l € ZsoU {x}, £ > 1, F is C* and w is CF, then F*w is
Cmin{k,éfl} on Ffl(A)

Proof. The case when r = 0 is given by Remark 2.29. Suppose r € {1,2}. We prove
only (i), since the proof of (ii) is analogous. If r =2 and n = 1 or m = 1, then F*w is
the zero 2-form over F on F~!(A), which is continuous. We therefore consider only the

remaining cases. Let p € F~!(A), and choose charts (U, z!,...,2™) about p in M and
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(V,y',...,y") about F(p) in N such that F(U) C V. Since w is continuous on A, by
Proposition 2.15 we have
Y0 g = /! 'dy1|Amv to st fdyy, ir=1

e :g'dylyAmv/\dyZ‘Anv ifr=2and n=2,
for some continuous F-valued functions f*,..., f* and g on ANV. If r = 1, then

(F*) sy = T ()

= F*(f* dyl‘mv toet dyn|AmV)
= (F P (E (') ) oot E ) (F (4 )

= (e F) - (F (g )], gy o e F) - (P ()],
= (f'oF)- (dF! +o (e F) - (dFT)

F-1(ANV)
) |F*1(AOV) |F 1(ANV)’

where we set F7 :=y/o F: F71(V) — R C F for each j € {1,...,n}. Then, for each
g€ F{(A)NU Cc F1(AnYV),

(F'w)y = ((Fw),., W))
— (fY o F)(q) - (AFY)y+ -+ ("= F)(q) - (dF"),

m

= (o P@- (X Gor| @) o 0o P - (3 G| @en)
- (0P G| Yt (0 P G Yoot

soon F71(A)NU,

n

Frw = (Z(fjoF)-z—if>dxl+---+ (Z(fjoF) or )d:z:

: , ox™
Jj=1 J=1

Since for all j € {1,...,n} and k € {1,...,m} the functions f/oF : F~*(ANV) — F and
98 - U — F are continuous, they are also continuous when restricted to F~'(A)NU C

“1(ANV). Tt then follows from Proposition 2.15 that the 1-form F*w on F~!(A) is
continuous. For r = n =m = 2, we use a similar argument:

(F"w)

A
= F*(g-dy'|,, A, )

(F2g) (F* (1)) A (F*(4071,,,))

= (g0 F) - (F(dy") |y gy N (F7 (%)

~ (g F)- (dF")

F-1(ANV)

A(dF

’F 1(ANV) ) ’F 1Anv)’
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so for each g € F1(A)NU C F71(ANV),

(Frw)y = ((F*w)’Fl(A“V)>q
= (g F)(@) - (dF1), A (dF?),

OF! OF! OF? OF?
~ o)) (G| @+ G| @) a (G| @+ 55 @)
q q q q
B OF'| OF?|  OF'| OF” X )
=0 P)0- (57| G|, ~ ] By ) (e (@05

Thus, on F~1(A)NU

OF'OF?* OF!'OF?
w=19 )<8a:1 dz?  Ox? 8:61> A
where the functions go F : F7}(ANV) — F and (g—ﬁg—g - 88_1;’21%_1;’12) : U — F are
continuous on their respective domains and hence so is the product of their restrictions
to F~Y(A) N U. Again, it follows from Proposition 2.15 that F*w is continuous on
F1(A). OJ

Proposition 2.33. Let Q C M be open, and let k € Zs; U{cc}. If f € EF(Q,TF) is a
C* F-valued function on €, then df € EF71(Q, ), where we set co — 1 := oo.

Proof. We prove only the case when n = 2 and F = C, since the other cases are
analogous. Let (U, z',2?) be a chart in M. If QNU # @ and p € QN U, we have

0 0
= (@ (5] ) )+ (@] ) )@
p p
of of
= o1 (dz'), + 902 (dz?),,
p p
ORe(f olm(f)| . ORe(f Olm(f)| .
- (3x(1 )‘ (dz'), + (3x(1 )‘ i(drt), + 8mg )’ (dz?), + (‘ng ) i(dz?),,
p p p P
soon QNU,
_ORe(f) , ;, 9Im(f) ., ORe(f) o 9dlm(f) , ,
df = 9l dr” + 9l 1dx” + 92 dz* + 92 idx” .
Since f is C* on QNU, its partial derivatives are C*~! on QNU. The result then follows
from Proposition 2.14. O

Remark 2.34. Using Proposition 2.33, if 2 C M is open we may define an F-linear
map of vector spaces

d: EQTF) = E(Q,TF)
sending each C' F-valued function f on €2 to the continuous 1-form df on €.

Proposition 2.35. Suppose that M has dimension n = 2, and let Q@ C M be open.
There exists a unique linear map d : EL(Q,F) — EY(Q,F) fulfilling
(i) for all f € E(Q,F), d*(f) := d(df) = 0;
(ii) for each f € E(Q,TF) and w € E(Q,F), d(fw) = (df) Aw + fdw;
(iii) if U C Q is open and w € £} (Q,F), then as 2-forms on U, d(w‘U) = (dw)’U.
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The proof of Proposition 2.35 is analogous to the one for the case when F = R,
which it is assumed the reader is familiar with, so we omit it. The resulting linear map
d:EL(Q,F) — E)Q,F) is given by

o

@)= (55| 55| )on e,

for w € EL(Q,F), p € Q and any chart (U, 2!, 2?) about p in M, where f* and f? are the
unique (C') F-valued functions on 2 N U such that W = fldxt + f? dx?, that is,

0 0 )
q

fl(q) ‘= Wy (@ ) and f2(q) ‘= Wy (@
for each g € QN U.
Definition 2.36. Suppose 2 C M is open. For r € {0,1} and a differential form
w € ENQ,TF), we define the exterior derivative of w, denoted by dw, to be

(i) the differential dw € EY(, F) of w as an F-valued function on €, if r = 0;

(ii) the image dw of w under the map d : E(Q,F) — EY(Q,F) given in Proposition

2.35,if r=1and n = 2;
(iii) the zero 2-form on € (the only 2-form in £J(Q,F) = {0}) if r =n = 1.

p

q

Proposition 2.37. Suppose M and N are smooth manifolds of respective dimensions
m,n € {1,2}, and let F : M — N be a C* map. If Q C N is open and w € E}(Q,TF),
then

F*(dw) = d(F*w) .
Proof. Note that since F is C? and w is C', by Proposition 2.32 the 1-form F*w on
F71(Q) is C, so the 2-form d(F*w) is defined. If m = 1, then F*(dw) and d(F*w) are
both the zero 2-form on F~1(£2), so we consider the remaining cases. Assume m = 2,
and let p € F~1(2). We may choose charts (U, 2!, 2?) about p in M and (V,y), if n = 1,
or (V,y',y?), if n =2, about F(p) in N such that F(U) CV C Q. If n =1, then dw is
the zero 2-form on ©Q, so F*(dw) =0 on F~!(Q). On the other hand, on V' we have

wl, = fdy
for some C* function f:V — F, so for all g € U C F~1(V)
(F'w)q = (Fig) wr(g)
= (Fiq)"(f (F(0)(dy)r(g)

= f(F(q)(F*(dy))q
= [(F(g))(dF),,
where F' := yo F. This gives
(F)), = (f o F) o da’ + (f o F) o da®

e, = (o (=035 (o noe)
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and direct computation gives
0 oF 0 oF
Oxt ((f °F) 8x2>  Ox? <(f ° F) 8x1>

d(F'w) =0 = F*(dw) .

=0,

p

p

so on F~1(Q)

If n =2, then

W, = g' dy' + g% dy?
for some C' F-valued functions ¢' and ¢? on V. Computing as before the pullback
(F*w)q = (Fiq)*(wr(q)) at each ¢ € U, we obtain

(F'w)|,, = h'de' + h*da?,

where h' and h? are the C' F-valued functions on U

OF! OF?
W= (g e F)gg + (0" F) 5t
OF! OF?
W= (g e F) s+ (g8 0 F) 5 s
Thus,
' on*|  ont
([dFw))y = (@ ox? )W) (dz®), .
We also have
dg* gt
(dw)r@p) = (8_1/1 o — 8_y2 )(dyl)F(p) A (dyQ)F(p) ’
p
SO
dg* _9g' ) . ,
AT dF'), A (dF
(ayl ro OV po) (dF)p A (dF7)y
oy~ 0 )<8F1 OF| _OF'| 0F ) 1 :
R - dz'), A (dx”), ,
(ayl Fp) ay al‘l pa.TQ ) axQ paxl ) ( )P ( )p

and if you are very bored and do not have anything better to do with your life right
now, you can check that this last expression is indeed equal to the one we obtained for

(d(F*w)), above, so that
F*(dw) = d(F*w)
on F~1(Q). O

2.3. Integral of a 1-form Along a Curve.

Definition 2.38. (i) Let X be a topological space. A (parametrised) path or (parametrised)
curve in X is a continuous map 7 : [a,b] — X, for some a,b € R, a < b. If y(a) =p
and y(b) = q, for p,q € X, we say that 7 is a path from p to ¢, and we call p and
q the initial point and the terminal point of v respectively. If p = ¢, we call v a

loop or closed curve based at p.
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(ii) If M is a smooth manifold and k € Z>o U {oc}, a path v : [a,b] — M is said to
be C* if there exist an open set U C R with [a,b] C U and a C*¥ map 7 : U — M
such that ’y|[a g =7 If there exists a partition a =ty < --- < t,,, = b of [a, b] for

some m € N such that 7|[t ] is a C* path for all j € {1,...,m}, then we say
j—1tj
that v is a piecewise C* path.

Definition 2.39. Let I C R be an interval and M a C° manifold of dimension n.
Suppose v : I — M is a map admitting a C! extension, that is, there exist an open set
UCRwith I ¢ U and a C! mapi:U—)MsuchthatﬂI:v. For each ty € I, we

define the tangent vector to v (over F) at ty by

. d
V(tﬂ) ’Y* ,to (dt ) € TF,’Y(tO)Ma

where ¢ denotes the standard coordinate on U C R and we regard %} "

to be a tangent
vector in T3, U or in (T},U)c depending on our choice of F.
Remark 2.40. (i) Referring to Definition 2.39, note that on the interior of I the

differentials 7, and -, are the same. Moreover, if ¢ty € I and (V,z!,... 2") is a
chart about 7(t) in M, we have

Y(to) = Z d(:z;to i)

J=1

0
to du o

I

(to)

where we have restricted 4 to ¥~ *(V'). We also restrict y to y~*(V), and if the point
to is an endpoint of I, we define the one-sided derivative (for s € v~ (V) \ {to})

d@ oy)| o @ e)(s) = (@7 2 7) (k)
dt s—to s — 1o

whose existence is guaranteed, since

(27 2 9)(s) = @ o N(to) _ o (270 A)(s) = (@ o )(ty) _ d(a? o)

, Jefl..n},

to

lim
s—to S — tO s—to S — to dt

to
Then, for any ¢y € I and chart (V,z!,... 2™) about (), we have
zn: d(z?-7)| 0 0
dt

: oxI 8xj
j=1 to

n

Zd xjto’y

Ato) =1

9

7(to)

which in particular shows that the definition of #(¢y) is independent of the choice
of C! extension 7 even when ¢, is an endpoint of 1.
(ii) By Remark 2.7 (ii), for any ¢y, € I we have

Y(to)e = V(to)r + 10,
where (to)r denotes the tangent vector to v over F at .

Definition 2.41. Let M be a C* manifold of dimension n € {1,2}, and suppose « is
a continuous 1-form over F on M. Let v : [a,b] — M be a piecewise C* path in M, and
let a =s9 < -+ < 8, =0b be a partition of [a, b], for m € N, such that ~; := ’y| is

[Sk—1,5k]

a C! path for all k € {1,...,m}. We define the (line) integral of o along ~y by

/Q—Z/ () (Ve (t)) dt



where for each k € {1,...,m} and t € [sg_1, S|, Vk(f) is the tangent vector to -y, over
F at t.

Remark 2.42. Referring to Definition 2.41, let £ € {1,...,m} and ty € [sx_1, sk
Denote by 7, the restriction 7|[ t and let (V,z',...,2") be a chart about . (to) =
Sk—1,5k

7(to) in M. By Remark 2.40 (i), we have

’7]@(5) _ Z d(l'] © 716)

, dt
7j=1

0
,0xI

for all s € v (V).

Yk (8)

Since the 1-form « is continuous, on V' we have

a|V:f1dasl+---+f”d:E”

for some continuous F-valued functions f1,..., f™ on V. Thus, for each s € v, L(v),
" d(zioy)| 0
‘
() (G (s (Zf (s e (5) )(; i) I

_ij Vi(s xjo%)

S

Then, since for each j € {1,...,n} the functions f’ o~ : v, (V) — F and “’J—z“”“) :
7. (V) = R C F are continuous, the function s + a.s)(7x(s)) € F is continuous on
7 1(V), which is an open subset of [s;_i,s;] containing t. Since ty € [sg_1,s1] Was
arbitrary, s — a., (s)(7k(s)) is a continuous F-valued function on [s_1, 5], which shows

that the integral fw a indeed exists.

2.4. Measurability in a Smooth Manifold.

Definition 2.43. Let M be a smooth manifold with n := dim M.

(i) A subset S C M is said to be measurable if for every chart (U, ¢) in M the set
»(UNS) C R is Lebesgue measurable.
(ii) A measurable set S C M is said to have (or to be of) measure 0 if for every chart
(U, ) in M the set ¢(U N S) has Lebesgue measure 0 on R™.
(iii) If S C M is measurable, then a property P that may or may not hold for points or
subsets of S is said to hold almost everywhere (in S) if it holds on S\ A for some
subset A C S of measure 0.

We state the following theorem from measure theory, without proof.

Theorem 2.44. Let Q and ) be open subsets of R™ and F': Q@ — Q' a diffeomorphism.
If X isR, R or C, and if f : ¥ — X is a measurable function, then the composition
foF :Q — X is also a measurable function. If X = R or R and f is measurable and
nonnegative, then

2) fdA=/Q(f°F)|JFI dx.

Q/
where Jr : 0 — R C X 1is the function mapping each point p € Q to the Jacobian
determinant of F at p. Moreover, if X = R or C and f is integrable on €V, then the

function (f o F)|Jr| on Q is integrable and Equation (2) also holds. As a consequence,
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if EC Q) is (Lebesque) measurable then so is F(E) C ', and if E has measure 0 then
so does F(E).

Proposition 2.45. Let M be a smooth manifold of dimension n.

(i) For a subset S C M, the following statements are equivalent:
(a) S is measurable,
(b) for all p € S there exists a chart (U, ¢) about p in M such that (U N S) is
(Lebesgue) measurable in R™.
(ii) For a measurable subset S C M, the following statements are equivalent:
(a) S has measure 0,
(b) for all p € S there exists a chart (U, ¢) about p in M such that ¢(U NS) has
(Lebesque) measure 0 in R™.

(iii) Suppose S C M is measurable and X and Y are topological spaces. If F': S — X
is a measurable map and G : X — Y a continuous map, then the composition
GoF :8 —Y is measurable.

(iv) If N is another smooth manifold and H : M — N is a diffeomorphism, then the
image of a measurable subset of M under H is measurable in N .

Proof. (i) Statement (b) follows directly from (a) and Definition 2.43 (i). We prove
(b)=-(a). Let S C M, and suppose that for each p € S there exists a chart (U,, ¢,)
about p in M such that ¢,(U, N S) C R"™ is measurable. Consider an arbitrary
chart (V,4) in M. For each p € S,

¢p(VﬂSﬂUp) = gbp(UpﬂVﬁSﬂUp) = ¢p(Upmv) ﬂ¢p(SﬂUp)-

Since ¢,(U,NV) is open in R™, it is measurable, so ¢,(V NSNU,) is an intersection
of two measurable subsets and hence measurable. We also have

VﬂSzVﬂSﬂ(UUp) =JWvnsny,),

peS peS
SO

YV NS) —w(U(VﬂSﬂUp))

peS
= Jv(vnsnu,)
peS
=@V ns)ny@,nv)).
peS

Thus, the collection C := {(VNS)NY(U,NV)},es is an open cover for ¢(V N.S);
and since (V' N.S) C R™ is second countable, C has a countable subcover {1(V N
S)NY(U, N V)}pea, for some countable subset A C S. Then,

Y(VNS) =@V nS)ngU,nV))

peEA

=Je(vnsny,)
peEA

= J@e6,)(8,(VNSNU,)).
peEA
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Since for each p € A the set ¢,(V NS NU,) is measurable and the map 1 o qﬁljl :
op(Up,NV) = (U, NV) is a diffeomorphism of open subsets of R™, by Theorem
2.44 the set (Yo g, ') (dp(V NS NU,)) is measurable. Thus, (V' N S) is a countable
union of measurable sets and hence measurable.

(ii) Again, the proof of (a)=-(b) is direct, so we give a proof for (b)=(a). If S C M
is measurable and for each p € S there exists a chart (Up, ¢,,) about p in M such
that ¢,(U, NS) has measure 0, then for an arbitrary chart (V,) in M we may
apply the same argument as in the proof of (i) to conclude that

(VNS =Jv(vnsnu,),
peEA
for some countable subset A C S. For each p € A, we have ¢,(V N SNU, C
dp(S N Uy), so X¢p(V NS NU,)) = 0. Then, since 1o ¢, @ ¢p(U, N V) —
Y(U, NV) is a diffeomorphism of open subsets of R™, by Theorem 2.44 we also
have A(¥(VNSNU,)) = A((¢ ° qb;l)(gbp(V nsn Up))) = (. Then,

AW(V N S)) = )\< Je(vnsn Up)>

peEA

<3 MUV NSNT,)

peEA

=0.

(iii) If U C Y is an open subset, then by continuity of G the preimage G~*(U) C X is
open, so by measurability of F', (G o F)~"Y(U) = F~Y(G7}(U)) is measurable.

(iv) Suppose S C M is measurable, and let ¢ € H(S). Let p := H'(q), and choose
a chart (U, ¢) about p in M. Then, ¢(U N S) is measurable. Since H~ : N —
M is a diffeomorphism, so is the restriction H™' : H(U) — U, and then the
composition ¢ o H™' : H(U) — ¢(U) C R" is also a diffeomorphism. Thus, the
pair (H(U),¢o H™') is a chart in N, and it contains H(p) = q. Moreover,

(¢ H)HU)NH(S)) = (6 H)H{UNS)) =¢(UNS),
which is measurable. In conclusion, (H(U), ¢ H™1) is a chart about ¢ in N such
that (po H ') (H(U) N H(S)) C R is measurable. Since ¢ was an arbitrary point
in H(S), H(S) is measurable in N by (i).
OJ

Proposition 2.46. Let M be a smooth manifold, and let A be the collection of measur-
able subsets of M. Then,
(i) A is a o-algebra;
(ii) A contains all the Borel subsets of M;
(iii) if S € A and S has measure 0, then any subset R C S is also in A and has measure
0;
(iv) of {S;}jes is a countable collection of sets in A of measure 0, then their union
UjcsS; € A also has measure 0.

Proof. (i) Let (U, ¢) be any chart in M. We have ¢(U N M) = ¢(U), which shows
that M € A. If S € A, then ¢(U N S) is measurable and

P(UNS) =o(U)\ o(U 255) = o(U) N (o(UNS))*,



so ¢(U N S°) is also measurable, and thus S¢ is measurable. Moreover, if {S;};ec; C
A is a countable collection of measurable subsets of M, then

(on(us)) (o)
jeJ jeJ
= Jewns;),
jed
which is measurable. Thus, the union |J ey 95 C M is also measurable. In conclu-
sion, A satisfies the axioms of a g-algebra.

(ii) Suppose 2 C M is open. Then, if (U, ¢) is any chart in M, the set U N () is open
in U, so ¢(U N ) is open in R™ and hence measurable. Thus, A contains all the
open subsets of M, and since A is a o-algebra, it must then contain the o-algebra
generated by the collection of open subsets of M. Thus, A contains all the Borel
subsets of M.

(iii) Suppose S C M is measurable and has measure 0, and let R C S. If (U, ¢) is a
chart in M, then UN R CUNS, so ¢p(UNR) C ¢p(UNS). Then, since p(U N S)
is measurable and has measure 0, (U N R) is also measurable and of measure 0
by completeness of the Lebesgue measure on R™. Thus, R is measurable and has
measure 0.

iv) Suppose {5;},cs is a countable collection of measurable subsets of M of measure
2757
0. If (U, ¢) is a chart in M, then

o(vn(Us))=Uswns,

jeJ jeJ
has Lebesgue measure 0 in R™ as a countable union of sets of Lebesgue measure 0.
Thus, ;. ;S; has measure 0.

jeg i

OJ

From now on, we regard a smooth manifold M to also be a measurable space whose
o-algebra consists of all the measurable subsets of M.

Proposition 2.47. Let M be a smooth manifold, S C M a measurable subset, and X a
topological space. A map F : S — X is measurable if and only if for every chart (U, ¢)
m M, the restriction F|Ums :UNS — X is measurable.

Proof. For each open subset 2 C X and chart (U, ¢) in M, we have
-1
<F|UOS> (Q) :UHSQF_l(Q) :UﬂF—l(Q>

If F is measurable, then the set U N F'~1(£2) is measurable, which shows that F' s is a
measurable map. If F’ luns is measurable for every chart (U, ¢) in M, then for every chart
(U,¢) in M the set U N F~1(Q) is measurable, which implies that ¢(U N F~1(Q)) C R"
is measurable. Thus, F~1(£2) is a measurable set, which shows that F' is a measurable
map. ]

Remark 2.48. As one can check, the statements in Proposition 2.47 are also equivalent
to the condition that for every point p € S there exists a chart (Up, ¢,) about p in M
such that the restriction F’ lons U,N S — X is measurable.

P
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Definition 2.49. Let M be a smooth manifold of dimension n € {1,2}, and let S C M
be a measurable set.

(i) For r € {1,2}, a differential r-form w over IF on S is said to be measurable if for
every chart (U, ¢) = (U,z',...,2") in M, on U NS we have

w:ijdxj ifr=1,
j=1
w=gdx' Ndx® ifn=r=2,

for some F-valued measurable functions f*,..., f*, gon UNS. If n = 1, we define
the zero 2-form on S to be measurable.

(ii) A O-form w over F on S is said to be measurable if for every chart (U, ¢) in M the
restriction Wl ns is measurable as an F-valued function on U N S.

Remark 2.50. By Proposition 2.47 and Remark 2.48, if M is a smooth manifold of
dimension n € {1,2}, then a 0-form w on a measurable subset S C M is measurable
if and only if w is measurable as an F-valued function on S, and if and only for every
point p € S there exists a chart (U, ¢,) about p in M such that the restriction w’UPmS

is measurable as an F-valued function.

Proposition 2.51. Let M be a smooth manifold of dimension n € {1,2} and S C M a
measurable set.

(i) Forr € {1,2} and r <n, a differential r-form w over F on S is measurable if and
only if for every point p € S there exists a chart (U, ¢,) = (U, x;, ..., 22) about p

by
in M such that on U,N S

w:gda:;/\dxz ifn=r=2,

for some F-valued measurable functions f',..., f* g on U,NS.

(ii) Suppose N is another smooth manifold with dim N = dim M and F : N — M is a
diffeomorphism. Then, for r € {0,1,2}, an r-form w over F on S is measurable if
and only if its pullback F*w is measurable on F~1(S) C N.

(iii) If r € {0,1,2} and w and T are two measurable r-forms over F on S, then the
r-form w4+ 7 on S is also measurable.

(iv) Let r,s € {0,1,2} and r +s < 2. Ifw and T are respectively an r-form and an
s-form over F on S, and if w and T are both measurable, then the (r + s)-form
wAT on S is also measurable.

The proof of Proposition 2.51 is left to the reader.

2.5. Lebesgue Integration on Curves and Surfaces.
Throughout Subsection 2.5, we let M denote an arbitrary smooth manifold of dimension
n € {1,2}.
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Suppose (U, ¢) and (V,%) are two charts in M. Then, for each p € U NV the
transition matrix between the bases {7%,}"_; and {%\p %y for T,M is given by

8_y1| R/
ozl P oxn P
. 7
oy" ‘ U /il
ox! p ozx™ p

which is also the Jacobian matrix of the smooth map (Yo ¢™1) : ¢(UNV) = H(UNV)
at ¢(p). Denoting by Jyep-1 : ¢(U NV) — R the function mapping each r € p(U NV)
to the Jacobian determinant of ¢ o ¢~! at r, we have Jyoy-1 # 0 on ¢(U N'V). Since
Jypop—1 is continuous, if »(U N'V) is connected we must have Tpog—1 > 0 0T Tpog—1 < 0.
Moreover, on »(UNV) we have Jyop-1 = (1/Tpop-1)opetp™t, which implies that if Fyjep-1
is everywhere positive or everywhere negative on ¢(U NV'), then Jyoy-1 is respectively
everywhere positive or everywhere negative on (U N'V).

Definition 2.52. (i) Two charts (U, ¢) and (V,%) in M are said to have compatible

orientations if Jyep-1 > 0 on ¢(UNV), or equivalently, if Jyop-1 > 0 on p(UNV).

(ii) An atlas & in M is said to be oriented if every two charts in 4 have compatible
orientations.

We may define an equivalence relation on the set of oriented atlases in M, where two
oriented atlases U; and Uy in M are equivalent, denoted Ll; ~ s, if the atlas U; ULy is
also oriented.

Definition 2.53. If there exists an oriented atlas in M, then M is said to be orientable.
If no oriented atlas exists, M is said to be mon-orientable. An equivalence class of
oriented atlases in M is called an orientation (in M ). If M is orientable, then M
together with a choice of orientation is said to be an oriented manifold. If M is oriented,
a chart in an atlas in the orientation of M said to be positively oriented.

Definition 2.54. If N and M are oriented smooth manifolds of dimension n € {1,2}
and F : N — M is a diffeomorphism, we say that F is orientation-preserving if for
every positively oriented chart (U, ¢) in M, the induced chart (F~1(U),¢o F) in N is
positively oriented.

Remark 2.55. Note that if M has a global chart (M, ¢) in its differentiable structure,
then {(M, ¢)} is an oriented atlas in M, and hence M is orientable.

Definition 2.56. For n € {1,2}, we call the orientation on R™ given by the oriented
atlas {(R™, 1gn)} the standard orientation on R™.

Unless otherwise mentioned, for n € {1,2} we will assume that R" is equipped with
the standard orientation.

Remark 2.57. Using notation from Definition 2.54, suppose F' : N — M is orientation-
preserving, and let (V) be a positively oriented chart in N. Then, for each positively
oriented chart (U, @) in M, the chart (F~1(U), ¢ F) in N is also positively oriented, so
the transition map

o (peF) s (¢°F)(F_1§g)m/)—H/J(F_l(U)ﬂV)



has positive Jacobian determinant everywhere. We may rewrite this map as
o Flog ™ i g(UNF(V)) = (o FT)UNE(V)).

This is precisely the transition map between the charts (U, ¢) and (F(V),% o F~1) in
M, so these two charts have compatible orientations. Since this holds for any positively
oriented chart (U, ¢) in M, the chart (F(V),1 o F~1) in M is positively oriented. This
shows that a diffeomorphism F' : N — M is orientation-preserving if and only if its
inverse =1 : M — N is orientation-preserving.

Lemma 2.58. Suppose N and M are smooth manifolds of dimension n € {1,2} and
F : N — M is a diffeomorphism. If M is orientable and 3 := {(Uy, do)}aca is an
oriented atlas in M, then the induced atlas G := {(F~"(Us), o © F)}aca in N is also
oriented. As a consequence, N is also orientable.

Proof. Let (U, ¢), (V,1) € 4. Then, the transition map between the charts (F~1(U), ¢
F) and (F~'(V),¢o F) in N is given by

Yo Fo(¢poF)™ i (¢o F)(FHU)NFH(V)) = (o F)(FH(U)NFTY(V)),

which is precisely the transition map ¥ o¢~!: ¢(UNV) — (UNV) between the charts
(U, ¢) and (V, 1), and hence its Jacobian determinant is positive everywhere. Thus, U
is oriented. OJ

Remark 2.59. Referring to Lemma 2.58, suppose we have made a choice of orientation
O in M. If Y and U are two oriented atlases in &, then their union U ' is also
oriented. Letting U and U’ denote the oriented atlases in N induced respectively from
il and from ', the union YUY’ is the atlas induced from YU and hence it is oriented
by Lemma 2.58. Thus, the atlases 0 and U’ belong to the same orientation &” in N. It
follows that all the oriented atlases in N induced from oriented atlases in & belong to
0'. We then call 0" the induced orientation in N from the diffeomorphism £ : N — M.

Remark 2.60. Suppose M is oriented and Q@ C M is open. Let {{,}aca be the

collection of all oriented atlases U, = {(Us, )} gep, in the orientation of M. Then, as

one can check, for each o € A the induced atlas {4 := {(Us N Q, Psl,, mQ)}ﬁeBa in Q is
5

oriented, and for all oy, g € A, the oriented atlases 2121 and 1122 are equivalent. As a
result, € is also orientable, and all the oriented atlases in € in the collection {2},
belong to a unique orientation in €2, which we call the induced orientation (from M ).
Unless otherwise specified, we will give open sets of oriented smooth manifolds the
induced orientation.

Proposition 2.61. If M s orientable and connected, then M has exactly two orienta-
tions.

Proof. Since M is orientable, M has an oriented atlas

U= {(Uan Qba)}aeA = {(Uaa in, s 7x3)}a€A .
For each a € A, we let ¢ = —¢o = —x if n =1, and ¢o = (—z},22) if n = 2. Then,
the atlas

—81 = {(Ua, $a) Yaea

is also oriented and 4 ¢ —4l, so U and —4 represent two different orientations in M. It

remains to show that for any oriented atlas 20 in M, we have either U ~ U or U ~ —il.
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Suppose U is an oriented atlas in M. For each p € M, choose charts (V,,v¢,) € U
and (Us,,, ¢a,) € U about p. Since ¢,,(Ua, N'V,) is open and contains ¢, (p), we may
choose an open ball B, C ¢,,(Ua, N'V},) (which is connected) containing ¢, (p). Then,
Dy := ¢, (B,) C Ua, NV, is an open subset of both U,, and V,, and p € D,. Letting
@Zp = wp’D , the pair (Dp,@zp) is then another chart about p in M, and the transition
map !
Yy o ;pl : a, (Ua, N Dy) = ba,(Dp) = By = ¢p(Ua, N Dp) = (D)

has a connected domain and hence it must fulfil either jd;po sl > 0 or jz;po o1 < 0. If
(Ugs, ¢) is an arbitrary chart in 4, then we may write the transition map

J’p © (b,gl L ps(Us N Dy) — &p(Uﬁ N Dy)

as the composition Fj o I, where F} is the restriction of the transition map ¢q, © gb? to

¢5(Us N D) C ¢p(Up NUy,), and F; is the restriction of the transition map ¢, o ¢, to
Pa,(Us N Dy) C ¢q,(Dy). Since Fy has positive Jacobian determinant, we have

j’[’pod)(:; >0 = \7F2 >0 = jF2°F1 >0 = j&po(bgl > 0’
Z;,FOQ <0 = JIn<0 = JTnkp <0 = j¢p0¢;1 <0 < j¢p0é51 >0.

Thus, precisely one of the following holds:
(a) .7%0%1 > 0 for every chart (Us, ¢p) € U;
(b) jd;poqggl > 0 for every chart (Us, 5) € —4L.

The collection B := {(D,, 1) }pear is then an atlas in M that is oriented and equivalent
to 9, and for each p € M the chart (D,,v,) fulfils either (a) or (b). We define the
function

0 if (Dp,1,) fulfils (a),

fiM =01}, fp) = {1 if (D, 4p) fulfils (b).

We claim that f is a locally constant. Indeed, assume p € M and f(p) = 0. If there
exists ¢ € D, such that f(q) = 1, then (D,,,) fulfils (a) and (D,,,) fulfils (b). In
particular, the transition map G := 1, ° gf);j has positive Jacobian determinant, and

Gy = ¢, ° zzq_ ! has negative Jacobian determinant. We may restrict the map G, to
Ga,(Dp N Dy) C ¢a,(Dp) = ¢a,(Ua, N Dyp), and Gy to 1g(D, N Dy) C g(Us, N Dy).
Then, the composition
1l py0y) ° P2l (0,0, YalDp N Do) = 4p(Dp 01 Dy)

has negative Jacobian determinant. This is a contradiction, since the above map is
precisely the transition map 1, © wq_l, which has positive Jacobian determinant. Thus,
we must have f(q) =0 for all ¢ € D,. A similar argument shows that if f(p) = 1, then
f(q) =1for all ¢ € D,. Thus, f is locally constant on M, and since M is connected, f
must then be constant. If f =0 on M, then U ~ L, and if f =1 on M, then U ~ —4l.
Since U ~ U, we have Y ~ L or Y ~ —4l. 0

If S € M and w is a nowhere-vanishing n-form over F on .S, then for each p € S the

n-covector w, is a basis for the 1-dimensional vector space A"(Ty,M)*. As such, if 7 is
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any n-form over F on .S, we may define the function

T T
—:S—F, p— -2,
w wp

and then on S we have

T
T=—W.
w

For each chart (U,¢) = (U,z',...,2") in M, we will denote by w, the nowhere-
vanishing n-form over F on U given by

wg = dz! ifn=1,
Wy 1= dxt Ndx? ifn=2.

Then, if (V%) is another chart in M, on U NV we have

with

We
Wy = w_¢w¢
W,
L — Tyt UNV =R,
Wy

It follows that the charts (U, ¢) and (V,%) have compatible orientations if and only if
the function wy/w,, is everywhere positive on U N V.

Proposition 2.62. (i) If there exists a continuous nowhere-vanishing n-form over R

(i)

on M, then M s orientable.

If M is second countable and oriented, then there exists a C* nowhere-vanishing
n-form w over R on M such that for every positively oriented chart (U, ¢) in M,
we have w/wgs >0 on U.

Proof. (i) Suppose w is a continuous nowhere-vanishing n-form over R on M. For

(i)

each p € M, choose a chart (U, ¢,) = (Up,x;},, ..., xy) about p in M such that
U, is connected. Since w/wg, : U, — R is continuous and nowhere-vanishing, we
must have either w/wy, > 0 everywhere on U, or w/wy, < 0 everywhere on U,. If
w/wg, < 0, redefine (U,, ¢,) by replacing le) by —:v]l). Then, w/wg, > 0 on U,, and
since w is nowhere-vanishing, we may also define the function wy, /w = 1/(w/ws,),
which is also everywhere positive on U,. We show that the resulting atlas & :=

{(Up, ¢p) }pen is oriented. If (U, ¢,), (Uy, @) € U, then on U, N U,

Yon _

Yop W

Y
Woq W We,

which is a product of positive functions and hence positive on U, N U,. Thus, the
charts (U,, ¢,) and (Uy, ¢,) have compatible orientations.
Let {(Ua, ®a) }aca be the collection of all positively oriented charts in M. Since M
is second countable, there exists a C'° partition of unity {p,}aca subordinate to
the open cover {U,}aca for M. The C'* nowhere-vanishing real n-form w on M
defined by

W= Y. pa(P)wo.(p), PEM,

a € A with
P € Supppa

fulfils w/wy, > 0 on U, for all @« € A. We leave the details for the reader to check.

0J
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Definition 2.63. A C*° nowhere-vanishing real n-form on M is called a volume form
(on M ).

Definition 2.64. Suppose M is oriented and S C M.

(i) A real n-form w on S is said to be positive, denoted w > 0, if for every positively
oriented chart (U, ¢) in M intersecting S, we have w/wys > 0 on U N S. The real
n-form w is said to be nonnegative, denoted w > 0, if w/wy, > 0 on U NS for
every positively oriented chart (U, ¢) in M intersecting S. Moreover, w is said to
be negative, denoted w < 0, if —w > 0, and w is said to be nonpositive, denoted
w<0,if —w > 0.

(ii) For p € M, a real n-covector a € AN is said to be respectively positive,
nonnegative, negative, or nonpositive, if it is so as a real n-form on {p} C M, that
is, if for every positively oriented chart (U, ¢) = (U, x!,...,2") in M about p, the
real number o/(wy), = a(%h}, ol %‘p) is respectively positive, nonnegative,
negative, or nonpositive.

(iii) For p € M, an ordered basis {v',...,v"} for T,M is said to be positively oriented
if for every positive real n-covector o € A"T;; M, we have a(vl, .. 0" > 0.

(iv) If w and 7 are two real n-forms on S, we say that w > 7, w > 7, w < 7, or w < T,
respectively if w —7 >0, w—7>0, w—7<0,orw—7 <0.

Proposition 2.65. Suppose M is oriented and S C M.

(i) A real n-form w on S is positive if and only if for every p € S there exists a
positively oriented chart (Uy, ¢p) about p in M such that w/wg, > 0 on U, N S.
Similarly, w is nonnegative if and only if for every p € S there exists a positively
oriented chart (Uy, ¢p) about p in M such that w/wy, >0 on U, N S.

(ii) For a point p € M, an ordered basis {v',... ,v"} for T,M is positively oriented if
and only if there exists a positively oriented chart (U, ¢) about p in M such that
(wg)p(vt, ... v™) > 0.

Proof. (i) Suppose w is a real n-form on S such that for every p € S there exists a
positively oriented chart (U,, ¢,) about p in M such that w/ws, > 0 on U, N S.
If (V,4) is another positively oriented chart in M intersecting S, then for each
p € VNS wehave (wy,)y/(wy)p > 0, so

" Gy Gy Gl
Thus, w/wy > 0o0n VNS, sow > 0. The case when for every p € S there exists a
positively oriented chart (U, ¢,) about p in M such that w/wy, > 0 on U, N S is
similar. The rest of the proof is left to the reader.

(ii) (=) Suppose {v',...,v"} is a positively oriented ordered basis for T, M. If (U, ¢)
is any positively oriented chart about p in M, then (wg), € A"T M is positive, so
(wg)p(vt, ..., 0") > 0.

(<) Let {v',...,v"} be an ordered basis for T,M, and suppose there exists a
positively oriented chart (U, ¢) about p in M such that (wy),(v',...,v") > 0. If
a € AMTxM is a positive n-covector, then a/(wg), > 0, so

w ) = Wy wp  (we,)p

(wy)p(vt, .. ™) > 0.



Thus, the ordered basis {v',... ,v"} is positively oriented.
]

Definition 2.66. Suppose M is oriented. Let S C M and suppose w is a real n-form
on S. We define the positive part of w, denoted w™, to be the nonnegative real n-form
on S given by

it w, >0
+)p¢={wp L=t pes.

0 ifw,<0
We also define the negative part of w, denoted w™, to be the nonnegative real n-form on
S given by

B —wp ifw, <0
W), = , es.
" {o ifw,>0 7

Remark 2.67. Using notation from Definition 2.66, if (U, ¢) is a positively oriented
chart in M then on U NS we have w = fywy, for f; := (w/wy) : UNS — R. Then, on
uns
w+:f$w¢, W™ = fg we.

If w is continuous on S, then f, is continuous on U N S, which implies that f;“ and fy
are also continuous. Since we can cover S by positively oriented charts, it follows that
wT and w™ are also continuous on S. If S C M is measurable and w is measurable, then
fs is measurable on U N S, so f;r and f; are also measurable. Thus, if w is measurable
on S, then wt and w™ are also measurable on S.

Proposition 2.68. Suppose M 1is oriented, S C M is measurable and w is a measurable,
nonnegative real n-form on S. Letting t and (t',1*) denote respectively the standard
coordinates on R and R?, define wg := dt and wg> = dt* ANdt®. If (U, ¢) and (V,v) are
two positively oriented charts in M, then

—1\* —1\x*
/ (¢ ) (w’UﬁVﬁS) d\ _/ (d) ) (W‘UQVQS> d\
p(UNVNS) P(UNVNS)

WRn WRn

Proof. On UNV NS, we have

w=fwy=guwy,
where f = w/wy, : UNV NS = Rand g :=w/wy, : UNV NS — R are nonnegative
and measurable, with

9= F=2 = f (Tpnr o %)
¥

Computing the pullbacks (¢~1)* (w|UﬂVﬁS) and (¢—1)* (W|Umvms) explicitly and applying
change of variables (Theorem 2.44) via the diffeomorphism ¢otp=! : (UNV) — ¢p(UNV),
the result follows. O

‘UnVﬂS'

Definition 2.69. Suppose M is oriented and S C M is measurable. Let w be a
measurable, real nonnegative n-form on S. Let ¢ and (¢!,#?) denote respectively the
standard coordinates on R and R?, and let wg := dt and wg2 := dt' A dt>.

(i) Suppose S C U for some positively oriented chart (U, ¢) in M. We then define

—1\x*
/w::/ @)W
S ¢(S)  WR"
4
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which by Proposition 2.68 is independent of the choice of positively oriented chart
(U, ¢) with S C U.

(ii) Let T(S) be the collection of tuples (S, ..., Sy,) of finitely many mutually disjoint
measurable subsets S1,...,S,, C S such that for all j € {1,...,m}, S; C U for
some positively oriented chart (U, ¢) in M. We then define the integral of w over

S by
W= sup / w € 0,400
/S (S1,.-,5m)€ET(S) ; S

----- j

Remark 2.70. (1) Note that in Definition 2.69, if S C U for some positively ori-
ented chart (U, ¢) in M, then the definitions of [, w given in (i) and (ii) agree.
(2) In Definition 2.69 (ii), the set

P:{i/w

is nonempty, since we always have () € T (as a tuple of one element), so that
Jyw € P. Thus, the supremum in Definition 2.69 (ii) is that of a nonempty set.

G T(S)}

Definition 2.71. Suppose M is oriented and S C M is measurable. Let w be a
measurable real or complex n-form on S.

(i) Suppose w is real. We say that w is integrable if

/w+<+oo and /w<—|—oo.
s s

If w is integrable, we define the integral of w over S by

/w::/w+—/w_€R.
S s s

(ii) If w is complex, we say that w is integrable if the measurable real n-forms Re(w)
and Im(w) on S are integrable, and if this is the case we define the integral of w

over S to be
/w::/Re(w)+i/Im(w) eC.
s s s

Proposition 2.72. Suppose M is oriented and S C M is measurable. Let Ag denote
the a-algebra on S of measurable subsets of S. If w is a measurable, real nonnegative
n-form on S, then

(i) the function
Aot Ag — [0, +00] T»—)/w,
T

is a measure on Ag;
(i) if f: S — R is a nonnegative measurable function on S, then

/SfdAw:/wa.

Proof. (i) Choosing any positively oriented chart (U, ¢) in M, we have

L )



It remains to show that if {7} }ren is a sequence of mutually disjoint measurable
subsets of S, then

We have

and

for each k € N, where

P = {é/w (S1,-- - 5m) eT<’ng)} C [0, +o0]

pe {5

for each k € N. Thus, we need to prove that

and

(81,1 8m) € T(Tk)} C [0, 4+00]

o0
sup P = ZsupPk.
k=1

For this, we will show that

(a) every element x € P can be written as x = Y -, a; for some sequence
{ar}ren C [0, +00] such that a; € Py, for each k € N, and

(b) if K C Nis a finite set and b, € P for each k € K, then ), . by € P.

To show (a), choose any z = 377", fsjw in P, for (s1,...,8n) € Y(Uper Tk)-

For each j € {1,...,m}, we have s; C U; for some positively oriented chart

(U, ¢5) in M. We may write s; as the disjoint union s; = (J,cy(s; N T}), so that

?;(55) = Upen @5(s; N T}) is also a disjoint union. We then have

/w_/s fid\, Wherefj::%,
/ ngquj (s;1T3) d

J(S] k=1

= Z / JiXe,(s;nT) AA (by the Monotone Convergence Theorem)
b;(s5)

/ , d\
5 (8501 Tk) d)J (85N Tk)

1 *
_ / O o) d\
(SJﬁTk) R'n

8
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For each k£ € N, let

m
ap = E / w,
SjﬂTk

j=1
which is in Py, since (sy N Ty, ..., Sm NTy) € T(T}). Then,

I
NE
VRN
e
=
M =
=

€
N———

Thus, (a) is proved. For (b), suppose K C N is finite and b, € Py for each k € K.

For each k € K, we have
my
=3 [
j=1 k]

for some (sg1, ..., Skm,) € Y(I)). Then, we have
Ski T T,
towhek oy € (g( k) 7
SO
my,
Sh=3% / weP,
keK keK j=1 Y 5k

which concludes the proof of (b). Statement (a) guarantees that Y.~ sup Py is an
upper bound for P, while from (b) it follows that no real number r < Y. sup Py
can be an upper bound for P. The details are left to the reader. In conclusion,

sup P = ZsupPk.
k=1

(ii) We have
I
S

/fd)\w:supR,
S

and

for

(81, 8m) € T(S)} C [0, +o0]

{5

j=1v"J
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and

R::{/hd)\w
S

where HT(S) denotes the set of nonnegative simple functions on S, that is, the
set of functions h : S — [0,400) that are measurable and only take finitely many
values. Suppose  is a nonzero element in R. Then, z = |, ¢ hdA,, for some nonzero
h € H*(S) such that h < f. We may then write h = Y., o; x7;, where r € N,
{a1,..., .} is the set of positive values taken by h, and T} := h™'({c;}) for each
ie{l,...,r}. Then,

x—/hd)\w—iai)\w(ﬂ)—i&i/ w
S i=1 i=1 T

Ifie{l,...,r} and t C T; is a measurable set such that ¢ C U for some positively
oriented chart (U, ¢) in M, then

B (671" (w),)
ai/tw_ai/¢5(t)de)\

he€ H'(S) and h < f} C [0, 4+o0],

—1\x* .
:/ (67 (aiw],) o
(1) WRn

:/aiw.
t

Moreover, for all ¢ € ¢(t) we have ¢~ (q) € t C T, so a; = h(d7(q)) < f(o7(q)).
Thus,

WRn WRn

< f(¢7'(a))

(q)
(67" (w),)

R

(q)

for all ¢ € ¢(t), so

—1\* )
[o- [ @7 (oaw)
t (1) WRn
—1\*
</ (=) ((fw),)
We will consider two cases:

-~ Je)
:/fw.
t
(1) +o0 e R,

(2) every element in R is finite.

d\

WRn
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We first prove the statement for the case when (1) holds. From (1), we have
sup R = +00. We show that then sup@ = +o00. Choose M € (0,+00). Since
+00 € R and +o00 # 0, as we saw before we have

—i—oo:/hd)\w: ozi/w,
S zzl T;

where h € H*(S) is nonzero, h < f, and the numbers r and {a;}!_; and subsets
{T;};_, of S are defined as above. Then, there must be some i € {1,...,r} such
that [, w = +o0, which allows us to choose a tuple (t1,...,t,) € T(T;) such that

- M
3 [ M
j=1"1 %

Since (t1,...,tm) € T(S), we have

m m
QBZ/waZ/aiw
j=1 7t j=1 7t
m
:aiZ/w
j=1 "7

> M.

Thus, sup @ = 400 = sup R. We now assume that (2) holds. Choose ¢ € (0, 400).
We claim that for all z € R, there exists y € () such that y > x —e. If x =0, we
may choose any y € Q # (). Suppose then that z € R and z > 0. We may write

z= [ hd)\, = ai/w
/S ; T;

as before. For each ¢ € {1,...,r}, we have fT_w < 400, so we may choose
(tity .-y tim;) € Y(T;) such that

m;
g

> w> w) — :

i Yt T ra

so that

Then, since the collection {¢;;| ¢ € {1,...,r} and j € {1,...,m;}} is in T(5), we
have

T m; T mg
EDS) B (FFED 35 Ol (R
i=1 j=1 "t i=1 j=1 "1

T m

i
ey [
i=1  j=1Ytj

(§ )

=T —E€.
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Thus, the claim is proved. It follows that no element z € R can fulfil z > sup @,
since then we would be able to find y € @ with y > sup@. Thus, sup@ is an
upper bound for R. To prove that sup R = sup (), we will show that for all y € @
there exists a sequence in R converging to y. Choose y € Q). Then,

yzg/sjfw

for some (s1,...,s,) € T(S). For each j € {1,...,m}, we have s; C U; for some
positively oriented chart (U;, ¢;) in M, so

WRn

(&) ((fw)], ) (65)* (], )
w = J d)\ — o ._1 - s d)\ .
/s / /¢>j(8j) /¢j(8j)(f ¢] )

Define

Since f o qu_l is a nonnegative measurable function on ¢;(s;), there exists an in-
creasing sequence {hi}keN of nonnegative simple functions on ¢;(s;) converging
to fo gzﬁj’l. Then, the sequence {hfg gj}ken 1s also increasing and it converges to
(fe gb]_l) gj, so by the Monotone Convergence Theorem,

[ mgas [ gestgan- [ fe sk
5(s5) 5(s5) 8j

It follows that

ck::Z/ h‘,’%gjd)\éz:/fw:y as k — 0o.
j=1 7 %i(s;) j=1 "%

We now fix k& € N, and choose j € {1,...,m}. Write

mjk

J_
hy, = Zajk:i XTjgi 5
i=1
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where ajg1, ..., Qjrmy, € [0,+00) are the finitely many values taken by hi, and
Tji = (h]) Y({ajri}) for each i € {1,...,m;}. Then,

mjg
/ hy, g5 dX = / Z ki X Ty G5 AA
b;(s5) ¢5(85) =1
Mk
= Z / ki XTjy; 97 AN
i(s5)
mjk
=3 s, a
mak (@5 (v, )
-3 o [
i Tk WRr Tiki
mjg
=3 o [
]kz’
mjg

= Z ki )\W(Tjki) )
i=1

where Tjkz = ¢ Y(Tjri) C s; for each i € {1,...,m ;}. Then,

m m  Mjk
a=3 [ Hoir=3"Y awriTuw = [ n.
j=1 7 ¢i(55) j=1 i=1 s
where 7 : S — [0, 400) is the nonnegative simple function defined by
m  Mjk
M=) D ki X,
j=1 i=1
Moreover, since the sets {T];ﬂ} are mutually disjoint for j € {1,...,m} and i €
{1,...,mj;}, on each T}j; we have
— v — B o
nk]TjM = Qjpi = hy, ¢J’Tjki <(feo ) ¢j|T]M f’Tjki )
while 7, is zero at the points in S that are not in T]m for any j € {1,...,m} and

ie{l,...,mj}. In conclusion, n, < f on S, which implies that

Ck:/nkGR.
S

Since k € N was arbitrary, the sequence {ck }ren is in R, as claimed. It is left to the

reader to show that this implies that no real number strictly smaller than sup @

can be an upper bound for R, so that sup R = sup Q.
PHEEEEEEEEEEEEEWWW! O

Definition 2.73. Suppose M is oriented, S C M is measurable, and w is a measurable,
real nonnegative n-form on S. We then call the measure A\, on S provided by Proposition

2.72 (i) the measure associated to w.
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Remark 2.74. Using notation from Proposition 2.72, suppose T' C S is a measurable
set of measure 0 (Definition 2.43). Then, if ¢t C T and ¢t C U for some positively oriented

chart (U, ¢) in M, we have
/ / @) ),
WRn
since A(¢(t)) = 0. Thus,
)\w(T):/w: sup Z/W—O
T (tl

..... tm)EX(T

Proposition 2.75. Suppose M is oriented and S C M s measurable.

(i) If w is a measurable, real nonnegative n-form on S, and if R C S is measurable,

then
[ [
s R

where xgr : S — R denotes the characteristic function on R, that is,

1 ifpeR
= , €s.
Xr(P) {0 ifpeS\R p

(ii) Ifw and T are measurable, real nonnegative n-forms on S, and if ¢ € [0,+00), then

(a) /S(w—l—T)—/Sw—l—/ST

and

(b) /S(cw):c/sw.

(iii) If w and T are measurable, real nonnegative n-forms on S such that w > 7, then

(a) /Sw:/s(w—T)—l—/ST

and

(b) [e=

Moreover, if fST < 400 then

(c) Aw—LT:A@—ﬂ.

(iv) If w and T are measurable, real nonnegative n-forms on S and w = T almost

S S

(v) Ifw is a measurable, real nonnegative n-form on S, then the set Z := {p € S|w, =
0} is measurable. If T is another measurable, real nonnegative n-form on S such
that 7 = 0 almost everywhere in Z, then

/T—/ —w—/ Zax,.
s\z W S\z W



Proof. (i) By Proposition 2.72 (ii),

/XRWZ/XRd)\w:Aw(R):/W.
s s R

(ii) (a) We first show that the result is true when S C U for some positively oriented
chart (U, ¢) in M. If this is the case, then

—1\x*
[wn= [ @i,
s $(S) Wrn
—1y* —1\*
[ (e, ey,
#(S) WRn WRn
—1\* —1\*
o(s)  WR" CR
= w—l—/T.
s s
We now prove the general case. Write

/(w+7):supP, /w:sule, /T:SUPQQ,
s s s

for
p::{é/sj(ww) (51,...7sm)€T(5)},
o :{i/w (rovverom) € 1(5) |

Q2 ::{2/517 (sl,...,sm)GT(S)}.

We claim that

(1) For every x € P there exist y; € Q1 and yo € Q5 such that z = y; + yo;
(2) For every y; € Q1 and ys € Q3 there exists x € P such that z > y; + y».
For (1), choosing z = 7", fsj(w + 7) € P for some (s1,...,8,) € T(S), we

have
= [ =2([en [ o) mmen
j=1 9% j=1 Sj Sj

m m
ylzzg /w€Q1 and y2::E /TEQQ.
j=1Y%5i j=1+"5i

To prove (2), choose elements y; = Y7 [ w € Qy and yp = 377 [, 7 €
Qa, for (ri, .. Tmy)s (B, tmy) € T(S). For each j € {1,...,my} and i €
{1,...,my}, define

a; Z:Tj\(Utk), bij i=r;Nt;, ci::ti\(Urk).

k=1 k=1

where
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Then, the collection

ie{l,...,ma}
is in T(S). We then have
Pai/(w+7)+ii/ (w+7)+i/(w+7)
j=174a j=1 i=1 7 bij i=1 "¢
:Zl</w+i/ w>+22(/7'+21/ T>+Zl/7'+22/w
j=1 a; i=1 7 bij i=1 ¢i j=1 bij j=1"7a i=1 Y
=6 +0+ R,
where
61:22(/w+i/ w),
j=1 \7aj i=1 Y bij
52::22(/T+Zl/ 7'),
i=1 ¢ j=1 7 bij

R:f:/Tva:/wE[O,—iroo].
j=1"aj i=1 7

We show that 6; = y; and dy = yo. For each j € {1,...,my}, we have
T’j = CL]' U U;ii bij, SO by (1),

mo m2
[oad [ o= ot [0
aj i=1 7 bij Tj i=1v7i
m2
= [ (et Yon,e)
Tj i=1

J

:/ﬁ"'

J

Thus,

mi

L[ )2 e

j=1
The proof that d; = ys is similar. Then,

P951+52+R:y1+y2+R2y1+y27
so (2) is proved. It is left to the reader to show that (1) and (2) imply that

sup P =sup @1 +sup Qs .
Suppose first that S C U for some positively oriented chart (U, ¢) in M. Then,

(b)
_ (@D (cw) NN (o Dw
/Scw—/d)(s) o dA—L(S)c—an d)\—c/d)(s)—wm d)\—c/Sw.

For the general case, write

/w:supP and /cu):supQ7
s S
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for
m

{3y [

]:]_ J

%

Then, we have Q = {cx |z € P}, from which it follows that sup @ = ¢ sup P.
(iii) (a) Since w > 7, the measurable n-form w — 7 is nonnegative on S. The result
then follows from (ii)(a).
(b) Follows from (iii)(a).
(c) Follows from (iii)(a).
(iv) Since w = 7 almost everywhere in S, there exists a measurable subset A C S of
measure 0 such that w, = 7, for all p € S\ A. Then, the measurable nonnegative
n-forms xg\a w and xs\ 4 7 are equal on S, so by (ii)(a) and Remark 2.74,

/w—/ XAW + Xs\AW) = /w+/XS\Aw—/XS\Aw
/T:/(XAT+XS\AT):/T+/XS\AT:/XS\AT.
s s A s s
fo= /-
s S

(v) We first show that Z is measurable. Choose any chart (U, ¢) in M. Since w is
measurable, on UNS we have w = (w/wy) wg, where the function w/wy : UNS — R
is measurable. Then,

(815, Sm) eT(S)},

(51,...,sm)€T(S)}.

and

Thus,

UNZ={pelUNS|w,=0}= (i) ({0},

which is a measurable subset of U NS and hence a measurable subset of M. Thus,
»(U N Z) is measurable in R™, so Z is measurable. Since 7 = 0 almost everywhere
in Z, by (iv) we have [, 7= fZO =0, so

-
/T—/XZT+X5\ZT /T+/ ’7'—/ —w—/ —dX,.
S\z S\z W S\z W

Proposition 2.76. Suppose M is oriented and S C M is measurable.

(i) If w is an integrable measurable n-form over F on S, and if R C S is measurable,
then the measurable n-form x rw s integrable on S, the restriction Wl 15 integrable

on R, and
/XRw:/w.
s R

(ii) If w and T are integrable measurable n-forms over F on S and ¢ € F, then
(a) the n-form w+ 7 on S is integrable and

/S(erT):/Ser/ST
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(b) the n-form cw on S is integrable and

/S(cw):c/sw.

(iii) If w and T are integrable measurable real n-forms on S such that w > 7, then

sl

(iv) If w and T are integrable measurable n-forms over F on S such that w = 7 almost

everywhere in S, then
/ w= / .
s S

Proof. (i) Suppose first that F =R. On S,

)T =xpw <w?t and (xypw) =xpw <w,

(XR w

so by integrability of w,

/(XRW)+ < /w+ < 400 and /(XRW)_ < /w_ < 400.
s s s s

Thus, yrw is integrable on S. Moreover, on R we have

(@) =wt), and (v],) =w7|,,

/R(W|R)+:/RWJF|R:/S><1fcw+Z/S(XRW)Jr
)= [erp= [xne = [omer

Thus, Wl is integrable on R and

[xww= [yt = [omer = [ @07 = [ @)= [ o,

If F = C, then the measurable real n-forms Re(w) and Im(w) on S are integrable
on S, and on S we have

SO

and

Re(xrw) = xr Re(w) and Im(xrw)= xg Im(w).

Thus, by the real case, Re(xgw) and Im(xrw) are integrable on S, which implies
that xrw is integrable on S. Moreover, on R we have

Re (w‘R) = (Re(w))|, and Im (UJ|R) = (Im(w))|, »
55



so, again by the real case, Re (w|R) and Im (w|R) are both integrable on R, which
implies that W, is integrable on R. Then,

QAXRWZ:LRHXRWy+{LhMXR@

— /SXR Re(w)+i/SXR Im(w)
— [ et +1 [ i,

R

:LMWJ“AM@W

[y
R
(ii) (a) Suppose first that F =R. Let p € S. If (w+ 7), > 0, then

(WHT)y =WH+T)p=wp+7p=w) —w, +7,7 -7,

<wi 47 =W +77),
and
(WH+T), =0< (W +77),,
while if (w+ 7), < 0, then

(w—1—7)+ =0< (w+ +7’+)p

P
and

(WHT), =—(WHT)p=—wp—Tp = —w, +w, =7, +7,

Thus, on S we have
W+ T <wr+77 and (w+7) <w +77,

SO

/(w+7)+§/w++/7+<+oo and /(w+7)_§/w_+/7_<+oo.
s s s s s s

Thus, w + 7 is integrable. Moreover, on S,
(wH+T) " —(w+T) =wt+T=w—w +7" =7,

SO

wh+ T — (w4 T =w +7 = (WwHT)".
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Then, by Proposition 2.75,
/Sw*+/sr+—/5(w+7)+:/S(w++r+)—/s(w+7)+
- [t = @)
- [ =)
- [ )= [
Z/Sw_—i—/ST_—/S(w—i-T)_

Jesn=[wenr= [@en
- [ e [
=/Sw+/57.

The proof of the case when F = C is left to the reader.
Suppose first that ' = R. If ¢ = 0, the result is immediate. If ¢ > 0, then on S

so that

+ ot -

(cw) cw™ and (cw)” =cw,

L(cw>+zécw+:clw+<+m
L<cw>—:/scw—:c[qw—<+m.

Thus, cw is integrable and

[ foor = oo =o( [~ [) e o

If ¢ <0, then

so that

and

(cw)t = —cw™ and (cw)” = —cwh,

/S(cw)Jr:/S—cw:—c/Sw<+oo
/S(cw):/s—cw*:—c/sw+<+oo.

Thus, again cw is integrable and

[ fir= == fir- [+ =<

If F =C, we have

Re(cw) = Re(c) Re(w) — Im(c) Im(w)
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and
Im(cw) = Re(c) Im(w) + Im(c) Re(w),

so Re(cw) and Im(cw) are integrable and

/Scw:/SRe(cw)—l—i/SIm(cw)
:Re(c)/SRe(w) —Im(c)/slm(w)+i(Re(c)/SIrn(w)+Im(c)/SRe(w))
:c(/SRe(w)jLi/SIm(wo
¢ /S W,

(iii) Since w > 7, we have

wr > and wo <71

Y

oo L[]

(iv) Suppose first that F = R. Since w = 7 almost everywhere in S, we have w™ = 7
almost everywhere in S and w™ = 7~ almost everywhere in S, so

I e

If F = C, then Re(w) = Re(7) almost everywhere in S and Im(w) = Im(7) almost
everywhere in S, so the result follows from the real case.

SO

OJ

Lemma 2.77. Suppose M is oriented, S C M 1is a compact subset, and w is a continuous
n-form over ¥ on S. Then, S is measurable and w is measurable and integrable on S.

Proof. Since S is compact and M is Hausdorff, S is closed and hence measurable. More-
over, since w is continuous on S, it is measurable. Suppose first that F = R. Since w
is continuous on S, so too are w' and w~. For each point p € S, choose a positively
oriented chart (U, ¢,) about p in M. Since M is locally compact, we may also choose a
neighbourhood V,, of p in M such that the closure V, of V,, in M is compact and V,, C U,.
Since S is compact and the collection {V}},es covers S, we may find a finite subcover
{Vp, Y7y Then, S C UjL, Vy,;, 0 S = Ui, (S NV,,). This implies that on S,

m
+ o
w SE Xsav,, W s
J=1

m *w+
+
wm < / X / / ——dA\.
/s S; SV, Z SNV, bp,(5NV5,) R2

For each j € {1,...,m}, the set SNV, is compact, so ¢,,(SNV,,) is compact in R

Moreover, since w* is continuous on SNV, , the function ((gzﬁ;jl)*w*) Jwgez is continuous
58
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on ¢,,(SNV,,). In conclusion,

)Wt
/ L d\ < +00
¢p; (SOV,)  WR2

for all j € {1,...,m}, so [qw! < +00. By a similar argument, [;w™ < +oo, which
shows that w is integrable on S. If F = C, then the result follows from the real case:
Re(w) and Im(w) are continuous real n-forms on S and hence integrable on S, so w is
integrable on S. 0J

Remark 2.78. Recall that if M has dimension n € {1,2} and ~ : [a,b] — M is a
piecewise C! path, then the line integral along « of a continuous (real or complex)
1-form « on M is given by

m Sk
[e=X [ aotuoar,
Y k=1 Y Sk—1

where a = sy < --- < s, = b is a partition of [a, b] such that for each k € {1,...,m}

the restriction 7 = fy|[ ] is a C! path. Fixing some k € {1,...,m}, and letting
Sk—1,Sk

now 7y = fy|( . for each s € (sg_1, Sx) we have

e i (] )] .

= [ (60 (5] )] a0

= Qy(s) (V(5))(dt)s .

Since the function s — o) (V(s)) on [sx—_1, S| is Riemann integrable, it is also Lebesgue
integrable. Then, assuming first that « is real,

oo > /[ )

- /< )(%(s) (9(5)))* dA(s)

- [ G~
(sk—1,5k)

Thus, the continuous 1-form ~;« is integrable on (s;_1, s;) and

Sk
| e[ et
(Sk—1,5k) Sk—1

If «v is complex, then for each s € (sy_1, si),

(Revia)s = Re (a5 (F(5))) (dt)s  and  (Imyga), = Im (o) (i (s))) (dt)s -

Then, reasoning as in the case when « is real, we conclude that Re(v;«) and Im(v;a)
are integrable on (sx_1, Sx), so that vyja is integrable on (sx_1, sx), and

Sk
| e[ atiods.
(Sk—1:5k) Sk—1

59



In conclusion, for real or complex «, we have

/a = Z/ Vhov.
v k=1 v (Sk—1,5K)

Lemma 2.79. Suppose v : [a,b] — M is a piecewise C' path and o is a continuous
1-form over F on M. Suppose also that the set N := vy((a,b)) C M has a 1-dimensional
smooth manifold structure such that the inclusion map o« : N — M 1s C*°, and that the
map 7 : (a,b) = N, t — y(t) € N, is a diffeomorphism. If we give N the orientation
induced from the diffeomorphism 7, then the 1-form (*« is integrable on N and

/L*a:/a.
N 8l

Proof. First note that the restriction 'y‘( . (a,b) — M may be written as the composi-
a,
tion ¢o4. Then, since ¢ and v are both C*°, the restriction fy|( " is C*°. It then follows
a,

from the fact that v is piecewise C* on [a,b] and C! on (a,b) that v is actually C* on
[a,b] (that is, it has a C' extension). Then, by Remark 2.78, the continuous 1-form
fy‘za p& OB (a,b) is integrable and

a:/ vE .
/7 apy |

Since the map 7 : (a,b) — N is a diffeomorphism, the pair (N,57!) is a chart in N, and
it is positively oriented. Suppose first that F = R. Then, on N we have *a = fdy !
for f:=1a/dy ' : N - R, so

Jwar= [ i - /(aﬁb)<fiw> I\ = /(aﬁb)uo&)idx

Moreover, on (a,b) we have
Ay = (oA =7 (00) = 3*(Fd5™) = (f o) dt,
SO

~|—oo>/ (’y|’(kab)a)i:/ (fo?y)id)\:/(a*a)i.
(a,b) ’ (a,b) N

Thus, ¢*« is integrable on N and

a = Y= /a.
/N \/(mb) |(a,b) ~

Suppose now that ' = C. Then, the real 1-forms Re(«) and Im(«) on M are continuous,
so t*Re(a) and ¢* Im(«) are integrable on N and we have

/N /* Re(a) = L Re(a) and /N /*Tm(a) = L fm(a) .
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Moreover, on N we have ¢* Re(a) = Re(t*ar) and ¢* Im(a) = Im(c* ), so ¢t*a is integrable

on N and
/L*a:/ Re(L*oz)—I—i/ Im(c* )
N N N
= /Re(a) +z’/1m(a)
gl v
= o1l Re(a)+i/ 5 Im(a)
/(a,b) ‘(a,b) (a,b) ‘(a,b)
= Re(y]*  «) +i/ Im(y]*  «@)
\/(a,b) | (a,b) (a,b) | (a,b)
= ol * o
/('a,b) ‘(a,b)
- [a
.

Definition 2.80. Suppose M has dimension 2 and 2 C M is open. Then, (Q is called
smooth, or C* if for all p € M there exists a chart (U, ¢) = (U, z,y) about p in M such
that

0J

UNQ={geUla() <0} = ¢ ({(r.s) € 6(U) |r < 0}).

Proposition 2.81. Suppose M has dimension 2 and 0 C M is a smooth open set.
Then, the topological boundary 02 of Q is either empty or a 1-dimensional smooth
submanifold of M.

Proof. Suppose 052 is nonempty. For each p € 92, we may choose a chart (U, ¢) about
pin M such that UNQ = {q € U|xz(q) < 0}. Let A:={q € U|z(q) = 0}. We show
that UNOQY = A. If ¢ € A and W C M is a neighbourhood of ¢, then ¢(U N W)
is open in ¢(U) C R? and ¢(q) = (0,y(q)) € ¢(U N W), so there exists € € (0, +0c0)
such that a := (—¢,y(q)) € ¢(UNW). Then, ¢~(a) € UNW and z(¢'(a)) < 0, so
¢~(a) € QN W. Thus, ¢ is not an exterior point of Q, and since ¢ € €2, we must have
q € 0N). Since ¢ € A C U, we have ¢ € U NS, which shows that A C U N0S2. To show
the opposite inclusion, observe that if ¢ € U \ A, then either x(¢) < 0, in which case
q € Q C (09), or x(q) > 0. If the latter holds, then denoting by R C R? the open right
half-plane, we have ¢(q) € ¢(U) N R, so B := ¢~ (¢(U) N R) C U is a neighbourhood
of ¢ such that for all r € B, z(r) > 0. Thus, B C €€, so ¢ is an exterior point of . In
conclusion, if ¢ € 9 then we must have ¢ € A. Thus, UNIN = {q € U|xz(q) = 0}.
Then, since 0f) is closed in M, it is a smooth 1-dimensional submanifold of M. O

Lemma 2.82. Suppose M has dimension 2 and is oriented, and let 2 C M be a smooth
open subset such that OQ # (.

(i) The collection L of all positively oriented charts (U, ¢) = (U,z,y) in M such that
UNQ={qeU|xz(q) <0} covers M.

(ii) The collection U = {(U NoQ,yo <L|Umasz>) | (U,¢) = (U,x,y) € L[} of charts in
0 induced from U, where ¢ : 92 — M s the inclusion map, is an oriented atlas

in 0Y and hence defines an orientation on OS).
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Proof. (i) First note that if (U,¢) = (U,z,y) is a chart in M such that U N Q =

{g € Ulxz(q) < 0} and U’ C U is an open subset, then the chart (U’,¢|U,) =
(U',x|U/,y|U/) also fulfils U'NQ = {q € U’ | x|U,(q) < 0}. For each p € M, choose a
chart (Up, ¢p) = (Up, xp,y,) about p in M such that U,NQ = {q € U, | z,(q) < 0}.
Then, without loss of generality, we may assume that U, C V, for some positively
oriented chart (V,,1,) about p, and that U, is connected. Then, the transition
map

Fi=1ppo ¢;1 L op(Up N Vp) = 0p(Up) = p(Up) = ¥p(Up N V)
has either Jr > 0 everywhere or Jr < 0 everywhere. If the latter holds, we may
redefine ¢, by changing the sign of y,, so that Jr > 0 everywhere in ¢,(U,) and
the redefined chart (U, ¢,) still fulfils U, N Q = {q € U, |z,(q) < 0}. We show
that the chart (U, ¢,) is positively oriented. If (W,~) is any positively oriented
chart in M, then the transition map

Gi=qoy, 1 (VN W) = 4(V,NW)

has positive Jacobian determinant everywhere. Then, the restrictions

F|¢p(Uan) : ¢P(UP N W) — 77Z)p(Up N W)

and

G‘%(UPHW) LY (Up NW) = (U, ")
have positive Jacobian determinant in their respective domains, and thus so too
does the composition G|¢p(Ume) 0 F|¢p(Ume) Do (Up, N W) — ~(U, N W), which

is precisely the transition map v ¢ ! of the charts (U,, ¢,) and (W,~). Thus,
(U, ¢) is positively oriented, so (U,, ¢,) € L. Since p € U,, the result is proved.

Since 4 is an atlas in M such that for all (U, ¢) = (U, z,y) € U we have U N0 =
{q € U|z(q) = 0}, the collection U of charts in I induced from i is an atlas. We
show that 90 is oriented. Choose two charts (U N 99, ¢) = (UNoQ,y-e (L|U089))

and (V, 1/;) = (V N o, g e (L‘VOBQ)) in ¥ induced respectively from two charts
(U,¢) = (U,z,y) and (V,) = (V,Z,7) in 8. The transition map ¥ o d! between
the charts (U N0, ¢) and (V N OS2, ) can be written as the composition
mo(Podp ™ )el:y(UNVNIN) —GUNVNIN) CR,
where
LyUNVNoR) —»oUNV), t—(0,1),

is the inclusion map, and

T:p(UNV)—=R, (0,t)—t,
is the projection map. Then, denoting by (7, s) the standard coordinates on R?
and letting f :=ro1o¢ ! and g := so1 o ¢! be the component functions of
the transition map ¥ o ¢! : (U NV) — (U NV), the Jacobian matrix of the
transition map ¢ o ¢~ at a point t € y(U NV N AN) is the product

80,t) Z(0,¢)\ (0

(0 1) = (20.1) .

%(0,¢) 2(0,1)) \1
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Thus,
9y
\77/;0(7;71 (t - _85 (0, t) .

)
We show that %(O,t) > 0. Since (0,t) € ¢(UNV NON), we have ¢~ 1(0,t) €
UNV NoSY, which implies that f(0,t) = 0. If {¢x}ren is a sequence in R\ {¢} such
that (0,tx) € (U NV) for all k € N, and t; — ¢ as k — oo, then we also have
f(0,tx) =0 for all k € N, so

g(o’ t) — lim f(o, tk) - f(O,t)

0s k—o00 tk —1
Thus, Jypep-1(0,1) = %(O,t) . %(O,t). This implies that the partial derivatives
%(O,t) and %(O,t) are either both positive or both negative, so to show that
%(O, t) > 0, it suffices to show that %(0, t) > 0. If {ck }ren is a sequence in R\ {0}
such that (¢, t) € (UNV) for all k € N, and ¢, — 0 as k — oo, then for each
k € N the numbers ¢, and f(cg,t) are either both positive or both negative: if
cr > 0, then ¢~ '(cp,t) € UNV N (Q), so f(ck,t) > 0; while if ¢, < 0, then
o e, t) €eUNVNQ, so fe,t) < 0. Thus,

of flant) = £0,1)
or

=0.

=1 = lim 2~%~
(0,8) = lim —=—2—5 R,

so we must have 2£(0,¢) > 0.
0

Definition 2.83. If M has dimension 2 and is oriented, and if 2 C M is a smooth open
subset with nonempty boundary 02, we call the orientation on 0f) given by Lemma
2.82 the induced orientation (from M with respect to Q).

Proposition 2.84. Let M and N be 2-dimensional smooth manifolds, and F : M — N
a diffeomorphism. Suppose 2 C M is a smooth open set. Then,

(i)
(i)

F(Q) is a smooth open subset of N;

if M and N are oriented, F is orientation-preserving, and 02 # 0, then the
diffeomorphism F : 0Q — OF(Q)) is orientation-preserving, assuming that 092 and
OF(Q) are given the induced orientations from M and N and with respect to )
and F(Q), respectively.

Proof. (i) Denote by (r,s) the standard coordinates on R?. For each chart (U, ¢) in

M such that UNQ ={q € U |(ro¢)(q) < 0}, the chart (F(U),¢oF~ ') in N fulfils
FUNFQ)={qe FU)|(re¢oF1)(q) <0}. Since we can cover M by such
charts (U, ¢), it follows that F'(€2) is a smooth open set in N.

Let { denote the atlas in M consisting of all positively oriented charts (U, ¢) in M
that fulil UNQ ={q € U|(r-¢)(q) < 0}. Then, the oriented atlas

Y= {(UNIN,sodor)|(U,¢) e st}

in 00 is in its orientation. For each (U, ¢) € 4, the chart (F(U),¢o F~!) in N is

positively oriented and fulfils F(U)NF(Q) = {q € F(U)|(ro¢oF1)(q) <0}, so

the chart (F(U)NAIF(),s0¢o F~1oy) in OF(Q) is positively oriented. Moreover,

(F(U)NOF(Q),s0¢o F~1o.) is precisely the chart induced from (U NJQ, so o)

by F : 0Q — OF(2). Thus, U is an oriented atlas in the orientation of 92 such
63



that for all (V) € G, the chart (F(V),v o F~1) in OF(Q) is positively oriented.
It follows that F' : 02 — OF () is orientation-preserving.
UJ

Theorem 2.85 (Stokes’ Theorem). Suppose M is a 2-dimensional oriented smooth
manifold. Let Q C M be a nonempty smooth open subset, and suppose « is a C* 1-form
over F on M such that Q N supp « is compact. Denote by v : 02 — M the inclusion
map. Then, da is integrable on ), the pullback t*« is integrable on 0S), and

/da—/ o
Q a0

Proof. We first prove the theorem for the case when F = R. First note that since
02 C M can be covered by charts (U,¢) = (U,z,y) in M such that U N9JQ = {q €
Ulz(q) =0} = ¢~ H(d(U)NL), where L denotes the y-axis in R?, the set 90 has measure
0 in M. Since o is C* on M, the exterior derivative do is a continuous 2-form on M,
and hence measurable. We have

Loy = [ e+ [ @y = [ ey,

where the notation + means that the array of equalities holds when read only with
the + signs and when read only with the — signs. Note also that (supp«)® C M is
an open subset where @ = 0, so we also have da = 0 on (supp«)®. We then have
supp (da)* C supp da C supp a. Then, letting K := Q N supp a,

Ja® = [t = [ oy | = [ o,

which is finite by Lemma 2.77. Thus, da is integrable on (.

Let p € K C Q. If p € Q, choose a positively oriented chart (Uy, ¢,) = (Up, Zp, yp)
about p in M such that U, NQ = {q € U,|x,(q) < 0} and U, C Q. If p € 99, choose
a positively oriented chart (U,, ¢,) = (Up,xp,y,) about p in M such that U, N Q =
{q € U,|z,(q) < 0} and ¢,(U,) is an open disc of finite radius in R?. Then, the
collection {(U,, ¢,)},ex has a finite subcollection that covers K, which we index by
{(Uj,85) = (Uj,75,y;) ey Let W= Jj_, U;. Since W is a finite union of coordinate
open sets in M, it is a second countable smooth manifold with the induced differentiable
structure from M. Thus, there exists a smooth partition of unity {p;}72, on W such
that for each j € {1,...,m}, suppyp; C U;, where for a function or differential form
p on W the notation suppy, p denotes the closure in W of the set {¢ € W |p(q) # 0}
(which may differ from the closure of this set in A/). Then, on W we have o = 3™ | pjav.
We now fix some j € {1,...,m}. We have suppy,pja C suppy,p; Nsupp o. We consider
two cases.

(i) U; N 02 = 0. We then have U; C €2, so

S; = suppyyp; C suppyp; M supp o
C U;Nsupp a
can supp «
=K.
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Then, since S; is closed in W, it is closed in K C W, so S; is compact. Moreover,
the 1-form pja is C* on W, so d(p;«) is a continuous 2-form on W (and hence
measurable), and suppyy, (d(pja))* C suppy, d(p;a) C S; C U;. Then,

|t = [ pan® = [ @i,

J J
which is finite, since S; is compact and (d(p;))* is continuous. Thus, d(p;a) is
integrable on QNW. On U;, we have pja = f7 dx; + ¢° dy; for some C" real-valued
functions f7 and ¢/ on Uy, so on Uj,
dg’  OfI

d(pjar) = h dx; N\ dy; for B o= P @ .
J J

+oo>/ /¢ 0 ¢ dA

]

/ £ 4,
?;(

J

Then,

so the (continuous) function b/ o ¢; Lo (U ) — R is integrable, and

/ d(pjo) = / W o ¢t dX
Uj 5 (Uj)
J J
:/ <ai_ai>o¢jld/\
6;(U;) Oxj  Jy;

:/ <ag o 7t — or gbfl)d)\.
5 8% dy;

The continuous functlons oo gb gbj_l vanish outside of the compact set
¢;(S;), and thus they are 1ntegrable Then

/mw d(pjar) = /Uj d(p;a)

dg’ 1 / 8f
= — O . d)\— d)\
/@(Un O; £ ) ;i ad

[ Aoy AP
5 (Us) 5 (Us)

or O0s

where (7, s) are the standard coordinates on R?. Then, since the functions f7 o
qu_l and ¢’ o gbj_l are C' and have compact support on ¢;(U;), one may apply
iterated integration (Fubini’s Theorem) and the Fundamental Theorem of Calculus
to conclude that

0 JoT Jo
/ (9" ° ¢; )CM / (f? oo >d)\_0
#;(U;) or ¢;(Uj) Js

/mw d(psa) = 0.

65

so that



(i) U; N0 # 0. We have
T} = suppyp; NQ CsuppanQ =K,
so Tj is compact. Moreover, suppy, d(p;ja) NQ C T; C U; N Q, so
J et = [t = [ @pan® < soc.
Thus, d(p;a) is integrable on WNS. As before, on U; we have p;a = f7 dx;+g’ dy;

for some C' real-valued functions f7 and ¢’ on Uj, and d(p;a) = h? dz; A dy; for

~ j j
W = % — %. Moreover,
Tj Yj

soo> [ dpayt= [ (w)testay
U;nQ #;(U;NEY)

J
— [ wegan,
¢;(U;N9)

so the function A7 o gbj_l 1 ¢;(U; N Q) — R is integrable, and

= / ho o %—1 dA
¢;(U;NQ)

agj -1 afj 1)
— o — o | dA.
/qu(Uij) <8xj ! dy; 7

Since the continuous functions g%; o, ‘g—];j o ¢! ¢;(U;NQ) — R vanish outside

of the compact set ¢,(7j), they are integrable, so
g’ - af’ —1
d(p'a):/ —o¢<1d)\—/ o dA
/‘;VQQ ! d>j(Ujﬁ§) ax] ! d’j(Ujmﬁ) ayj ’

a J o fl a J o .71
:/ (97 > ¢; )CM_/ (Fo0;) 1\
¢3(U;NQ) or 05 (U;NQ) Js

By our choice of the chart (Uj, ¢;), denoting by H the closed left half-plane in R?
and by L the y-axis in R?, we have
¢;(U; N Q) = ¢;(U;) N H,
0;(U;noQ) = ¢;(U;) N L #0.
Moreover, ¢;(U;) is an open disc of finite radius in R?, so ¢,;(U;) N L is an open

interval (a;,b;) in L for some a;,b; € R with a; < b;. Then, one may again use
iterated integration and the Fundamental Theorem of Calculus to conclude that

i1
[ oo d)
$;(Uj)

O0s

and

g o7 ") /”J‘ L
———L=dx= [ (¢ e¢;te0)(t)dt,
/<¢>]-(Uj) or a !

where 7 : (a;,b;) = ¢;(U;) is the inclusion map ¢ — (0, t).
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In conclusion, for each j € {1,...,m} we have

oo if U, N 00 = 0
/mw (pje) = [P(F o g e D)t dt i U; 100 A0

J

We now consider the pullback t*« on the 1-dimensional smooth submanifold 0€2. Since
the map ¢ : 9Q — M is C*, the 1-form t*a on 9 is C*. Since (*« vanishes on
0N (supp )¢ D IN N ¢, we have

‘/uwﬁz/' wwiz/ (a)*,
o0 oQNW 9QNsupp a

which is finite, since (1*a)* is continuous and 9 N supp « is compact. Thus, t*« is
integrable on 0. Moreover, on 9Q NW we have t'a = 377 (p; o ¢)t*a. Fix j €
{1,...,m}, and consider the 1-form (*(pja) = (p; o ¢)t*a on 0L N W. As before, we
consider the two cases U; N9 =0 and U; N0 # 0

(i) HU;NOQ = 0, then 9QNW C (U;)*“NW C (suppyyp;)°NW, so for all p € 9QNW
we have ((p; o t)c*a), = p;(t(p))(t*a), = 0. Thus,

/ (pjot) a = / 0=0= / d(pja).
a0NW HONW onw

(ii) Suppose that U; N O # (. Since (p; o ¢)t* o vanishes on
QN W N (suppyyp; Nsuppa)® D IQNW N (U;)°,

we have

[ teorart = [ (oo = | (o5 o )"a)*,
oQNW oQNU; 0QNsuppyy p;Nsupp a

which is finite, since ((pjo¢)c*a) is continuous and Q2 Nsuppy, p; Nsupp « is com-
pact. Thus, (pjo)c*a is integrable on 9QNW. Since the chart (U;, ¢;) = (U;, z;,y;)
was chosen to be positively oriented and to fulfil U;NQ = {q € U; | z;(q) < 0}, the
induced chart (U; N 0Q,y; o) in 0N is positively oriented. Since on U; we have

pja= fidx;+ ¢’ dy;, on U; N IQ
(pje ) o= 1"(pje)
= (f daj + ¢’ dy)

= (e 1)y o0) + (g7 =) d(y; 1)
=

g o) d(yjou),
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since d(x; o t) = 0 on U; N 0S2. Then,

/emmw<pj Soe= /anU ((pj o t)"a)™ = /6>9nt<<pj L))"
(7 )" d(y; )_/amuj(gj”)_d@j”)

o)) e (yion) dA—/ (g7 o 1) o (yjo0) " dA

6QﬂU
y; (092NU;)
/ Dtar - [ (ghesen iy
(a;,b5) (aj,bs)
/ Lol)dx
(aj,b;
b]
/ 0)(t) dt

- / ).

1 (0QNU;)

In conclusion, the following hold:

e do is integrable on €2 and (*« is integrable on 0f);
e we have

/ da = / do
Q Qnw

and

/ L*Oéz/ o
o9 o0NW

o do=3"T", d(pjcxr) on QNW, and t*a = > i (pjo ) on 02N W;
e for each j € {1,...,m}, d(p;a) is integrable on QN W, (p; o t)t*a is integrable
on 02N W, and

/ d(pja) = / (pjov)’a.
QNW oNNw
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Then, finally (YES!),

/da:/ da
Q Qnw
= [ > i)
onw 5

d(f)ja)

QﬂW

z:: ,

m\

\ ||M3 INNGE

|
S

dQﬁW

=

For the case when F = C, observe that the real 1-forms Re(a) and Im(a) on M are
C' and we have supp Re(a) C suppa and supp Im(a) C suppa, so that the sets
QN supp Re(a) and QNsupp Im(a) are compact. Thus, by the case F = R, the 2-forms
d(Re(a)) and d(Im(a)) on M are integrable over 2, the 1-forms ¢* Re(a) and ¢* Im(cv)
on 0f) are integrable over 0f2, and

/Q d(Re(a)) = /8 Re(a) and /Q d(Im(a)) /8 ).
Moreover, on €2 we have d(Re(a)) = Re(da) and d(Im(a)) = Im(da), and on 902 we
=Im (

have ¢* Re(a) = Re(t*a) and ¢* Im(«) «). Thus, da is integrable over Q, (*« is
integrable over 02, and
/ do =
Q

Re(da) —1—2'/ Im(de)

S— 55—

d(Re(a)) + i / d(Im(a))

Q

" Re(a) +i /8 (o)
Re(t*a) + i / Im(:*a)

o0

Q

Vo
Q

I
—
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3. ANALYSIS IN R"

3.1. C"° approximation.
We recall a theorem from the theory of Lebesgue integration:

Theorem 3.1. (Dominated derivation) Suppose X is a measure space with measure i,
let U C R be open, and let F be R or C. Suppose F': X x U — F is a function fulfilling

(i) for each y € U the function F, : X — F, x — F(x,y), is integrable,
(i) for each x € X the function F, : U — F, y — F(x,y) is differentiable,
(iil) there exists an integrable function g : X — [0,+00) such that for all v € X we
have’% < g(z) onU.

Then, we have

(a) the function
USE, g [ Pl dut)
be

18 differentiable,
(b) for each yo € U the function

15 integrable,
(c) for all yo € U,

([ renaw) = [ .

Definition 3.2. For a point x € R" and a nonempty subset S C R", we define the
distance between x and S by

dist(z, S) := inf{|z — s| | s € S}.

Yo

It may be useful to also define
dist(z,0) := +oo.

Lemma 3.3. Let Q C R"™ be open and u : 2 — C a locally integrable function. Suppose
k:R" = R is a C* function such that supp k C B(0,1). Fiz ¢ € (0,400).

(i) The set

Qs = {z € R"|dist(z, Q) > 0}
1s open and contained in 2.

(ii) For every x € s, we have B(x,0) C 2. Moreover, the function

1
5

Vs 12— C, yHu(y)k(xgy)

15 integrable and

[rn(552) g mm = [ k()5 i

:/ u(z — 6y)k(y) dA\(y) -
703(0,1)




(iii) The function

us: Qs — C, xH/u(y)k(xgy)éind)\(y)
Q

s C°.
(iv) The extension Us : 2 — C of us to 2 by 0 is locally integrable.
Suppose further that k is nonnegative on R™ and fRn kd\=1. Then,

(v) If u is continuous, then for any compact subset K C ) we have U5 — u uniformly
as 6 — 0% on K.

(vi) For u not necessarily continuous, is — u in L (Q,C) as d — 07.

Proof. (i) If Q = R", then we have 5 = ). Suppose 2 # R". If x € Q; then we
cannot have z € Q° so Qs C Q. For any z( € Q05 we may let a := dist(xg, 2°) and
choose 0 € (§,a). Then, for all x € B(xg,a — o) and y € ¢ we have

|z —y| >z —y| —|z —20| >a+0—a=0,

SO
dist(z, Q%) = inf{|z —y| |y € Q} >0 >,

which implies that € (5. Thus, )5 is open.
(ii) Fix x € Q5. For every y € Q°, we have

|z —y| > dist(z, Q) > 9,

so y € B(x,0)". Thus, B(z,0) C Q. Moreover, if y is any point in B(z,d) then
[(x—y)/d| > 1, so
r—y
k =0.
()
Thus, for all y € Q2 we have

e (b) = uly) k<x 3 y)(sin = XBaa () u(y) k(x 5 y) 5% .

Since k is bounded on R™ and w is locally integrable on €2, the function

r—y\ 1
— k —
y = uly) ( 5 ) 5
on B(x,0) is integrable, so vs, is integrable on 2. Moreover, applying change of
variables via the diffeomorphism

F:B(0,1) —» B(x,0), yw~— —dy+z,

we have

[rns(552) g = [ wwk( ) 5 i

- /Bu,a) uw) k<x g ?J) 5% )

:/ u(=dy + ) k(y) dA\(y) .
71B(o,1)




(iii) First note that since suppk is compact and contained in B(0, 1), we may find
v € (0,1) such that suppk C B(0,7). Then, for any x € Q5 we have

us(a) = /B W)u(y)k(”””;y)éinw(y) - /Muw)k(xgy)}ndw).

We first show that us is continuous on €2s5. Define the set

C:= U B(z,07).

z€Ns

Then, for any ¢ € C there is z € Q5 and s € B(x,07) such that|c — s| < 0(1 —7),
so that

lc—z| <|c—s|+|s—x| <d(1—7)+dy=09.

Thus, ¢ € B(x,d) C , so C C . Suppose r € Qs and {7, }men is a sequence in
Q25 converging to r. Then, the set

E:= ( U B(rm,(w)) UB(r,6v) Cc C

meN

is compact and contained in Q. For all x € {7, }men U {r}, we have

i) = [ une(*5Y) .

— 1
E— C, y»—)u(y)k‘(rm(s y)_

The functions

for m € N converge pointwise to the function
1 .
5_n ’

E — C, yHu(y)k(T;y)

and choosing an upper bound M € (0, +o0) for |k| on R™, for allm € Nand y € £

we have
Tm— Y\ 1
u(y) k( 5 ) 5

(please admire my superior skillz of deployment of the semicolon above). Then, by
the Dominated Convergence Theorem,

wstr) = [t k(") s > [ ue(5) 5 i) = st

as m — o0o. Thus, us is continuous.

Let r = (r1,...,m,) € €4, and choose ¢ € (0,0(1 — 7)) such that B(r,e) C
Qs. Then, for every point ¢ in the interval (ry — e,7 +¢) C R, we have s, =
(t,79,...,7) € Qs. Moreover, if t € (1 — e, +¢) and y € B(s, 0) then

M
g\u(y)\ -

ly—7r| <|y —s¢| +|se — 7| <oy +e<dy+d(1—7) =96,
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and hence B(s;,dv) C B(r,0) for all t € (r; —e,7r; + ). Consider the function

— 1
G:B(r,0) x (r —e,ry +¢) —» C, (y,t)Hu(y)k(St(S y)5_n

St — Y 1
k(25 )

We have:

(a) For all t € (1 — e,y + €), the function y — G(y,t) on B(r,J) is integrable.

(b) For each y € B(r, ) the function ¢ — G(y,t) on (r; —e, 1 +¢) is differentiable.
Denoting by x!,..., 2" the standard coordinates on R", for each tq € (r; —
g,71 + €) the chain rule gives

dG(y,t) ok (s, —y\ 1
= u(y) Ol ( 05 gntl

< P on R™. Then, for all y € B(r,d) and

dt

to

(¢) Choose P € (0,4+00) with ‘%

to € (r1 —e,m +¢) we have

dG(y,1) ok (s, —y\ 1
=|u(y) 71 5 gn+1

P

dt

to

and |u| 557 is integrable on B(r,9).
Then, by dominated derivation, the function

(ri—e,rm+e)—>C, t— / G(y,t) d\(y) = us(t,re, ..., )
B(r,9)

is differentiable at 1, so us has a partial derivative with respect to z; at r and

8u5 N d
S - % ([ _Gl) o)) )
ok (r—y\ 1
- /B(rﬁ) U(y) 3x1( 5 )5n+1 d/\(y)

_ /Qu(y) gfl (7“ - y> 5nl+1 dA(y).

Then, letting ¢ := %% on R", for all x € 25 we have

o= [t e(55L) 5.

Since ¢ is C* and supp? C suppk C B(0,1), the function ¢ fulfils all our as-
sumptions for k. Thus, we can reason for ¢ exactly as we did for k to conclude
that the function 2% on Qs is continuous and also has a partial derivative with

ozl
respect to x!. Reasoning similarly for the partial derivatives of us with respect to
the remaining coordinates 22, ..., 2", and applying induction on the order of the

derivatives, we can conclude that us is C'*™ on 2s.
Let K be a compact subset of Q. If K N Qs = (0, then 45 = 0 on K and thus it is
integrable on K. Suppose K N Qs # 0, and define the set

S:= |J Bld)ccca.

e KN
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Since K is bounded, so too is 5, so S is compact. Then, for each x € K, we have

o / u(y)k<$;y>5—nd)\() if v € KNQ,
as(x)| = S|SB
0 ifre K \ Qs ,
so that for all x € K,
s () /|u )| 52 dA(y) = R € [0, +00).

Thus,
/|a5(x)| d\(z) g/ Rd\ = RA\K) < +cc.

For the proofs of parts (v) and (vi), fix a nonempty compact subset K C €. Define

dy €

(0, 400] to be +o0 if Q¢ = (), and
inf{|z —y| |z € K and y € Q°} € (0, +00)

if Q¢ £ (). Choose dy € (0,d;) and suppose 6 < do. If Q¢ = ) then K C Q = Q5. If
Q¢ # (), then for each x € K and y € Q° we have |z — y| > d; , so

diSt(ZL’, QC) >d; > dy > (5,

and hence x € Qs. Thus, K C Q; for all § € (0,ds]. In particular, K C Qg,, and thus
the set

CK = U B(.T,dg’}/),

zeK

which is compact, is contained in €.

(v)

Suppose u is continuous on €2, and let € € (0, +00). Since u is uniformly continuous
on Cf, there exists a € (0,+00) such that for all y1,y> € Cx with |y; — 12| < «a,
we have ‘u(yl) — u(yg)’ < e. Let d := min{ds,a} € (0,400), and suppose § < d.
Since 6 < do, we have K C 5. Then, for all x € K we have

) =| [tk (T5) 5 ) - ute)
- /Wu@)k(xgy)éindw)_ /Mu@)k(“fgy)éindm

“| L) o H(552 )5 )
AT

and since for all y € B(z,07y) C B(x,dsy) we have x,y € Ck and |y — x| < v <
§ < d < a, we know that |u(y) — u(z)| < e. Thus,

e = (5 ) < [ (5 =

In conclusion, for all § € (0,400) such that § < d and for all z € K, we have

as(z) — u(z)| <e.
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(vi) If A(K') = 0, then for all § € (0, +00) we have

Jis = wllsy = [ s =l dr =0,

80 [|tis — ul[ 1) — 0 as & — 07. Suppose A(K) > 0, and let again € € (0, +00).
Since u is locally integrable on 2 and Cx C () is compact, there exists a continuous
function f : 2 — C with compact support such that

£
lw = fllpicg) < 3

It follows that

3

HU’ - f”Ll(K) S ||u - fHLl(CK) < § .

Moreover, since f is integrable (and hence locally integrable) and continuous on
Q, by (v) there exists d € (0, ds] such that for all § € (0, +00) with § < d and for

all v € K, ‘fg(a;) - f(x)‘ < 550 Fix 6 € (0,d). We have

Jis= = [ o=l 3= [ sxzyar=35

Since § < d < dy, we know that K C 5. Then,

v = L0 = sk () 5 )
sz;ﬁémww@y—ﬂwl4?5”)%de)M@>
= [ ([t = g0l (55 ) s i) Jarco.

We wish to show that the function

H:KxCx =R, (z,9)|u(y) — f(y)| k<x5y)5in

—Js

d\(zx)

is measurable on K x Cx C R*". Since the function |u — f| is measurable on Cf,
if U C R is open then the set

Ay = {y e Cx|Juty) - fw)| € U}
is measurable in Cx C R™. Observe that as subsets of K x Ck,
{(x,y) € K xCk ’ lu(y) — f(y)| € U} =K x Ap.

Since Ay is measurable in Cx C R™, the set K x Ay is measurable in K x Cx C R?*?,
which shows that the function

KxCx =R, (z,y)—|uly) — )]

is measurable. Moreover, the function

K xCx >R, (x,y)Hk(xgy>5ln
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is continuous and hence measurable. Thus, H is a product of two measurable
functions and so it is itself measurable. We may then apply the Fubini-Tonelli
theorem to write

= fuy) — F)] k(TS 5 dM) )dAw).
AV (55 2)

s — fs

For each y € Ck, we have

[ 1t - 1061 6(%5 )5—ndA< )= \/ (

=lu(y) - f(y)\
Thus,
£
gy = 1000 = S0 ) = T < -
In conclusion, by the triangle inequality,
”ﬁ(S_U/HLl(K) SHU_fHLl(K)+Hf5—fHL1(K) H fa)Ll(K
e € €
3 3 3
= 5’

where § € (0,d) is arbitrary.
0J

Lemma 3.4. Let €2 C R"™ be open, and suppose u : 2 — C is a locally integrable function

such that
/ udh =0
K

for every compact subset K C ). Then, u =0 almost everywhere in ).

Proof. We first prove the statement for the case when u is real-valued. Recall that the
Lebesgue measure is inner regular, that is, for any measurable set S C R",

A(S) = sup{\(K) | K is a compact subset of S} .

Let n € N, and suppose )\(ufl((%,qLoo))) > 0. Then, there exists a compact set
K, Cu((%,400)) with A(K,,) > 0. Since u > % on K, we then have

1 1
/udAz/ —d\ = —\K,) >0,
n nn n

which is a contradiction. Thus, we must have )\(u’l((%A—oo))) = 0. Similarly, if
)\(ufl((—oo, —%))) > 0, we may find a compact set K_,, C uil((—oo, —%)) with posi-
tive measure, and we would then obtain the contradiction

1 1
/ ud/\g/ —Zd\A=——\K_,) <0.
. ,on n
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This shows that for all n € N we must have

() e ()
7= (R\ {0}) = || [ul(<%+oo)> wl(( - oo—%))}

neN

has measure 0 and u = 0 on 2\ 7. Thus, the lemma holds when u is real-valued. If u
is complex-valued and its integral over any compact subset of {2 vanishes, then for all
compact K C €2 we have

/KRe(u)d)\Jri/KIm(u)d)\:/Kud)\:O.

Thus, the integrals of Re(u) and Im(u) over any compact subset of € vanish, which
implies that Re(u) and Im(u) vanish almost everywhere in 2 and hence also u = 0
almost everywhere in (2. OJ

Definition 3.5. For an open set 2 C R™, and letting F be R or C, we denote by D(£2,F)
the vector space of C* F-valued functions on 2 with compact support in €. In this
text, we will also write D(£2) to denote D(S2, C).

Lemma 3.6. Suppose 2 C R" is open.
(i) If u: Q — C is a locally integrable function such that for all ¢ € D(Q2,R)

/@Z)ud)\:O,
Q

then u = 0 almost everywhere on 1.
(ii) As a consequence, if u,v € Li (Q,C) fulfil

loc

/Q@z)udA:/deA,

for all ¢ € D(Q,R), then u = v almost everywhere in €.

Proof. (i) Fix a compact set K C €2, and let 6 € (0, +00). Using notation from Lemma
3.3, for every x € ()5 we have

o) = [ unr(T5Y) 5 ) =o.

since the function y +— k(%y)é% € R on Q is C* with compact support. Thus,
we have 45 = 0 on €. Then, choosing a sequence {0,, }men in (0, 400) converging
to 0, for all m € N we have

/ud)\‘ §/]u\ d\
K K
:/|u—a5m|d/\,
K

which by Lemma 3.3 (vi) converges to 0 as m — co. Thus,

/ud/\:(]
K

T




for every compact subset K C €2, which by Lemma 3.4 implies that © = 0 almost
everywhere in €).

(ii) It follows from (i) that u — v = 0 almost everywhere in {2 and hence v = v almost
everywhere in €).

O

3.2. Differential Operators and Formal Adjoints.

Let 2 C R™ be open, and let V(Q2) denote the vector space of complex-valued functions
on . For each a = (ay,...,an) € (Z>o)", let |a| == ag + -+ + . We define the
notation

<(%) = (O ?f(axn)an

if a# (0,---,0), and we let (%)(O’M’O) denote the identity operator V() — V(Q).
For k € Z>o, we define a linear differential operator A of order k on ) to be a

C-linear map of the form

A:CHO) = V(Q), Af:= ) aa(%)af
a€(Z>o)"
jal<k

for f € C*(Q2), where for each o € (Z()" with |a| < k, a, is a complex-valued function
on §2 and is called a coefficient of A. We may define the notation

Op = {a € (Zz0)" ||o| <k},

and write

If U C Q) is an open set, we may also denote by A the operator

CHU) = V(U), g Y aa|U(%)ag

acoy

on U, if there is no possibility of confusion. We also define the conjugate of A to be the
linear differential operator on {2 given by

1.0k Af-— AF (0"
A:CHQ) = V(Q), Af =Af =) aa(%) f
acO}
for each f € C*(Q). Note that if k& = 0, and letting 0 := (0,...,0) € R", the action
of the operator A is simply multiplication by the function ag : 2 — C, so we may also
regard A as a linear map from the vector space V(£2) of complex-valued functions on
to itself.
Note that the set of linear differential operators of a given order k € Z>( on {2 forms

a complex vector space, which we may denote by £D*(Q). Moreover, if k,{ € Z>, and
k < ¢, then we may regard £LD"(Q) as a subspace of LD*(Q). Then, if A and B are

linear differential operators on €2 of respective orders k£ and ¢, we may denote by A+ B

the sum of A and B in £DY(Q) = £D™{k(Q).
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Definition 3.7. Let 2 C R" be open, let k € Z>(, and suppose
a o
A= —
> o5
acOy

is a linear differential operator of order £ on 2. Suppose further that for each a € O},
we have a, € Clol(Q).

(i) We define the formal transpose of A to be the linear differential operator ‘A of
degree k on 2 given by

a «
PALCHO) = V(Q), f Dl =) (aaf),
CRACHREP M () twh

for f € C*(Q). o
(i) The formal adjoint of A is defined to be A* := 'A = !A, that is, the linear
differential operator of degree k on €2 given by

A CHQ) = V(Q), [ Z(—l)'“(%)a(@f)

acoy

for each f € C*(Q).
(iii) If u,v € Li (R, C), we say that v = Agis,u if for every function ¢ € D(Q) we have

/u-tAcpd)\:/vgpd/\,
Q Q
/u-ATgod)\:/ng)d)\
0 Q

for every function ¢ € D(9Q).

or, equivalently,

Remark 3.8. In Definition 3.7 (iii), if w € L} (2, C) is another function such that
w = Agistrtt, then for all ¢ € D(Q) we have

/vgod)\:/thgod)\:/w(pd)\,
Q Q Q

so that v = w almost everywhere by Lemma 3.6 (ii).

Definition 3.9. Let k,¢ € Z>(, and suppose A and B are linear differential operators
on ) of orders k and ¢ respectively. Suppose further that the coefficients of B are C*.
We then define AB to be the linear differential operator of order k + ¢ on 2 given by

AB: C*(Q) = V(Q), (AB)f:= A(Bf)
for each f € C*H(Q).
Lemma 3.10. Suppose 2 C R" is open, k € Z>,, and

a «
A= al =—
5 o(5)
acOy
15 a linear differential operator of order k on ) with C*° coefficients.

(i) Let u : Q — C be a function. If k =0 and u is locally integrable (which includes
the case when u is C°), or if k > 1 and u is C*, then Au is locally integrable on Q

and Au = Agistyt.
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(i) Let u,v € LL (Q,C). Then, v = Agiseu if and only if for every point p € ) there

loc

s a neighbourhood U of p in 0 such that v, = Adistr (u|U)
(iii) “(*A) = A and (A*)* = A.
Suppose now that ¢ € Z>o and

1s another linear differential operator on €0, of order { and with C'* coefficients.

(iv) For every ¢ € C, we have (CA+ B) = (*A+'B and ((A+ B)* = (A* + B*.

(v) (AB) ='B'A and (AB)* = B*A*.

(vi) Suppose u,v,4,0 € Li _(Q) with v = Agisyu and © = Agisyt. Then, for any ¢ € C

we have (v+0 = Agiste(Cu+1a), orin other words, Agist(Cut1) = ( Agistrtt+ Adistr U-

(vii) Suppose u,v,w € L _(Q) withv = Agisew and w = Byiswu. Then, for any ¢ € C we
have (v+w = ((A+ B)aistrtt, or in other words, ((A4+ B)aistrt = ¢ Agistrtt + Baistr -

(viii) Suppose u,v,w € Li _(Q) with v = Baispru. Then, w = (AB)aiswu if and only if
w = Adistrv = Adistr(Bdistru)-

(ix) Suppose k =1 and ag = 0, that is, A may be written as

_ 0
A= Jigg
j=1

for some C*° complex-valued functions fi,--- , fn, on Q. Suppose also that u,v €
L (Q) with v = Agisieu, and let p € C®(Q). Then, we have

loc
pv + uAp = Agiste(pu)

or in other words,

Agistr(pu) = (Adistrp)u + pAdistrtt -

Proof. (i) Suppose first that £ = 0 and u is locally integrable. Then, letting again
0:=(0,...,0) € R", the function Au on € is the product agu, where the function
ag is continuous on (). Then, if K C ) is a compact set, u is integrable on K
and ag is measurable and bounded on K, and hence agu is integrable on K. Thus,
Au € LL.(Q), and the fact that Au = Agispyu is immediate. Assume now that
k> 1and u € C*(Q). Since the function Au : Q@ — C is continuous, it is in
L .(Q). To show that Au = Agiseett, let o € D(Q). For a fixed o € OF \ {0}, we
may write

« laf
0 0

where for each j € {1,... |a|}, 77 is one of the standard coordinates =, ...,z
R". If |a| = 1, we have

) 9 au . u _ d(aapu) 8(aago)u _ ANaapu) (0 a(a N
P\ or o or! ort orl Oz o) )t
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and for |a| = 2, we have

o\* 0%u
o' oz u:aagoarlaﬂ

- (oeft) (%)« () o)

If |a| > 3, we may continue using the product rule repeatedly to show that

ot o]
0 0
o) w=one| I 53]

laf—1

= oo 1 5])
g ([ I glea) ([T a)))

Thus, allowing any value of |o| € Z>1, we have

it (5 ) 0= 5+ 0" ((5) () Ju,
oY

where S, is a sum of functions {2 — C, each of which is the partial derivative 3~
with respect to some standard coordinate r on R" of a C' function ¥ : Q — C
with compact support suppt C suppy. We may choose an open bounded rectangle
R C R"™ containing suppy, and write the integral over {2 of each term g—f of the
sum S, as an integral over R by restricting 9 to R, extending it by 0 if R ¢ €.
We may then apply Fubini’s theorem to write the integral over R of each term
‘g—f of S, so that the innermost integral is taken with respect to the corresponding
coordinate r of the outermost partial derivative, and then apply the Fundamental

Theorem of Calculus to conclude that

/Qsa d\=0,
/Qaag0<%)aud)\:L(—l)'“'((%)a(aa¢)>udk.
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Note that the above equality also holds for & = 0 and hence it holds for all o € OF.
It follows that

/Q<AU)90dA=/Q(Z aa(%)au)god)\

acOy

which shows that indeed Au = Agirut.
(ii) (<) Suppose that for every point p € € there exists a neighbourhood U of p in
) such that v, = Adistr (u|U) Let ¢ € D(2). We may find a finite collection

{U;}7L, of open subsets of €2, for m € N, such that suppy C U;”Zl U; and for
all j € {1,...,m} we have v, = Adistr(U|U,)- The collection U := {U;}7; U

{Q \ suppy} is then an open cover for 2, which is second countable, and hence
there exists a smooth partition of unity {pj};.’”jll on 2 such that suppp; C Uj
for all 7 € {1,...,m} and suppp,i1 C Q\ suppp. Fix j € {1,...,m}. The
function p;p is smooth on Q and suppp;e C suppp; N suppy. Since suppp;p is
a closed subset of the compact set suppy, it is itself compact, and we also have
suppp,¢ C suppp; C U;. It follows that the restriction pjgprj is in D(U;). Since

pje vanishes on the open set Q\ suppp;p D 2\ U;, so too does *A(p;¢), and thus

/Qu-tA(pjsO) dk:/ ul, - (“Alpse))|,, dA
U] J J
:/UIU,UJ, S Alpsp], ) X

_ piol . dA
/Ujlej p]S0|Uj

= / vpjpdX.
Q

For a point p € €, if p € suppyp then

(@épj) (0) = (gomzp) 0) = o(v).

while if p € Q \ suppy we also have

(sozm;m) (p) =0=o(p).
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Thus,

ZLZu-tA(pjw) dX

= Z/ Alpsp)d

ZZ/vpjsodA
j=1"¢

=/vawdA
Q50

:/mpd)\,
Q

which shows that v = Agist,v on €2.
(=) Obviously.
(iii) We first show that ( A)go Ap for all ¢ € D(2). Choose ¢ € D(Q2). Then, for
any other ¥ € D(Q), by (i) we have

/19 god)\:/(tAﬁ)god)\:/ﬁAgod)\,
Q Q

which implies that
/ D('("A)p — Ap) dr = 0.
Q

Since the function *(*A)p — Ay is locally integrable on €2, by Lemma 3.6 (i) we
have !(*A)p — Ap = 0 almost everywhere, and continuity of ‘(*A)¢p — Ap then
implies *(*A)p — Ap = 0 on Q. To show that (*A) = A in general, choose arbitrary
€ CFQ) and ¢ € D(Q2). Applying again (i), we have

| r-ccanear= [ ceaean
" /Q F-H A dr = /Q ftApdy = /Q (Af)pdn,
so that /Q A

Since the function *(*A) f — Af is continuous on €2, it is locally integrable, so again
it follows from Lemma 3.6 (i) that “(*A)f — Af = 0 almost everywhere; and again
by continuity, we must then have ‘(*A)f — Af = 0 on Q. This shows that indeed
‘(*A) = A. The fact that (A*)* = A follows, since

(A) =1(tA) =A=A.

(iv) This part is left for the reader to check.
83




(v) Given arbitrary f € C*(Q) and ¢ € D(Q2), we have
[e-tany = [ £-aB)par
Q Q
— [ amear
Q
- / (*Af) By dA
Q
= [Beap)par
Q0
= /Q ((tBtA)f)gad)\

By a similar argument as in part (iii), continuity of the function *(AB)f — (*B*A) f
implies that {(AB)f — (*B'A)f = 0 on €, and since f € C*+(Q) was arbitrary, this
shows that {(AB) = *B*A as operators. We may then show that (AB)* = B*A* as
follows: for any f € C**(Q), we have

(AB)"f ="(AB)f ="(AB)f = (‘B'A)f ='B("Af) ='B('Af) = (B"A")f .

Statements (vi), (vii) and (viii) are left for the reader to check.

(ix) First observe that under our requirements for A, for any g, h € C*(2) we have
A(gh) = (Ag)h + gAh

and

and hence
up'Ap = u'A(pp) +u(Ap)yp .
Since pp € D(Q2), we have

/utA(/w) dk—/ws@dh
Q Q

/uptAgod)\:/vpgpd)\—i-/u(Ap)god)\
Q0 Q 0

= / p(vp +uAp)dA,
Q

so that

which proves the claim.
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Lemma 3.11. Suppose k : R™ — R is a C* function with supp k C B(0,1), let Q@ C R™
be open, and let § € (0,4+00). Define Qs C Q as in Lemma 3.3, that is,

Qs = {z € R"|dist(z,Q°) > 6};
and for any u € L, .(Q), define us : Qs — C also as in Lemma 3.3, that is,

wl) = [atr(T5Y) 5w

for each x € Q5. For l € Z>y, let

- xe(E)

acey

be a linear differential operator of order ¢ on R™ with constant coefficients. Then, if
u,v € L} () with v = Agistrut, on Qs we have

loc
Vs = A(U5) .
Proof. For each z € (), define

w57xiQ—>Rn, yH%
and
1

ks, =
5, 5

ko Qﬁ(s@ S D(Q) .
If £ =0, then for any x €

Alus)(z) =

u(y) a k(x g y) 5% dA(y)

= vs(x) .
Suppose ¢ > 1 and fix a € ©} \ {0}. We have

a o]
0 0
(5) =I5
7=1
where for each j € {1,...,|a|} we have 7 = 2P0 for some p(j) € {1,...,n}. By

the proof of Lemma 3.3 (iii), we know that for any w € L}, .(Q) and any C*° function
[ :R" — R with supp! C B(0,1), the C* function

— 1
g: Qs — C, a:r—>/w(y)l(x y)—d)\(y)
Q ) on

dg wly) ol (z—y\ 1
aw‘(“”’/a 5 o\ 5 )W
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for each j € {1,...,|a|}. Using this fact, we may show by induction that

(52) = [T (oo [ (*5) v
(e [ 52 ([0 (552 geon)
-(= [ 5 () ) (5)50w)

Since this equality also holds for a = 0, we have

Alus) = Z o <8%)au5

—Gi@/ 5 () 1) (5 s om).
Let again o € ©} \ {0} and .
(5) =I5

where for each j € {1,...,Ja|} we have 7 = 299 for some ¢(j) € {1,...,n}. Observe
that for any C'* function [:R" = R, we have

0 1 /—=1\ 0l
81( %z) _5_n<7)%0¢5,x'

for each j € {1,... |a|}. Using this, we may show by induction that

o\ o\/ 1 1/—1\"/7 a0\
(@) = () o) =5 (5) () o) oo

which also holds if &« = 0. Then, for any x € ()5, we have

vs(z) = / v ks, dA
Q

= / Ak dX

/ aezen 1)l < ) (aaks ) AN
/2;( e () (%)) o)
2 [es (@) ) (52 v

= (A( (w)-
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4. COMPLEX ANALYSIS IN C
For the remainder of this text, for any zgp € C and R € (0, +00|, we define
A(z;R) :=={2 € C| |z — 2| < R}
and
A*(z;R) :={2€C|0<|z— 2| < R}.
Also, for r € [0, R), we define

Azg;r, R) :={2€C|r <|z— 2| < R}.

4.1. Background Material on Holomorphic Functions.
In this section, we recall some basic definitions and results about holomorphic functions
that are normally studied in a first course on complex analysis. We therefore skip proofs.

Definition 4.1. Let A € C. Suppose f : A — C is a function defined on some
neighbourhood U of a point zy in C. Then, f is said to be complex-differentiable at z
if the function
ZI—>f<Z)_f<ZO)E(C,
Z — 20
which is defined on U \ {2}, has a limit at z5. Then, we define the complex derivative
of f at zy to be the complex number
df . f(2) = [(20)
! = = = lim —————~,
f'(0) dz(zo) S
Definition 4.2. Let (2 C C be open. A function f : 2 — C is said to be holomorphic
on € (or just holomorphic) if it is complex-differentiable at every point in 2. We then
define the function f’: Q — C, which maps a point z € € to the derivative of f at z.
We denote the set of holomorphic functions on © by O(€2). A function f € O(C) is said
to be entire.

Theorem 4.3. A holomorphic function f : Q0 — C, where  C C is open, is continuous
on 2.

Theorem 4.4. Let f and g be two holomorphic functions on an open subset 2 C C.
Then,

(i) the function f + g is holomorphic on Q, and (f +g) = f'+ ¢;
(ii) the function fg is holomorphic on Q, and (fg) = f'g+ fq';
(iii) if g is nowhere-vanishing on ), then the function § is holomorphic on §, and
(i)’ — f’g—2fg/'
9 9

Moreover, if f € O(Q) and g € O(Y), where Q,T C C are open and f(2) C Y, then
the function go f : Q — C is holomorphic on 2, and (go f) = (¢’ f)f".

Example 4.5. (i) A constant function mapping C to a fixed complex number is entire
and its derivative is the zero function on C.

(ii) For all n € N, the function z +— 2™ on C is entire, and its derivative is the function

2+ nz" ! on C. In particular, the identity function on C is entire and is derivative

is the constant function 1.
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(iii) It follows from (i),(ii) and Theorem 4.4 that every polynomial on C is entire, and

that every rational function defined on some open subset U C C is holomorphic
on U.

(iv) The function mapping a complex number z to its complex conjugate z € C is not
holomorphic on any open subset of C.

For the remainder of Section 4.1, we fix an open subset  C C and write C*(Q) to
denote C*(Q, C), for k € Ny U {o0}.

We define the following linear differential operators, which map C*(Q) to C*~1(Q)
for any k € Z>; U {oo}:

o _1(o 0N o _1(0 0
dz  2\ox 0Oy)’ 0z 2\ozx  oy)’

One can check that these operators, apart from being C-linear, fulfill the following
properties:
W 0 0z 0 0z
z z z z
0z T 0z 0, 0z 0, 0z ’
where z and Zz are the identity and conjugate functions respectively on 2;
(ii) (Leibniz rule) for k € Zs; U {oo} and f,g € C*(9),
and similarly for =2

d(fg) (Of dg
07 —(5ﬁg+fﬁﬁ)’
oz

(iii) ifa,b € R, a < b, v : (a,b) — C is real-differentiable and f € C'*(€), and assuming
v(a,b) C €, then

d of \dv [0f \dv
W”):(&”)E*(@”)a
on (a,b).

Suppose f € C}(), and let u := Re(f) and v := Im(f). Then, on ,

a(fg) .

of
£—0
1(@ Ov  Ou 81})

Jdr Oy dy ox
We will refer to the two equations on the last line as the homogenous Cauchy-Riemann
equations.

Theorem 4.6. A function f : Q — C is holomorphic on 0 if and only if it is real-
differentiable and % = 0 on (2, that is, if and only if it is real-differentiable and its partial
derivatives (whose existence follows from real-differentiability) fulfil the homogeneous
Cauchy-Riemann equations on . Moreover, the derivative of f on ) is given by

p_0t_or_ o
0z Or Z@y'
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Definition 4.7. Let f : 2 — C, and suppose there is a holomorphic function F': Q — C
such that F" = f on Q. Then, F is said to be a primitive for f on €.

4.2. C as a manifold.

We give C the smooth manifold structure and standard orientation of R?, and we let
(xz,y) denote the standard coordinates on C. Since the functions z = z + iy and
z :=x — iy on C are C'°, we may take their differentials

dz =dx +idy, dz=dr—1idy.

For each p € C, the elements (dz),, (dz), € (T,C)c are linearly independent and hence
form a basis for (7;C)c. Then, any complex 1-form « on an open subset 2 C C can be
written as

a=Pdr+Qdy=Adz+ Bdz
for some unique functions P,Q, A, B : Q — C, with

A:%(P—ZQ), B:%(PHQ).

and
P=A+B, Q=iA-DB)
Thus, for k € Zso U {oo}, by Proposition 2.13, « is C* if and only the functions P
and @ are C*, or if and only if the functions A and B are C*.
Suppose © C C is open and 7 : [a,b] — Q is a C! path, for a,b € R with a < b. If

a = Pdr+ Qdy = Adz + Bdz is a continuous complex 1-form on €2, for continuous
functions P, Q, A, B : ) — C, then letting u := oy = Revy and v := yovy = Im~, we

have
La _ /a” <P(7(8))% S + Q(Py(s))% ) s
- [ (oG] + s as

For each p € C, we have
(d2)p A (dz), = —2i (dx), A (dy)y

so dz Ndz = —21dx N dy on C. Then, a complex 2-form  on a subset £ C C can be
written as

,Bzfd:vAdy:f%dzAdz,
where f := /(dx AN dy) : E — C. Moreover, for k € Z>oU {oo} and assuming £ C C
is open if k > 1, the 2-form 3 is C* on E if and only if f is C* on E, or if and only if

f % is C* on E. If the set E is measurable in C and the function f is measurable on F,
then the 2-form [ is measurable on F, and

/E@i:/Efidmdy:/EfidA,

which shows that g is integrable on E if and only if f is integrable on E.
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Suppose 2 C C is open and f : Q2 — C is a C! function. Then, on  we have

6)fd +ﬂ Wd +%d*_af+5f,

af = By BB BE

where
o .
0z
Moreover, f is holomorphic on  if and only if f = 0 on €, or if and only if df = hdz
on ) for some function h : Q — C.
If Q c C is open and

Of = —fdz and Of =

a=Pdr+Qdy=Adz+ Bdz

is a C' complex 1-form, for some C* functions P, Q, A, B : 2 — C, on € we have

da = (G_Q_G_P) dz N\ dy

Jor Oy
and
do =dANdz+dBNdz
(g—f - %) dz Ndz
= Ja + da,
where
Oa = %—de/\dz—aB/\dz
and

Do := —%dz/\dézgfl/\dz.
0z

4.3. Polar Coordinates.
For any 6, € R, the map
[0, +00) X [0, 00 +27) = R?,  (r,0) — (rcos®,rsinf),

is continuous and surjective. Its restriction (0,+00) X [6p, 0y 4+ 27) — R*\ {(0,0)} is a
bijection, while its restriction (0,400) X (6,0 + 27) — R?\ Zy, , where

9 = {(rcosfy,rsinfy) € R*|r >0}

is the closed ray emerging from the origin at an angle 6y with the positive x-axis, is a
diffeomorphism. Denoting this diffeomorphism by Fy,, we have

cosf) —rsind

ero (T, 9) =

sinff rcos@

at each (r,6) € (0,400) x (6o, 0 + 27). Note that A\(Zj,) = 0 in R?. Then, by Theorem
2.44, the Fubini-Tonelli Theorem and Fubini’s Theorem, if X is R,R or C and f : R? —
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X is nonnegative measurable (for X = R or R := [0, +00]) or integrable (for X = R or

C), we have
Fd) = / FdA
R? R2\ Zg,

(foFy,) dA

Try,

/(‘0,4-00) X (60,00+27)

= / / f(rcos@,rsin)rd\(0)d(r).
(0,+OO) (90,90+27T)

Definition 4.8. For any point (z,y) € R? and (r,0) € [0, +00) x R such that (z,y) =
(rcos,rsinf), we call (r,0) polar coordinates for (x,y). For any 6 € R, we define
¢ :=cos@ +isinf € C,

so that if (z,y) = x + 4y is a point in C with polar coordinates (r,f) under the identifi-
cation of C with R?, we have

x+iy=rcosh+irsinh=re?.

Suppose 6y € R. Since Fy ' : R?\ Zy, — (0, +00) X (6, by + 27) is a diffeomorphism,
the pair (R?\ Zy,, FQ_OI) is a chart on R?. Denoting by (s,t) the standard coordinates
on (0,400) x (fy, 0y + 2m), and letting r := s F, ' and 6 :=to F, ', we have

dz \dy = (T, ° Fptydr AdO =rdr A df
on R? \ Z,, since Fp, is the transition map between the charts (R?\ Z,, Fe_ol) and
(R?,1g2). Moreover, we have Jp, > 0 on (0,+00) x (6,0 + 27), so that the atlas
{(R%\ Z,, Fg_ol), (R? 1ge)} is oriented and thus (R?\ Zy,, Fe_ol) is positively oriented.
Proposition 4.9. For any R € (0, +00), the open disc A(0; R) C R? of radius R centred

at the origin is a smooth open set in R?.

Proof. Let 6y € R. By the above discussion, (R? \ Zy,, F, ') = (R?\ Zy,,7,0) is a chart
in R?, and we have

(R*\ Zg,) NA(0; R) = {p € R*\ Zy, | 7(p) < R}.
Consider the diffeomorphism

G:R*—=R*, (2,9)— (x—R,y).
Restricting G to the diffeomorphism
(0, +00) X (0o, 6y + 27) = (—R,+00) % (6o, 00 + 27),

we obtain another chart (R*\ Zy,, G o Fy'). Denoting by (s,t) the coordinate functions
of this chart, we have

(R*\ Zg,) NA(0; R) = {p € R*\ Zy, | 5(p) < 0}

To show that A(0; R) is a smooth open set, we need to cover R? by charts (U, ¢) =
(U, 21, x5) such that
UNA(0;R)={peU|zi(p) <0}.
Choosing any 6,6, € R that do not differ by an integer multiple of 27, for example
61 := 0 and 6 := 7, the charts (R?\ Zp,, GoF, ") and (R?\ Zp,, Go F,.") cover R*\{(0,0)}.
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To cover the origin, choose a chart (A(0, %), ¢) where ¢ is any diffeomorphism mapping

A(0, }52) to the open left half-plane, for example G. O

Remark 4.10. Referring to the proof of Proposition 4.9, note that for any 6y € R the
chart (R?\ Zg,,G o F, ') = (R*\ Zg,,s,t) in R? is positively oriented. Thus, if we give
the boundary OA(0; R) the induced orientation from R? with respect to A(0; R), the
chart

(Usys Gay) i= (R?\ Zg,) NOA(O; R), s01) = ({Re® € R?|0 € (0y,00 + 2m)},501)
in OA(0; R) is positively oriented. As a consequence, the diffeomorphism
Gg, = 501 {Re® € R?|0 € (0y,00 4 27)} = Up, — (00,00 +27), Re™ 0

is orientation-preserving (since for any positively oriented chart (V)4) in an oriented
smooth manifold M, the map ¢ : V' — (V) is an orientation-preserving diffeomor-
phism). Let © C R? be an open subset such that dA(0; R) C Q. Consider the map

v (0,00 + 27 = Q, O+ Re® = (Rcosf, Rsin6).
We have:
(a) v is a C! path. Indeed, the map

R—Q, 6~ (Rcosf, Rsinf)

is C*° and restricts to y on [0y, 0y + 27].

(b) The image v((0y, 0y + 27)) = Uy, is a l-dimensional smooth manifold as an open
subset of OA(0; R). Moreover, the inclusion map ¢ : Uy, — Q2 is C*°, as the restriction
Up, — Q of the inclusion map dA(0; R) — R2.

(¢) The map

(00,00 + 210) — Uy, , 0+ () = Re”
is precisely
q§9_01 2 9, (Ugy) = (00,00 + 2m) — Uy,
and hence it is a diffeomorphism. Moreover, since ¢, ! is orientation-preserving, Uy,
has the orientation induced from (6, 6 + 27) via ¢,

In conclusion, v fulfils all the conditions in the hypothesis of Lemma 2.79, so that if «
is a continuous 1-form on €2, then ¢*« is integrable on Uy, and

/a:/ o
gl Uog,

The following proposition is a useful application of polar coordinates:

Proposition 4.11. For R € (0,+00), the function z — % on A*(0; R) = A(0; R) \ {0}
1s integrable. As a consequence, the function
0 ifz=0
g:C—=>C, 2w 4, Z,f :
S ifz#0

18 locally integrable.
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Proof. Denote by f the function z +— E‘ on A*(0; R). Regarding A*(0; R) to be a subset
2 _ 1 *(0N.
of R?, we have f(z,y) = T for each (z,y) € A*(0; R). Let

A= {(x,0) € R*|z > 0}.

Since A has measure 0 in R?, we have

/ Fd) = / Fdx,
A*(0;R) A*(0;R)\A

so we may use the diffeomorphism
F:(0,R) x (0,2m) = A*(0; R)\ A, (r,0) — (rcosf,rsinf)

to write

/ Fdr = / FdA
A*(0;R) A*(0;R)\A
:/ (f o F)|Jp| A
(0,R)x (0,27)

1
= / —rd\
(0,R)x(0,2m) T

=27R.

Since f has finite integral over A*(0; R), the function z — é is integrable over this set,
or in other words, g is integrable over A(0; R). For any p € C\ {0}, we may choose a
bounded neighbourhood U of p such that U € C\ {0}. Then, since g is continuous on
the compact set U, it is integrable on U and hence on U. Thus, g is locally integrable
on C. OJ

Remark 4.12. For any z; € C, the map
F:C—C, zw—2z42

is an orientation-preserving diffeomorphism. Thus, by Remark 2.84 and Proposition
4.9, for each R € (0,+00) the open set A(zp; R) = F(A(0; R)) C C is smooth, and F'
restricts to an orientation-preserving diffeomorphism F' : 0A(0; R) — 0A(zo; R). Then,
for y € R and using notation from Remark 4.10, since the chart (Uy,, ¢g,) in OA(0; R)
is positively oriented, the chart

(F(Usy), ¢go ° F~1) = ({z0+ Re” [0 € (60,00 + 2m)}, 20 + Re” — 0)
in OA(zo; R) is also positively oriented.

Definition 4.13. For z; € C and R € (0,+00), we call the orientation on 9A(zg; R)
induced from C with respect to A(zg; R) the counterclockwise orientation on 0A(zg; R).
The remaining orientation on 0A(zg; R) is called the clockwise orientation. If nothing
else is stated, we will assume 0A(zg; R) is equipped with the counterclockwise orienta-

tion.
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4.4. Local Solutions of the Cauchy-Riemann Equation.

Lemma 4.14. Let Q2 C C be a smooth relatively compact open subset, and suppose f is
a C' complez-valued function on a neighbourhood W of Q.

(i) (Cauchy Integral Formula). For each zy € ), we have

f(zo)—i( (2) dz+/Q aﬁazdz/\di).

21\ Jaq 2 — 20 \{z0} Z — 20

(ii) (Cauchy’s Theorem).

f(z)dz—f—/g%dz/\dz:().

o0
Proof. (i) Fix 2 € €, and consider the C' 1-form
N (RN
zZ— 20
on W\ {z}. Choose N € N such that A(z;+) C €, and for each n € N,
define ¢,, = NLM and Q, := Q\ A(z0;¢,). Then, for a fixed n € N, we have

00, = 00U IA(29;6,) and 9Q N IA(29;€,) = 0. Denote by (r,s) the standard
coordinates in R For each p € 02, we may choose a chart (U, $) about p in

C such that UNQ = {qg € U|(ro¢)(q) < 0} and U C A(zp:e,) , so that
UNQ C Alzo;n) ‘N =9, and we actually have

UNQ,=U0UNn={qeU|(r-¢)(q) <0}.

As the exterior of a smooth open set, A(zp;£,) = ext A(zg:€,) is also a smooth
open set. Thus, for each p € 0A(zp;e,) we may choose a chart (V) about p in

_

C such that V N A(z0;e,) ={g € V|[(re¢)(q) <0} and V C A(zp; %) C €, so
that V N A(z0:,)  C Q and we have

VN, =VNAGe) NQ=VNA(z ) ={q€V|(rov)(q) <0}.

It follows that €, is a smooth open set in C and hence in W \ {z}. Since Q, C
W\ {20}, the closure of €, in W \ {z} is precisely ©,, and hence it is compact.
Moreover, since A(zo; %) \ A(z0,€,) C Qy, we have €, # 0. Then, since « is a C*
1-form on W \ {2} and Q, N SUPDy (z,} @ 18 compact, by Stokes” Theorem,

/da:/ o
n 6Qn

Since 082, is the union of the disjoint sets 9 and A(zg; ,),

/ o :/ L*Oz+/ o
0y o0 0A(203en)
:/ (— 1(2) OL) d(ZoL)—i-/ o
o0 Z = 20 OA(20ien)

Letting Z := {zy +r € C|r > 0}, the map

F:(—en,+0) x (0,2r) = C\ Z, (r,0)— z0+ (r+ sn)eie
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is a diffeomorphism, and the chart (C\ Z, F'~!) on C is positively oriented and fulfils
(C\Z)NA(2056n) = {g € C\Z|(ro F~")(q) < 0}. F restricts to a diffeomorphism
F:(—¢ep~— En) x (0,27m) = A(zo; %) \ Z, and the chart

(A(z0; )\Z —F Y= <A(20, I\ Z,—roF! —50F1>
is in W\ {20}, is positively oriented, and fulfils
(A(zo, —)\ Z) NQ, = <A(ZO, —)\ Z) Next A(zo;€n)

={0 e A(z0; )\Zl( F~)(q) < 0}

Thus, we may induce from (A(z20; +)\ Z, —F~1) apositively oriented chart (U,, ¢,,)
on 0f),, given by

U, == (A(zo, ) \Z> N O, = {2z +e,e” |0 € (0,27)},

bt Uy = (=271,0), 20+ ene® — —6.

Then, we have

/ L*a:/ o
OA(20,En) n

= / if (20 +ne™ ) dN(0) .
(—2m,0)
For each n € N, let g, : (—2m,0) — C be the function 6 — if(2y + ,e”%). For
each 6 € (—2m,0), we have
QD2+ =2 asn— oo,
so, by continuity of f,
9n(0) = if(20 +ene™™) = if(20) asn— co.

Thus, the sequence of functions {g, },en converges pointwise to the constant func-
tion if(z) on (0,27). Since f is continuous, we have |f| < P on Q for some
P € (0,400), so for all n € N we also have|g,| < P on (—2m,0). Since the con-
stant function P on (—2m, 0) is integrable, by the Dominated Convergent Theorem

/ L*a:/ Gn dX — if(20)d\ =2mif(z9) asn — o0o.
OA(z0,en) (—2m,0) (—=27,0)

Fix again some n € N. On Q \ {2}, and hence on €2,,, we have

01192 1. naz = —2: 2197 4 nay.
Z— 20 Z =20
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SO

/ / 0 21192 4 / Yo (=20 2197
Z- Zo \{z0} S

Choose R € (0,400) such that Q C A(z; R). By Proposition 4.11, the function

z — 1 is integrable on A*(0; R), which implies that the function z is

zfzo
integrable on A*(z; R) and hence on Q\ {z}. Moreover, the function —2i %2 a* is

continuous on Q and hence there exists @ € (0, +oc) such that ‘ -2 gg‘ < @ on Q.
Thus, for all n € N and z € Q\ {20} we have

z —2i0f/0
v (—oy2I102| | o, 00102 _|-2108/07 _ Q
z— zo z— Zzy |z — 20| |z—z0]
Since |2—de is integrable on 2\ {29} and
XQH(—Qi)af—W — (—Qi)af—/az as n — 0o
Z— 20 Z— 20

pointwise on 2\ {2}, we have

/ XQn(_Qi)af/az d\ — / —21 01/0z d\ asn — 0o.
O\ {20} N\ {z0}

zZ— 20 zZ— 20

It follows that the 2-form —2i %502 de Ndy = Zf_—/ff dz AdZ is integrable on 2\ {2}
and

/ do — af/azdz/\di as n — 00.
n Q\{z0} # ~ ~0

In conclusion, taking limits on both sides of the equality

/ da / ( ) dz —|—/ o,
Qn o0 2= 20 OA(2z05En)

we obtain
/ 8f/8zd /\d_—/ _Mdz—i-me(ZO)v
Q\{z0} © ~ %0 o =T
or z
=g [T [, e denas).
2mi \ Joq % — %o Dz} =750

ii) Follows directly from Stokes eorem applied to the 1-form fdz on W.
Foll d ly £ Stokes” Th lied he C* 1-f fd w
O

Lemma 4.15. (Local solution of the inhomogeneous Cauchy-Riemann equation). Let
D := A(zp; R) C C for zy € C and R € (0,+00). Suppose o : 0D — C is a continuous
function, k € Z>, U{oo}, and B is a C* complez-valued function on a neighbourhood W
of D. Then, the function

. 1 a(¢) B(¢)
f:D—C, f(z)._%(/wC d<+/D\{Z}<_ dg‘/\d§>

is OF and fulfils
0 f _ 5

on D. In particular, f is holomorphic on D \ supppf.
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Proof. We first show that the function

Hi:D—>C, z— &df
op C — 7

is C* and holomorphic. Using the fact that the map
OD\ {2+ R} = {2+ Re® € 0D |6 € (0,2r)} — (0,27), 2+ Re” 6

defines a positively oriented chart on 0D, for each z € D we have

= al@) o a(zo—l—Rew)i 0
fi(z) /a ¢ /(07%)— Re d\(0) .

pC—=z 20 + Re? — 2

Suppose o : (0,27) — C is a continuous bounded function and let n € N. Then, for any
z € D the function
a(0)
(20 + Re? — 2)»
is continuous and bounded and hence integrable. We aim to differentiate the function
o(0)

:D—C, z+— . dX\(0) .
g (0.2m) (20 + Re? — z)n ©)

(0,2r) - C, 0~

Choose any w € D and let a := Re(w) and b := Im(w). Let I C R be the open interval
I:'={x € R|z+ibe D}, and choose ¢,d € R such that a € (¢,d) and [¢,d] C I. Then,
the function

o(0)

F:(0.2m) > (e.d) = C, (0.0) = o p )

fulfils
(i) for all z € (¢,d) the function 6 — F(6,z) on (0,27) is integrable;
(ii) for all @ € (0,27) the function z — F(, z) on (¢, d) is differentiable with derivative
no(f)
(20 + Re?? — (x + b)) +!

T —

on (¢, d);

(iii) since the sets S := {x +ib|x € [¢,d]} and 0D are compact and disjoint, there is
P € (0,+00) such that for all z; € S and 2z, € D we have |z; — 23] > P. Then,
choosing @ € (0,400) such that|o| < @ on (0,27), for all § € (0,27) and = € (¢, d)
we have

nQ

— Ppn+l :

no(6)
(z0 + Re® — (x + 1b))"+1
Thus, applying Theorem 3.1, we conclude that the function

a(9)
(c,d) = C, =z~ 02 (o ¥ RP— (1 b)) dA(0)

is differentiable and that

dg d (/ a(6) )
3y = . —— d\(0
weatiy 4T\ Jo2m) (20 + Re® — (x +ib))" (9)

ox
no(6)
- : dN(6) .
/(0,27T) (20 + Re® — (a + b))+ (6)
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Since w € D was arbitrary, we conclude that for z € D

dg, . 0 o(0) B / no(6)
8.7:(2) - Ox /(0’270 (20 + Re?? — z)» dA(6) = (0.2r) (20 + Re? — z)nt1 dA(0).

Analogous reasoning shows that for z € D

dg, ,_ 0 o(0) B ino(d) —i@ B
2 =5 /W( IN(6) = /W( INO) =192 (2).

2o + Re®? — z)n 2o + Re? — z)ntl

We show that % and g—g are continuous on D. Suppose z € D and let {zx}ren be a
sequence in D converging to z. Define the functions
no(f)

hi 2 (0,27) = C,  hi(0) := (0T Re? — 7)1

for each k € N, and
no(f)
(20 + Rei? — z)nt1”
Then, hy — h pointwise very wisely as k — oo on (0,27). We may choose ¢ € (0, +00)

such that A(z;e) C D, and N € N such that for all £ > N we have |z, — z| < e. Then,
the set

hi(0,21) = C, h(6):=

S" = A(z;e) U{zk}een C D
is compact and z; € S’ for all k¥ € N. Thus, since S’ and 0D are compact and disjoint,

there exists P’ € (0, +00) such that for all wy; € S’ and wy € 9D we have |w; — wy| > P'.

Then, for all £ € N and 6 € (0, 27),

no(f)
hi(0)] = .
‘ k( >‘ (20 + Re?® — z,)nt1

Thus, by the Dominated Convergence Theorem,
0
= [T e - 100 ) = 22 (2)
(0,27)

nQ
(P/)n+l :

<

Ox 2o + Re® — z )+l (0.2m) (20 + Ret — z)nt1 T o

as k — oo. This shows that % is continuous on D, and hence so is g—g = i%. Observe

also that the fact that g is real-differentiable and g—g =1 % implies that ¢ is holomorphic
on D.
Now, since the function 6 — a(z+ Re) iRe® on (0, 27) is continuous and bounded,

the function . A
£D s C . oz + Re®) iRe® ()
b ’ (072ﬂ.) ZO + Reie —Z ’

has continuous partial derivatives of first order, of the form

of1, .\ o1(0) of1, o2(0)
O <) = /(0’270 (20 + Reif — 2)? dA(0) a_y(z) = /(0’%) (20 + Re?® — z)? dA(0)

for z € D, where 01,05 : (0,27) — C are the continuous bounded functions defined by
01(0) == a(z+ Re®)iRe™ |,  04(0) :=ia(z + Re”)iRe™, 6 € (0,27).

Moreover, if n € N and f; has continuous partial derivatives of nth order, each of which
can be written as

()
; d\(6
o (0,2) (20 + Re? — z)ntl (9),
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for some continuous bounded function ¢ : (0,27) — C, then f; also has continuous
partial derivatives of (n 4 1)th order which can each be written as
v(0)

~ ; dX(6
’ (0,2) (20 + Re® — z)nt+2 (9),

for some continuous bounded function v : (0,27) — C. Thus, by induction, f; has
continuous partial derivatives of all orders on D and is therefore C'*°. Moreover, f; is
holomorphic on D and so too are all its partial derivatives of all orders.

We now wish to show that the function
B(¢)
D\{z} 6 — *

is C* on D. For this, we show that for any r € (0, R), f» is C* on A(zp;7). Choose
r,1r1,72 € (0, R) with r < r < ro. Multiplying § by a suitable C*° bump function, we

may obtain a C* function 8, : W — C that is equal to 8 on A(zy;71) and such that
suppB1 C A(z;72). Then, the function By := 3 — 3 is also C*. For z € A(z;7), we

have
B(¢) z
202 ) = d d
f2(2) /D ¢AdC

fo:rD—=C, 2z~ d¢ A dC

e €~ 2
:/ &(—Qi)daj/\dy

D\{z} ¢ — 2

D\{z} z
[ B©, 50y
—/D\{Z}g_; “W”/D\{Z}c—z( %) dA(C).

Let m € Z~oU {oc}. Suppose n : D — C is a C™ function with suppn C A(zg;72).
Since 7 is bounded on D, for any z € A(zp;r) the integral

[ 2
D\{z} <

exists. Define the function
0:A(zg;r) = C, 2z wd)\({).
D\ C— 2
Choose any w € A(zg;7) and set a := Re(w) and b := Im(w). Let J C R be the open
interval
Ji={zeR|z+ibe A(z;7)}.
For each z € J, let D, := A(zp— (z+1b); R) and B := A*(0, R+r). Then, D,\{0} C B,
and

b) = e
to+ib) = /D\{:L‘—H'b} ¢ — (z+ib) X

n(¢ + x + ib)
— TS TETI)
/Dx\m} ¢ )

- /B xDz\{o}(owa@-
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Consider the function

G:BxJ—=C, ()= xpa0(C)

The following hold:

(i) For each x € J, the function ¢ — G(x,() on B is integrable.
(ii) For each ¢ € B and = € J, we have

n(¢ + = + ib)
—

n(¢ + x +ib)

G(¢ ) = ¢
0 if | — 20+ x 4+ ib| > 1y

if|¢ —z0+z+ib| <R

Fix some ¢ € B and zy € J. If|¢ — 29 + xo + ib| < R, then there is some neigh-

bourhood U of xj in J such that for all € U we also have |( — 2o+ x +ib| < R

and hence (¢ D)

n¢+x+1

G(C,x) = B

for all x € U. Thus, applying the chain rule and denoting by (s1, s2) the standard

coordinates on R?, we have

d d C+z+1b 10

4 g | () 1o
T . T ¢ ¢ 0s1

On the other hand, if | — 2o + xo + ib| > r3, there is some neighbourhood U’ of zq

in J such that for all x € U" we also have|( — zg + x + ib| > 5. Then, G((,z) =0

Zo (+zo+ib

for all x € U’ and thus

d
%G<C,I‘) . =0.
In conclusion, for each ¢ € B the function x — G(¢, z) is C* on J and
10
il if|¢ — 20+ z0 +ib| < R
—G(¢x)| =< CO8tlcpara
o 0 if‘C—ZO+JJ0+ib‘>T2.

(iii) Since 68 is continuous on D and suppa C A(zp;72), we may choose T" € (0, +00)

such that ‘8—5?‘ < T on D. Then, for each ( € B and z¢ € J,

e

T
<.
.| ¢l

Thus, we may apply dominated derivation to conclude that

d% ( /1:>\{x+ib} % dA(C)) B % ( /B xoa (<) w d/\(o>
/ XDa\ (03 (€) égz

dA(C)
—/D L0 e+t ib)dr(©)

a a

¢+a+ib
\(oy € 051

B 1 on
a /D\{a+ib} ¢ — (a+1ib) ds, ——(0) dX(C),
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so that
o, 1 oy - 1oy
5= [ QO = [ vt wmnn©) g € ) O,

Similar reasoning shows that

ol B 1 On B 1@
6_y(w) = /D\{w} C——wa_@(o dA(¢) = /BXA(zow;R)\{o}(C) C 05 (¢ +w)dA(() -

Note that the functions ¢ — g—s’i(g) and ¢ — g—S”Q(C) are C™~ 1 on D and have support
in A(zp;72). We show that 2¢ and g—z are continuous on A(zg;7). Let z € A(zp;7) and

suppose {zx fren is a sequence in A(zg;7) converging to z. For each k € N, define the
function

10
v B—=C, wu(Q) = XA(zo—zk;R)\{o}(C) ——U(C + 2)
Casl
10 )
_ ZTZ(C"‘Z}J lf‘C—ZQ+Zk’<R
0 if|C—Zo+Zk|>T27
and define also
1 0n
v:B—=C, v(():=Xac-=r\0}(() =5—((+2)
C881
1 0n .
-0 fle —
_ CaSl(CJrZ) if|¢ —2z0+2| <R
0 if|C — 20+ 2| > 1.

For each ¢ € B, if|¢ — 29 + z| < R then there is N € N such that for all £ > N we also
have |( — zo + zx| < R; and similarly, if | — zo + z| > r2 then there is N’ € N such that
for all £ > N’ we also have | — zg + 2| > 2. As a result, vy — v pointwise as k — 0.
Moreover, for all k € N and ( € B,

T
|Uk(<>‘ < |?| .

We may then apply the Dominated Convergence Theorem to conclude that

ol ol
%(zk)—/kad)\%/Bvd)\—a—(z) as k — o0o.

x
Thus, % is continuous on A(zp;7), and by a similar argument, g—z is continuous on
A(zp; 7). We use this to show that the function
9
91 A(zoir) = C, 2> (22059 dA(C)
D\{zy C—%

is C*. Since the function ¢ +— (—2i)5;1(¢) on D is C* and has support in A(zq;73), the
function ¢; has continuous partial derivatives of first order, of the form

D= Mag

O D\{z} € — %
and 59 52(0)
Loy — 02(6)

o= e,
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on D, where §; = (—21’)3—511 and 0y := (—2@')‘3—5; are C*~! functions D — C also sup-
ported in A(zg;r2). If k = 1, then we have shown ¥, is C*¥. Suppose k > 2 and let
m € {1,...,k—1}. If ¥; has continuous partial derivatives of mth order, each of which
can be written as 5
Z ﬁ d\(¢)
D\{z) C — 7

for some C*~™ function ¢ : D — C supported in A(zg;73), then 97 has continuous
partial derivatives of (m + 1)th order, which can each be written as

PR 29 dN(0)

D\fz} ¢ — 2
for some C*~(m+1) function v : D — C supported in A(zo;73). Thus, 91 has continuous
partial derivatives of all orders up to k and hence it is C* on A(zq;7).
It remains to show that the function

Ut A(zg;7) > C, 2+ % dA(C)
= (—%

is C*. Suppose ¢ : D — C is a measurable bounded function such that ¢ = 0 on
A(zp;r1). Suppose w € A(zp;r) with a := Re(w) and b := Im(w), and let J' C R be
the open interval J' 1= {x € R|x +ib € A(zo;7)}. Let also D' := D\ {z +ib|z € R}.

For any n € N| the function

Sy 7 ©(¢)
H:D'xJ —C, (C’x)'_)(g’—(mjtib))"

fulfils:

(i) Forafixed x € J',if E € (0,+00) is an upper bound for || on D, then the function
¢~ H(¢,x) on D' is bounded by —Z~- and hence it is integrable.

(ri—r)™

(ii) For each ¢ € D' the function = +— H((,z) on J' is differentiable with

d np(C)
e I N

dx

zo
for each o € J'.
(iii) For each ¢ € D' and zy € J', we have

< nk
= (ry =)t

d

o

Applying again dominated derivation, we conclude that

i SO(C) _ ngp(o
dx (/D C—(@+ D) dm) = ety O
Thus, letting

Al (<)
I':A(zg;r) > C, 2z v €= 2 (),

for x € J' we have

o ©(¢) _ )
D(e+b) = /D\W} e PO [ el O
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Then,
o v [ _neld) _ _ne(Q)
590( ) /D’ (€ —w)"*! MO /D\{w} (¢ —w)"*! X,

and, by a similar argument,

o, el neQ) o
5= [ @ = [ e O =g

As before, we show that 2° and g—g are continuous. Let z € A(zg;r) and let {zx}ren be

a sequence in A(zp;r) converging to z. Define the functions

up: D — C, CHXD\{zk}(C)%
for £ € N, and
u:D — C, CHXD\{z}(C>%'

Then, ur — u as k — oo pointwise on D, and for all £ € N we have |uy| < By

nE
(ri—r)nti-
the Dominated Convergence Theorem,

or or
(o) = /Dukd)\—>/ud>\—ax()

as k — oo. This shows that 81;, d 81; are continuous on A(zp;7). Again, since I' is
real-differentiable and fulfils 8F =L it is holomorphic on A(z; 7).
Then, since the function C |—> (— QZ)BQ(C ) on D is continuous, bounded, and vanishes

on A(zp;r1), the function 95 has continuous partial derivatives of first order given by

00 [ (20800
6= [ e
and
99y = 2/32(¢)
dy (=) /D\{z} (C—2)? O

for z € A(zp;7). If n € N and 95 has continuous partial derivatives of nth order which
can each be written as
(¢)

——>—dA
o Dz} (€ — )"t ©

for some measurable bounded function ¢ : D — C that vanishes on A(zg;71), then 95
has continuous partial derivatives of (n + 1)th order that can each be written as

)
o oz} (€ — 2)7T2 O
for some measurable bounded hearty function © : D — C that vanishes on A(zp;r1) (a
function is defined to be hearty when the author has run out of letters in the Latin and
Greek alphabets to write it). Thus, J5 is C* on A(zp;7), and it is also holomorphic.
We gather all the results to conclude the proof. As we showed initially, the function
f1 is C*° and holomorphic on D. Moreover, the function

Y Az r) = C, 2z MCD\(Q

D\zy C— 7%
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is C* and the function
—2i)B
( Z) 2(¢) d\

Pyt Azg;r) > C, z+—
2 Al Dy G

()

is C'*° and holomorphic. Then, we have:
(a) f2|A( y = ¥y + Y5 is C*, and since r € (0, R) is arbitrary, f, is C* on D. Thus,
z20;T
= (it )
Toom Mt TR

is C* on D.
(b) Returning to our choice of 7, for all z € A(zg;r) we have

of .\ _ 1 (0h 09, 99,
9: %) = o ( gz BT gz B F 5@)
190,
2w 0z (2)
and
094

1 PN/ . 1 0B
=y [ ameniiono-if enFhono)

1 1 0B 1 95
—2(/1:)\{Z}§ z@sl(g)dc/\d<+ /D\{z}C ZaSQ(C)dC/\dC)

-/ /0 4 e
D\{z}

—Z

Since 3; is C* on a neighbourhood of D, for each z € A(z;7r) C A(zp;71) C D
Cauchy’s Integral Formula gives

[ B g nag=omipni - [ P ac = omis),
D\{z}

-z op C —
so that
of
% ()= 52
Again, since r € (0, R) was arbitrary, we have
0
Y
on D.
(c) By (b), for all z € D\ suppf we have
af

and since D \ suppf is open and f is C*, this implies that f is holomorphic on
D \ suppp.
OJ

Lemma 4.16. Suppose 2 C C is open and f : Q — C is a C' holomorphic function.

Then, f is C* and [ is also holomorphic.
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Proof. Let 2z € Q and choose R € (0,00) such that D := A(zp; R) fulfils D C €.
Since f is continuous on 2, so too is its restriction to 0D (that is, the pullback ¢*f by
t:0D — Q). Then, by Lemma 4.15 with a = f on 9D and 8 = 0 on (2, the function

. 1 f(©)
g:D—C, z»—>2—m, o C— 2

d¢

is C*°. Moreover, since f is C* and df/0z = 0 on 2, Cauchy’s Integral Formula gives

o= [ I

pC—2
for all z € D, which shows that f is C* on D. Thus, f is C* on (). Moreover, as
we saw in the proof of Lemma 4.15, the partial derivatives % and g—z on D are also
holomorphic, so that

aa—f;'(zo) - (%g—f;) (20) = 2m(%%) (20) = 0.

Thus, f’ is also holomorphic on Q. O

Theorem 4.17. (Goursat’s Theorem) Let S = (a,b) x (¢,d) C C be an open bounded
rectangle, for suitable a,b,c,d € R. If f: @ — C is a complez-differentiable function on
some neighbourhood €2 of S, then letting

M ila, b = Q, t—=t+ic,
—Q, t—=b+it,
—Q, t— —t+id,
Yot [—d,—c] = Q, t—a-—it,

which are C' paths whose images are respectively the bottom, right, top, and left sides
of S, we have

Igf::/fdz—i- fdz—i—/fdz—i— fdz=0.

7 "2 3 V4

Proof. For any open bounded rectangle R in € such that R C € and any continuous
function h : 2 — C, denote by Irh the sum of the integrals of hdz along each of the
four sides of R as defined above for S and f. Then, if R = (d/, V') x (¢/,d’), we have

Iph = / h(t +ic) dA(t) + / h(V + it)i dA(t)
(a’\b)

(¢/,d")
+ / h(—t +id)(—=1) dA(t) + / h(a" —it)(—i) dA(t),
(b \—a') (—d'~<!)
and

|Tgh| g/ |h(t +id)| d)\(t)-i-/
(a’,b')

|A(V + it)| dA(t)
(/)

h(—t +1id')| d\ h(a" —it)| d\
" /(b,,aJ (—t +id)| dA(H) + /(d.CJ( 0] dAt)
< (sup\h(ZM) Lk,

2€ER
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where Lr := 2()) — a' + d — /) denotes the sum of the lengths of the four sides of R.
Let S7 := S. For each n € N, starting from n = 1, divide S,, into a 2 x 2 array of four
equally sized subrectangles Ry, Ry, Ry and R} as in the figure, and define S, := R}
for any j € {1,2,3,4} such that

‘[R;f :max{‘IR?f

Define also D,, := sup{ |21 — 22| | 21, 22 € S, } (which is the length of the diagonal of S,,)
for all n € N.
Fix n € N. One can check that

Is,f=Ipnf+ Ippf+ Ipef + Irnf,

Ipp f

Ipn f

Ipn f

) ) )

so that

< 4|l f] -
= %Lgn, and D, 1 = %Dn. Then, for all n € N we have

[Isfl < 4" s, f

s, f| < ‘[R{lf +‘[R2f

We also have Lg

+‘IR;f +‘1Rgf

n+1

1
Lg, = 1L
1

Since {5, }nen is a decreasing sequence of compact subsets of C, there exists a point
20 € pen Sn C Q. Since [ is complex-differentiable on €2, the function

gIQ—>(C 2> %ﬁo(zo)_fl(zo) ifZ;ézO
0 if 2=z

is continuous, and for all z € Q we have f(z) = g(2)(z — 20) + f'(20)(z — 20) + f(20).
For each n € N, explicit computation gives

Is, (2= f'(20)(2 — 20) + f(20)) = 0,
so that

[Isf| < 4" '|Is, f
= 4" Ig, (2 = g(2)(z — 20))|

<4t ( sup [g(2)(z — 20) | ) - Ls,

ZESh

<4t ( sup|g(z)| ) - Dy Lg,

z€Sy
1
=41 ( sug‘g(z)l ) = Dy Lg
ZESh
= < sug‘g(z” ) -DiLg.
zESh
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For any € € (0,400), we may find § € (0, +00) such that for all z € Q with |z — 2| < 9,
we have |g(2)| < ¢/(D1Ls). We may also find N € N with Dy < 4, so that for all
z € Sy we have |z — 2| < § and hence |g(z)| < £/(D;Ls). Then,

£
[Isf| < (SUP|Q(Z)‘> -DiLg < DI -DiLg =¢.

ZESN 18

O

Lemma 4.18. Let S C C be an open bounded rectangle, and f : S — C a holomorphic
function. Choose any zy = xo + 1yp € S, with xo,yo € R, and define the function

x y
F:S—C, ZI—>/ f(t+z’y0)dt+z'/ fla+idt)dt
X0 Yo
for z € S with x :== Re(z) and y := Im(z). Then, F is C' and holomorphic with F' = f.

Proof. We first show that ‘2—5 = if. Suppose S = (a,b) x (¢,d) for suitable a, b, c,d € R.
Choose w € S and set o := Re(w) and [ := Im(w). Consider the function

v
g:8—C, z»—>/f(x—|—it)dt.
vo

We have {y € R|a+ iy € S} = (¢,d). If {yx}ren is a sequence in (5, d) converging to
3, for each k € N we have

Yk B
/ Fla+ it) dt —/ Fla+ it) dt
Y Yo

gla+iye) —gla+iB) _ Jy

yr — B yr— B
Yk
/ flao+it)dt
_Js
yr — B
/(0 St il = 9)+.9) - (= 8) ar()
B yr — B3

_ /(0 (et it =)+ 8) ).

For all t € (0,1), we have f(a+i(t(yx — 8) + B)) — f(a+iB) as k — oo. Moreover,
there exists a compact subset A C S such that for all £ € N and ¢ € (0,1) we have
a+i(t(yy—0B)+3) € A. Thus, for some P € (0, +00) we have‘f(oz +i(t(ye — B) + ﬁ))‘ <
Pforall k € Nandt € (0,1). We may then apply the Dominated Convergence Theorem
to conclude that

gla+iyr) — gla+ipf)
yr — 3

= fla+iB) ask — 0.
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On the other hand, if {yx }ren is a sequence in (¢, 5) converging to 3, for each k € N we
have

Y 8
gla+iyx) — gla+1ipB) y f(a+zt)dt—/yo fla+idt)dt

v Y —
/B fla+it) dt
- B — yn
/(0,1) Flatit(B = yr) +ux)) - (B = yx) dA(H)
B =k

- /(0 , fla+i(t(8 —yu) +yr)) dA(D),

and reasoning as above, we obtain

gla+iye) — gla + 1) = fla+if) ask — oco.

yr — B
Thus,
dg B
) = fw),
G w) = if(w).

We now show that g—i = f. By Goursat’s Theorem (Theorem 4.17), for each z =
x + 1y € S we also have

F(z):i/yf(mo—|—z't)dt+/xf(t+iy)dt.
Yo o

Then, reasoning analogously, for any w € S we have

oF
%(w) = f(w).
In conclusion, we have g—i = f and %—Z = if on S. Thus, F' has continuous partial

derivatives of first order on S and hence it is C*!, and the fact that ‘?9—5 = i‘?)—i guarantees
that the Cauchy-Riemann equations are fulfilled, so that F' is holomorphic. Moreover,
we have

Fr=—=
ox

f.
0

Theorem 4.19. A holomorphic complez-valued function on an open subset of C is
smooth.

Proof. Suppose 2 C C is open and f : {2 — C is holomorphic. For any point w € ), we

may choose an open bounded rectangle S in C such that w € S C 2. By Lemmas 4.16

and 4.18, there exists a holomorphic C* function F': S — C such that F' = f |4 on S.

Since F' = g—i is C™ on S, so too is f‘s' O
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Remark 4.20. Note that it follows from Lemma 4.16 and Theorem 4.19 that if Q C C
is open and f is holomorphic on €2, then f' = % = % is also holomorphic on §2.
Theorem 4.21. Suppose 2 C C is open, K C Q is compact and nonempty, and
8 6
A= ol =—

> o(52)

ae@?
is a linear differential operator of order { € Zso on Q such that for all o € ©% we have
ao € L2(Q). Then, there exists C = C(2, K, A) € [0,+00) such that for all f € O(Q)

loc

and for all p € [1,400],
[AS N oo re) < Cllf Ml oy »
where we let|| f|| oq) = +o0 if [ & LP(Q2).

Proof. Choose an open set U C 2 such that K C U € (2, and let
{1 if \(U) <1
1=

MNU) if AU) > 1 .
Fix f € O(Q) and p € [1,400], and suppose f € LP(Q2). Define
+oo ifp=1
q:=14 ;5 ifpe(l,+oo)
1 if p=+4o00.
Then, we have
_|_
p q
= +o00 and - = 0. Since U C Q, we have f € LP(U);
U).

moreover, letting g : U — C denote the constant function 1 on U, we have g € L(U)
By Hélder’s inequality, we know that the function f = fg on U is in L*(U) and

with the conventions

(=l

1
||f||L1(U) = ||f9||L1(U) = ||f||Lp(U)||g||Lq(U) :”f“Lp(U) A(U)s
(where )\((7)% = 1if ¢ = +00). Then, we have

1l @) < Cullfllo@y < Cullfll oy -

If f & LP(Q), the above equality also holds.

Since K C U is compact, we may choose a € (0,+00) such that for all zy € K,
A(zp;a) C U. Choose also b € (0,a) N (0,3), and let p : A(0;a) — R be a C°° bump

function such that p =1 on A(0; 2) and suppp C A(0; 2). Define
am™ dp

ox™ 0z € (0, +00).

L>o(A(0,0))

max
me{0,...,0}
Fix zy € K, and define the functions

Lz P A(zo;a) = A(0;a), 2z 2z — 2z

and

Pz 7= P oz - A(20;0) = R.
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Fix also m € {0,...,¢}. Since the function pZOg—n{ on A(zp;a) is C', by Cauchy’s
Integral Formula we have

dr d" 1 20 g0 0(p:y9t) /07
_7'7{(20) — (p20_7{> (ZO) — _</ Mdz_i_/ Mdz/\di)
dz dz 2mi\ JoaGop) % T %0 AGobM}  F T

Since suppp., C A(zo; %b), we have

arf
/ —(PZO dzm)<z) dz=0.
DA (20:b)

Z— 20
Moreover,
A(p., LY 0z 02/ 0Z)
/ o= ) 102 Zdz/\dZ:/ Or0/ 025w (i) .
(20:0)\{20} ZT (20;6)\{=0} S
Define 5 5
20/ 0Z) (2
o Alzoib)\ {20} = C, 2 s OP/O2E)

zZ— 20

Since p., = 1 on A(z0; 2) and p., = 0 on A(z;a) \ A(zo, 2), the function ., vanishes

outside of the annulus
b 2b
z€C < |z — 20| < 3

and hence we have p,, € D(A(z0;0) \ {zo}) Since f is holomorphic, we have

anf omf
dzm — Ozm’
so, regarding B := —mm as a linear differential operator of order m on A(zp;b) \ {20},
and applying Lemma 3.10 () we have
(0p20/0%) g 1
A(zo:)\{z0} 220 A(z03b) \{zo}
_ / f "By, d\
A(zo3b) \{zo}

. m 0"
(=20)f - (~1ym P gy,
/Awb)\{za} Ox

As one can check, on A(zp;a), and hence on A(zp;b) \ {20}, for all ¢ € {0,...,¢} we

have
aqapzo_aqg( ) = 8qap
gzt 0z owi 0z M) T \Gpagz ) i
Then, on A(zo;0) \ {20},
"oy O™ (3pzo/32>

drm™  Oxm

Z— 20
B Em: m\ [ 0™79 Op,, \ 07 1
B = \4q Ox™ 1 0z ) 0xi\ z— 2

-2 (D(GE=5) ) o
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Let now w € A(z;b) \ {z0}. Ifjw — 20| > 2, using the fact that 2 > 1, we have

( )((aiz qq g;))(w_zo))(—l)qq!m
> ()a5)
3 zwa(%)m

= (L4 1)(*M (%)M ;

while if [w — 2| < &, we have

om QOZO
axm

IN

~ ||M3 T‘:MS

i %(w)’:o.

ox™m

Thus, we have

o™ 3\ 1
—fl < DM | = =:
oa <ernerm(3) =

on A(zg;b) \ {20}. Gathering our results so far, we have

CI )

dzm

o [T an
(z0:0)\{20}

271 ox™

).
T JA(z0)\{20}

1
Lo, / £ da
n A(z0;0)\{20}

1
—Collf ey

1
< — G OISl

8m90ZO

d\
ox™

IN

f

IN

IN

which implies that

=
2™ || Loy

Now, observe that for each @ = (a1, p) € ©7, on ) we may write
o\“ 0% 09U f dlel
— | f= =" .
Ox Oy2 Ox™ dzlel

1
< — G OIfllo -

Then, we have

where



for each ¢ € {0,...,¢}. We may then choose a set S C K of measure 0 such that on
K\ S we have

[9a] < [1ba| oo
for all ¢ € {0,...,¢}. Then, letting

(PR

q€{0,....0}
for all zo € K\ S we have
¢
dif
|(Af)(20)| = qu(zo)ﬂ( 0)
q=0

Hb HLOO - 02 CI”fHLP(Q)

q=0

1
< (1) -G GOl -
Thus, letting C' := (¢ + 1)+ C3 C; Cy € [0,400), we have

1AF L x) < ClFll oo
0J

Corollary 4.22. Suppose 2 C C is open. Then, for every nonempty compact subset
K C Q there exists a constant C = C(Q, K) € [0,400) such that for all f € O(Q),
p € [1,+00], and z,w € K, we have

(2) = f(w)] <l = w| Cllfll ooy

Proof. Choose an open subset U C 2 such that K C U € €2, and choose a € (0, 4+00)
such that for all zy € K we have A(zp;a) C U. Choose also Cy,Cs € [0,400) such that
for all f € O(Q2) and for all p € [1, +00],

df

' df

dz < Cl”fHLp(Q)

Loo(U)
and

1l @y < Coll fll o) -
Fix f € O(Q), p € [1,4+00], and z,w € K. We consider two cases:

(i) Jw — z| < a. Choosing small enough ¢ € (0,400), for all t € (—¢,1 + ) we have
z 4 (w — z)t € A(z;a), so we may define the function

pi(—e,14¢) = A(z;a), t—z+(w—2)t.

The composition g := fopu: (—e,1+¢) — Cis then C*, and as one can check,
for each ty € (—¢,1 + ¢) we have

dg df
- —(tg) = (w — 2) - E(Z + (w — 2)t) .

Applying the Fundamental Theorem of Calculus, we obtain

dg
[ =90 =o0) = ) £6),



so that

Fw) — £()] = /[ 99 4

0’1] dt

— / (w—2) - %(2 + (w — 2)t) dA(¢)
[0,1]

<l|w — z| /
[0,1]

%(2 + (w — z)t)‘ dA(t)

d
<l|w — z| —f
42| o)
d
<|w — 2| —f
L= (U)

<|w — 2| Cl“fHLP(Q) :
(ii) |w — z| > a. We have

) = fG) AWM ey 2 ey 2C2l oo

lw—z — a - a - a

Thus, letting C' := max{C}, %}, we have

|f(w) = f(2)] <lw = 2| Cllf ]| oo
for all f € O(Q), p € [l,+], and z,w € K. O

Corollary 4.23. Let Q C C be open. Suppose {fn}nen is a sequence of holomorphic
functions on Q, and suppose f : Q — C is a function such that {f,} converges uniformly
to f on compact subsets of Q2. Then, f is holomorphic and for all m € N the sequence
{5 ew of mth complex derivatives converges to the mth complex derivative f™
uniformly on compact subsets of €2.

Proof. First note that the fact that {f,} converges uniformly to f on compact subsets
of Q implies that f is continuous on €. Let w € €, and choose a € (0,+4o00) fulfilling
A(w;a) C Q. Then, for each n € N and 2y € A(w;a), we have

i0
fu(z0) = / Jn(2) dz = / ‘MLHGM aie® d\(0).
AA( (0,27) W+ ae” — zg

wia) # T A0

Since f is continuous on OA(w;a), the function

g:Alwya) > C,  z / JE) dz = / Slw+ae?) i ac’) aie” d\(0)
’ ’ dA(wsa) # <0 (0.2m) W+ ae? — z,

is holomorphic. Fix zy € A(w;a), and let M, = dist(zo, 0A(w;a)) € (0,+00). Let
e € (0,+00), and choose N € N such that for all n > N

M, e
OA(w;a) Ta
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Then, for all n > N we have

‘fn(zo) - 9(20)‘ =

fn(w + ac®)

f(w + ae®)

aie™ d\(9)

/ I BT qie® dAN(9) — / ST
(0,27) W +ae” — 2z (0,2m) W + ae” — 2y

- / (fulw + ac®) — f(w + ae®))
~ Joz2n

w + ae? — z,
< / aMzog/(27ra)

(0,27)
—= 87

aie®

dA(6)

)

which shows that f,(z9) — g(z0) as n — 0o. By uniqueness of the limit, we must then
have g(z9) = f(z0). Since zg € A(w;a) was arbitrary, we have f = g on A(w;a), so f is
holomorphic on A(wj;a). It follows that f € O(Q).

We now show that for all m € N, fy(lm) — f) uniformly on compact subsets of
Q. Fix m € N and let K C € be compact. Choose open subsets U,V C 2 fulfilling
KcUeQand U CV € Q. Choose also C,, € (0,400) such that for all g € O(V) we
have

o]

o™g
L (D) < Cm”g”LOO(V) :

Let € € (0,+00) and choose N € N such that for all n > N we have

|

19
sup|f, — f| < =—.
v Cm

Then, for all n > N and 2y € K we have

am n —
< 2" = 1)
= ox™ Lo (U)
<2 U= 1)
ozr™ Lo ()
< Cnllfu — fHLoo(V)
<e.

O

To prove the next corollary, we will apply the following theorem, which we state
without proof:

Theorem 4.24. (Arzela—Ascoli theorem). Suppose @ C C is open and {fn}nen is
a sequence of complex-valued functions on ) such that on every compact subset of €2
the functions { fn}nen are uniformly bounded and equicontinuous. Then, there exists a
function f: Q — C and a subsequence of { f, }nen converging to f uniformly on compact
subsets of €.

Corollary 4.25. (Montel’s theorem). Suppose 2 C C is open and { f,, }nen is a sequence

of holomorphic functions on ) that is uniformly bounded on compact subsets of 2. Then,
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there exists a subsequence { fn, }ren and a function f € O() such that {f,,} converges
uniformly to f on compact subsets of €.

Proof. We first show that the functions { f,, }»en are equicontinuous on compact subsets
of Q; that is, that given a compact subset K C , for every ¢ € (0,400) there exists
d € (0,400) such that for all n € N and for all z,w € K fulfilling |z — w| < J, we
have | ful(2) — fn(w)‘ < e. Let K C € be compact and nonempty, and choose an open
subset U € ) containing K. Choose also M € (0, +00) such that for all n € N we have
|fn] < M on U. By Corollary 4.22, there exists C' € (0, +00) such that for all g € O(U)
and for all z,w € K,

|9(2) = g(w)| <]z = w| Cligll ooy -

Let € € (0,400), and let 0 :=¢/(2CM). Then, for all n € N and for all z,w € K such
that |z — w| < §, we have

‘f”(z) N fn(w)| S|Z—w|OanH]fxv(U) <0CM = g <e.

Thus, the functions { f, }nen are equicontinuous on K. By Theorem 4.24, it follows that
there exists a subsequence { f,,, }xeny and a function f : Q — C such that {f,, } converges
uniformly to f on compact subsets on €. By Corollary 4.23, we have f € O(Q2), which
concludes the proof. O

Lemma 4.26. Suppose 2 C C is open and v :  — C is a locally integrable function

fulfilling
(oY
a 62 distr '

Then, there ezists a function f € O(Q) such that v = f almost everywhere in ).

Proof. Choose a smooth nonnegative function k£ : C — R fulfilling suppk C A(0;1)
and [.kd\ = 1. Choose also w € Q and a € (0, +00) such that A(w;a) C Q, and let
D := A(w;a). Since v is locally integrable on €2, for each ¢ € (0, +00) we may consider
the function

vs : Qs = {w € C|dist(z, Q) > 6} = C, xH/v(y)k(xgy>6—12d)\(y),
D

which is C*°. Moreover, since 0/0Z is a linear differential operator with constant coef-
ficients, by Lemma 3.11 we have

_ Ovs

s oz

on Qs. This shows that for each § € (0, +00) the function vs : 25 — C is holomorphic.
Since D is compact, we may choose N € N such that for all n € N>y we have

0=20;s

DcQiLcCQs.
N n

We then obtain a sequence {v1},>y of holomorphic functions on Q;,y. We wish to
show that this sequence is uniformly bounded on compact subsets of €2, /y. Fix then a
compact set K C /v, and choose open subsets U,V C €1y fulfilling K C U € Qy/n

and U C V € Qy/n. By Lemma 3.3 (vi), we know that ‘ — 0 as Nxy 2

T,
" LY(V)
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n — 0o, which implies that there exists M € (0,00) such that for all n € N>y we have

L) < M. We may also choose C' € (0,+00) such that for all g € O(V),

V1 — 0

n

9]l e @) < Cllgllpry -

Then, for all n € N>y and 2z € K we have

oy <ee oy,
< ‘ v1 _
n Loo(U)
< (v
n Ll(v)
< C‘ vif|
n Ll(V)
<O(Jfor =], 0+l )

< C(M +vll gy ) s

which shows that {v1 },>y is uniformly bounded on K. By Montel’s theorem (Corollary
4.25), it follows that there exists a subsequence {v_1 }ren and a function fp € O(Qy/n)
np

such that {v1 }ren converges to g uniformly on compact subsets of €2y /n- Then, since
nk

D cC 1y /n is compact, for each k € N we have

LY(D) /D

as k — oo. Thus, we have v1 — g in L'(D) as k — oo, and again by Lemma 3.3 (vi),
g

vl—g‘ d)\g(sup

k D

vl—g')ﬂaQ —0

vi —g
n k

k

we also have v — v in LY(D) as k — oo. It follows that v = g almost everywhere in
’nk

D and hence also v = ¢ almost everywhere in D.

We may find a countable open cover {D,,}men for € such that for all m € N we
have D,, = A(w;a) for some w €  and a € (0,4+o00) fulfilling A(w;a) C Q. Then,
by the above reasoning, for each m € N there exists a function f,, € O(D,,) such that
v = f,, almost everywhere on D,,, that is, there exists a measurable subset S,, C D,,
of measure 0 such that v = f,, on D,, \ S,,. Suppose my,my € N and D,,,, N D,,, # 0.
We wish to show that then f,,, = fn, on Dy, N D,,. Fix zg € Dy, N D,,,. If
20 & Sy U Spny, then we have f,,(20) = v(20) = fim,(20). Suppose that zg € Sy, U Sy,
and choose ¢ € (0,00) such that A(zp;¢) C Dy, N Dyy,. For each n € N, we cannot
have A(zp;£) C Sm, U Sy, since Sy, U Sy, has measure 0. Thus, we may choose a
point z, € A(2p; 5) \ (Sm, U Sp,), which fulfils fi,, (2,) = v(2n) = fms(2n). We then
obtain a sequence {z,}neny C Dy, N Dy, converging to zp such that for all n € N we
have fi,,(zn) = fin,(2), and by continuity of f,,, and f,,, on D,,, N D,,, it then follows
that f,,(20) = fm,(20). Then, the function

[:Q—=C, z fu(z) ifze€D,formeN

is well defined and holomorphic on Q. Moreover, the set S := J,,, oy Sm C €2 has measure

0, and for each 2y € Q\ S we have v(z9) = f(z9). This concludes the proof. O
116



Theorem 4.27. (Regularity theorem). Suppose Q C C is open and let k € Z>y. If
B e C*Q) and u € L () are functions satisfying

loc

0
B N (£> distrU7

then there exists a function f € C*(Q) such that u = f almost everywhere in 2.

Proof. Choose w € Q and a € (0, 400) fulfilling A(w;a) C 2, and let D := A(w;a). By
Lemma 4.15, there exists a function gp € C*(D) fulfilling dgp/0% = B on D. Then, on

D we have
_ (9 _9gp (O
ﬁ B (%> distru and ﬁ B 82 B (82) distrgD 7

from which it follows that
0
0=|(—=— — )
(82> distr<u gD)

Then, by Lemma 4.26, there exists a function hp € O(D) such that v — gp = hp
almost everywhere in D. It follows that u = gp + hp almost everywhere on D, where
gp + hp € CK(D).

As in the proof of Lemma 4.26, we may find a countable open cover {D,,}men for
Q2 such that for each m € N we have D,, = A(w;a) for some w € Q and a € (0, 4+00)
fulfilling A(w;a) C . Then, for each m € N there exists a function f,, € C*(D,,) such
that u = f,, almost everywhere on D,,. The proof that for each m;,ms € N we have

fmy = fmy o0t Dy, N D,y is exactly as in the proof of Lemma 4.26. Then, the function
f:Q—=C, zw— fpn(z) ifzeD,formeN
is well defined and C* on 2, and we have u = f almost everywhere in 2. O

Theorem 4.28. (Mean value property). Suppose zp € C, R € (0,+00), and [ €
O(A(20; R)). Then, for all v € (0, R) we have

1

% (0,27) W

flao+ 1) dNO) = fz0) = =z [ fan,
A(zo;7r)

Proof. Fix r € (0, R). The first equality is given by Cauchy’s Integral Formula:

1 e
6= 5 f g

- 21

z0;7) Z— 20
1 0 ]
= UCRECOPPNT
¥ (0,27) re
1 )
- — f(zo + 7€) dA(B) .
2m (0,27)
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For the second equality, we have

! [ p( / f<zO+pe”>dA<9>)dA<p>
(0,r) (0,27)

2 2
mnr Az0i7) wr

1
=— p 2 f(20) dX(p)
= Jo,r)
1

7,2
=9 _
) 7 f(20) 9

= f(20) -
O

Lemma 4.29. Suppose Q C C is open and zo € Q. If f : Q — C is a continuous
function that is holomorphic on Q\ {zo}, then f is holomorphic on Q.

Proof. Define the function
g:Q—>C, z—(z2—20)f(2).

On Q\ {2}, ¢ is holomorphic as a product of holomorphic functions. Moreover, if
{Zn}nen is a sequence in Q \ {29} converging to zp, then for each n € N

g(Zn) B g(Z0> — f(zn>7

Zn — 20

which converges to f(zy) as n — +oo. This shows that g is holomorphic on €.

Choose a € (0,400) such that A(zp;a) C Q. Fix w € A(z;a) \ {20}, and choose
r € (0,Jw — z|). Denote by A, the open annulus

A, = Azg;rya) ={z € C|r <|z— 2| <a},

which contains w. Since A, is a relatively compact smooth open set in C, and since f
is holomorphic on a neighbourhood of the closure of A, in C, we have
1

270 Joa, 2 — W

)

where 0A, has the smooth manifold structure and orientation induced from C with
respect to A,. Defining

U:={z+ re' |0 € (0,2m)} = 0A(z0;7) \ {20 + 1}

and
¢:U — (—2m,0), 2z +re?— -0,
the pair (U, ¢) is a positively oriented chart on 0A,. We may then write

1 1
f(w) = _/ Je) dz + — /() dz
270 Jon(zpa) 2 — W 27T Jon(zm) 2 — W
1 1 —if '
= — /) dz + —/ S0+ 7?5 ) (—i)re” d\(0)
2mi OA(zp;a) 7 — W 2mi (—2m0) %0 T e —w
1 1 i0 .
= —/ JE —/ Szt ret) e NGY
270 Jon(z0a) 2 — W 271 J(o,2q) 20 + 1€ —w
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We wish to show that
1 0 A
—/ St reT) 5o g6y = 0.
210 J(o,2m) 20 + 1€ —w

For this, observe that on Q \ {w}, which is a neighbourhood of A(zy;7), the function
zZ % is holomorphic. Then, Cauchy’s Integral Formula gives
1
9(20) _ 9(2) dz

0 —w B % OA(zo;T) (Z - U))(Z - ZO)

where the boundary A (zg; ) now has the counterclockwise orientation. Since g(z) = 0,
we then have

1 9(2)
B 2mi OA(zo;r) (Z o ’LU)(Z B ZO) .
_ 1 1(2) dz

210 Jon(zoim) Z — W

1 10 )
_ 1 / S0t reT) G o).
2710 Jo.2m) 20 + 1Y —w

It then follows that

flw) = o IE) ..

210 Jon(zpa) 2 — W

where 0A(zp; a) has the counterclockwise orientation and w was an arbitrary point in
A(zp;a) \ {#0}. Since f is continuous, the function

1 f(2)
s A(z; 2 z—(
h:A(z0;a) > C, (= 2mi /3A(zo;a) 2=¢ -

is holomorphic, and by the above reasoning, we have f = h on A(zg;a) \ {z0}. By
continuity of f and h, we must then have f = h on A(zg;a), from which it follows that
f is holomorphic on A(zp;a) and hence on . 0J

Theorem 4.30. (Riemann’s extension theorem) Suppose Q C C is open and zy € €,
and suppose f: Q — C is a function that is holomorphic on Q\ {z0}. If

) linn (2 — 20)(2) =0,
or if
(ii) fe Ll () forsomep e [2,+x)],

then there exists a (unique) function f € O(Q) such that f = f on Q\ {z}.

Proof. Choose a € (0,400) such that A(zp;a) C Q, and fix w € A(zp;a) \ {20}. As in
the proof of Lemma 4.29, it follows from the fact that f is holomorphic on 2\ {zo} that
for any r € (0,Jw — 2o|) we have

b flz) 1 flzo+re?) o
f(w) /M( ——dz /(o “—————ire" d\(0),

2mi o) 2 W 2mi J0,2m) 20 +1e? —w
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where 0A(zp; a) has the counterclockwise orientation. In particular, this means that for
all 7 € (0,|lw — 2o|) we have

1 @ .
—/ St red) ire’? d\(0) = a,
(0,27)

2mi 20 +re? —w

IR I
a: /a dz — f(w)

N 271 A(z0;a) Z—w
is independent of r. We wish to show that whenever (i) or (ii) hold, we have o = 0.
Suppose first that (i) holds, and fix r € (0,|w — 2o|). The function

g:Q—=>C, zm(2—20)f(2)

is continuous on €2 and holomorphic on Q \ {2}, and hence by Lemma 4.29 we have

g € O(Q). Moreover, also as in the proof of Lemma 4.29, since the function z +— %

where

on Q\ {w} D A(zo;7) is holomorphic, we have

0
0= 90 _ i/ St rel) S gae) = a.
(0,27)

20— w 2w 20 +re? —w
Suppose now that (ii) holds. Let {r,},en be a sequence in (0,|w — zg|) converging
to 0, and fix n € N. Defining
P 1,9 ifpe 2 +oo)
q: =D~ 1
1 if p=+4o00 ,

we have % + % = 1. Since the function

zZ— 20

h:Q\{w} —-C, 2z~

zZ—w
is continuous, it is in LY(A(zp;7y)). Since f € LP(A(zp;7,)), by Holder’s inequality we
then have fh € L'(A(z;7,)) and

/ FhdA
A(z0;rn)

/ fhd\ = / fE)(z =~ =) dX(z)
A(zo5mn) A(z05rn) Z—w
[ o LB 1)) are)
(0,r1) (02r) 20+ pe’ —w

= / p2rad(p)
(0,rn)

2
=Troo.

< /A( )|fh| d\ < ”f”Lp(A(ZO”‘n))”h”Lq(A(zo;rn)) '
20;Tn

Note that

Moreover, for each z € A(zp;r,) we have
|z —w| >|w — 2| —|2 — 20| >|w — 20| =70 >0,

so that
T w— 2] =71
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Then,

/ K d/\) '
A(zo;rn)

T'n

H h’HL‘Z(A(Zo;”‘n))

¢ N\
d)\)

q );

S

A(zo5rn) |w - ZO‘ —Tn

Then, we have

1 2 r
7Tr3L|Oé| - S ||f||LP(A(zO;Tn)) ma (T'ﬂ) ? -

lw— 2| — 71y’

/ FhdA
A(zo;rn)

so that

2_
i1 (Tn)q !

< Tl ’
|Oz| > ||f||LP(A(ZU;Tn)) \w - Zo\ T'n
(Tn)%71

|lw—2zo|—7n

Suppose first that p € [2,4+00). As n — oo, we then have — 0if ¢ € (1,2),

2
and I 5 1 if g = 2. Thus, since 11l 2o (agzgiryy = 0, We must have |a| = 0.

|lw—2zo|—Tn |w—2z0|

24
— 1 (T’ﬂ)q — T'n
If p = 400, the sequence { HfHLp(A(ZO;rn)) }neN is bounded and oo = e 0
as n — —+oo, which also implies that |a| = 0 (alternatively, we could use the fact that
L () C Li () for all s € [1,400], so that we can always assume p € [2,+00)). This
shows that we also have ov = 0 when (ii) holds.

It follows that whenever either (i) or (ii) hold, we have
1
fwy =5 [ Ly
B

270 Jon(zpa) 2 — W

for all w € A(zp;a) \ {20}. Since f is continuous on Q2 \ {2}, and hence on 0A(zy;a),
the function

| 1 f(2)
A(zg;a) = C, (> 2m /8A(Zo;a) S -

is holomorphic. Then, the function

) f(©) if ¢ € @\ {20},
f:Q=>C, (— 1 f() e
%/BA(zo;a)z_CdZ if ( =2
is holomorphic and fulfils f = f on Q\ {z}. O

4.5. Power Series Representation and Global Solution to the Inhomogeneous

Cauchy-Riemann Equation.
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Definition 4.31. (Complex power series) Let zp € C. A (complex) power series centered
at zg is a formal expression of the form
o0
an(z — z0)",
n=0
where {a,}nen, is a collection of complex numbers. We say that the power series
Yoo gan(z — 2)" converges at some w € C if the series

n=0

converges in C to some limit Y > ja,(w — 29)". We say that a power series converges
on a set A C C if it converges at all points in A. If the power series does not converge
at some point w € C, we say it diverges at w.

Theorem 4.32. Let Y~ a,(z — 2)" be a complex power series centered at zy € C,
and let

S = limsup|an\% €[0,400], R:= l,
n—oo S
where é =400 if S =0, and % =0 14if S = +oo0. Then,
(i) if R = 400, the power series converges absolutely on C;
(i) if R € (0,400), the power series converges absolutely on the open disc {z €
C||z — 20| < R} = A(z0; R), and diverges on the set {z € C||z — 29| > R};
(iii) if R = 0, then the power series converges only at zy.

Proof. (i) Suppose R = +o00, and let z € C\ {zp}. Since S = 0, there exists N € N
such that

1 1
supa,|" < 57— -
n>N 2|z — 2|

Then, for every n € N>y we have

1 1
Janl 12 = 200 < 3

which implies that

la,||z — 20|" <

2_7’L .
Thus, for every n € N>y we have
n N-1 n
> Jaillz = 20" = Y lanllz — 2ol + 3 Jaxl]z — zof*
k=0 k=0 k=N

N—-1 n
1
k
< Sl + Y &
k=N

k=

- O

N—
< Z|ak||z — 2 +1.
k=0

It follows that the increasing sequence

{ > Jag]|z = zol* } cR
k=0

neN
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is bounded and hence it converges in R.
Since R € (0,+00), we must also have S € (0,400). Suppose z € A(zo; 5).
Letting

L]z — 2|

_ S
a=5 1720 g
2
1
we have |z — zp| < ¢ — a. Since S = limsup|a,|", there exists N € N such that
n—oo

sup|an|% < S+aS?.

n>N

Then, for all n € N>y we have
1 1
ol =z < (5 —a)(S+ash = 1-a57 <1

so that
lan||z — 20" < (1 — a*S*)™.

It follows that for all n € N>y we have

n N—-1 n
!akl\z—Zo\’“z !akl\z—Zo\’“+ !akl\z—Zo\’“
>
k=0
<Z]ak|\z—zo\ +Z a?5%)*
<Z]ak|\z—zo\ +Z a?5%)*

Thus, the increasing sequence

{ > lakl|z — 2" } cR
k=0

neN

is bounded and hence it converges in R.

We now show that the power series Y a,(z — zp)" diverges at every point of
A:={2€C||z— 2| > 5} Let z € A, and define

|z — 20| — &
bi=—— 5 >0.
2
We then have |z — 2| > ¢ + b. Since for every n € N we have
bS?

1
mlm>8>8— ,
suplam|™ 2 1555

1
we may find a subsequence {|ank ‘ "k } e such that for every k£ € N we have

bS?
1+0bS°

1
‘ank "> S —

Then, for every k € N,

1 bS? 1
|y | 7% |2 — 20| > <S— 1+bS)(§+b) =1,
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so that

|an, ||z = 20|™ > 1.
It follows that the sequence {a,(z — 20)" }nen does not converge to 0, which implies
that the series > a,(z — z)" cannot converge in C.

(iii) Since R = 0, we have S = 400, which means that the sequence {|an|l }neN is

unbounded. Then, for any z € C\ {20} we may find a subsequence {‘ank‘i

Then, for all k € N,

ren

such that for all k € N we have |a,, |" >

|z— Zl
‘ank|i|z—zo| > 1,
so that
‘ank||z—20|nk > 1.

As before, this implies the sequence {a,(z — 20)" }nen does not converge to 0, so
the series Y, a,(z — 2p)" cannot converge in C.

OJ

The number R in Theorem 4.32 is referred to as the radius of convergence of the
power series. We call the set A(zo; R) the (open) disc of convergence of the power series,
where we let A(zg;0) := (). Note that the open disc of convergence is the largest open
set on which the power series converges.

Theorem 4.33. A complex power series Y~ an(z — zp)" with radius of convergence
R € (0,4+00] converges uniformly to its limit function

f:A(z;R) —C, 2z Zan(z—zo)"
n=0

on compact subsets of A(zg; R). Moreover, f is holomorphic on A(zo; R).

Proof. For each n € Ny, define the function
gn  A(zo; R) = C,  z+— ay(z — 2)"

Then, we have Ziv:o gn — f pointwise on A(zp; R) as Ng 5 N — oo. Let K C A(zo; R)
be compact. Then, there exists r € (0, R) such that K C A(zg;7) C A(zo; R). Since
2o + 1 € A(zo; R), the power series converges absolutely at zo + r, that is, the series
Yoo olan| ™ converges. For each n € Ny, and for every w € K, we have

}gn(w)‘ =, ||w — ZOln <l|a,|r" = M, .

Thus, since )~ M, converges, by the Weierstrass M-test it follows that Y > g,
converges uniformly on K to some function h : K — C. We must then have h = f =

which shows that the power series converges uniformly to f on compact subsets of
A(zp; R). Then, by Corollary 4.23, we have f € O(A(zo; R)). O

Theorem 4.34. Let zp € C, and let Y7 jan(z — 20)™ be a complex power series with
radius of convergence R € [0, +00].

(i) The power series

[ee]
n
E nan Z— Zo E an+1 Zo)

124



also has radius of convergence R. Moreover, if R € (0,+00], and letting
fiA(z;R) - C, z+ Zan(z—zo)”,

we have

Znan(z —20)" = f(2)

for all z € A(zp; R).

(ii) The power series

= a = a
-1
g " (z — 2 "+1:§ " (2 — 2)"
n+1 n
n=0 n=1

also has radius of convergence R, and if R € (0,+00|, then defining

y— Zo)n+1

Y

g:A(z0; R) = C, Z|—>nzzon+1

we have

o0
g an(z — 2z9)"

n=0

for all z € A(zp; R).

Proof. (i) Let S be the radius of convergence of the power series

Z na,(z — z2)" ' = Z(n + Dayi1(z — 20)".
n=1 n=0

We first show that S < R. This is automatically true if S = 0. Suppose then that
S € (0,+o¢], and let w € A(zp;.S). Then, the (increasing) sequence

N
{Zn|an||w—zo|n_1} CR
NeN

n=1

converges to some L € [0,+00) as N — +o0. For each N € N, we have

N N
S Janllw = 2o =lao| +Jw — 20| 3 Janllw — 20
n=0 n=1

N
<lao| +|w — 20| Y nlan|jw — zo|"

n=1

§|a0| +|w—Zo|L.

Thus, the increasing sequence

N
{}:mﬂw—%w} CR
n=0 NeN
is bounded and hence it converges. It follows that the power series Y~ a,,(z—20)"
converges at w. Thus, the power series > 7 ja,(z — z)" converges at all points

of A(zo;S), which implies that R > 0 and A(zo;.S) C A(zp; R). Thus, we must
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have S < R. We now show that R < S. As before, this holds if R = 0. Suppose
R € (0, +00], and define the functions

f:A(zo; R) — C, zHian(z—zo)”

and
N

In i A(z;R) - C, 2z Zan(z — 20)"
n=0
for each N € Ny. By Theorem 4.33, the sequence {fy}nyen, € O(A(zp; R)) con-
verges to f uniformly on compact subsets of A(zg; R). Then, by Corollary 4.23, the
sequence { fj } nen, of complex derivatives converges uniformly on compact subsets
of A(zo; R) to f'. Since f} =0 and for each N € N we have

N N-1
fn= (z > Znan(z —2)" ! = Z(Tl + Dant1(z — Zo)n) ,

n=0

it follows that the power series >~ (n+ 1)an+1(z — 29)™ converges on A(zp; R) to
f’. We must then have R < S, which concludes the proof that S = R. Moreover,
if R € (0,+400], then we have

Znan(z — )" = Z(n + Dans1(z —20)" = f(2)

for each z € A(z; R).
Let T be the radius of convergence of the power series

chf:l(z_ n+1

n=0 n=1

)

and for each n € N, let

bn — tp—1
n
By (i), the power series
D nba(z—20)"" =Y (4 Dbosa(z—20)" = D an(z — 2)"
n=1 n=0 n=0

also has radius of convergence T', so we must have 7' = R. Suppose R € (0, +o0],
and let

g:Alzg;R) — C, Z'_)chj—ll o)t = Zb z—2)"
n=0

Then, also by (i), for all z € A(zp; R) we have

E nbn(z — z0)" E an(z — 29)"
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Definition 4.35. A function f : Q — C is said to be (complez) analytic at a point
zp € Q) if there exist a neighbourhood U of z, in © and a power series . >°  a,(z — 2)"
converging on U whose sum is equal to f on U. We say that f is analytic on € if it is
analytic at all points of €.

We know from Theorem 4.33 that a complex analytic function f : 2 — C on an
open subset 2 C C is holomorphic on €2. The next theorem shows that, conversely, a
holomorphic function on an open subset 2 C C is analytic on 2.

Theorem 4.36. Let zp € C and R € (0,400], and suppose f : A(zp; R) — C is a
holomorphic function. Then, the power series

X f(n)
Z . n(lZO) (z = 20)"
n=0 ’

converges to f on A(zo; R).

Proof. Fix z € A(zo; R), and choose 7, € (|z — 29|, R). For each n € Ny, define
1 / f(©) 1 / f(z0 +1:€")
an(z) == — ——r—d( = — =2 d\
#) = omi A (zoir) (€ — 20)" ! 2m Joam  (rae)” ©)

. 1 f(zo +r.e) N
gn.(0,27T)—>(C, eng(z—Zo)

(where, throughout this proof, we let 0° := 1). Define also

and

1 : r.e
h:(0,2r) - C, 60+ — e —
(0, 27) ’ 27rf(20+T6 >Zo+r2619—z

For each 6 € (0,2m), we have

z—2z0| |z — 20
— | = €1(0,1),

et T, 0.1)

so for N € Ny,
N
zo+7’z z—zo
S - Lo (22
. flzo +1.6") 17 _ Sl r.e’) rzeié _ h(o)
27 1—=3% 2m 20 + e — 2z

as N — oco. Moreover, letting P € (0,400) be an upper bound for|f| on dA(zg;7,), for

each n € Ny we have
|z — 20| \"
nl < — = n
9n] < 5 ( - M

n (0,27). Then, by the Weierstrass M-test, the series > g, converges uniformly to
h on (0,27). It then follows that

N
/ > gndX — hd\
(0,27)

n=0 (0,271')
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as N — 4o0. For each N € Ny, we have
N N

1 16
/ Zgnd)\: f(zo + 1.€")
0,2m) ,—p

ZO /(0 o 3r (e (2 — 20)" dA(0)
f(z0 +r.e?) Y
/(0,27r) (r.ei)n d/\(H)) ( o)

(o

an(2)(z = 20)" ,

&

¥~

n

[
WE

n=0
and
/ hd\ = / L b tr e”)“—eﬂ9 dA(0)
(0,27) B (0,27) 2 0 ? 2o + ’r’zei(’ —Z
1 " ir,et?
= — e ) ——————— d\(0
270 J(0,2m) flzo Free )zo +re? — 2 ()
1
1 1(Q) g
2mi OA(z0;r2) C -z
= f(z).

Thus, we have
D an(2)(z = 20)" = f(2).
n=0
We now show that for each n € Ny and for all z € A(z; R), we have

™ (2
an(z) = 1)

n!
Fix n € Ny, and let z,w € A(zp; R). We may assume without loss of generality that
T S Tw- If Ty = Tw, then

_ ! f(©) _ 1 f(©) _
an(Z) B 2_7” /6A(zo;rz) W dC e dC a an(w) .

a 2mi OA(zo5mw) (C - ZU)

Suppose r, < r,. Since the function ¢ — % on A(zp; R) \ {20} is holomorphic
and A(zo;7,,7w) C A(20; R) \ {20}, Cauchy’s Theorem gives

_ f(¢)
0= /é?A(zo;rz,rw) (g - Zo)n+1 dC
_ f(Q) B f(©)
B /8A(Zo;rw) (C - ZO)n+1 dC OA(zo;r2) (C - ZO)n—H dC

= 27Ti(an(w) - an<z)) )

where 0A(zp;ry,) and OA(zo;7,) have the counterclockwise orientation. Thus, in this
case we also have a,(z) = a,(w). It follows that a,(z) = a,(w) for all z,w € A(zo; R),
so that we may then define a,, :== a,(z) for any z € A(z; R). We then have

S an(z —20)" = £(2)
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for every z € A(zp; R), that is, the power series Y~ a,(z — 2p)" converges to f on
A(zp; R). Then, applying induction on Theorem 4.34 (i), for all m € Ny the power
series

Z Manm(z — z)"

n!
n=0
converges on A(zy; R) to f™. It follows that for each m € Ny we have
™ (20) = m! am

or
_ f(m)( %)

m!
which concludes the proof. |
Remark 4.37. It follows from Theorems 4.36 and 4.33 that if f € O(A(zp; R)) for
zp € Cand R € (0, +00], then there exists a sequence {g, }nen, of holomorphic functions
on C that converges to f uniformly on compact subsets of A(zg; R), namely

n. f(k)
gn: C—= C, zr—>zf kﬁzo)
k=0 ’

am )

(z — 20)F

for each n € Ny.

We are now ready to prove the existence of a global solution to the inhomogeneous
Cauchy-Riemann equation on an open disc of radius R € (0, +oc]. An alternative proof
can be found in [1]. We first prove the particular case of compact support:

Lemma 4.38. Let zp € C and R € (0, +00]. Suppose k € Z>1U{oc} and f : A(zp; R) —
C is a C* function with compact support. Then, the function

g:A(zp; R) = C, m—)i/ J(©) d¢ N dC
271 SRz} € 2
is also C* and fulfils
% _ g
0z

on A(zp; R).

Proof. If R € (0,+00), we may extend f to a C* function on a neighbourhood of
A(zp; R), by defining it to be 0 outside of A(zp; R). The result then follows directly
from Lemma 4.15. Suppose R = 400, and let w € C. Since suppf U {w} is compact,
we may choose r € (0, +00) such that suppf U {w} C A(zg;7). For each z € A(zo;7),

we have
o) =5 [ acnac

2wl Jo (-
1 ,
:_,/ HO g nac.
270 JaGoinzr 6 T2

Since f is C* on a neighbourhood of A(zg;7), it follows from Lemma 4.15 that the
restriction 9|a is C* and fulfils

203T)
0 <g|A(zo;r)>

0z
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on A(zp;r). Thus, every point w € C has a neighbourhood where g is C* and satisfies
0g/0z = f. The desired result then follows. O

Theorem 4.39. (Global solution of the inhomogeneous Cauchy-Riemann equation).
Let zp € C and R € (0,+00|. For k € Zsy, suppose f : A(zy; R) — C is a C* function.
Then, there exists another C* function g : A(zy; R) — C fulfilling
9g
et
on A(z; R).

Proof. If R € (0, +00), choose N € N with & < R. For each n € N, define

1 :
An _ A(ZO7 R - m) if Re (07 +OO),
A(zp;n) it R=+400.

Also, for each n € N define p,, : A(zp; R) — C to be a smooth bump function that is
equal to 1 on A, and has support in A, 2, and let F}, : A(zp; R) — C be a C* function
fulfilling OF,,/0z = p,f on A(zp; R) (Lemma 4.38). Let Gy := Fy. On Ay, we have
oy, — G
%:sz—ﬂlf:f—f:(),
so Fy—Gy € O(Ay). Then, by Remark 4.37, there exists a function h; € O(C) such that
‘(Fg - Gh) — hl‘ < % on A, which is a compact subset of Ay. Restrict hy to A(z; R),
and define G := Fy—h;. Then, G is C* on A(zp; R) and 0G5/0% = pof. We repeat the
process inductively: for each n € N, starting from n = 2, we have G,, € C*(A(z0; R))
and 0G,,/0zZ = p,f, so on A, 1,

O(Fn1 — Gy,
Wt ZGn) _ f—puf = -1 =0.

Thus, since F,,;1 — G, € O(A,41), we may find a function h, € O(C) such that

‘(Fnﬂ - G,) — hn‘ < 2% on A,. Restrict h, to A(z; R) and define G, := F, 11 — hy,.
We then have again G, 11 € C*(A(z0; R)) and 0G,11/0%Z = ppor f-
Now, for all m € N>, on A; we have (G, — G1)/0z = 0 and

m—2 m—2

1
|G — G1| < Z|Gmfj — Gmfjfl‘ < Z i1 <1.

j=0 7=0

Thus, the holomorphic functions {G,, — G1}men., on A; are uniformly bounded there.
It follows that there exist a function g; € O(A;) and a subsequence {G, ) — G1 }ren,
where m; is a strictly increasing function N — N, such that G,,, ) — G1 converges to
g1 on Ay as k — oo. It follows that the sequence {G,, i) }ren converges to Gy + g1 on
A;. We use induction again. For each n € N and for all m € N, 4,1, on A,, we have
J(Gp, — G,)/0zZ =0 and

m—n—1 m—n—1

1
|Gm - Gn| S Z |Gm—j - Gm—j—l’ S Z gm—j—1 < 1a
j=0

J=0

so the holomorphic functions {G,, — Gn}meNZn ., are uniformly bounded on A,,. For a
fixed n € N, suppose we have strictly increasing functions {my}}_, from N to N>, (note

that then the composition mq o --- o m, is a strictly increasing function mapping N to
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N>,+1) such that the sequence of holomorphic functions {G oo m,) (k) — Gn fren o0 A,
converges to some function g, € O(A,). Then, the sequence {G i o...om,) (k) Jren con-
verges to G, + g, on A,,. Since the sequence of holomorphic functions {Gm,o...om,)k) —
Gt brens, on A,y is uniformly bounded, it has a subsequence, which we may write
{G o o omns1)(k) — Gnt1tren for some strictly increasing function m, 11 : N = Nxo,
converging to some function g,11 € O(A,41). Then, {Gnio.ompomnsi)(k) hen cOD-
verges t0 Ghny1+ g1 o0 Apyq. On Ay, since {G o omy, omny1)(k) TheN 1S @ subsequence
of {Gmyo-omn)(k) tren, We must have Gy, + g, = Gni1 + gng1. We may then define the
function
g:A(zo;R) —» C, 9, = G”|An + g, for eachn € N.

Then, for each n € N, on A, the function g is C* and fulfils

g
Since A(zo; R) = [U,,en An, this concludes the proof. O

Theorem 4.40. Suppose Q) C C is a connected open set, and suppose f : Q) — C is a
holomorphic function that vanishes on a nonempty open subset U of 2. Then, f =0 on

Q.

Proof. Define the set
S :={w € Q| f vanishes on a neighbourhood of w in Q}

Then, S is open, and it is also nonempty, since U C S. We show that S is also closed
in Q. First note that for each w € S we have f(w) = 0 for all n € Ny. Suppose
zp is a point in Q such that there exists a sequence {wy}reny in S converging to zp.
Then, for each n € Ny we have 0 = ™ (w) — f™(z) as k — oo, which implies that
f™(z) = 0. Choosing R € (0, 4+00) such that A(zy; R) C €, Theorem 4.36 then gives
f =0 on A(z; R). It follows that zy € S, which shows that S is closed in €. Since Q
is connected, we must then have S = ). Thus, f = 0 on €. O

Corollary 4.41. Suppose €2 C C is a connected open set, and let f : @ — C be a
nonconstant holomorphic function.

(i) For all zy € Q there exists m € N such that f™(z) # 0.
(ii) For each zy € €, there exist unique m € Ny and unique g € O(Q) such that
9(20) # 0 and f(z) = (z — 20)™g(z) for all z € Q.
(iii) (Identity Theorem) The set f~(0) has no limit points in 2.
(iv) The sets (Re(f))~1(0) and (Im(f))~*(0) are nowhere dense in Q.

Proof. (i) Let 2y € €, and suppose f(™(z) = 0 for all m € N. Then, choosing
R € (0, +00) such that A(zp; R) C €2, by Theorem 4.36 we must have f = f(z)
on A(zp; R). Then, the holomorphic function z — f(z) — f(20) on 2 vanishes on
A(zp; R), which by Theorem 4.40 implies that it vanishes on €. It follows that
f = f(z0) in Q, which contradicts the fact that f is nonconstant.

(ii) Let 2 € Q. We first show that if there exist m,n € Ny and g,h € O(2) such
that g(z0),h(z0) # 0 and f(2) = (2 — 20)™g(2) = (2 — 20)"h(z) for all z € Q,
then we have n = m and ¢ = h. If n = m, then we must have ¢ = h on
Q\ {20}, so g = h on Q by continuity. If n # m, and assuming n < m, we
have (z — 2z0)"™ "(z — 20)"g(2) = (2 — 20)"h(2) for all z € Q. It follows that
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(iii)

(iv)

(z—20)" "g(2) = h(z) for all z € Q, so h(zy) = 0, which is a contradiction. Thus,
we must have n = m and g = h. We now show the existence of such m € Ny and
g € O(Q). If f(z9) # 0, then letting m := 0 and g := f the desired conditions are
fulfilled. Suppose f(z9) = 0, and let
m = min{n € N| f(z) # 0}.

Choosing R € (0,400) such that A(zp; R) C €, for every z € A(zp; R) we have

N )y N,

f (0)(Z—Zo)n:<2—20)m f (O)(Z—Zo>nim—>f(2)
2 |

n! n

=m

as Ns,, © N — oo. Then, for all z € A(zp; R) \ {20} we have
N £(n)
Z f (ZO) (Z . Zo)nfm N f(Z>
—~ (z — 2z9)™
as N>, @ N — oo. It follows that the power series

X flntm) ()
(n+m)!

(z — 2z)"
n=0

converges on A(zp; R), and it does so to (Zfi?)m for each z € A(zp; R)\{20}. Then,
defining the function

(> f(ntm)
=0, z)i =4 "
’ ’ £(:) |
otherwise

\ (z — zo)™

% if z S Q \ {Zo}
- — 20

f(n:;(|zo> if Z =20,

we have g € O(Q), g(20) # 0 and f(z) = (2 — 20)"g(z) for all z € .

Suppose there exist zp € Q and a sequence {w, hney in f71(0)\ {20} converging to
29. Let g € O(Q2) and m € Ny such that g(z9) # 0 and f(2) = (2 — 20)™g(z) for all
z € (), as given by (ii). Then, for each n € N we have 0 = f(w,,) = (w,—20)"g(w,),
which implies that g(w,) = 0. It follows that g(zy) = 0, which is a contradiction.
Thus, the set f~1(0) has no limit points in Q.

Let u := Re(f) and v := Im(f). Suppose u~'(0) is not nowhere dense, that is, the
closure of u~1(0) in €, which is «~1(0) itself, has nonempty interior in Q. Then,
there exists a nonempty open subset U C €2 contained in ©~'(0). On U, we have

which implies that f™ = 0 on U for all m € N. This contradicts (i), which shows
that indeed u~'(0) must be nowhere dense in Q. The proof that v=!(0) also is
nowhere dense in () is similar.
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Remark 4.42. Suppose f is a holomorphic function on an open subset 2 C C, not
necessarily connected, and let zy € Q. If f is not identically 0 on any neighbourhood of
2o in €2, then the set

{n € No| /" (20) # 0}
is nonempty and hence it has a minimum m € Ny. Then, by the proof of Corollary 4.41
(ii), defining

g:Q2—=>C, g(z):= (2~ 20)
S z0)
if 2 = 2,

m)!

m and g are respectively the unique number m € Ny and unique function g € O(f)
such that g(z9) # 0 and f(2) = (2 — 29)™g(z) for all z € Q. We then call m the order of
f at zy, and denote it by ord,, f. If ord,, f > 1, then we have f(z) = 0, and z, is called
a zero of order m (a simple zero if ord,, f = 1). If f does vanish on a neighbourhood of
2o in €2, then we say that f has order ord,,f = oo at z.

Theorem 4.43. (Open Mapping Theorem). Suppose Q2 C C is a connected open set
and f : Q — C a nonconstant holomorphic function. Then, the image f()) is open in
C.

Proof. We wish to show that for each z, € {2 there exists a neighbourhood U, of %, in
Q2 such that f(U,,) is open in C. Let z, € 2, and suppose first that f'(z9) # 0. Then,
letting u := Re(f) and v := Im(f), the Jacobian determinant of f at 2, is given by

%Z @Z (‘)u 8v

T B i i) (5 >)2+(a”< >)2|f’< I
v v BEL Ou S e |
GO COl I wCONE =t

and hence it is nonzero. It follows from the Inverse Function Theorem that there exist a
neighbourhood U, of zy in © and a neighbourhood V' of f(z) in C such that f(U,,) = V.
Thus, f(U,,) is open in C.

Suppose now that f/(z9) = 0. By Corollary 4.41 (iii), we may find R € (0, +00) such
that A(zo; R) C 2 and for all z € A(zp; R) \ {20} we have f'(z) # 0 and f(z) # f(z0).
Then, by the above argument, for each z € A(zo; R) \ {20} = A*(z0; R) we may find a
neighbourhood W, of z in A*(zy; R) such that f(W,) is open in C. We have

f(A™(20; R)) = f< U Wz) - U rw,
z€A*(z0;R) z€A*(z0;R)
so f(A*(zo; R)) is open in C. Moreover, since f(A(zp;R)) is closed and contains
f(A*(z0; R)), we have
O(f(A"(20; R))) C f(A(z05 R))
= f(A"(20; R)) U f(OA(20; R)) U {f(20)} -
Since f(A*(zo; R)) is open, we must then have

O(F(A*(20: R))) € F(OA(z03 R)) U {f(20)}
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Now, since the sets f(OA(zp; R)) and {f(z9)} in C are compact and disjoint, there exists
€ (0,400) such that A(f(20);a) N f(OA(20; R)) = 0. Tt follows that

A*(f(20);a) NO(f(A™ (205 R))) =0,
S0
A™(f(20);a) C f(A™(20; R)) U ext (f(A™ (205 R))) -
Since A*(f(20);a) is connected, we must then have either A*(f(29);a) C f(A*(z0; R))
or A*(f(z0);a) C ext(f(A*(z0; R))). Choosing a sequence {wy,}nen in A*(29; R) con-
verging to zp, the sequence { f(wy,) tnen C f(A*(20; R)) must have points in A*(f(z0); a).
Thus, we must have
A*(f(z0);a) C f(A*(20; R))
so that, letting U, := A(zo; R), the image

f(Uz) = f(A"(20; R)) U{[f(20)}
= f(A%(20; R)) U A™(f(20); ) U{f(20)}
= f(A™(z0; R)) U A(f(20); @)
is open in C.
Since for each zy € € there is a neighbourhood U,, of zy in Q such that f(U,,) is

open in C, the image
= f( U UZO> = (U

20€Q 20€Q
is open in C. 0

Corollary 4.44. (Maximum Principle). Suppose Q@ C C is a connected open set and
f : Q — C a holomorphic function. If |f| attains a local mazximum at some zy € €2,
then f is constant.

Proof. Let zy € €, and suppose there exists a neighbourhood U of z; in € such that
for all z € U we have | f(z)| <|f(z0)|. We may assume that U is connected. Then,
f(U) cannot contain an open disc about f(zg), so f(U) is not open in C. It follows
from Theorem 4.43 that f is constant on U. Since () is connected, it follows that f is
constant on €. O
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