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Abstract. In this thesis we present a sophisticated, non-standard treatment of com-

plex analysis using modern tools from measure theory and advanced analysis. This

approach opens the path to deep and powerful results, including the regularity theorem

and the global solution to the inhomogeneous Cauchy-Riemann equation on a disc and

on the complex plane. Moreover, the resulting theory is suitable for generalisation to

the further study of Riemann surfaces, and of complex geometry more generally.
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0. Introduction

The aim of this thesis is a development of complex analysis in the plane using tech-
niques from measure theory and advanced analysis. Although this approach to complex
analysis is more sophisticated than the standard one and requires substantial additional
background, it has the benefit of allowing us to prove much more powerful and general
results. This greater generality also makes the definitions and results readily extend-
able to the study of Riemann surfaces and higher-dimensional complex analysis and
geometry.

Chapter 1 covers some necessary background about the linear algebra of complex
vector spaces. This is applied in Chapter 2 to the introduction of complex tangent
vectors, covectors and differential forms on smooth manifolds. Further notions about
smooth manifolds are also discussed in Chapter 2, including orientability, measurable
sets and measurable differential forms. The available tools from measure theory allow us
to develop integration on smooth manifolds that are not necessarily second countable,
as discussed in this chapter, culminating with a proof of Stokes’ theorem in this more
general setting. Chapter 3 contains a development of advanced analysis in Euclidean
space, focusing on locally integrable functions and their smooth regularisation using
mollifiers, and on linear differential operators.

In Chapter 4, we use many of the tools and results developed in the previous chapters
to prove numerous impressive and compelling results involving integration on subsets
of C, mind-blowing properties of holomorphic functions, and solutions to the inhomo-
geneous Cauchy-Riemann equation. We start with some basic facts about holomorphic
functions, and use polar coordinates to establish the local integrability of 1/z on C.
Using Stokes’ theorem, we prove the Cauchy integral formula and Cauchy’s theorem for
the general case of C1 functions. We then prove the existence of a local solution of the
inhomogeneous Cauchy-Riemann equation for Ck functions, and also Montel’s theorem,
among other results. Using the full power of the material developed in Chapter 3, we
prove the outstandingly deep and cool fact that a weak solution to the homogeneous
Cauchy-Riemann equation is equal almost everywhere to a holomorphic function, which
in turn implies the regularity theorem for solutions of the inhomogeneous equation. Fol-
lowing this, we establish the mean value property about holomorphic functions and a
generalised version of Riemann’s extension theorem. We conclude with a treatment of
complex power series and their notorious and renowned consequences: among others,
the global solution to the inhomogeneous Cauchy-Riemann equation on a disc and on
C, the identity theorem, the open mapping theorem and the maximum principle.

It is assumed that the reader has a solid background in real analysis, topology and
basic measure theory, in addition to being familiar with the notion of a smooth manifold.

The general presentation of the material is based on [2]. However, the proofs of
all results in this thesis have been constructed completely independently by the author
without reference to any source, except for a very small number of isolated cases in
which a trick was required that the author could not have been expected to work out
in isolation within a reasonable period of time. Even in these very few cases, only a
small push in the right direction sufficed for the author to complete the proof, since in
searching for the right argument she had already acquired a deep and comprehensive
understanding of the problem, and she would tell her supervisor off quite hard if he tried
to reveal slightly more information than necessary.
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The author is nevertheless very thankful for her supervisor’s guidance and patience.
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1. Linear Algebra

1.1. Real and Complex Vector Spaces, Realifications and Complexifications.
Let F be R or C, and let V and W be two vector spaces over F. Recall that then the
set of F-linear maps from V to W is denoted by Hom(V ,W), and it is itself a vector
space over F. The (algebraic) dual space of V is defined to be V∗ := Hom(V ,F). If V
has finite dimension n ∈ N and e1, . . . , en ∈ V is a basis for V , then we can define the
linear functionals λ1, . . . , λn in V∗ characterised by

λj(ek) := δjk =

{
1 if j = k ,

0 if j ̸= k ,
j, k ∈ {1, . . . , n}.

These n linear functionals then form a basis for the vector space V∗, called the basis
dual to e1, . . . , en. It follows that the dual space of V has the same dimension as V .

For each vector v ∈ V , we can define the map

gv : V∗ → F , f 7→ f(v) .

This map is linear, since for f, h ∈ V∗ and c ∈ F,

gv(cf + h) = (cf + h)(v) = cf(v) + h(v) = cgv(f) + gv(h) .

Thus, gv ∈ (V∗)∗. We then obtain a map

ϕ : V → (V∗)∗ , v 7→ gv .

Proposition 1.1. If V is a vector space over F of finite dimension n ∈ N, then the map
ϕ as defined above is an isomorphism of vector spaces.

Proof. We first show linearity of ϕ. Let u, v ∈ V , and c ∈ F. Then, for all f ∈ V∗

(ϕ(cu+ v))(f) = gcu+v(f)

= f(cu+ v)

= cf(u) + f(v)

= cgu(f) + gv(f)

= (cgu + gv)(f)

= (cϕ(u) + ϕ(v))(f) ,

so ϕ(cu + v) = cϕ(u) + ϕ(v). To show injectivity of ϕ, assume v ∈ V and ϕ(v) = 0.
Then, gv = 0, so

v = λ1(v)e1 + · · ·+ λn(v)en

= gv(λ1)e1 + · · ·+ gv(λn)en

= 0 .

For surjectivity, let g ∈ (V∗)∗, and v := g(λ1)e1 + · · · + g(λn)en ∈ V . Then, for all
f ∈ V∗,

g(f) = g(f(e1)λ1 + · · ·+ f(en)λn)

= f(e1)g(λ1) + · · ·+ f(en)g(λn)

= f(v)

= gv(f) ,
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so g = gv = ϕ(v). □

If V has dimension 1 and v ∈ V \ {0}, then for all u ∈ V there is a unique c ∈ F such
that u = cv, since v is a basis for V . We then define u

v
:= c. This defines a map

ψv : V → F , u 7→ u

v
,

which is linear, since it is just the basis for V∗ dual to v. We may denote the map ψv
by v−1.

Remark 1.2. Suppose now that V is infinite-dimensional with basis {eα}α∈A, where
A is an (infinite) indexing set. Then, every vector v ∈ V can be written uniquely as a
finite linear combination

v = vj1ej1 + · · ·+ vjmejm ,

where m ∈ N, {j1, . . . , jm} ⊂ A, and vj1 , . . . , vjm ∈ F. We may then define vα := 0 for
α /∈ {j1, · · · , jm}. Then, we can again define linear functionals {λα}α∈A ⊂ V∗ by

λα(v) := vα

for each α ∈ A and v ∈ V , characterised by

λα(eβ) = δαβ , α, β ∈ A .

However, these linear functionals are not a basis for V∗, since they fail to span it: any
finite linear combination

aj1λj1 + · · ·+ ajmλjm

(where m ∈ N, {j1, . . . , jm} ⊂ A, and aj1 , . . . , ajm ∈ F) will send every vector eα with
α /∈ {j1, · · · , jm} to 0; and thus the linear functional

f : V → F ,
m∑
k=1

vjkejk 7→
m∑
k=1

vjk ,

which has f(eα) = 1 for all α ∈ A, cannot be spanned by {λα}α∈A. For each vector
v ∈ V , we may again define the linear map gv ∈ (V∗)∗ by

gv : V∗ → F , f 7→ f(v) ,

obtaining again a linear map

ϕ : V → (V∗)∗ , v 7→ gv .

However, in this case ϕ is not an isomorphism, since, as we now show, it is not surjective.
Let {γβ}β∈B ⊂ V∗ be a basis for V∗ containing {λα}α∈A (such a basis exists because the
set {λα}α∈A is linearly independent), and define h ∈ (V∗)∗ to be the linear map on V∗

characterised by

h(f) :=

{
0 for all f ∈ {λα}α∈A ,
1 for all f ∈ {γβ}β∈B \ {λα}α∈A .

If h is in the image of ϕ, then there is a vector v ∈ V with gv = ϕ(v) = h, and then for
all α ∈ A

vα = λα(v) = gv(λα) = h(λα) = 0 ,

so v = 0. However, since h ̸= 0 and ϕ is linear, we cannot have ϕ(0) = h. Thus,
h /∈ ϕ(V).
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Proposition 1.3. Let V be a vector space over C, with addition map + : V × V → V
and scalar multiplication map · : C× V → V. Then, the set V together with + and the
restriction of · to R × V is a real vector space VR. If {eα}α∈A is a basis for V, where
A is a suitable indexing set, then the set {eα}α∈A ∪ {ieα}α∈A is a basis for VR. As a
consequence, VR has dimension dimVR = 2dimV.

Proof. Since VR has the same addition map as V , to show it is a vector space we only
need to check the axioms that involve scalar multiplication, namely that if u, v ∈ VR
and a, b ∈ R,
(i) a(bv) = (ab)v,
(ii) 1v = v,
(iii) a(u+ v) = au+ av,
(iv) (a+ b)v = av + bv.

All these axioms follow from the fact that V is a complex vector space and R is a subfield
of C. Thus, VR is a real vector space. Consider the set {eα}α∈A ∪ {ieα}α∈A ⊂ VR.
Observe that this is a disjoint union, since if α, α′ ∈ A and eα = ieα′ , then we either
have 1 = −i = 0 if α ̸= α′, or 1 − i = 0 if α = α′, which are both false. Moreover, if
α, α′ ∈ A and ieα = ieα′ , then we must have α = α′, which shows that {ieα}α∈A has
cardinality |A|. Thus, the union {eα}α∈A ∪ {ieα}α∈A has cardinality 2|A| = 2dimV . To
show that {eα}α∈A ∪ {ieα}α∈A spans VR, consider an arbitrary vector v ∈ VR. Since
VR = V as sets, we have v ∈ V . Thus, v has a representation

v = vj1ej1 + · · ·+ vjmejm ,

for some m ∈ N, {j1, . . . , jm} ⊂ A, and vj1 , . . . , vjm ∈ C. For k ∈ {1, . . . ,m}, let
ajk := Re(vjk) and bjk := Im(vjk). Then,

v = (aj1 + ibj1)ej1 + · · ·+ (ajm + ibjm)ejm

= aj1ej1 + bj1iej1 + · · ·+ ajmejm + bjmiejm ,

where ajk , bjk ∈ R for all k ∈ {1, . . . ,m}. It remains to show that the set {eα}α∈A ∪
{ieα}α∈A ⊂ VR is linearly independent. To see this, observe that every finite linear
combination C of vectors in {eα}α∈A ∪ {ieα}α∈A with real coefficients can be rewritten
as a finite linear combination of vectors in {eα}α∈A with complex coefficients, by simply
writing each sum aeα + bieα as (a+ ib)eα, for a, b ∈ R and α ∈ A. Thus, if C = 0, then
by linear independence of {eα}α∈A all these complex coefficients a + ib are zero, hence
so are all their real and imaginary parts a and b, which were the real coefficients in C.
This concludes the proof that {eα}α∈A ∪ {ieα}α∈A is a basis for VR, and since this basis
has cardinality 2 dimV , we have dimVR = 2dimV . □

Definition 1.4. For a complex vector space V , the associated real vector space VR given
by Proposition 1.3 is called the realification of V , or the underlying real vector space of
V .

Proposition 1.5. Let V be a real vector space with addition map + : V × V → V and
scalar multiplication map · : R× V → V.
(i) The abelian group V ⊕ V, together with the scalar multiplication map

· : C× (V ⊕ V) → V ⊕ V , (a+ ib)(u, v) := (au− bv, av + bu) ,

for a, b ∈ R and (u, v) ∈ V ⊕ V, is a complex vector space VC.
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(ii) The map

ι : V → VC , v 7→ (v, 0) ,

is injective and linear with respect to vector addition and to multiplication by scalars
in R, that is, for all u, v ∈ V and c ∈ R,

ι(cu+ v) = cι(u) + ι(v) .

Proof. (i) Since V ⊕V is an abelian group with respect to +, it only remains to check
the vector space axioms that involve multiplication by scalars, that is, that for all
u, v, u′, v′ ∈ V and z, w ∈ C,
(1) z(w(u, v)) = (zw)(u, v),
(2) 1(u, v) = (u, v),
(3) z((u, v) + (u′, v′)) = z(u, v) + z(u′, v′),
(4) (z + w)(u, v) = z(u, v) + w(u, v).
Let z = a+ ib and w = c+ id, where a, b, c, d ∈ R. For (1), we have

z(w(u, v)) = (a+ ib)(cu− dv, cv + du)

= (acu− adv − bcv − bdu, acv + adu+ bcu− bdv)

= ((ac− bd)u− (ad+ bc)v, (ac− bd)v + (ad+ bc)u)

= (ac− bd+ i(ad+ bc))(u, v)

= (zw)(u, v) .

For (2),

1(u, v) = (1u− 0v, 1v + 0u) = (u, v) .

For (3),

z((u, v) + (u′, v′)) = (a+ ib)(u+ u′, v + v′)

= (au+ au′ − bv − bv′, av + av′ + bu+ bu′)

= (au− bv, av + bu) + (au′ − bv′, av′ + bu′)

= (a+ ib)(u, v) + (a+ ib)(u′, v′)

= z(u, v) + z(u′, v′) .

Finally, for (4),

(z + w)(u, v) = (a+ c+ i(b+ d))(u, v)

= (au+ cu− bv − dv, av + cv + bu+ du)

= (au− bv, av + bu) + (cu− dv, cv + du)

= (a+ ib)(u, v) + (c+ id)(u, v)

= z(u, v) + w(u, v) .

7



(ii) Let u, v ∈ V . Then, if ι(u) = ι(v), we have (u, 0) = (v, 0), which implies u = v.
Thus, ι is injective. Moreover, if u, v ∈ V and c ∈ R, we have

ι(cu+ v) = (cu+ v, 0)

= (cu, 0) + (v, 0)

= (cu− 00, c0 + 0u) + (v, 0)

= c(u, 0) + (v, 0)

= cι(u) + ι(v) .

□

Remark 1.6. Since the map

ι : V → VC , v 7→ (v, 0)

in Proposition 1.5 (ii) is injective and its image is the set S := {(v, 0) | v ∈ V} ⊂ VC, for
each v ∈ V we may denote the element (v, 0) ∈ S by v. Then, if u, v ∈ V and c ∈ R,
the notations u+ v ∈ VC and cv ∈ VC have two possible interpretations: if addition and
scalar multiplication take place in V , then u + v = (u + v, 0) and cv = (cv, 0); and if
they take place in VC, then u+v = (u, 0)+(v, 0) and cv = c(v, 0). However, by linearity
of ι, these two interpretations are actually the same, hence there is no ambiguity in the
notation. Then, for each u, v ∈ V and z, w ∈ C, we may write zu + wv to denote the
element z(u, 0) + w(v, 0) ∈ VC. We can then write an arbitrary element (u, v) ∈ VC as

(u, v) = (u, 0) + (0, v) = (u, 0) + i(v, 0) = u+ iv .

This representation is unique, since if (u, v) = u′ + iv′ for some u′, v′ ∈ V , then (u, v) =
(u′, v′), hence u = u′ and v = v′.

Definition 1.7. Let V be a real vector space. Then, the associated complex vector space
VC given by Proposition 1.5 (i) is called the complexification of V . If w = u + iv ∈ VC,
for u, v ∈ V , we call Re(w) := u and Im(w) := v the real part and the imaginary part
of w respectively. We also call w̄ := u− iv the conjugate of w.

Proposition 1.8. Let V be a real vector space, and let {eα}α∈A be a basis for V, where
A is a suitable indexing set. Then, the set {eα}α∈A, regarded to be a subset of the com-
plexification VC (that is, the set {(eα, 0)}α∈A ⊂ VC), is a basis for VC. As a consequence,
dimVC = dimV.

Proof. We first show that {eα}α∈A spans VC. Let w = u + iv ∈ VC, for some u, v ∈ V .
Then,

u = uj1ej1 + · · ·+ ujnejn and v = vk1ek1 + · · ·+ vkmekm ,

for some n,m ∈ N, {j1, . . . , jn, k1, . . . , km} ⊂ A, and uj1 , . . . , ujn , vk1 , . . . , vkm ∈ R; and
then,

w = uj1ej1 + · · ·+ ujnejn + i(vk1ek1 + · · ·+ vkmekm)

= uj1ej1 + · · ·+ ujnejn + ivk1ek1 + · · ·+ ivkmekm ,

so w can be written as a linear combination (with complex coefficients) of vectors in
{eα}α∈A. Moreover, if C := zj1ej1 + · · ·+ zjnejn ∈ VC is an arbitrary linear combination
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of vectors in {eα}α∈A, for zj1 , . . . , zjn ∈ C, and C = 0, we have

0 = zj1ej1 + · · ·+ zjnejn

= (aj1 + ibj1)ej1 + · · ·+ (ajn + ibjn)ejn

= aj1ej1 + . . .+ ajnejn + i(bj1ej1 + . . .+ bjnejn) ,

where ajk := Re(zjk) and bjk := Im(zjk), for k ∈ {1, . . . , n}. Thus, as vectors in V ,

aj1ej1 + . . .+ ajnejn = 0 and bj1ej1 + . . .+ bjnejn = 0 ,

which implies ajk = bjk = 0 for all k ∈ {1, . . . , n}, by linear independence of {eα}α∈A in
V . Thus, zjk = 0 for all k ∈ {1, . . . , n}, which proves linear independence of {eα}α∈A in
VC. Thus, {eα}α∈A is a basis for VC, which implies dimVC = A = dimV . □

Definition 1.9. Let V and W be complex vector spaces. Then, a map ϕ : V → W
is said to be a conjugate linear isomorphism if it is bijective and for all u, v ∈ V and
z ∈ C,

ϕ(zu+ v) = z̄ϕ(u) + ϕ(v) .

Proposition 1.10. Let V be a real vector space. Then, the map

ϕ : VC → VC , w 7→ w̄

is a conjugate linear isomorphism.

Proof. Let w,w′ ∈ VC, and suppose w = u + iv and w′ = u′ + iv′, for u, v, u′, v′ ∈ V . If
ϕ(w) = ϕ(w′), then

w̄ = w̄′ =⇒ u+ iv = u′ + iv

=⇒ u− iv = u′ − iv′

=⇒ u = u′ and v = v′ ,

so w = w′. Thus, ϕ is injective. Moreover, w̄ ∈ VC and

ϕ(w̄) = u− iv = u+ iv = w ,

which shows surjectivity of ϕ. Furthermore, if z = a+ ib ∈ C, for a, b ∈ R, then

ϕ(zw + w′) = zw + w′

= (a+ ib)(u+ iv) + u′ + iv′

= au− bv + u′ + i(av + bu+ v′)

= au− bv + u′ − i(av + bu+ v′)

= (a− ib)(u− iv) + u′ − iv′

= z̄w̄ + w̄′

= z̄ϕ(w) + ϕ(w′).

□

For the remainder of this text, if S is any set, we will denote by 1S the identity
function S → S.
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Proposition 1.11. Let V and W be two real vector spaces. If α, β ∈ Hom(V ,W), then
the map

λ(α, β) : VC → WC , u+ iv 7→ α(u)− β(v) + i(β(u) + α(v))

is (complex) linear. Moreover, the map λ : [Hom(V ,W)]C → Hom(VC,WC) sending an
element α+ iβ ∈ [Hom(V ,W)]C to the map λ(α, β) ∈ Hom(VC,WC) defined above is an
isomorphism of vector spaces.

Proof. We omit the proof that λ(α, β) is linear, since it can be done by direct compu-
tation.

To show that λ : [Hom(V ,W)]C → Hom(VC,WC) is bijective, it suffices to find
an inverse, that is, a map λ−1 : Hom(VC,WC) → [Hom(V ,W)]C such that λ−1 ◦ λ =
1[Hom(V,W)]C and λ◦λ−1 = 1Hom(VC,WC). An element f ∈ Hom(VC,WC) is a complex linear
function mapping each pair u+iv ∈ VC to some f(u+iv) = f1(u+iv)+if2(u+iv) ∈ WC,
where f1(u+ iv) := Re(f(u+ iv)) and f2(u+ iv) := Im(f(u+ iv)) are both vectors in W .
We thus obtain from f two functions f1 and f2 mapping VC to W . Since f is complex
linear, for each u+ iv ∈ VC we have

−f2(u+ iv) + if1(u+ iv) = i(f1(u+ iv) + if2(u+ iv))

= if(u+ iv)

= f(i(u+ iv))

= f(−v + iu)

= f1(−v + iu) + if2(−v + iu) ,

so

(1) −f2(u+ iv) = f1(−v + iu) and f1(u+ iv) = f2(−v + iu)

for all u + iv ∈ VC (note that these two equalities are actually equivalent). We define
the functions

f̂1 : V → W , v 7→ f1(v + i0) ,

f̂2 : V → W , v 7→ f2(v + i0) .

Then, for all u, v ∈ V and c ∈ R,

f̂1(cu+ v) + if̂2(cu+ v) = f1(cu+ v + i0) + if2(cu+ v + i0)

= f(cu+ v + i0)

= f(c(u+ i0) + v + i0)

= cf(u+ i0) + f(v + i0)

= c(f1(u+ i0) + if2(u+ i0)) + f1(v + i0) + if2(v + i0)

= cf1(u+ i0) + f1(v + i0) + i(cf2(u+ i0) + f2(v + i0))

= cf̂1(u) + f̂1(v) + i(cf̂2(u) + f̂2(v)) ,

which shows that f̂1 and f̂2 are (real) linear, that is f̂1, f̂2 ∈ Hom(V ,W). We can now
define the map

λ−1 : Hom(VC,WC) → [Hom(V ,W)]C , f 7→ f̂1 + if̂2 .
10



We check that λ and λ−1 are indeed inverses. If α + iβ ∈ [Hom(V ,W)]C, then we have

(λ−1 ◦ λ)(α + iβ) = λ−1(λ(α, β)) = ̂λ(α, β)1 + i ̂λ(α, β)2 .

Observe that for all v ∈ V ,
̂λ(α, β)1(v) = λ(α, β)1(v + i0) = α(v)− β(0) = α(v) ,

̂λ(α, β)2(v) = λ(α, β)2(v + i0) = β(v) + α(0) = β(v) ,

so ̂λ(α, β)1 = α and ̂λ(α, β)2 = β as elements in Hom(V ,W). This shows that λ−1 ◦λ =
1[Hom(V,W)]C . Furthermore, if f ∈ Hom(VC,WC), then

(λ ◦ λ−1)(f) = λ(f̂1 + if̂2) = λ(f̂1, f̂2).

For u+ iv ∈ VC, we have

λ(f̂1, f̂2)(u+ iv) = f̂1(u)− f̂2(v) + i(f̂2(u) + f̂1(v))

= f1(u+ i0)− f2(v + i0) + i(f2(u+ i0) + f1(v + i0))

= f1(u+ i0) + f1(0 + iv) + i(f2(u+ i0) + f2(0 + iv)) (by (1))

= f(u+ i0) + f(0 + iv)

= f(u+ iv) ,

which shows that indeed λ(f̂1, f̂2) = f , hence λ ◦λ−1 = 1Hom(VC,WC). Thus, λ is bijective,
and linearity can be shown by direct computation. □

Remark 1.12. (i) Using notation from Proposition 1.11, for each α+iβ ∈ [Hom(V ,W)]C
we obtain a map λ(α, β) ∈ Hom(VC,WC). Defining λ(α, β) := λ(α,−β), we have

λ(α, β)(w) = λ(α, β)(w̄) for all w ∈ VC.

(ii) As one can check, for any α ∈ Hom(V ,W), the map α is injective if and only if
the map λ(α) := λ(α, 0) : VC → WC is injective, and α is surjective if and only if
λ(α) is surjective.

(iii) As a complex vector space, C can be regarded to be the complexification of R (not
as a field, since a priori the product of two elements in RC is not defined). Then,
we have

(V∗)C = [Hom(V ,R)]C ∼= Hom(VC,RC) = Hom(VC,C) = (VC)
∗ .

1.2. Exterior Products.
Throughout Subsection 1.2, we let F := R or C and we fix a vector space V over F.

Definition 1.13. A function θ : V × V → F is said to be bilinear if it is linear in each
entry, that is, if for all u, v, w ∈ V and c ∈ F,

θ(u+ v, w) = θ(u,w) + θ(v, w) ,

θ(u, v + w) = θ(u, v) + θ(u,w) ,

θ(cu, v) = c θ(u, v) = θ(u, cv) .

The set of bilinear functions on V × V , which we denote by V∗ ⊗ V∗, is a subspace
of the vector space (over F) of F-valued functions on V ×V . We call V∗ ⊗V∗ the tensor
product of V∗ with itself, and we also call an element in V∗ ⊗ V∗ a 2-tensor on V .
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Definition 1.14. Let θ ∈ V∗ ⊗ V∗. The 2-tensor θ is said to be symmetric if for all
u, v ∈ V , θ(v, u) = θ(u, v). Moreover, θ is said to be alternating (or skew-symmetric) if
for all u, v ∈ V , θ(v, u) = −θ(u, v). We call this last equality the alternating property.
An alternating 2-tensor on V is also called a 2-covector on V .

We denote the set of 2-covectors on V by Λ2V∗. As one can check, Λ2V∗ is a subspace
of V∗ ⊗ V∗.

Proposition 1.15. Let α, β ∈ V∗. Then, the function

(α ∧ β) : V × V → F , (u, v) 7→ α(u)β(v)− α(v)β(u) ,

is a 2-covector on V.

Proof. Bilinearity follows directly from linearity of α and β. Moreover, for each (u, v) ∈
V × V , we have

(α ∧ β)(v, u) = α(v)β(u)− α(u)β(v) = −(α ∧ β)(u, v) ,
so the alternating property is fulfilled. □

Proposition 1.16. For all α, β, γ ∈ V∗ and c ∈ F,

(α + β) ∧ γ = α ∧ γ + β ∧ γ ,
(cα) ∧ β = c(α ∧ β) ,
α ∧ β = −β ∧ α .

Proof. For each (u, v) ∈ V × V , we have

((α + β) ∧ γ)(u, v) = (α + β)(u)γ(v)− (α + β)(v)γ(u)

= (α(u) + β(u))γ(v)− (α(v) + β(v))γ(u)

= α(u)γ(v) + β(u)γ(v)− α(v)γ(u)− β(v)γ(u)

= (α ∧ γ)(u, v) + (β ∧ γ)(u, v)
= (α ∧ γ + β ∧ γ)(u, v) .

The two remaining equalities are proved similarly by direct computation. □

Remark 1.17. It follows from Proposition 1.16 that for α, β, γ ∈ V∗ and c ∈ F, we also
have

α ∧ (β + γ) = α ∧ β + α ∧ γ ,
α ∧ (cβ) = c(α ∧ β) .

Proposition 1.18. (i) If dimV = 1, then Λ2V∗ = {0}.
(ii) If dimV = 2 and {e1, e2} ⊂ V is a basis for V with dual basis {α1, α2} for V∗, then

{α1 ∧ α2} is a basis for Λ2V∗, with θ = θ(e1, e2)α
1 ∧ α2 for each θ ∈ Λ2V∗. As a

consequence, dimΛ2V∗ = 1.

Proof. (i) Suppose that dimV = 1 and {e} ⊂ V is a basis for V . Since Λ2V∗ is a
vector space, it is nonempty; and for each θ ∈ Λ2V∗ and (u, v) = (ae, be) ∈ V × V ,
for a, b ∈ F, we have

θ(u, v) = θ(ae, be) = ab θ(e, e) = 0 ,

since θ(e, e) = 0 by the alternating property. Thus, θ = 0.
12



(ii) Suppose now that V has dimension 2 and {e1, e2} is a basis for V with dual basis
{α1, α2} for V∗. Then,

(α1 ∧ α2)(e1, e2) = α1(e1)α
2(e2)− α1(e2)α

2(e1) = 1 ,

so α1 ∧ α2 ̸= 0. If θ ∈ Λ2V∗ and (u, v) ∈ V × V , we have

θ(u, v) = θ(α1(u)e1 + α2(u)e2, α
1(v)e1 + α2(v)e2)

= α1(u)α1(v)θ(e1, e1) + α1(u)α2(v)θ(e1, e2)

+ α2(u)α1(v)θ(e2, e1) + α2(u)α2(v)θ(e2, e2)

= α1(u)α2(v)θ(e1, e2)− α2(u)α1(v)θ(e1, e2)

= θ(e1, e2)(α
1 ∧ α2)(u, v) ,

so θ = θ(e1, e2)(α
1 ∧ α2). Thus, since the singleton {α1 ∧ α2} ⊂ Λ2V∗ is linearly

independent and spans Λ2V∗, it is a basis for Λ2V∗, and hence dimΛ2V∗ = 1.

□

Proposition 1.19. Suppose V is a vector space over R. Then,

(V∗ ⊗ V∗)C ∼= V∗
C ⊗ V∗

C

and

(Λ2V∗)C ∼= Λ2V∗
C .

Proof. Consider the map

ϕ : (V∗ ⊗ V∗)C → V∗
C ⊗ V∗

C ,

θ + iµ 7→
(
(u+ iv, ũ+ iṽ) 7→ θ(u, ũ)− θ(v, ṽ)− µ(u, ṽ)− µ(v, ũ)

+ i(θ(u, ṽ) + θ(v, ũ) + µ(u, ũ)− µ(v, ṽ))
)
,

for θ, µ ∈ V∗ ⊗ V∗ and u, v, ũ, ṽ ∈ V . It is left to the reader to check that for each
θ, µ ∈ V∗ ⊗V∗, the function ϕ(θ + iµ) : VC ×VC → C is indeed bilinear, and that ϕ is a
linear map of vector spaces. The map

ϕ−1 : V∗
C ⊗ V∗

C → (V∗ ⊗ V∗)C ,

τ 7→
(
(u, v) 7→ Re(τ(u+ i0, v + i0))

)
+ i
(
(u, v) 7→ Im(τ(u+ i0, v + i0))

)
,

for τ ∈ V∗
C⊗V∗

C and u, v ∈ V , gives the inverse of ϕ. It is also left to the reader to check
that the restrictions ϕ|(Λ2V∗)C

and ϕ−1|Λ2V∗
C
give an isomorphism (Λ2V∗)C ∼= Λ2V∗

C. □

We now assume that dimV ≤ 2. We set Λ0V∗ := F, Λ1V∗ := V∗, and ΛpV∗ := {0}
(the trivial vector space over F) for p ∈ Z≥3. For p ∈ Z≥0, we call Λ

pV∗ the pth exterior
power of V∗, and we call an element in ΛpV∗ a p-covector on V . For c ∈ Λ0V∗ = F and
α ∈ ΛpV∗ for p ∈ Z≥0, we define c ∧ α := cα =: α ∧ c ∈ ΛpV∗. For α ∈ ΛpV∗ and
β ∈ ΛqV∗, for p, q ∈ Z≥0 with p+ q ≥ 3, we define α∧β := 0 ∈ Λp+qV∗. Then, for every
p, q ∈ Z≥0 and α ∈ ΛpV∗ and β ∈ ΛqV∗, the wedge product α∧ β is well defined and an
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element in Λp+qV∗, and if α̃ ∈ ΛpV∗, β̃ ∈ ΛqV∗ and γ ∈ ΛrV∗ for r ∈ Z≥0, we have (as
one can check)

(α + α̃) ∧ β = α ∧ β + α̃ ∧ β ,
α ∧ (β + β̃) = α ∧ β + α ∧ β̃ ,

(cα) ∧ β = c(α ∧ β) = α ∧ (cβ) , for c ∈ F ,
α ∧ β = (−1)pqβ ∧ α (anticommutativity),

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) (associativity).

Moreover, if F = R (and still assuming dimV ≤ 2), we have (ΛpV∗)C ∼= ΛpV∗
C for all

p ∈ Z≥0 (the case of p = 2 is given by Proposition 1.19, and the remaining cases follow
directly from previously established isomorphisms).

Proposition 1.20. Let V and W be two vector spaces over F. A linear map L : V → W
induces for each p ∈ {0, 1, 2} a linear map L∗ : ΛpW∗ → ΛpV∗ given by

(i) L∗c := c for c ∈ Λ0W∗ = F, if p = 0;
(ii) (L∗α)(v) := α(L(v)) for α ∈ Λ1W∗ = W∗ and v ∈ V, if p = 1;
(iii) (L∗β)(u, v) := β(L(u), L(v)) for β ∈ Λ2W∗ and u, v ∈ V, if p = 2.

Proof. For (i), we have L∗ = 1F, the identity map on F = Λ0V∗ = Λ0W∗, which is linear.
For (ii) and (iii), it is left to the reader to check that L∗α ∈ Λ1V∗ and L∗β ∈ Λ2V∗, and
that the resulting maps L∗ : Λ1W∗ → Λ1V∗ and L∗ : Λ2W∗ → Λ2V∗ are linear. □

Definition 1.21. We call the map L∗ : ΛpW∗ → ΛpV∗ in Proposition 1.20 the pullback
map of L, and for α ∈ ΛpW∗, we call L∗α ∈ ΛpV∗ the pullback of α.

Proposition 1.22. Suppose V and W are two vector spaces over F, and let L : V → W
be a linear map. If p, q ∈ {0, 1, 2} such that p+ q ≤ 2, and if α ∈ ΛpW∗ and β ∈ ΛqW∗,
then

L∗(α ∧ β) = (L∗α) ∧ (L∗β)

as (p+ q)-covectors on V.

Proof. The case when p = 0 or q = 0 follows from linearity of the pullback map L∗.
The only remaining case is when p = q = 1. If α ∈ Λ1W∗ and β ∈ Λ1W∗, then for each
u, v ∈ V ,

(L∗(α ∧ β))(u, v) = (α ∧ β)(L(u), L(v))
= α(L(u))β(L(v))− α(L(v))β(L(u))

= (L∗α)(u)(L∗β)(v)− (L∗α)(v)(L∗β)(u)

= ((L∗α) ∧ (L∗β))(u, v) .

□
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2. Smooth Manifolds

In this section, we generalise some definitions and results from the theory of smooth
manifolds, and also introduce new ones. It should be remarked that unless otherwise
specified, we will not assume smooth manifolds to be second countable, only Hausdorff,
locally Euclidean (of one unique dimension) topological spaces with a smooth differen-
tiable structure.

It should also be remarked that throughout this text, a neighbourhood of a point p
in S, where S is a topological space containing the point p, is intended to mean an open
subset of S containing p.

2.1. Tangent and Cotangent Vectors.

Definition 2.1. Let Ω ⊂ Rn be open, and let x1, . . . , xn be the standard coordinates on
Rn. For j ∈ {1, . . . , n}, we say that a function f : Ω → C has a partial derivative with
respect to xj at a point p ∈ Ω if the (real-valued) functions u := Re(f) and v := Im(f)
both have a partial derivative with respect to xj at p. We then define

∂f

∂xj
(p) :=

∂u

∂xj
(p) + i

∂v

∂xj
(p) ∈ C

(we would write d
dx

instead of ∂
∂xj

if Ω ⊂ R). Note that if f has a partial derivative with

respect to xj at all points in Ω, then we obtain a new complex-valued function ∂f
∂xj

on
Ω. If Ω ⊂ C is open, we may regard Ω as an open subset of R2, and we obtain a similar
definition of the partial derivatives of a function f : Ω → C with respect to the standard
coordinates x and y on C.

Definition 2.2. Let Ω be an open subset of Rn or C, and consider a function f : Ω → R
or C. Then,

(i) f is said to be C0 if f is continuous on Ω;
(ii) for k ∈ N, f is said to be Ck if f is continuous and has continuous partial derivatives

of all orders up to k on Ω;
(iii) f is said to be C∞ if f is continuous and has continuous partial derivatives of all

orders on Ω, that is, if f is Ck for all k ∈ N0.

For k ∈ N0 ∪ {∞}, the set of Ck real- or complex-valued functions on Ω is denoted by
Ck(Ω,R) and Ck(Ω,C) respectively, or just Ck(Ω) if there is no possibility of confusion.

Note that for all k, ℓ ∈ N0 ∪ {∞}, if k ≥ ℓ (defining ∞ > m for all integers m), then
Ck(Ω,F) ⊂ Cℓ(Ω,F), where Ω is an open subset of Rn or C and F is R or C.

We have the following two propositions, which we state without proof.

Proposition 2.3. Let F be R or C, and let k ∈ N0 ∪ {∞}. Then, for an open subset
Ω of Rn or C, the set Ck(Ω,F) is a vector space over F under the usual operations of
function addition and of scalar multiplication of functions by numbers in F.

Proposition 2.4. Let Ω be an open subset of Rn or C, and let F be R or C. Then, a
function f ∈ C1(Ω,F) is real-differentiable, regarding C to be R2 if C is the domain or
target space.
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Let M be a smooth manifold of dimension n ∈ Z≥0, and let F be R or C. For an
open subset U ⊂M , denote by C∞

F (U) the algebra of smooth F-valued functions on U .
For each p ∈M , we define an equivalence relation ∼p on the set

{f ∈ C∞
F (U) |U ⊂M is a neighbourhood of p}

given by

f ∼p g ⇐⇒ f = g on some neighbourhood of p,

for each two functions f and g in this set. The equivalence class [f ] of a C∞ function f
on a neighbourhood of p is called the germ of f at p. We call the set of germs of C∞

functions at p the stalk of C∞ at p, and denote it by C∞
p (M), or C∞

F,p(M) if we wish to
specify the field F. If [f ], [g] ∈ C∞

p (M) for some C∞ functions f : U → F and g : V → F
on neighbourhoods U and V of p, we define

(i) [f ] + [g] := [ f |U∩V
+ g|U∩V

] ,

(ii) [f ] · [g] := [ f |U∩V
· g|U∩V

] ,

(iii) c[f ] := [cf ] for each c ∈ F.
One can then check that these operations are well defined and give C∞

p (M) the structure
of an algebra over F, which is in particular a vector space over F. A tangent vector over
F at p, or a real (if F = R) or complex (if F = C) tangent vector at p, is defined
to be a linear functional v : C∞

p (M) → F that fulfils the Leibniz rule, that is, for all
[f ], [g] ∈ C∞

p (M)

v([f ] · [g]) = v([f ])g(p) + f(p)v([g]) .

Thus, the set of tangent vectors over F at p, which for now we denote by TF,pM , is a
subset of the dual space (C∞

p (M))∗. In fact, direct computation shows that if u, v ∈
TF,pM ⊂ (C∞

p (M))∗ and a, b ∈ F, then au + bv ∈ TF,pM (that is, au + bv also fulfils
the Leibniz rule), which, together with the fact that 0 ∈ TF,pM , means that TF,pM is
actually a subspace of (C∞

p (M))∗. Moreover, we have the following proposition:

Proposition 2.5. Let M be a smooth manifold and let p ∈M . Then,

(TR,pM)C ∼= TC,pM .

Proof. Consider the map

ϕ : (TR,pM)C → TC,pM ,

u+ iv 7→
(
[f ] 7→ u([Re(f)])− v([Im(f)]) + i(u([Im(f)]) + v([Re(f)]))

)
,

where u, v ∈ TR,pM and [f ] ∈ C∞
C,p(M). If f : U → C is smooth on a neighbourhood U of

p, then Re(f) and Im(f) are smooth real-valued functions on U ; and if f ∼p g for some
other smooth complex-valued function g on a neighbourhood of p, then Re(f) ∼p Re(g)
and Im(f) ∼p Im(g) as real-valued functions. This shows that ϕ(u+ iv) is well defined
as a map from C∞

C,p(M) to C. One can also check that ϕ(u + iv) is linear and fulfils
the Leibniz rule, so that indeed ϕ(u + iv) ∈ TC,pM . Linearity of ϕ can also be checked
explicitly. The map

ϕ−1 : TC,pM → (TR,pM)C ,

w 7→
(
[h] 7→ Re(w([h+ i0]))

)
+ i
(
[h] 7→ Im(w([h+ i0]))

)
, [h] ∈ C∞

R,p(M) ,

gives the inverse of ϕ. □
16



We now fix a smooth manifold M of dimension n and a point p ∈M .

Using the correspondence given by Proposition 2.5, we may denote by TpM the vector
space of real tangent vectors at p, and by (TpM)C the vector space of complex tangent
vectors at p. We call TpM the tangent space (to M) at p, and (TpM)C the complexified
tangent space (to M) at p. We also call T ∗

pM := (TpM)∗ the cotangent space (to M) at
p, and ((TpM)C)

∗ ∼= (T ∗
pM)C the complexified cotangent space (to M) at p. We may call

elements in T ∗
pM and (T ∗

pM)C real and complex cotangent vectors at p respectively.

Again letting F be R or C, if v ∈ TF,pM and f is a C∞ F-valued function on a
neighbourhood of p, we may write v(f) to denote v([f ]). We define the differential of f
at p to be the (real or complex) cotangent vector (df)p ∈ (TF,pM)∗ given by

(df)p(u) := u(f) , u ∈ TF,pM .

If (U, ϕ) = (U, x1, . . . , xn) is a chart about p in M and f is an F-valued function on
a neighbourhood V of p, for each j ∈ {1, . . . , n} we define

∂f

∂xj

∣∣∣∣
p

:=
∂(f ◦ ϕ−1)

∂rj

∣∣∣∣
ϕ(p)

if the partial derivative on the right-hand side exists, where the function f ◦ϕ−1 is defined
on the open subset ϕ(U ∩ V ) of Rn, and rj is the jth standard coordinate on Rn. One
can then check that for each j ∈ {1, . . . , n} the map

∂

∂xj

∣∣∣∣
p

: C∞
F,p(M) → F , [f ] 7→ ∂f

∂xj

∣∣∣∣
p

is well defined, linear and fulfils the Leibniz rule, so that ∂
∂xj

∣∣
p
∈ TF,pM . Note that the

notation ∂
∂xj

∣∣
p
as an element in TC,pM ∼= (TpM)C may also mean the element ∂

∂xj

∣∣
p
+ i0,

for ∂
∂xj

∣∣
p
∈ TpM . However, for each [f ] ∈ C∞

C,p(M), regarding ∂
∂xj

∣∣
p
to be a real tangent

vector, we have(
∂

∂xj

∣∣∣∣
p

+ i0

)
([f ]) =

∂(Re(f))

∂xj

∣∣∣∣
p

+ i
∂(Im(f))

∂xj

∣∣∣∣
p

=
∂f

∂xj

∣∣∣∣
p

,

so there is no ambiguity in the notation. Since we know from the theory of smooth
manifolds that { ∂

∂xj

∣∣
p
}nj=1 ⊂ TpM is a basis for TpM and {(dxj)p}nj=1 ⊂ T ∗

pM is a basis

for T ∗
pM , it follows from Proposition 1.8 that these are also bases for the respective

complexifications (TpM)C and (T ∗
pM)C ∼= ((TpM)C)

∗. Moreover, the basis {(dxj)p}nj=1 ⊂
((TpM)C)

∗ is dual to the basis { ∂
∂xj

∣∣
p
}nj=1 ⊂ (TpM)C. Note that if u + iv is a vector in

(TpM)C, for u, v ∈ TpM , then for each j ∈ {1, . . . , n}

((dxj)p + i0)(u+ iv) = (dxj)p(u) + i(dxj)p(v)

= u(xj) + iv(xj)

= (u+ iv)(xj + i0)

= (d(xj + i0))p(u+ iv) ,

so we may also denote by (dxj)p ∈ ((TpM)C)
∗ the differential at p of xj as a C∞

complex-valued function at p.

Let again (U, ϕ) = (U, x1, . . . , xn) be a chart about p in M , and f be a smooth
F-valued function on a neighbourhood V of p. Since { ∂

∂xj

∣∣
p
}nj=1 ⊂ TF,pM is a basis for
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TF,pM , for each v ∈ TF,pM we have v =
∑n

j=1 v
j ∂
∂xj

∣∣
p
for some unique v1, . . . , vn ∈ F.

Thus,

v(f) =

( n∑
j=1

vj
∂

∂xj

∣∣∣∣
p

)
(f) =

n∑
j=1

vj
∂f

∂xj

∣∣∣∣
p

.

Then, if g is a C1 F-valued function on some neighbourhood W of p, we may define

v(g) :=
n∑
j=1

vj
∂g

∂xj

∣∣∣∣
p

.

As one can check, the number v(g) ∈ F is independent of the choice of chart about p,
and if g is smooth it agrees with our previous definition of v(g). We can then define the
F-linear map

(dg)p : TF,pM → F , (dg)p(u) := u(g) , u ∈ TF,pM .

We call (dg)p ∈ (TF,pM)∗ the differential of g at p, thus extending the definition of the
differential of a smooth function on a neighbourhood of p to the case when the function
is only C1.

Definition 2.6. Let M and N be smooth manifolds, and let F :M → N be a C1 map.
For each p ∈ M , we define the differential of F at p to be the F-linear map of vector
spaces

F∗,p : TF,pM → TF,F (p)N , (F∗,pv)([f ]) := v(f ◦ F ) ,

for each v ∈ TF,pM and [f ] ∈ C∞
F,F (p)N .

Remark 2.7. (i) In Definition 2.6, if Ω ⊂ N is the domain of f , then the function
f ◦ F is C1 on the open subset F−1(Ω) ⊂ M , so v(f ◦ F ) is defined. Moreover,
one can check that (F∗,pv)([f ]) is independent of the choice of representative for
[f ] and hence well defined, and that F∗,pv is indeed a tangent vector (over F) at
F (p) in N . We may write F∗ instead of F∗,p if there is no possibility of confusion.

(ii) The differential F∗,p is either a map TpM → TF (p)N or (TpM)C → (TF (p)N)C,
depending on our choice of F. Denoting the former by FR

∗,p and the latter by FC
∗,p,

one can check that for all v ∈ TpM

FC
∗,p(v + i0) = FR

∗,p(v) + i0 ,

or in other words,
FC
∗,p ◦ ιp = ιF (p) ◦ FR

∗,p

as maps TpM → (TF (p)N)C, where ιp : TpM → (TpM)C and ιF (p) : TF (p)N →
(TF (p)N)C are the inclusion maps.

Proposition 2.8. Let F : M → N be a C1 map of manifolds, with m := dimM and
n := dimN , and let p ∈ M . If (U, x1, . . . , xm) and (V, y1, . . . , yn) are charts about p in
M and about F (p) in N respectively, then the n×m matrix representing the differential
F∗ : TF,pM → TF,F (p)N with respect to the bases { ∂

∂xj
|p}mj=1 for TF,pM and { ∂

∂yk
|F (p)}nk=1

for TF,F (p)N is given by 
∂F 1

∂x1

∣∣
p

· · · ∂F 1

∂xm

∣∣
p

...
. . .

...
∂Fn

∂x1

∣∣
p

· · · ∂Fn

∂xm

∣∣
p

 ,

where for each k ∈ {1, . . . , n} we let F k := yk ◦ F : F−1(V ) → R ⊂ F.
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Proof. By facts from linear algebra, we know that for j ∈ {1, . . . ,m} and k ∈ {1, . . . , n},
the kth element in the jth column of the matrix A representing F∗ with respect to the
chosen bases is the coefficient multiplying ∂

∂yk
|F (p) in the representation of F∗(

∂
∂xj

|p) with
respect to the basis { ∂

∂yℓ
|F (p)}nℓ=1 for TF,F (p)N , that is,

Akj =

(
F∗

(
∂

∂xj

∣∣∣∣
p

))
(yk) =

∂

∂xj

∣∣∣∣
p

(yk ◦ F ) =
∂F k

∂xj

∣∣∣∣
p

.

□

Remark 2.9. One may use Proposition 2.8 to show that, in notation from Definition
2.6, if g is a C1 F-valued function on a neighbourhood of F (p) in N , then we also have

(F∗,pv)(g) = v(g ◦ F ) .

Definition 2.10. Let M be a smooth manifold. We define the tangent bundle of M by

TM :=
⋃
p∈M

TpM ,

and the complexified tangent bundle of M by

(TM)C :=
⋃
p∈M

(TpM)C .

We also define the projection maps

ΠTM : TM →M , ΠTM(u) := p if u ∈ TpM for p ∈M ;

Π(TM)C : (TM)C →M , Π(TM)C(v) := p if v ∈ (TpM)C for p ∈M.

We now recall the definition of a C∞ vector bundle of rank r ∈ Z≥0.

Definition 2.11. Let r ∈ Z≥0. A C∞ vector bundle of rank r is a triple (E,M,Π)
consisting of C∞ manifolds E and M and a smooth surjective map Π : E → M such
that

(i) for each p ∈ M , the preimage Π−1({p}) ⊂ E, called the fiber at p and denoted
merely by Π−1(p), is a real vector space of dimension r;

(ii) for every point p ∈ M there exist a neighbourhood U ⊂ M of p and a diffeomor-
phism φ : Π−1(U) → U × Rr, where U × Rr has the product manifold structure
and π : U ×Rr → U is the projection map onto U , such that Π = π ◦φ on Π−1(U)
and for every q ∈ U the restriction

φ|Π−1(q)
: Π−1(q) → {q} × Rr

is a vector space isomorphism. The open set U is then called a trivialising open
set for E, and the map φ is called a trivialisation of E over U .

It is assumed that the reader is familiar with the usual construction of a topology and
C∞ manifold structure on the tangent bundle TM of a smooth n-manifoldM , and with
the proof that (TM,M,ΠTM) is then a smooth vector bundle of rank n. We proceed
analogously for the case of (TM)C. For each chart (U, ϕ) = (U, x1, . . . , xn) on M , a
vector v ∈ Π−1

(TM)C
(U) is in (TpM)C for exactly one p ∈ U , with p = Π(TM)C(v). Since

(TpM)C is an n-dimensional complex vector space with basis { ∂
∂xj

∣∣
p
}nj=1, by Proposition
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1.3 it is also a real vector space of dimension 2n with basis { ∂
∂xj

∣∣
p
}nj=1 ∪ {i ∂

∂xj

∣∣
p
}nj=1.

Thus, we have

v =
n∑
j=1

(
aj(v)

∂

∂xj

∣∣∣∣
p

+ bj(v)i
∂

∂xj

∣∣∣∣
p

)
for some unique aj(v), bj(v) ∈ R, j ∈ {1, . . . , n}. In fact, for each j ∈ {1, . . . , n} we
have aj(v) = Re(v(xj)) = Re((dxj)p(v)) and bj(v) = Im(v(xj)) = Im((dxj)p(v)). We
may then consider the map

ϕ̃ : Π−1
(TM)C

(U) → ϕ(U)× R2n ⊂ R3n ,

v 7→ ((x1 ◦ Π(TM)C)(v), . . . , (x
n ◦ Π(TM)C)(v), a

1(v), b1(v), . . . , an(v), bn(v)) .

Since ϕ̃ is a bijection, we may use it to transfer the topology of ϕ(U)×R2n to Π−1
(TM)C

(U),

that is, we can define the open sets in Π−1
(TM)C

(U) to be the preimages under ϕ̃ of the

open sets in ϕ(U)× R2n. We then define the collection

B := {A ⊂ (TM)C |A is open in Π−1
(TM)C

(U) for some chart (U, ϕ) on M} .
It can be shown that B fulfils the necessary conditions to be the basis for a topology
on (TM)C, and that (TM)C with this topology is Hausdorff. Moreover, it follows from
the construction of this topology that for each chart (U, ϕ) on M the subspace topology
on the open subset Π−1

(TM)C
(U) ⊂ (TM)C is the same as the one we transferred using

the bijection ϕ̃ : Π−1
(TM)C

(U) → ϕ(U)× R2n (the proof relies on the fact that if (V, ψ) is

another chart on M , then the map

ϕ̃ ◦ ψ̃−1 : ψ̃(Π−1
(TM)C

(U ∩ V )) → ϕ̃(Π−1
(TM)C

(U ∩ V ))

is a homeomorphism). Thus, ϕ̃ is a homeomorphism from an open subset of (TM)C to

an open subset of R3n, so (Π−1
(TM)C

(U), ϕ̃) is a chart on (TM)C. One can also check that if

{(Uα, ϕα)}α∈A is an atlas in the differentiable structure of M , for a suitable indexing set

A, then {(Π−1
(TM)C

(Uα), ϕ̃α)}α∈A is an atlas in (TM)C and hence makes the complexified

tangent bundle of M a C∞ manifold of dimension 3n. Moreover, Π(TM)C : (TM)C →M
becomes a C∞ surjective map of manifolds, and the triple ((TM)C,M,Π(TM)C) becomes
a C∞ vector bundle of rank 2n: for each chart (U, ϕ) = (U, x1, . . . , xn) on M , the open
subset Π−1

(TM)C
(U) ⊂ (TM)C is a trivialising open set for (TM)C, with trivialisation

((ϕ−1 × 1R2n) ◦ ϕ̃) : Π−1
(TM)C

(U) → U × R2n ,

v 7→ (Π(TM)C(v),Re(v(x
1)), Im(v(x1)), . . . ,Re(v(xn)), Im(v(xn))) .

Definition 2.12. Let M be a smooth manifold. We define the cotangent bundle of M
by

T ∗M :=
⋃
p∈M

T ∗
pM ,

and the complexified cotangent bundle of M by

(T ∗M)C :=
⋃
p∈M

(T ∗
pM)C .

We also define the projection maps

ΠT ∗M : T ∗M →M , ΠT ∗M(u) := p if u ∈ T ∗
pM for p ∈M ;

Π(T ∗M)C : (T ∗M)C →M , Π(T ∗M)C(v) := p if v ∈ (T ∗
pM)C for p ∈M.

20



For a smooth n-manifold M , we construct a topology and a differentiable structure
on T ∗M and (T ∗M)C in an analogous way to the cases of TM and (TM)C respectively.
Then, T ∗M and (T ∗M)C become smooth manifolds of dimensions 2n and 3n respectively,
and the triples (T ∗M,M,ΠT ∗M) and ((T ∗M)C,M,Π(T ∗M)C) become smooth vector bun-
dles of ranks n and 2n respectively. For each chart (U, ϕ) on M , we obtain charts

(Π−1
T ∗M(U), ϕ̂) on T ∗M and (Π−1

(T ∗M)C
(U), ϕ̂C) on (T ∗M)C defined by

ϕ̂ : Π−1
T ∗M(U) → ϕ(U)× Rn ,

u 7→
(
(ϕ ◦ ΠT ∗M)(u), u

(
∂

∂x1

∣∣∣∣
ΠT∗M (u)

)
, . . . , u

(
∂

∂xn

∣∣∣∣
ΠT∗M (u)

))
for u ∈ Π−1

T ∗M(U), and

ϕ̂C : Π−1
(T ∗M)C

(U) → ϕ(U)× R2n ,

v 7→
(
(ϕ ◦ Π(T ∗M)C)(v),Re

(
v

(
∂

∂x1

∣∣∣∣
Π(T∗M)C (v)

))
, Im

(
v

(
∂

∂x1

∣∣∣∣
Π(T∗M)C (v)

))
,

. . . ,Re

(
v

(
∂

∂xn

∣∣∣∣
Π(T∗M)C (v)

))
, Im

(
v

(
∂

∂xn

∣∣∣∣
Π(T∗M)C (v)

)))
for v ∈ Π−1

(T ∗M)C
(U). The subsets Π−1

T ∗M(U) ⊂ T ∗M and Π−1
(T ∗M)C

(U) ⊂ (T ∗M)C are also

trivialising open sets with respective trivialisations

((ϕ−1 × 1Rn) ◦ ϕ̂) : Π−1
(T ∗M)(U) → U × Rn

and

((ϕ−1 × 1R2n) ◦ ϕ̂C) : Π
−1
(T ∗M)C

(U) → U × R2n .

Recall that if (E,M,Π) is a smooth vector bundle of rank r ∈ Z≥0 and U ⊂ M is
open, a section of E (or of (E,M,Π)) over U is a map s : U → E such that Π ◦ s is the
inclusion map ι : U →M , that is, such that for all p ∈ U , s(p) ∈ Π−1(p). If U =M , we
may only say that s is a section of E. Since for each p ∈ M the fiber Π−1(p) is a real
vector space, if s and t are two sections of E over U and c ∈ R, we may define the sections
s + t and cs of E over U by (s + t)(p) := s(p) + t(p) and (cs)(p) := cs(p) respectively
for each p ∈ U . This gives the set of sections of E over U the structure of a real vector
space. If s is a section of E over U and f : U → R is a function, we may also define the
section fs of E over U by (fs)(p) := f(p)s(p) for each p ∈ U . For k ∈ Z≥0 ∪ {∞}, a
section s : U → E is said to be Ck if it is Ck as a map of manifolds. The set Γk(U,E)
of Ck sections of E over U is a subspace of the vector space of sections of E over U . If
s ∈ Γk(U,E) and f : U → R is a Ck function, one can show that fs ∈ Γk(U,E), and
as a result Γk(U,E) is also a module over the ring Ck

R(U) of Ck real-valued functions
on U . A frame for E over U is a collection {s1, . . . , sr} of sections of E over U such
that for each p ∈ U the collection {s1(p), . . . , sr(p)} ⊂ Π−1(p) is a basis for the (real)
vector space Π−1(p). If {s1, . . . , sr} is a frame for E over U , then each section s for E
over U can be written as

∑r
j=1 f

jsj for some unique real-valued functions f1, . . . , fr on

U . A frame for E over U is said to be Ck if all the sections in the frame are Ck. If U is
a trivialising open set for E with trivialisation φ : Π−1(U) → U × Rr and {e1, . . . , er}
denotes the standard basis for Rr, then for each p ∈ U we may use the vector space
isomorphism φ|Π−1(p)

: Π−1(p) → {p} × Rr to map the basis {(p, e1), . . . , (p, er)} for

{p} × Rr to a basis for the fiber Π−1(p). Then, for each j ∈ {1, . . . , r} we can define
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tj(p) := φ−1((p, ej)), and we obtain a frame {t1, . . . , tr} for E over U . As one can check,
the frame {t1, . . . , tr} is C∞, and we call it the C∞ frame over U of the trivialisation φ.
We recall the following two propositions:

Proposition 2.13. Let (E,M,Π) be a smooth vector bundle of rank r ∈ Z≥0, and let
U ⊂ M be open. If {s1, . . . , sr} is a C∞ frame for E over U and k ∈ Z≥0 ∪ {∞}, then
a section s of E over U is Ck if and only if s =

∑r
j=1 f

jsj for some Ck real-valued

functions f 1, . . . , f r on U .

Proposition 2.14. Let (E,M,Π) be a smooth vector bundle of rank r ∈ Z≥0, let Ω ⊂M
be open, and let s : Ω → E be a section of E over Ω. For k ∈ Z≥0 ∪ {∞}, the following
statements are equivalent:

(i) s is Ck on Ω;
(ii) for each trivialising open set U ⊂ M with trivialisation φ : Π−1(U) → U × Rr

such that Ω ∩ U ̸= ∅, the section s|Ω∩U
of E over Ω ∩ U can be written as s|Ω∩U

=∑r
j=1 f

j · tj|Ω∩U
for some Ck real-valued functions f 1, . . . , f r on Ω ∩ U , where

{t1, . . . , tr} is the C∞ frame over U of the trivialisation φ;
(iii) for each p ∈ Ω there exists a trivialising open set U ⊂ M with trivialisation

φ : Π−1(U) → U × Rr such that p ∈ U and the section s|Ω∩U
of E over Ω ∩ U can

be written as s|Ω∩U
=
∑r

j=1 f
j · tj|Ω∩U

for some Ck real-valued functions f 1, . . . , f r

on Ω ∩ U , where {t1, . . . , tr} is the C∞ frame over U of the trivialisation φ.

For a smooth vector bundle (E,M,Π) of rank r ∈ Z≥0 and an arbitrary subset
A ⊂ M , we may also define a section of E over A to be a map s : A → E such that
for all p ∈ A, s(p) ∈ Π−1(p). The set of sections of E over A is also a real vector
space and a module over the ring of real-valued functions on A. Even though A is not a
manifold in general, it is a topological space with the subspace topology inherited from
M , so we may define a section s of E over A to be continuous if it is continuous as a
map s : A → E. The set Γ0(A,E) of continuous sections of E over A is a subspace
of the vector space of sections of E over A, and a module over the ring of continuous
real-valued functions on A. The notions of frame for E over A and continuity of such a
frame are defined exactly as for the case when A ⊂ M is open. Moreover, we have the
following proposition:

Proposition 2.15. Let (E,M,Π) be a smooth vector bundle of rank r ∈ Z≥0, let A ⊂M ,
and let s : A → E be a section of E over A. Then, the following statements are
equivalent:

(i) s is continuous on A;
(ii) for each trivialising open set U ⊂ M with trivialisation φ : Π−1(U) → U × Rr

such that A∩U ̸= ∅, the section s|A∩U of E over A∩U can be written as s|A∩U =∑r
j=1 f

j · tj|A∩U for some continuous real-valued functions f 1, . . . , f r on A ∩ U ,

where {t1, . . . , tr} is the C∞ frame over U of the trivialisation φ;
(iii) for each p ∈ A there exists a trivialising open set U ⊂ M with trivialisation

φ : Π−1(U) → U ×Rr such that p ∈ U and the section s|A∩U of E over A ∩ U can

be written as s|A∩U =
∑r

j=1 f
j · tj|A∩U for some continuous real-valued functions

f 1, . . . , f r on A∩U , where {t1, . . . , tr} is the C∞ frame over U of the trivialisation
φ.
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Definition 2.16. Let M be a C∞ manifold, and let A ⊂M .

(i) A (real) vector field on A, or a vector field over R on A, is defined to be a section
u : A → TM of TM over A. A complex vector field on A, or a vector field over C
on A, is a section v : A→ (TM)C of (TM)C over A.

(ii) A (real) differential form of degree 1 on A, or a (real) 1-form on A, or a 1-form
over R on A, is a section ω : A → T ∗M of T ∗M over A. A complex differential
form of degree 1 on A, or a complex 1-form on A, or a 1-form over C on A, is a
section τ : A→ (T ∗M)C of (T ∗M)C over A.

A real or complex vector field v on A, and a real or complex 1-form ω on A, are defined
to be continuous if they are continuous as sections of the corresponding smooth vector
bundles. If A ⊂ M is open and k ∈ Z≥0 ∪ {∞}, then v and ω are defined to be Ck if
they are Ck as sections of the corresponding smooth vector bundles.

Definition 2.17. LetM be a smooth manifold and f a C1 F-valued function on an open
set U ⊂ M . Then, the differential of f is defined to be the real (if F = R) or complex
(if F = C) 1-form df on U mapping each p ∈ U to the differential (df)p ∈ (TF,pM)∗ of f
at p.

2.2. Differential Forms on Smooth Curves and Surfaces.
Throughout Subsection 2.2, we fix a smooth manifold M of dimension n ∈ {1, 2}, and
we let F denote R or C.

For each point p ∈ M , since dimTpM = n ≤ 2, we may consider the exterior
powers ΛrT ∗

pM and Λr(TpM)∗C
∼= (ΛrT ∗

pM)C for r ∈ Z≥0. We identify Λ0T ∗
pM = R and

Λ0(TpM)∗C = C with {p}×R and {p}×C respectively, to distinguish them from Λ0T ∗
qM

and Λ0(TqM)∗C for some different point q ∈M . If n = 1, then by Proposition 1.18(i) the
vector spaces Λ2T ∗

pM and Λ2(TpM)∗C are trivial, and we write Λ2T ∗
pM = {p} × {0} (as

a real vector space) and Λ2(TpM)∗C = {p} × {0} (as a complex vector space). If n = 2
and (U, x1, x2) is a chart about p in M , then by Proposition 1.18(ii) the spaces Λ2T ∗

pM

and Λ2(TpM)∗C are 1-dimensional with respective bases {(dx1)p ∧ (dx2)p} ⊂ Λ2T ∗
pM (for

(dx1)p, (dx
2)p ∈ T ∗

pM) and {(dx1)p∧(dx2)p} ⊂ Λ2(TpM)∗C (for (dx1)p, (dx
2)p ∈ (T ∗

pM)C).

Remark 2.18. For a point p ∈ M and r ∈ Z≥0, we write Λr(TpM)∗C to denote the rth
exterior power of (TpM)C, instead of writing Λr(T ∗

pM)C, since we have only defined the
notation ΛrV when V = W∗ for some vector space W over F.

We defined in Subsection 2.1 the cotangent bundle T ∗M and the complexified cotan-
gent bundle (T ∗M)C of M , which we may also write as

Λ1T ∗M :=
⋃
p∈M

Λ1T ∗
pM =

⋃
p∈M

T ∗
pM = T ∗M

and

Λ1(T ∗M)C :=
⋃
p∈M

Λ1(TpM)∗C =
⋃
p∈M

(T ∗
pM)C = (T ∗M)C

respectively. As we have seen, Λ1T ∗M and Λ1(T ∗M)C are smooth manifolds, and also
smooth vector bundles together with their respective projection maps Π(T ∗M) : T

∗M →
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M and Π(T ∗M)C : (T ∗M)C →M . We now define the sets

Λ0T ∗M :=
⋃
p∈M

Λ0T ∗
pM =

⋃
p∈M

({p} × R) =M × R ,

Λ0(T ∗M)C :=
⋃
p∈M

Λ0(TpM)∗C =
⋃
p∈M

({p} × C) =M × C ,

Λ2T ∗M :=
⋃
p∈M

Λ2T ∗
pM ,

Λ2(T ∗M)C :=
⋃
p∈M

Λ2(TpM)∗C .

The respective maps ΠΛ0T ∗M ,ΠΛ0(T ∗M)C ,ΠΛ2T ∗M and ΠΛ2(T ∗M)C projecting each of these
sets ontoM are defined analogously to the cases of T ∗M and (T ∗M)C. For r ∈ {0, 1, 2},
we call ΛrT ∗M the rth exterior power of T ∗M , and Λr(T ∗M)C the rth exterior power
of (T ∗M)C. We give the sets Λ0T ∗M = M × R and Λ0(T ∗M)C = M × C the product
topologies and product manifold structures of M × R and M × R2 respectively, and
the triples (Λ0T ∗M,M,ΠΛ0T ∗M) and (Λ0(T ∗M)C,M,ΠΛ0(T ∗M)C) become smooth vector
bundles of ranks 1 and 2 respectively, with global trivialisations given by the identity
maps on Π−1

Λ0T ∗M(M) =M×R and Π−1
Λ0(T ∗M)C

(M) =M×R2 respectively. If n = 1, then

as sets Λ2T ∗M =
⋃
p∈M({p} × {0}) = M × {0} and Λ2(T ∗M)C =

⋃
p∈M({p} × {0}) =

M × {0}, so we may transfer to both Λ2T ∗M and Λ2(T ∗M)C the topology and differ-
entiable structure from M , and we may also regard the triplets (Λ2T ∗M,M,ΠΛ2T ∗M)
and (Λ2(T ∗M)C,M,ΠΛ2(T ∗M)C) as smooth vector bundles of rank 0 with global trivial-
isations. If n = 2, then the procedure to give Λ2T ∗M and Λ2(T ∗M)C topologies and
smooth manifold structures is analogous to the cases of TM, (TM)C, T

∗M and (T ∗M)C,
using the fact that for each chart (U, ϕ) = (U, x1, x2) on M we obtain bijections

ϕ̃ : Π−1
Λ2T ∗M(U) → ϕ(U)× R ,

u 7→
(
(ϕ ◦ ΠΛ2T ∗M)(u), u

(
∂

∂x1

∣∣∣∣
ΠΛ2T∗M (u)

,
∂

∂x2

∣∣∣∣
ΠΛ2T∗M (u)

))
,

and

ϕ̃C : Π−1
Λ2(T ∗M)C

(U) → ϕ(U)× R2 ,

v 7→
(
(ϕ ◦ ΠΛ2(T ∗M)C)(v),Re

(
v

(
∂

∂x1

∣∣∣∣
ΠΛ2(T∗M)C

(v)

,
∂

∂x2

∣∣∣∣
ΠΛ2(T∗M)C

(v)

))
,

Im

(
v

(
∂

∂x1

∣∣∣∣
ΠΛ2(T∗M)C

(v)

,
∂

∂x2

∣∣∣∣
ΠΛ2(T∗M)C

(v)

)))
.

Then, Λ2T ∗M and Λ2(T ∗M)C become smooth manifolds of dimensions n+1 = 3 and n+
2 = 4 respectively, and the triples (Λ2T ∗M,M,ΠΛ2T ∗M) and (Λ2(T ∗M)C,M,ΠΛ2(T ∗M)C)
become smooth vector bundles of ranks 1 and 2 respectively.

In conclusion, for each r ∈ {0, 1, 2} we obtain smooth manifolds ΛrT ∗M and Λr(T ∗M)C
of dimensions n+

(
n
r

)
and n+ 2

(
n
r

)
respectively (where we let

(
1
2

)
:= 0), and the triples

(ΛrT ∗M,M,ΠΛrT ∗M) and (Λr(T ∗M)C,M,ΠΛr(T ∗M)C) are smooth vector bundles of ranks(
n
r

)
and 2

(
n
r

)
respectively.
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Definition 2.19. For A ⊂ M and r ∈ {0, 1, 2}, we define a (real) differential form
of degree r on A, or a (real) r-form on A, or an r-form over R on A, to be a section
ω : A → ΛrT ∗M of the smooth vector bundle (ΛrT ∗M,M,ΠΛrT ∗M) over A. We also
define a (complex) differential form of degree r on A, or a (complex) r-form on A, or an
r-form over C on A, to be a section τ : A → Λr(T ∗M)C of the smooth vector bundle
(Λr(T ∗M)C,M,ΠΛr(T ∗M)C) over A. If σ is a real or complex r-form on A and p ∈ A, we
denote the value of σ at p by σp. The r-form σ is said to be continuous (on A) if it is
continuous as a section, and if A ⊂ M is open and k ∈ Z≥0 ∪ {∞}, then σ is said to
be Ck (on A) if it is Ck as a section. We denote by E0

r (A,F) the space of continuous
r-forms over F on A, and if A ⊂ M is open, we denote by Ekr (A,F) the space of Ck

r-forms over F on A.

Remark 2.20. Note that Definition 2.19 generalises Definition 2.16(ii).

Remark 2.21. Since Λ0T ∗
pM = R ∼= {p} × R and Λ0(TpM)∗C = C ∼= {p} × C for each

p ∈ M , if A ⊂ M then we may identify real or complex 0-forms on A with real- or
complex-valued functions on A respectively, via

ω ↔ f if ωp = (p, f(p)) for all p ∈ A,

for each real or complex 0-form ω and each real- or complex-valued function f on A,
respectively. Moreover, it follows from Proposition 2.15 that a real or complex 0-form ω
on A is continuous as a section if and only if its corresponding function f is continuous
on A, and if A ⊂ M is open and k ∈ Z≥0 ∪ {∞}, it follows from Proposition 2.14 that
ω is Ck as a section if and only if f is a Ck function on A.

Remark 2.22. As we saw in Subsection 2.1, if (E,M,Π) is a smooth vector bundle and
A ⊂M , then the real vector space of sections of E over A is also a module over the ring
of real-valued functions on A, the space Γ0(A,E) is a module over C0

R(A), and if A ⊂M
is open and k ∈ Z≥0 ∪ {∞}, then Γk(A,E) is a module over Ck

R(A). If r ∈ {0, 1, 2} and
ω is a complex r-form on A ⊂M , then for each complex-valued function f : A→ C we
may also define the complex r-form fω on A by (fω)p := f(p)ωp for each p ∈ A, since
the fiber Λr(TpM)∗C is a complex vector space. Then, E0

r (A,C) becomes also a module
over C0

C(A), and if A ⊂M is open and k ∈ Z≥0 ∪ {∞}, then Ekr (A,C) is a module over
Ck

C(A).

Definition 2.23. Let A ⊂ M and r ∈ {0, 1, 2}. If ω is a complex differential form of
degree r on A, we define the real part of ω, denoted Re(ω), to be the real r-form on A
given by

(Re(ω))p := Re(ωp) ∈ Λr(T ∗
pM) , p ∈ A ,

where at each point p ∈ A we regard ωp ∈ Λr(TpM)∗C to be its corresponding element in
(Λr(T ∗

pM))C ∼= Λr(TpM)∗C, so that Re(ωp) ∈ Λr(T ∗
pM) is defined. Similarly, we define

the imaginary part of ω, denoted Im(ω), to be the real r-form on A given by

(Im(ω))p := Im(ωp) ∈ Λr(T ∗
pM) , p ∈ A .

Definition 2.24. Let A ⊂M , and suppose ω and τ are differential forms over F on A,
of degrees r and s respectively, for r, s ∈ {0, 1, 2} and r + s ≤ 2. We then define the
wedge product ω ∧ τ of ω with τ to be the (r + s)-form over F on A given by

(ω ∧ τ)p := ωp ∧ τp
for each p ∈ A.
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Remark 2.25. Using notation from Definition 2.24, it follows from the properties of
the wedge product of an r-covector with an s-covector on a real or complex vector space
that if ω̃ is another r-form on A and τ̃ another s-form on A, then

(ω + ω̃) ∧ τ = ω ∧ τ + ω̃ ∧ τ ,
ω ∧ (τ + τ̃) = ω ∧ τ + ω ∧ τ̃ ,

(fω) ∧ τ = f(ω ∧ τ) = ω ∧ (fτ) , for any function f : A→ F ,
ω ∧ g = g ∧ ω = g ω , for any 0-form g : A→ F ,
ω ∧ τ = (−1)rsτ ∧ ω (anticommutativity),

and if t ∈ {0, 1, 2} with r + s+ t ≤ 2 and σ is a t-form on A, then

(ω ∧ τ) ∧ σ = ω ∧ (τ ∧ σ) (associativity).

Proposition 2.26. Let A ⊂M and r, s ∈ {0, 1, 2} with r + s ≤ 2. If ω ∈ E0
r (A,F) and

τ ∈ E0
s (A,F), then ω∧ τ ∈ E0

r+s(A,F). Moreover, if A ⊂M is open and k ∈ Z≥0∪{∞},
then for each ω ∈ Ekr (A,F) and τ ∈ Eks (A,F) we have ω ∧ τ ∈ Ekr+s(A,F).

Proof. The case when r = 0 or s = 0 follows from Remarks 2.21 and 2.22. The only
remaining case is when r = s = 1. If n = 1 then ω ∧ τ is the zero 2-form over F on
A, and for n = 2 the result can be proved using Propositions 2.15 and 2.14, by direct
computation of ω ∧ τ on the intersection of A with each coordinate open set in M . The
details are left to the reader. □

Definition 2.27. Suppose F :M → N is a C1 map of smooth manifolds of dimensions
dimM, dimN ∈ {1, 2}. If r ∈ {0, 1, 2} and ω is an r-form over F on a subset A ⊂ N ,
we define the pullback of ω (under F ) to be the r-form F ∗ω over F on F−1(A) ⊂ M
defined by

(F ∗ω)p := (F∗,p)
∗ωF (p) , p ∈ F−1(A) ,

that is, for each point p ∈ F−1(A) we use the differential F∗,p : TF,pM → TF,F (p)N ,
which is a linear map of vector spaces, to pull back the r-covector ωF (p) on TF,F (p)N to
an r-covector (F∗,p)

∗ωF (p) =: (F ∗ω)p on TF,pM .

Remark 2.28. Using notation from Definition 2.27, if S ⊂ A then for each p ∈ F−1(S)
we have (

F ∗
(
ω|S
))

p
= (F∗,p)

∗
(
ω|S
)
F (p)

= (F∗,p)
∗ωF (p)

= (F ∗ω)p

=
(
(F ∗ω)|F−1(S)

)
p
,

so F ∗
(
ω|S
)
= (F ∗ω)|F−1(S)

as r-forms on F−1(S).

Remark 2.29. Note that in Definition 2.27, if r = 0 then ω is an F-valued function f
on A, and for each p ∈ F−1(A) we have

(F ∗f)p = (F∗,p)
∗(f(F (p))) = f(F (p)) ,

so the 0-form F ∗f on F−1(A) is the composition function f ◦ F : F−1(A) → F. This
shows in particular that if f is a continuous 0-form on A, then its pullback F ∗f = f ◦F
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is a continuous 0-form on F−1(A) ⊂ M ; and if A ⊂ N is open, k, ℓ ∈ Z≥0 ∪ {∞},
ℓ ≥ 1, F is Cℓ and f is a Ck 0-form on A, then F ∗f = f ◦ F is a Cmin{k,ℓ} 0-form on
F−1(A) ⊂M .

Proposition 2.30. Let F : M → N be a C1 map of smooth manifolds of dimensions
dimM, dimN ∈ {1, 2}, let Ω ⊂ N be open, and let f : Ω → F be a C1 function. Then,
on F−1(Ω),

F ∗(df) = d(F ∗f) .

Proof. Let p ∈ F−1(Ω) and v ∈ TF,pM . Then,

(F ∗(df))p(v) = ((F∗,p)
∗(df)F (p))(v)

= (df)F (p)(F∗,pv)

= (F∗,pv)(f)

= v(f ◦ F )

= d(f ◦ F )p(v)

= d(F ∗f)p(v) ,

so (F ∗(df))p = d(F ∗f)p. □

Proposition 2.31. Let F : M → N be a C1 map of smooth manifolds of dimensions
dimM, dimN ∈ {1, 2}, and let A ⊂ N . If r, s ∈ {0, 1, 2} with r + s ≤ 2, and ω and τ
are differential forms over F on A of respective degrees r and s, then

F ∗(ω ∧ τ) = (F ∗ω) ∧ (F ∗τ)

as (r + s)-forms on F−1(A).

Proof. For each p ∈ F−1(A),

(F ∗(ω ∧ τ))p = (F∗,p)
∗(ω ∧ τ)F (p)

= (F∗,p)
∗(ωF (p) ∧ τF (p))

= ((F∗,p)
∗ωF (p)) ∧ ((F∗,p)

∗τF (p)) (by Proposition 1.22)

= (F ∗ω)p ∧ (F ∗τ)p

= ((F ∗ω) ∧ (F ∗τ))p .

□

Proposition 2.32. Let M and N be smooth manifolds of dimensions m and n respec-
tively, with m,n ∈ {1, 2}. Suppose F : M → N is a C1 map, let A ⊂ N , and let ω be
an r-form over F on A, for r ∈ {0, 1, 2}. Then,
(i) if ω is continuous, the r-form F ∗ω on F−1(A) is also continuous;
(ii) if A ⊂ N is open, k, ℓ ∈ Z≥0 ∪ {∞}, ℓ ≥ 1, F is Cℓ and ω is Ck, then F ∗ω is

C min{k, ℓ−1} on F−1(A).

Proof. The case when r = 0 is given by Remark 2.29. Suppose r ∈ {1, 2}. We prove
only (i), since the proof of (ii) is analogous. If r = 2 and n = 1 or m = 1, then F ∗ω is
the zero 2-form over F on F−1(A), which is continuous. We therefore consider only the
remaining cases. Let p ∈ F−1(A), and choose charts (U, x1, . . . , xm) about p in M and
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(V, y1, . . . , yn) about F (p) in N such that F (U) ⊂ V . Since ω is continuous on A, by
Proposition 2.15 we have

ω|A∩V = f 1 · dy1|A∩V + · · ·+ fn · dyn|A∩V if r = 1,

ω|A∩V = g · dy1|A∩V ∧ dy2|A∩V if r = 2 and n = 2,

for some continuous F-valued functions f 1, . . . , fn and g on A ∩ V . If r = 1, then

(F ∗ω)|F−1(A∩V )
= F ∗

(
ω|A∩V

)
= F ∗(f 1 · dy1|A∩V + · · ·+ fn · dyn|A∩V )

= (F ∗f 1)
(
F ∗
(
dy1|A∩V

))
+ · · ·+ (F ∗fn)

(
F ∗
(
dyn|A∩V

))
= (f 1 ◦ F ) · (F ∗(dy1))|F−1(A∩V )

+ · · ·+ (fn ◦ F ) · (F ∗(dyn))|F−1(A∩V )

= (f 1 ◦ F ) · (dF 1)|F−1(A∩V )
+ · · ·+ (fn ◦ F ) · (dF n)|F−1(A∩V )

,

where we set F j := yj ◦ F : F−1(V ) → R ⊂ F for each j ∈ {1, . . . , n}. Then, for each
q ∈ F−1(A) ∩ U ⊂ F−1(A ∩ V ),

(F ∗ω)q =
(
(F ∗ω)|F−1(A∩V )

)
q

= (f 1 ◦ F )(q) · (dF 1)q + · · ·+ (fn ◦ F )(q) · (dF n)q

= (f 1 ◦ F )(q) ·
( m∑

k=1

∂F 1

∂xk

∣∣∣∣
q

(dxk)q

)
+ · · ·+ (fn ◦ F )(q) ·

( m∑
k=1

∂F n

∂xk

∣∣∣∣
q

(dxk)q

)

=

( n∑
j=1

(f j ◦ F )(q) · ∂F
j

∂x1

∣∣∣∣
q

)
(dx1)q + · · ·+

( n∑
j=1

(f j ◦ F )(q) · ∂F
j

∂xn

∣∣∣∣
q

)
(dxn)q ,

so on F−1(A) ∩ U ,

F ∗ω =

( n∑
j=1

(f j ◦ F ) · ∂F
j

∂x1

)
dx1 + · · ·+

( n∑
j=1

(f j ◦ F ) · ∂F
j

∂xn

)
dxn .

Since for all j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} the functions f j ◦F : F−1(A∩V ) → F and
∂F j

∂xk
: U → F are continuous, they are also continuous when restricted to F−1(A) ∩ U ⊂

F−1(A ∩ V ). It then follows from Proposition 2.15 that the 1-form F ∗ω on F−1(A) is
continuous. For r = n = m = 2, we use a similar argument:

(F ∗ω)|F−1(A∩V )
= F ∗

(
ω|A∩V

)
= F ∗

(
g · dy1|A∩V ∧ dy2|A∩V

)
= (F ∗g)

(
F ∗
(
dy1|A∩V

))
∧
(
F ∗
(
dy2|A∩V

))
= (g ◦ F ) · (F ∗(dy1))|F−1(A∩V )

∧ (F ∗(dy2))|F−1(A∩V )

= (g ◦ F ) · (dF 1)|F−1(A∩V )
∧ (dF 2)|F−1(A∩V )

,
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so for each q ∈ F−1(A) ∩ U ⊂ F−1(A ∩ V ),

(F ∗ω)q =
(
(F ∗ω)|F−1(A∩V )

)
q

= (g ◦ F )(q) · (dF 1)q ∧ (dF 2)q

= (g ◦ F )(q) ·
(
∂F 1

∂x1

∣∣∣∣
q

(dx1)q +
∂F 1

∂x2

∣∣∣∣
q

(dx2)q

)
∧
(
∂F 2

∂x1

∣∣∣∣
q

(dx1)q +
∂F 2

∂x2

∣∣∣∣
q

(dx2)q

)
= (g ◦ F )(q) ·

(
∂F 1

∂x1

∣∣∣∣
q

∂F 2

∂x2

∣∣∣∣
q

− ∂F 1

∂x2

∣∣∣∣
q

∂F 2

∂x1

∣∣∣∣
q

)
(dx1)q ∧ (dx2)q .

Thus, on F−1(A) ∩ U

F ∗ω = (g ◦ F )

(
∂F 1

∂x1
∂F 2

∂x2
− ∂F 1

∂x2
∂F 2

∂x1

)
dx1 ∧ dx2 ,

where the functions g ◦ F : F−1(A ∩ V ) → F and
(
∂F 1

∂x1
∂F 2

∂x2
− ∂F 1

∂x2
∂F 2

∂x1

)
: U → F are

continuous on their respective domains and hence so is the product of their restrictions
to F−1(A) ∩ U . Again, it follows from Proposition 2.15 that F ∗ω is continuous on
F−1(A). □

Proposition 2.33. Let Ω ⊂ M be open, and let k ∈ Z≥1 ∪ {∞}. If f ∈ Ek0 (Ω,F) is a
Ck F-valued function on Ω, then df ∈ Ek−1

1 (Ω,F), where we set ∞− 1 := ∞.

Proof. We prove only the case when n = 2 and F = C, since the other cases are
analogous. Let (U, x1, x2) be a chart in M . If Ω ∩ U ̸= ∅ and p ∈ Ω ∩ U , we have

(df)p =

(
(df)p

(
∂

∂x1

∣∣∣∣
p

))
(dx1)p +

(
(df)p

(
∂

∂x2

∣∣∣∣
p

))
(dx2)p

=
∂f

∂x1

∣∣∣∣
p

(dx1)p +
∂f

∂x2

∣∣∣∣
p

(dx2)p

=
∂ Re(f)

∂x1

∣∣∣∣
p

(dx1)p +
∂ Im(f)

∂x1

∣∣∣∣
p

i(dx1)p +
∂ Re(f)

∂x2

∣∣∣∣
p

(dx2)p +
∂ Im(f)

∂x2

∣∣∣∣
p

i(dx2)p ,

so on Ω ∩ U ,

df =
∂ Re(f)

∂x1
dx1 +

∂ Im(f)

∂x1
idx1 +

∂ Re(f)

∂x2
dx2 +

∂ Im(f)

∂x2
idx2 .

Since f is Ck on Ω∩U , its partial derivatives are Ck−1 on Ω∩U . The result then follows
from Proposition 2.14. □

Remark 2.34. Using Proposition 2.33, if Ω ⊂ M is open we may define an F-linear
map of vector spaces

d : E1
0 (Ω,F) → E0

1 (Ω,F)
sending each C1 F-valued function f on Ω to the continuous 1-form df on Ω.

Proposition 2.35. Suppose that M has dimension n = 2, and let Ω ⊂ M be open.
There exists a unique linear map d : E1

1 (Ω,F) → E0
2 (Ω,F) fulfilling

(i) for all f ∈ E2
0 (Ω,F), d2(f) := d(df) = 0;

(ii) for each f ∈ E1
0 (Ω,F) and ω ∈ E1

1 (Ω,F), d(fω) = (df) ∧ ω + fdω;
(iii) if U ⊂ Ω is open and ω ∈ E1

1 (Ω,F), then as 2-forms on U , d(ω|U) = (dω)|U .
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The proof of Proposition 2.35 is analogous to the one for the case when F = R,
which it is assumed the reader is familiar with, so we omit it. The resulting linear map
d : E1

1 (Ω,F) → E0
2 (Ω,F) is given by

(dω)p :=

(
∂f 2

∂x1

∣∣∣∣
p

− ∂f 1

∂x2

∣∣∣∣
p

)
(dx1)p ∧ (dx2)p ,

for ω ∈ E1
1 (Ω,F), p ∈ Ω and any chart (U, x1, x2) about p in M , where f 1 and f 2 are the

unique (C1) F-valued functions on Ω ∩ U such that ω|Ω∩U
= f 1 dx1 + f 2 dx2, that is,

f 1(q) := ωq

(
∂

∂x1

∣∣∣∣
q

)
and f 2(q) := ωq

(
∂

∂x2

∣∣∣∣
q

)
for each q ∈ Ω ∩ U .

Definition 2.36. Suppose Ω ⊂ M is open. For r ∈ {0, 1} and a differential form
ω ∈ E1

r (Ω,F), we define the exterior derivative of ω, denoted by dω, to be

(i) the differential dω ∈ E0
1 (Ω,F) of ω as an F-valued function on Ω, if r = 0;

(ii) the image dω of ω under the map d : E1
1 (Ω,F) → E0

2 (Ω,F) given in Proposition
2.35, if r = 1 and n = 2;

(iii) the zero 2-form on Ω (the only 2-form in E0
2 (Ω,F) = {0}) if r = n = 1.

Proposition 2.37. Suppose M and N are smooth manifolds of respective dimensions
m,n ∈ {1, 2}, and let F : M → N be a C2 map. If Ω ⊂ N is open and ω ∈ E1

1 (Ω,F),
then

F ∗(dω) = d(F ∗ω) .

Proof. Note that since F is C2 and ω is C1, by Proposition 2.32 the 1-form F ∗ω on
F−1(Ω) is C1, so the 2-form d(F ∗ω) is defined. If m = 1, then F ∗(dω) and d(F ∗ω) are
both the zero 2-form on F−1(Ω), so we consider the remaining cases. Assume m = 2,
and let p ∈ F−1(Ω). We may choose charts (U, x1, x2) about p inM and (V, y), if n = 1,
or (V, y1, y2), if n = 2, about F (p) in N such that F (U) ⊂ V ⊂ Ω. If n = 1, then dω is
the zero 2-form on Ω, so F ∗(dω) = 0 on F−1(Ω). On the other hand, on V we have

ω|V = f dy

for some C1 function f : V → F, so for all q ∈ U ⊂ F−1(V )

(F ∗ω)q = (F∗,q)
∗ωF (q)

= (F∗,q)
∗(f(F (q))(dy)F (q))

= f(F (q))(F ∗(dy))q

= f(F (q))(dF̃ )q ,

where F̃ := y ◦ F . This gives

(F ∗ω)|U = (f ◦ F )
∂F̃

∂x1
dx1 + (f ◦ F )

∂F̃

∂x2
dx2 .

Thus,

(d(F ∗ω))p =

(
∂

∂x1

(
(f ◦ F )

∂F̃

∂x2

)∣∣∣∣
p

− ∂

∂x2

(
(f ◦ F )

∂F̃

∂x1

)∣∣∣∣
p

)
(dx1)p ∧ (dx2)p ,
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and direct computation gives

∂

∂x1

(
(f ◦ F )

∂F̃

∂x2

)∣∣∣∣
p

− ∂

∂x2

(
(f ◦ F )

∂F̃

∂x1

)∣∣∣∣
p

= 0 ,

so on F−1(Ω)

d(F ∗ω) = 0 = F ∗(dω) .

If n = 2, then

ω|V = g1 dy1 + g2 dy2

for some C1 F-valued functions g1 and g2 on V . Computing as before the pullback
(F ∗ω)q = (F∗,q)

∗(ωF (q)) at each q ∈ U , we obtain

(F ∗ω)|U = h1 dx1 + h2 dx2 ,

where h1 and h2 are the C1 F-valued functions on U

h1 := (g1 ◦ F )
∂F 1

∂x1
+ (g2 ◦ F )

∂F 2

∂x1
,

h2 := (g1 ◦ F )
∂F 1

∂x2
+ (g2 ◦ F )

∂F 2

∂x2
.

Thus,

(d(F ∗ω))p =

(
∂h2

∂x1

∣∣∣∣
p

− ∂h1

∂x2

∣∣∣∣
p

)
(dx1)p ∧ (dx2)p .

We also have

(dω)F (p) =

(
∂g2

∂y1

∣∣∣∣
F (p)

− ∂g1

∂y2

∣∣∣∣
F (p)

)
(dy1)F (p) ∧ (dy2)F (p) ,

so

(F ∗(dω))p = (F∗,p)
∗(dω)F (p)

=

(
∂g2

∂y1

∣∣∣∣
F (p)

− ∂g1

∂y2

∣∣∣∣
F (p)

)
(dF 1)p ∧ (dF 2)p

=

(
∂g2

∂y1

∣∣∣∣
F (p)

− ∂g1

∂y2

∣∣∣∣
F (p)

)(
∂F 1

∂x1

∣∣∣∣
p

∂F 2

∂x2

∣∣∣∣
p

− ∂F 1

∂x2

∣∣∣∣
p

∂F 2

∂x1

∣∣∣∣
p

)
(dx1)p ∧ (dx2)p ,

and if you are very bored and do not have anything better to do with your life right
now, you can check that this last expression is indeed equal to the one we obtained for
(d(F ∗ω))p above, so that

F ∗(dω) = d(F ∗ω)

on F−1(Ω). □

2.3. Integral of a 1-form Along a Curve.

Definition 2.38. (i) LetX be a topological space. A (parametrised) path or (parametrised)
curve in X is a continuous map γ : [a, b] → X, for some a, b ∈ R, a < b. If γ(a) = p
and γ(b) = q, for p, q ∈ X, we say that γ is a path from p to q, and we call p and
q the initial point and the terminal point of γ respectively. If p = q, we call γ a
loop or closed curve based at p.
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(ii) If M is a smooth manifold and k ∈ Z≥0 ∪ {∞}, a path γ : [a, b] → M is said to
be Ck if there exist an open set U ⊂ R with [a, b] ⊂ U and a Ck map γ̃ : U → M
such that γ̃|[a,b] = γ. If there exists a partition a = t0 < · · · < tm = b of [a, b] for

some m ∈ N such that γ|[tj−1,tj ]
is a Ck path for all j ∈ {1, . . . ,m}, then we say

that γ is a piecewise Ck path.

Definition 2.39. Let I ⊂ R be an interval and M a C∞ manifold of dimension n.
Suppose γ : I →M is a map admitting a C1 extension, that is, there exist an open set
U ⊂ R with I ⊂ U and a C1 map γ̃ : U → M such that γ̃|I = γ. For each t0 ∈ I, we

define the tangent vector to γ (over F) at t0 by

γ̇(t0) := γ̃∗,t0

(
d

dt

∣∣∣∣
t0

)
∈ TF,γ(t0)M ,

where t denotes the standard coordinate on U ⊂ R and we regard d
dt

∣∣
t0
to be a tangent

vector in Tt0U or in (Tt0U)C depending on our choice of F.
Remark 2.40. (i) Referring to Definition 2.39, note that on the interior of I the

differentials γ̃∗ and γ∗ are the same. Moreover, if t0 ∈ I and (V, x1, . . . , xn) is a
chart about γ(t0) in M , we have

γ̇(t0) =
n∑
j=1

d(xj ◦ γ̃)

dt

∣∣∣∣
t0

∂

∂xj

∣∣∣∣
γ̃(t0)

,

where we have restricted γ̃ to γ̃−1(V ). We also restrict γ to γ−1(V ), and if the point
t0 is an endpoint of I, we define the one-sided derivative (for s ∈ γ−1(V ) \ {t0})

d(xj ◦ γ)

dt

∣∣∣∣
t0

:= lim
s→t0

(xj ◦ γ)(s)− (xj ◦ γ)(t0)

s− t0
, j ∈ {1, . . . , n} ,

whose existence is guaranteed, since

lim
s→t0

(xj ◦ γ)(s)− (xj ◦ γ)(t0)

s− t0
= lim

s→t0

(xj ◦ γ̃)(s)− (xj ◦ γ̃)(t0)

s− t0
=
d(xj ◦ γ̃)

dt

∣∣∣∣
t0

.

Then, for any t0 ∈ I and chart (V, x1, . . . , xn) about γ(t0), we have
n∑
j=1

d(xj ◦ γ̃)

dt

∣∣∣∣
t0

∂

∂xj

∣∣∣∣
γ̃(t0)

=
n∑
j=1

d(xj ◦ γ)

dt

∣∣∣∣
t0

∂

∂xj

∣∣∣∣
γ(t0)

,

which in particular shows that the definition of γ̇(t0) is independent of the choice
of C1 extension γ̃ even when t0 is an endpoint of I.

(ii) By Remark 2.7 (ii), for any t0 ∈ I we have

γ̇(t0)C = γ̇(t0)R + i0 ,

where γ̇(t0)F denotes the tangent vector to γ over F at t0.

Definition 2.41. Let M be a C∞ manifold of dimension n ∈ {1, 2}, and suppose α is
a continuous 1-form over F on M . Let γ : [a, b] →M be a piecewise C1 path in M , and
let a = s0 < · · · < sm = b be a partition of [a, b], for m ∈ N, such that γk := γ|[sk−1,sk]

is

a C1 path for all k ∈ {1, . . . ,m}. We define the (line) integral of α along γ by∫
γ

α :=
m∑
k=1

∫ sk

sk−1

αγ(t)(γ̇k(t)) dt ,
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where for each k ∈ {1, . . . ,m} and t ∈ [sk−1, sk], γ̇k(t) is the tangent vector to γk over
F at t.

Remark 2.42. Referring to Definition 2.41, let k ∈ {1, . . . ,m} and t0 ∈ [sk−1, sk].
Denote by γk the restriction γ|[sk−1,sk]

, and let (V, x1, . . . , xn) be a chart about γk(t0) =

γ(t0) in M . By Remark 2.40 (i), we have

γ̇k(s) =
n∑
j=1

d(xj ◦ γk)

dt

∣∣∣∣
s

∂

∂xj

∣∣∣∣
γk(s)

for all s ∈ γ−1
k (V ) .

Since the 1-form α is continuous, on V we have

α|V = f 1 dx1 + · · ·+ fn dxn

for some continuous F-valued functions f 1, . . . , fn on V . Thus, for each s ∈ γ−1
k (V ),

αγ(s)(γ̇k(s)) =

( n∑
ℓ=1

f ℓ(γk(s))(dx
ℓ)γk(s)

)( n∑
j=1

d(xj ◦ γk)

dt

∣∣∣∣
s

∂

∂xj

∣∣∣∣
γk(s)

)

=
n∑
j=1

f j(γk(s))
d(xj ◦ γk)

dt

∣∣∣∣
s

.

Then, since for each j ∈ {1, . . . , n} the functions f j ◦ γk : γ−1
k (V ) → F and d(xj◦γk)

dt
:

γ−1
k (V ) → R ⊂ F are continuous, the function s 7→ αγ(s)(γ̇k(s)) ∈ F is continuous on
γ−1
k (V ), which is an open subset of [sk−1, sk] containing t0. Since t0 ∈ [sk−1, sk] was

arbitrary, s 7→ αγk(s)(γ̇k(s)) is a continuous F-valued function on [sk−1, sk], which shows
that the integral

∫
γ
α indeed exists.

2.4. Measurability in a Smooth Manifold.

Definition 2.43. Let M be a smooth manifold with n := dimM .

(i) A subset S ⊂ M is said to be measurable if for every chart (U, ϕ) in M the set
ϕ(U ∩ S) ⊂ Rn is Lebesgue measurable.

(ii) A measurable set S ⊂M is said to have (or to be of) measure 0 if for every chart
(U, ϕ) in M the set ϕ(U ∩ S) has Lebesgue measure 0 on Rn.

(iii) If S ⊂M is measurable, then a property P that may or may not hold for points or
subsets of S is said to hold almost everywhere (in S) if it holds on S \A for some
subset A ⊂ S of measure 0.

We state the following theorem from measure theory, without proof.

Theorem 2.44. Let Ω and Ω′ be open subsets of Rn and F : Ω → Ω′ a diffeomorphism.
If X is R, R or C, and if f : Ω′ → X is a measurable function, then the composition
f ◦ F : Ω → X is also a measurable function. If X = R or R and f is measurable and
nonnegative, then

(2)

∫
Ω′
f dλ =

∫
Ω

(f ◦ F )|JF | dλ ,

where JF : Ω → R ⊂ X is the function mapping each point p ∈ Ω to the Jacobian
determinant of F at p. Moreover, if X = R or C and f is integrable on Ω′, then the
function (f ◦ F )|JF | on Ω is integrable and Equation (2) also holds. As a consequence,
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if E ⊂ Ω is (Lebesgue) measurable then so is F (E) ⊂ Ω′, and if E has measure 0 then
so does F (E).

Proposition 2.45. Let M be a smooth manifold of dimension n.

(i) For a subset S ⊂M , the following statements are equivalent:
(a) S is measurable,
(b) for all p ∈ S there exists a chart (U, ϕ) about p in M such that ϕ(U ∩ S) is

(Lebesgue) measurable in Rn.
(ii) For a measurable subset S ⊂M , the following statements are equivalent:

(a) S has measure 0,
(b) for all p ∈ S there exists a chart (U, ϕ) about p in M such that ϕ(U ∩ S) has

(Lebesgue) measure 0 in Rn.
(iii) Suppose S ⊂ M is measurable and X and Y are topological spaces. If F : S → X

is a measurable map and G : X → Y a continuous map, then the composition
G ◦ F : S → Y is measurable.

(iv) If N is another smooth manifold and H : M → N is a diffeomorphism, then the
image of a measurable subset of M under H is measurable in N .

Proof. (i) Statement (b) follows directly from (a) and Definition 2.43 (i). We prove
(b)⇒(a). Let S ⊂M , and suppose that for each p ∈ S there exists a chart (Up, ϕp)
about p in M such that ϕp(Up ∩ S) ⊂ Rn is measurable. Consider an arbitrary
chart (V, ψ) in M . For each p ∈ S,

ϕp(V ∩ S ∩ Up) = ϕp(Up ∩ V ∩ S ∩ Up) = ϕp(Up ∩ V ) ∩ ϕp(S ∩ Up) .

Since ϕp(Up∩V ) is open in Rn, it is measurable, so ϕp(V ∩S∩Up) is an intersection
of two measurable subsets and hence measurable. We also have

V ∩ S = V ∩ S ∩
(⋃
p∈S

Up

)
=
⋃
p∈S

(V ∩ S ∩ Up) ,

so

ψ(V ∩ S) = ψ

(⋃
p∈S

(V ∩ S ∩ Up)
)

=
⋃
p∈S

ψ(V ∩ S ∩ Up)

=
⋃
p∈S

(ψ(V ∩ S) ∩ ψ(Up ∩ V )) .

Thus, the collection C := {ψ(V ∩S)∩ψ(Up∩V )}p∈S is an open cover for ψ(V ∩S);
and since ψ(V ∩ S) ⊂ Rn is second countable, C has a countable subcover {ψ(V ∩
S) ∩ ψ(Up ∩ V )}p∈A, for some countable subset A ⊂ S. Then,

ψ(V ∩ S) =
⋃
p∈A

(ψ(V ∩ S) ∩ ψ(Up ∩ V ))

=
⋃
p∈A

ψ(V ∩ S ∩ Up)

=
⋃
p∈A

(ψ ◦ ϕ−1
p )(ϕp(V ∩ S ∩ Up)) .
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Since for each p ∈ A the set ϕp(V ∩ S ∩ Up) is measurable and the map ψ ◦ ϕ−1
p :

ϕp(Up ∩ V ) → ψ(Up ∩ V ) is a diffeomorphism of open subsets of Rn, by Theorem
2.44 the set (ψ ◦ϕ−1

p )(ϕp(V ∩S∩Up)) is measurable. Thus, ψ(V ∩S) is a countable
union of measurable sets and hence measurable.

(ii) Again, the proof of (a)⇒(b) is direct, so we give a proof for (b)⇒(a). If S ⊂ M
is measurable and for each p ∈ S there exists a chart (Up, ϕp) about p in M such
that ϕp(Up ∩ S) has measure 0, then for an arbitrary chart (V, ψ) in M we may
apply the same argument as in the proof of (i) to conclude that

ψ(V ∩ S) =
⋃
p∈A

ψ(V ∩ S ∩ Up) ,

for some countable subset A ⊂ S. For each p ∈ A, we have ϕp(V ∩ S ∩ Up) ⊂
ϕp(S ∩ Up), so λ(ϕp(V ∩ S ∩ Up)) = 0. Then, since ψ ◦ ϕ−1

p : ϕp(Up ∩ V ) →
ψ(Up ∩ V ) is a diffeomorphism of open subsets of Rn, by Theorem 2.44 we also
have λ(ψ(V ∩ S ∩ Up)) = λ

(
(ψ ◦ ϕ−1

p )(ϕp(V ∩ S ∩ Up))
)
= 0. Then,

λ(ψ(V ∩ S)) = λ

( ⋃
p∈A

ψ(V ∩ S ∩ Up)
)

≤
∑
p∈A

λ(ψ(V ∩ S ∩ Up))

= 0 .

(iii) If U ⊂ Y is an open subset, then by continuity of G the preimage G−1(U) ⊂ X is
open, so by measurability of F , (G ◦ F )−1(U) = F−1(G−1(U)) is measurable.

(iv) Suppose S ⊂ M is measurable, and let q ∈ H(S). Let p := H−1(q), and choose
a chart (U, ϕ) about p in M . Then, ϕ(U ∩ S) is measurable. Since H−1 : N →
M is a diffeomorphism, so is the restriction H−1 : H(U) → U , and then the
composition ϕ ◦ H−1 : H(U) → ϕ(U) ⊂ Rn is also a diffeomorphism. Thus, the
pair (H(U), ϕ ◦H−1) is a chart in N , and it contains H(p) = q. Moreover,

(ϕ ◦H−1)(H(U) ∩H(S)) = (ϕ ◦H−1)(H(U ∩ S)) = ϕ(U ∩ S) ,
which is measurable. In conclusion, (H(U), ϕ ◦H−1) is a chart about q in N such
that (ϕ ◦H−1)(H(U) ∩H(S)) ⊂ Rn is measurable. Since q was an arbitrary point
in H(S), H(S) is measurable in N by (i).

□

Proposition 2.46. Let M be a smooth manifold, and let A be the collection of measur-
able subsets of M . Then,

(i) A is a σ-algebra;
(ii) A contains all the Borel subsets of M ;
(iii) if S ∈ A and S has measure 0, then any subset R ⊂ S is also in A and has measure

0;
(iv) if {Sj}j∈J is a countable collection of sets in A of measure 0, then their union⋃

j∈J Sj ∈ A also has measure 0.

Proof. (i) Let (U, ϕ) be any chart in M . We have ϕ(U ∩M) = ϕ(U), which shows
that M ∈ A. If S ∈ A, then ϕ(U ∩ S) is measurable and

ϕ(U ∩ Sc) = ϕ(U) \ ϕ(U ∩ S) = ϕ(U) ∩ (ϕ(U ∩ S))c ,
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so ϕ(U ∩Sc) is also measurable, and thus Sc is measurable. Moreover, if {Sj}j∈J ⊂
A is a countable collection of measurable subsets of M , then

ϕ

(
U ∩

(⋃
j∈J

Sj

))
= ϕ

(⋃
j∈J

(U ∩ Sj)
)

=
⋃
j∈J

ϕ(U ∩ Sj) ,

which is measurable. Thus, the union
⋃
j∈J Sj ⊂M is also measurable. In conclu-

sion, A satisfies the axioms of a σ-algebra.
(ii) Suppose Ω ⊂ M is open. Then, if (U, ϕ) is any chart in M , the set U ∩ Ω is open

in U , so ϕ(U ∩ Ω) is open in Rn and hence measurable. Thus, A contains all the
open subsets of M , and since A is a σ-algebra, it must then contain the σ-algebra
generated by the collection of open subsets of M . Thus, A contains all the Borel
subsets of M .

(iii) Suppose S ⊂ M is measurable and has measure 0, and let R ⊂ S. If (U, ϕ) is a
chart in M , then U ∩ R ⊂ U ∩ S, so ϕ(U ∩ R) ⊂ ϕ(U ∩ S). Then, since ϕ(U ∩ S)
is measurable and has measure 0, ϕ(U ∩ R) is also measurable and of measure 0
by completeness of the Lebesgue measure on Rn. Thus, R is measurable and has
measure 0.

(iv) Suppose {Sj}j∈J is a countable collection of measurable subsets of M of measure
0. If (U, ϕ) is a chart in M , then

ϕ

(
U ∩

(⋃
j∈J

Sj

))
=
⋃
j∈J

ϕ(U ∩ Sj)

has Lebesgue measure 0 in Rn as a countable union of sets of Lebesgue measure 0.
Thus,

⋃
j∈J Sj has measure 0.

□

From now on, we regard a smooth manifold M to also be a measurable space whose
σ-algebra consists of all the measurable subsets of M .

Proposition 2.47. Let M be a smooth manifold, S ⊂M a measurable subset, and X a
topological space. A map F : S → X is measurable if and only if for every chart (U, ϕ)
in M , the restriction F |U∩S

: U ∩ S → X is measurable.

Proof. For each open subset Ω ⊂ X and chart (U, ϕ) in M , we have(
F |U∩S

)−1

(Ω) = U ∩ S ∩ F−1(Ω) = U ∩ F−1(Ω) .

If F is measurable, then the set U ∩F−1(Ω) is measurable, which shows that F |U∩S
is a

measurable map. If F |U∩S
is measurable for every chart (U, ϕ) inM , then for every chart

(U, ϕ) in M the set U ∩ F−1(Ω) is measurable, which implies that ϕ(U ∩ F−1(Ω)) ⊂ Rn

is measurable. Thus, F−1(Ω) is a measurable set, which shows that F is a measurable
map. □

Remark 2.48. As one can check, the statements in Proposition 2.47 are also equivalent
to the condition that for every point p ∈ S there exists a chart (Up, ϕp) about p in M
such that the restriction F |Up∩S

: Up ∩ S → X is measurable.
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Definition 2.49. Let M be a smooth manifold of dimension n ∈ {1, 2}, and let S ⊂M
be a measurable set.

(i) For r ∈ {1, 2}, a differential r-form ω over F on S is said to be measurable if for
every chart (U, ϕ) = (U, x1, . . . , xn) in M , on U ∩ S we have

ω =
n∑
j=1

f j dxj if r = 1 ,

ω = g dx1 ∧ dx2 if n = r = 2 ,

for some F-valued measurable functions f 1, . . . , fn, g on U ∩S. If n = 1, we define
the zero 2-form on S to be measurable.

(ii) A 0-form ω over F on S is said to be measurable if for every chart (U, ϕ) in M the
restriction ω|U∩S

is measurable as an F-valued function on U ∩ S.

Remark 2.50. By Proposition 2.47 and Remark 2.48, if M is a smooth manifold of
dimension n ∈ {1, 2}, then a 0-form ω on a measurable subset S ⊂ M is measurable
if and only if ω is measurable as an F-valued function on S, and if and only for every
point p ∈ S there exists a chart (Up, ϕp) about p in M such that the restriction ω|Up∩S
is measurable as an F-valued function.

Proposition 2.51. Let M be a smooth manifold of dimension n ∈ {1, 2} and S ⊂M a
measurable set.

(i) For r ∈ {1, 2} and r ≤ n, a differential r-form ω over F on S is measurable if and
only if for every point p ∈ S there exists a chart (Up, ϕp) = (U, x1p, . . . , x

2
p) about p

in M such that on Up ∩ S

ω =
n∑
j=1

f j dxjp if r = 1 ,

ω = g dx1p ∧ dx2p if n = r = 2 ,

for some F-valued measurable functions f 1, . . . , fn, g on Up ∩ S.
(ii) Suppose N is another smooth manifold with dimN = dimM and F : N →M is a

diffeomorphism. Then, for r ∈ {0, 1, 2}, an r-form ω over F on S is measurable if
and only if its pullback F ∗ω is measurable on F−1(S) ⊂ N .

(iii) If r ∈ {0, 1, 2} and ω and τ are two measurable r-forms over F on S, then the
r-form ω + τ on S is also measurable.

(iv) Let r, s ∈ {0, 1, 2} and r + s ≤ 2. If ω and τ are respectively an r-form and an
s-form over F on S, and if ω and τ are both measurable, then the (r + s)-form
ω ∧ τ on S is also measurable.

The proof of Proposition 2.51 is left to the reader.

2.5. Lebesgue Integration on Curves and Surfaces.
Throughout Subsection 2.5, we letM denote an arbitrary smooth manifold of dimension
n ∈ {1, 2}.
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Suppose (U, ϕ) and (V, ψ) are two charts in M . Then, for each p ∈ U ∩ V the
transition matrix between the bases { ∂

∂xj
|p}nj=1 and { ∂

∂yj
|p}nj=1 for TpM is given by

∂y1

∂x1

∣∣
p

· · · ∂y1

∂xn

∣∣
p

...
. . .

...
∂yn

∂x1

∣∣
p

· · · ∂yn

∂xn

∣∣
p

 ,

which is also the Jacobian matrix of the smooth map (ψ ◦ ϕ−1) : ϕ(U ∩ V ) → ψ(U ∩ V )
at ϕ(p). Denoting by Jψ◦ϕ−1 : ϕ(U ∩ V ) → R the function mapping each r ∈ ϕ(U ∩ V )
to the Jacobian determinant of ψ ◦ ϕ−1 at r, we have Jψ◦ϕ−1 ̸= 0 on ϕ(U ∩ V ). Since
Jψ◦ϕ−1 is continuous, if ϕ(U ∩ V ) is connected we must have Jψ◦ϕ−1 > 0 or Jψ◦ϕ−1 < 0.
Moreover, on ψ(U∩V ) we have Jϕ◦ψ−1 = (1/Jψ◦ϕ−1)◦ϕ◦ψ−1, which implies that if Jψ◦ϕ−1

is everywhere positive or everywhere negative on ϕ(U ∩ V ), then Jϕ◦ψ−1 is respectively
everywhere positive or everywhere negative on ψ(U ∩ V ).

Definition 2.52. (i) Two charts (U, ϕ) and (V, ψ) in M are said to have compatible
orientations if Jψ◦ϕ−1 > 0 on ϕ(U ∩V ), or equivalently, if Jϕ◦ψ−1 > 0 on ψ(U ∩V ).

(ii) An atlas U in M is said to be oriented if every two charts in U have compatible
orientations.

We may define an equivalence relation on the set of oriented atlases inM , where two
oriented atlases U1 and U2 in M are equivalent, denoted U1 ∼ U2, if the atlas U1 ∪ U2 is
also oriented.

Definition 2.53. If there exists an oriented atlas inM , thenM is said to be orientable.
If no oriented atlas exists, M is said to be non-orientable. An equivalence class of
oriented atlases in M is called an orientation (in M). If M is orientable, then M
together with a choice of orientation is said to be an oriented manifold. IfM is oriented,
a chart in an atlas in the orientation of M said to be positively oriented.

Definition 2.54. If N and M are oriented smooth manifolds of dimension n ∈ {1, 2}
and F : N → M is a diffeomorphism, we say that F is orientation-preserving if for
every positively oriented chart (U, ϕ) in M , the induced chart (F−1(U), ϕ ◦ F ) in N is
positively oriented.

Remark 2.55. Note that if M has a global chart (M,ϕ) in its differentiable structure,
then {(M,ϕ)} is an oriented atlas in M , and hence M is orientable.

Definition 2.56. For n ∈ {1, 2}, we call the orientation on Rn given by the oriented
atlas {(Rn,1Rn)} the standard orientation on Rn.

Unless otherwise mentioned, for n ∈ {1, 2} we will assume that Rn is equipped with
the standard orientation.

Remark 2.57. Using notation from Definition 2.54, suppose F : N →M is orientation-
preserving, and let (V, ψ) be a positively oriented chart in N . Then, for each positively
oriented chart (U, ϕ) in M , the chart (F−1(U), ϕ ◦F ) in N is also positively oriented, so
the transition map

ψ ◦ (ϕ ◦ F )−1 : (ϕ ◦ F )(F−1(U) ∩ V ) → ψ(F−1(U) ∩ V )
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has positive Jacobian determinant everywhere. We may rewrite this map as

ψ ◦ F−1 ◦ ϕ−1 : ϕ(U ∩ F (V )) → (ψ ◦ F−1)(U ∩ F (V )) .

This is precisely the transition map between the charts (U, ϕ) and (F (V ), ψ ◦ F−1) in
M , so these two charts have compatible orientations. Since this holds for any positively
oriented chart (U, ϕ) in M , the chart (F (V ), ψ ◦ F−1) in M is positively oriented. This
shows that a diffeomorphism F : N → M is orientation-preserving if and only if its
inverse F−1 :M → N is orientation-preserving.

Lemma 2.58. Suppose N and M are smooth manifolds of dimension n ∈ {1, 2} and
F : N → M is a diffeomorphism. If M is orientable and U := {(Uα, ϕα)}α∈A is an
oriented atlas in M , then the induced atlas V := {(F−1(Uα), ϕα ◦ F )}α∈A in N is also
oriented. As a consequence, N is also orientable.

Proof. Let (U, ϕ), (V, ψ) ∈ U. Then, the transition map between the charts (F−1(U), ϕ ◦

F ) and (F−1(V ), ψ ◦ F ) in N is given by

ψ ◦ F ◦ (ϕ ◦ F )−1 : (ϕ ◦ F )(F−1(U) ∩ F−1(V )) → (ψ ◦ F )(F−1(U) ∩ F−1(V )) ,

which is precisely the transition map ψ ◦ϕ−1 : ϕ(U ∩V ) → ψ(U ∩V ) between the charts
(U, ϕ) and (V, ψ), and hence its Jacobian determinant is positive everywhere. Thus, V
is oriented. □

Remark 2.59. Referring to Lemma 2.58, suppose we have made a choice of orientation
O in M . If U and U′ are two oriented atlases in O, then their union U ∪ U′ is also
oriented. Letting V and V′ denote the oriented atlases in N induced respectively from
U and from U′, the union V∪V′ is the atlas induced from U∪U′ and hence it is oriented
by Lemma 2.58. Thus, the atlases V and V′ belong to the same orientation O ′ in N . It
follows that all the oriented atlases in N induced from oriented atlases in O belong to
O ′. We then call O ′ the induced orientation in N from the diffeomorphism F : N →M .

Remark 2.60. Suppose M is oriented and Ω ⊂ M is open. Let {Uα}α∈A be the
collection of all oriented atlases Uα = {(Uβ, ϕβ)}β∈Bα in the orientation of M . Then, as
one can check, for each α ∈ A the induced atlas UΩ

α := {(Uβ ∩ Ω, ϕβ|Uβ∩Ω
)}β∈Bα in Ω is

oriented, and for all α1, α2 ∈ A, the oriented atlases UΩ
α1

and UΩ
α2

are equivalent. As a
result, Ω is also orientable, and all the oriented atlases in Ω in the collection {UΩ

α}α∈A
belong to a unique orientation in Ω, which we call the induced orientation (from M).
Unless otherwise specified, we will give open sets of oriented smooth manifolds the
induced orientation.

Proposition 2.61. If M is orientable and connected, then M has exactly two orienta-
tions.

Proof. Since M is orientable, M has an oriented atlas

U = {(Uα, ϕα)}α∈A = {(Uα, x1α, . . . , xnα)}α∈A .

For each α ∈ A, we let ϕ̃α := −ϕα = −x1α if n = 1, and ϕ̃α := (−x1α, x2α) if n = 2. Then,
the atlas

−U := {(Uα, ϕ̃α)}α∈A
is also oriented and U ̸∼ −U, so U and −U represent two different orientations in M . It
remains to show that for any oriented atlas V in M , we have either V ∼ U or V ∼ −U.
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Suppose V is an oriented atlas in M . For each p ∈ M , choose charts (Vp, ψp) ∈ V
and (Uαp , ϕαp) ∈ U about p. Since ϕαp(Uαp ∩ Vp) is open and contains ϕαp(p), we may
choose an open ball Bp ⊂ ϕαp(Uαp ∩ Vp) (which is connected) containing ϕαp(p). Then,
Dp := ϕ−1

αp
(Bp) ⊂ Uαp ∩ Vp is an open subset of both Uαp and Vp, and p ∈ Dp. Letting

ψ̃p := ψp|Dp
, the pair (Dp, ψ̃p) is then another chart about p in M , and the transition

map

ψ̃p ◦ ϕ−1
αp

: ϕαp(Uαp ∩Dp) = ϕαp(Dp) = Bp → ψ̃p(Uαp ∩Dp) = ψp(Dp)

has a connected domain and hence it must fulfil either Jψ̃p◦ϕ
−1
αp
> 0 or Jψ̃p◦ϕ

−1
αp
< 0. If

(Uβ, ϕβ) is an arbitrary chart in U, then we may write the transition map

ψ̃p ◦ ϕ−1
β : ϕβ(Uβ ∩Dp) → ψ̃p(Uβ ∩Dp)

as the composition F2 ◦F1, where F1 is the restriction of the transition map ϕαp
◦ϕ−1

β to

ϕβ(Uβ ∩Dp) ⊂ ϕβ(Uβ ∩ Uαp), and F2 is the restriction of the transition map ψ̃p ◦ ϕ−1
αp

to

ϕαp(Uβ ∩Dp) ⊂ ϕαp(Dp). Since F1 has positive Jacobian determinant, we have

Jψ̃p◦ϕ
−1
αp
> 0 ⇒ JF2 > 0 ⇒ JF2◦F1 > 0 ⇒ Jψ̃p◦ϕ

−1
β
> 0 ,

Jψ̃p◦ϕ
−1
αp
< 0 ⇒ JF2 < 0 ⇒ JF2◦F1 < 0 ⇒ Jψ̃p◦ϕ

−1
β
< 0 ⇔ Jψ̃p◦ϕ̃

−1
β
> 0 .

Thus, precisely one of the following holds:

(a) Jψ̃p◦ϕ
−1
β
> 0 for every chart (Uβ, ϕβ) ∈ U ;

(b) Jψ̃p◦ϕ̃
−1
β
> 0 for every chart (Uβ, ϕ̃β) ∈ −U .

The collection Ṽ := {(Dp, ψ̃p)}p∈M is then an atlas in M that is oriented and equivalent

to V, and for each p ∈ M the chart (Dp, ψ̃p) fulfils either (a) or (b). We define the
function

f :M → {0, 1} , f(p) :=

{
0 if (Dp, ψ̃p) fulfils (a) ,

1 if (Dp, ψ̃p) fulfils (b) .

We claim that f is a locally constant. Indeed, assume p ∈ M and f(p) = 0. If there

exists q ∈ Dp such that f(q) = 1, then (Dp, ψ̃p) fulfils (a) and (Dq, ψ̃q) fulfils (b). In

particular, the transition map G1 := ψ̃p ◦ ϕ−1
αp

has positive Jacobian determinant, and

G2 := ϕαp
◦ ψ̃−1

q has negative Jacobian determinant. We may restrict the map G1 to

ϕαp(Dp ∩ Dq) ⊂ ϕαp(Dp) = ϕαp(Uαp ∩ Dp), and G2 to ψ̃q(Dp ∩ Dq) ⊂ ψ̃q(Uαp ∩ Dq).
Then, the composition

G1|ϕαp (Dp∩Dq)
◦G2|ψ̃q(Dp∩Dq)

: ψ̃q(Dp ∩Dq) → ψ̃p(Dp ∩Dq)

has negative Jacobian determinant. This is a contradiction, since the above map is
precisely the transition map ψ̃p ◦ ψ̃−1

q , which has positive Jacobian determinant. Thus,
we must have f(q) = 0 for all q ∈ Dp. A similar argument shows that if f(p) = 1, then
f(q) = 1 for all q ∈ Dp. Thus, f is locally constant on M , and since M is connected, f

must then be constant. If f = 0 on M , then Ṽ ∼ U, and if f = 1 on M , then Ṽ ∼ −U.
Since V ∼ Ṽ, we have V ∼ U or V ∼ −U. □

If S ⊂M and ω is a nowhere-vanishing n-form over F on S, then for each p ∈ S the
n-covector ωp is a basis for the 1-dimensional vector space Λn(TF,pM)∗. As such, if τ is
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any n-form over F on S, we may define the function
τ

ω
: S → F , p 7→ τp

ωp
,

and then on S we have

τ =
τ

ω
ω .

For each chart (U, ϕ) = (U, x1, . . . , xn) in M , we will denote by ωϕ the nowhere-
vanishing n-form over F on U given by

ωϕ := dx1 if n = 1,

ωϕ := dx1 ∧ dx2 if n = 2.

Then, if (V, ψ) is another chart in M , on U ∩ V we have

ωϕ =
ωϕ
ωψ

ωψ

with
ωϕ
ωψ

= Jϕ◦ψ−1 ◦ ψ : U ∩ V → R .

It follows that the charts (U, ϕ) and (V, ψ) have compatible orientations if and only if
the function ωϕ/ωψ is everywhere positive on U ∩ V .

Proposition 2.62. (i) If there exists a continuous nowhere-vanishing n-form over R
on M , then M is orientable.

(ii) If M is second countable and oriented, then there exists a C∞ nowhere-vanishing
n-form ω over R on M such that for every positively oriented chart (U, ϕ) in M ,
we have ω/ωϕ > 0 on U .

Proof. (i) Suppose ω is a continuous nowhere-vanishing n-form over R on M . For
each p ∈ M , choose a chart (Up, ϕp) = (Up, x

1
p, . . . , x

n
p ) about p in M such that

Up is connected. Since ω/ωϕp : Up → R is continuous and nowhere-vanishing, we
must have either ω/ωϕp > 0 everywhere on Up or ω/ωϕp < 0 everywhere on Up. If
ω/ωϕp < 0, redefine (Up, ϕp) by replacing x1p by −x1p. Then, ω/ωϕp > 0 on Up, and
since ω is nowhere-vanishing, we may also define the function ωϕp/ω = 1/(ω/ωϕp),
which is also everywhere positive on Up. We show that the resulting atlas U :=
{(Up, ϕp)}p∈M is oriented. If (Up, ϕp), (Uq, ϕq) ∈ U, then on Up ∩ Uq

ωϕp
ωϕq

=
ωϕp
ω

ω

ωϕq
,

which is a product of positive functions and hence positive on Up ∩ Uq. Thus, the
charts (Up, ϕp) and (Uq, ϕq) have compatible orientations.

(ii) Let {(Uα, ϕα)}α∈A be the collection of all positively oriented charts in M . Since M
is second countable, there exists a C∞ partition of unity {ρα}α∈A subordinate to
the open cover {Uα}α∈A for M . The C∞ nowhere-vanishing real n-form ω on M
defined by

ωp :=
∑

α ∈ A with
p ∈ suppρα

ρα(p)ωϕα(p) , p ∈M ,

fulfils ω/ωϕα > 0 on Uα for all α ∈ A. We leave the details for the reader to check.

□
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Definition 2.63. A C∞ nowhere-vanishing real n-form on M is called a volume form
(on M).

Definition 2.64. Suppose M is oriented and S ⊂M .

(i) A real n-form ω on S is said to be positive, denoted ω > 0, if for every positively
oriented chart (U, ϕ) in M intersecting S, we have ω/ωϕ > 0 on U ∩ S. The real
n-form ω is said to be nonnegative, denoted ω ≥ 0, if ω/ωϕ ≥ 0 on U ∩ S for
every positively oriented chart (U, ϕ) in M intersecting S. Moreover, ω is said to
be negative, denoted ω < 0, if −ω > 0, and ω is said to be nonpositive, denoted
ω ≤ 0, if −ω ≥ 0.

(ii) For p ∈ M , a real n-covector α ∈ ΛnT ∗
pN is said to be respectively positive,

nonnegative, negative, or nonpositive, if it is so as a real n-form on {p} ⊂M , that
is, if for every positively oriented chart (U, ϕ) = (U, x1, . . . , xn) in M about p, the
real number α/(ωϕ)p = α

(
∂
∂x1

∣∣
p
, . . . , ∂

∂xn

∣∣
p

)
is respectively positive, nonnegative,

negative, or nonpositive.
(iii) For p ∈ M , an ordered basis {v1, . . . , vn} for TpM is said to be positively oriented

if for every positive real n-covector α ∈ ΛnT ∗
pM , we have α(v1, . . . , vn) > 0.

(iv) If ω and τ are two real n-forms on S, we say that ω > τ , ω ≥ τ , ω < τ , or ω ≤ τ ,
respectively if ω − τ > 0, ω − τ ≥ 0, ω − τ < 0, or ω − τ ≤ 0.

Proposition 2.65. Suppose M is oriented and S ⊂M .

(i) A real n-form ω on S is positive if and only if for every p ∈ S there exists a
positively oriented chart (Up, ϕp) about p in M such that ω/ωϕp > 0 on Up ∩ S.
Similarly, ω is nonnegative if and only if for every p ∈ S there exists a positively
oriented chart (Up, ϕp) about p in M such that ω/ωϕp ≥ 0 on Up ∩ S.

(ii) For a point p ∈ M , an ordered basis {v1, . . . , vn} for TpM is positively oriented if
and only if there exists a positively oriented chart (U, ϕ) about p in M such that
(ωϕ)p(v

1, . . . , vn) > 0.

Proof. (i) Suppose ω is a real n-form on S such that for every p ∈ S there exists a
positively oriented chart (Up, ϕp) about p in M such that ω/ωϕp > 0 on Up ∩ S.
If (V, ψ) is another positively oriented chart in M intersecting S, then for each
p ∈ V ∩ S we have (ωϕp)p/(ωψ)p > 0, so

ω

ωψ
(p) =

ωp
(ωψ)p

=
ωp

(ωϕp)p

(ωϕp)p

(ωψ)p
> 0 .

Thus, ω/ωψ > 0 on V ∩ S, so ω > 0. The case when for every p ∈ S there exists a
positively oriented chart (Up, ϕp) about p in M such that ω/ωϕp ≥ 0 on Up ∩ S is
similar. The rest of the proof is left to the reader.

(ii) (⇒) Suppose {v1, . . . , vn} is a positively oriented ordered basis for TpM . If (U, ϕ)
is any positively oriented chart about p in M , then (ωϕ)p ∈ ΛnT ∗

pM is positive, so

(ωϕ)p(v
1, . . . , vn) > 0.

(⇐) Let {v1, . . . , vn} be an ordered basis for TpM , and suppose there exists a
positively oriented chart (U, ϕ) about p in M such that (ωϕ)p(v

1, . . . , vn) > 0. If
α ∈ ΛnT ∗

pM is a positive n-covector, then α/(ωϕ)p > 0, so

α(v1, . . . , vn) =
α

(ωϕ)p
(ωϕ)p(v

1, . . . , vn) > 0 .
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Thus, the ordered basis {v1, . . . , vn} is positively oriented.

□

Definition 2.66. Suppose M is oriented. Let S ⊂ M and suppose ω is a real n-form
on S. We define the positive part of ω, denoted ω+, to be the nonnegative real n-form
on S given by

(ω+)p :=

{
ωp if ωp ≥ 0

0 if ωp < 0
, p ∈ S .

We also define the negative part of ω, denoted ω−, to be the nonnegative real n-form on
S given by

(ω−)p :=

{
−ωp if ωp ≤ 0

0 if ωp > 0
, p ∈ S .

Remark 2.67. Using notation from Definition 2.66, if (U, ϕ) is a positively oriented
chart in M then on U ∩ S we have ω = fϕ ωϕ, for fϕ := (ω/ωϕ) : U ∩ S → R. Then, on
U ∩ S

ω+ = f+
ϕ ωϕ , ω− = f−

ϕ ωϕ .

If ω is continuous on S, then fϕ is continuous on U ∩ S, which implies that f+
ϕ and f−

ϕ

are also continuous. Since we can cover S by positively oriented charts, it follows that
ω+ and ω− are also continuous on S. If S ⊂M is measurable and ω is measurable, then
fϕ is measurable on U ∩ S, so f+

ϕ and f−
ϕ are also measurable. Thus, if ω is measurable

on S, then ω+ and ω− are also measurable on S.

Proposition 2.68. SupposeM is oriented, S ⊂M is measurable and ω is a measurable,
nonnegative real n-form on S. Letting t and (t1, t2) denote respectively the standard
coordinates on R and R2, define ωR := dt and ωR2 := dt1 ∧ dt2. If (U, ϕ) and (V, ψ) are
two positively oriented charts in M , then∫

ϕ(U∩V ∩S)

(ϕ−1)∗
(
ω|U∩V ∩S

)
ωRn

dλ =

∫
ψ(U∩V ∩S)

(ψ−1)∗
(
ω|U∩V ∩S

)
ωRn

dλ

Proof. On U ∩ V ∩ S, we have

ω = f ωϕ = g ωψ ,

where f := ω/ωϕ : U ∩ V ∩ S → R and g := ω/ωψ : U ∩ V ∩ S → R are nonnegative
and measurable, with

g = f
ωϕ
ωψ

= f · (Jϕ◦ψ−1 ◦ ψ)|U∩V ∩S
.

Computing the pullbacks (ϕ−1)∗
(
ω|U∩V ∩S

)
and (ψ−1)∗

(
ω|U∩V ∩S

)
explicitly and applying

change of variables (Theorem 2.44) via the diffeomorphism ϕ◦ψ−1 : ψ(U∩V ) → ϕ(U∩V ),
the result follows. □

Definition 2.69. Suppose M is oriented and S ⊂ M is measurable. Let ω be a
measurable, real nonnegative n-form on S. Let t and (t1, t2) denote respectively the
standard coordinates on R and R2, and let ωR := dt and ωR2 := dt1 ∧ dt2.
(i) Suppose S ⊂ U for some positively oriented chart (U, ϕ) in M . We then define∫

S

ω :=

∫
ϕ(S)

(ϕ−1)∗ω

ωRn

dλ ,
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which by Proposition 2.68 is independent of the choice of positively oriented chart
(U, ϕ) with S ⊂ U .

(ii) Let Υ(S) be the collection of tuples (S1, . . . , Sm) of finitely many mutually disjoint
measurable subsets S1, . . . , Sm ⊂ S such that for all j ∈ {1, . . . ,m}, Sj ⊂ U for
some positively oriented chart (U, ϕ) in M . We then define the integral of ω over
S by ∫

S

ω := sup
(S1,...,Sm)∈Υ(S)

m∑
j=1

∫
Sj

ω ∈ [0,+∞]

Remark 2.70. (1) Note that in Definition 2.69, if S ⊂ U for some positively ori-
ented chart (U, ϕ) in M , then the definitions of

∫
S
ω given in (i) and (ii) agree.

(2) In Definition 2.69 (ii), the set

P :=

{ m∑
j=1

∫
sj

ω

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
is nonempty, since we always have ∅ ∈ Υ (as a tuple of one element), so that∫
∅ ω ∈ P . Thus, the supremum in Definition 2.69 (ii) is that of a nonempty set.

Definition 2.71. Suppose M is oriented and S ⊂ M is measurable. Let ω be a
measurable real or complex n-form on S.

(i) Suppose ω is real. We say that ω is integrable if∫
S

ω+ < +∞ and

∫
S

ω− < +∞ .

If ω is integrable, we define the integral of ω over S by∫
S

ω :=

∫
S

ω+ −
∫
S

ω− ∈ R .

(ii) If ω is complex, we say that ω is integrable if the measurable real n-forms Re(ω)
and Im(ω) on S are integrable, and if this is the case we define the integral of ω
over S to be ∫

S

ω :=

∫
S

Re(ω) + i

∫
S

Im(ω) ∈ C .

Proposition 2.72. Suppose M is oriented and S ⊂ M is measurable. Let AS denote
the σ-algebra on S of measurable subsets of S. If ω is a measurable, real nonnegative
n-form on S, then

(i) the function

λω : AS → [0,+∞] , T 7→
∫
T

ω ,

is a measure on AS;
(ii) if f : S → R is a nonnegative measurable function on S, then∫

S

f dλω =

∫
S

f ω .

Proof. (i) Choosing any positively oriented chart (U, ϕ) in M , we have

λω(∅) =
∫
∅
ω =

∫
ϕ(∅)

(ϕ−1)∗
(
ω|∅
)

ωRn

dλ = 0 .
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It remains to show that if {Tk}k∈N is a sequence of mutually disjoint measurable
subsets of S, then

λω

( ⋃
k∈N

Tk

)
=

∞∑
k=1

λω(Tk) .

We have

λω

( ⋃
k∈N

Tk

)
=

∫
⋃

k∈N Tk

ω = supP

and

λω(Tk) =

∫
Tk

ω = supPk

for each k ∈ N, where

P :=

{ m∑
j=1

∫
sj

ω

∣∣∣∣ (s1, . . . , sm) ∈ Υ

( ⋃
k∈K

Tk

)}
⊂ [0,+∞]

and

Pk :=

{ m∑
j=1

∫
sj

ω

∣∣∣∣ (s1, . . . , sm) ∈ Υ(Tk)

}
⊂ [0,+∞]

for each k ∈ N. Thus, we need to prove that

supP =
∞∑
k=1

supPk .

For this, we will show that
(a) every element x ∈ P can be written as x =

∑∞
k=1 ak for some sequence

{ak}k∈N ⊂ [0,+∞] such that ak ∈ Pk for each k ∈ N, and
(b) if K ⊂ N is a finite set and bk ∈ Pk for each k ∈ K, then

∑
k∈K bk ∈ P .

To show (a), choose any x =
∑m

j=1

∫
sj
ω in P , for (s1, . . . , sm) ∈ Υ

(⋃
k∈K Tk

)
.

For each j ∈ {1, . . . ,m}, we have sj ⊂ Uj for some positively oriented chart
(Uj, ϕj) in M . We may write sj as the disjoint union sj =

⋃
k∈N(sj ∩ Tk), so that

ϕj(sj) =
⋃
k∈N ϕj(sj ∩ Tk) is also a disjoint union. We then have∫

sj

ω =

∫
ϕj(sj)

fj dλ , where fj :=
(ϕ−1)∗

(
ω|sj

)
ωRn

,

=

∫
ϕj(sj)

∞∑
k=1

fjχϕj(sj∩Tk) dλ

=
∞∑
k=1

∫
ϕj(sj)

fjχϕj(sj∩Tk) dλ (by the Monotone Convergence Theorem)

=
∞∑
k=1

∫
ϕj(sj∩Tk)

fj|ϕj(sj∩Tk) dλ

=
∞∑
k=1

∫
ϕj(sj∩Tk)

(ϕ−1)∗
(
ω|sj∩Tk

)
ωRn

dλ

=
∞∑
k=1

∫
sj∩Tk

ω .
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For each k ∈ N, let

ak :=
m∑
j=1

∫
sj∩Tk

ω ,

which is in Pk, since (s1 ∩ Tk, . . . , sm ∩ Tk) ∈ Υ(Tk). Then,

x =
m∑
j=1

∫
sj

ω

=
m∑
j=1

(
lim
N→∞

N∑
k=1

∫
sj∩Tk

ω

)

= lim
N→∞

m∑
j=1

N∑
k=1

∫
sj∩Tk

ω

= lim
N→∞

N∑
k=1

m∑
j=1

∫
sj∩Tk

ω

=
∞∑
k=1

ak .

Thus, (a) is proved. For (b), suppose K ⊂ N is finite and bk ∈ Pk for each k ∈ K.
For each k ∈ K, we have

bk =

mk∑
j=1

∫
skj

ω

for some (sk1, . . . , skmk
) ∈ Υ(Tk). Then, we have

{skj}k∈K
j∈{1,...,mk}

∈ Υ

( ⋃
k∈K

Tk

)
,

so ∑
k∈K

bk =
∑
k∈K

mk∑
j=1

∫
skj

ω ∈ P ,

which concludes the proof of (b). Statement (a) guarantees that
∑∞

k=1 supPk is an
upper bound for P , while from (b) it follows that no real number r <

∑∞
k=1 supPk

can be an upper bound for P . The details are left to the reader. In conclusion,

supP =
∞∑
k=1

supPk .

(ii) We have ∫
S

fω = supQ

and ∫
S

f dλω = supR ,

for

Q :=

{ m∑
j=1

∫
sj

fω

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
⊂ [0,+∞]
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and

R :=

{∫
S

h dλω

∣∣∣∣h ∈ H+(S) and h ≤ f

}
⊂ [0,+∞] ,

where H+(S) denotes the set of nonnegative simple functions on S, that is, the
set of functions h : S → [0,+∞) that are measurable and only take finitely many
values. Suppose x is a nonzero element in R. Then, x =

∫
S
h dλω for some nonzero

h ∈ H+(S) such that h ≤ f . We may then write h =
∑r

i=1 αi χTi , where r ∈ N,
{α1, . . . , αr} is the set of positive values taken by h, and Ti := h−1({αi}) for each
i ∈ {1, . . . , r}. Then,

x =

∫
S

h dλω =
r∑
i=1

αi λω(Ti) =
r∑
i=1

αi

∫
Ti

ω

If i ∈ {1, . . . , r} and t ⊂ Ti is a measurable set such that t ⊂ U for some positively
oriented chart (U, ϕ) in M , then

αi

∫
t

ω = αi

∫
ϕ(t)

(ϕ−1)∗
(
ω|t
)

ωRn

dλ

=

∫
ϕ(t)

αi
(ϕ−1)∗

(
ω|t
)

ωRn

dλ

=

∫
ϕ(t)

(ϕ−1)∗
(
αi ω|t

)
ωRn

dλ

=

∫
t

αi ω .

Moreover, for all q ∈ ϕ(t) we have ϕ−1(q) ∈ t ⊂ Ti , so αi = h(ϕ−1(q)) ≤ f(ϕ−1(q)).
Thus,

(ϕ−1)∗
(
αi ω|t

)
ωRn

(q) = αi
(ϕ−1)∗

(
ω|t
)

ωRn

(q)

≤ f(ϕ−1(q))
(ϕ−1)∗

(
ω|t
)

ωRn

(q)

=
(ϕ−1)∗

(
(fω)|t

)
ωRn

(q)

for all q ∈ ϕ(t), so ∫
t

αi ω =

∫
ϕ(t)

(ϕ−1)∗
(
αi ω|t

)
ωRn

dλ

≤
∫
ϕ(t)

(ϕ−1)∗
(
(fω)|t

)
ωRn

dλ

=

∫
t

f ω .

We will consider two cases:
(1) +∞ ∈ R ,
(2) every element in R is finite.
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We first prove the statement for the case when (1) holds. From (1), we have
supR = +∞. We show that then supQ = +∞. Choose M ∈ (0,+∞). Since
+∞ ∈ R and +∞ ≠ 0, as we saw before we have

+∞ =

∫
S

h dλω =
r∑
i=1

αi

∫
Ti

ω ,

where h ∈ H+(S) is nonzero, h ≤ f , and the numbers r and {αi}ri=1 and subsets
{Ti}ri=1 of S are defined as above. Then, there must be some i ∈ {1, . . . , r} such
that

∫
Ti
ω = +∞, which allows us to choose a tuple (t1, . . . , tm) ∈ Υ(Ti) such that

m∑
j=1

∫
tj

ω >
M

αi
.

Since (t1, . . . , tm) ∈ Υ(S), we have

Q ∋
m∑
j=1

∫
tj

f ω ≥
m∑
j=1

∫
tj

αi ω

= αi

m∑
j=1

∫
tj

ω

> M .

Thus, supQ = +∞ = supR. We now assume that (2) holds. Choose ε ∈ (0,+∞).
We claim that for all x ∈ R, there exists y ∈ Q such that y > x− ε. If x = 0, we
may choose any y ∈ Q ̸= ∅. Suppose then that x ∈ R and x > 0. We may write

x =

∫
S

h dλω =
r∑
i=1

αi

∫
Ti

ω

as before. For each i ∈ {1, . . . , r}, we have
∫
Ti
ω < +∞, so we may choose

(ti1, . . . , timi
) ∈ Υ(Ti) such that

mi∑
j=1

∫
tij

ω >

(∫
Ti

ω

)
− ε

r αi
,

so that

αi

mi∑
j=1

∫
tij

ω >

(
αi

∫
Ti

ω

)
− ε

r
.

Then, since the collection {tij | i ∈ {1, . . . , r} and j ∈ {1, . . . ,mi}} is in Υ(S), we
have

Q ∋
r∑
i=1

mi∑
j=1

∫
tij

f ω ≥
r∑
i=1

mi∑
j=1

∫
tij

αi ω

=
r∑
i=1

αi

mi∑
j=1

∫
tij

ω

>

( r∑
i=1

αi

∫
Ti

ω

)
− ε

= x− ε .
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Thus, the claim is proved. It follows that no element x ∈ R can fulfil x > supQ,
since then we would be able to find y ∈ Q with y > supQ. Thus, supQ is an
upper bound for R. To prove that supR = supQ, we will show that for all y ∈ Q
there exists a sequence in R converging to y. Choose y ∈ Q. Then,

y =
m∑
j=1

∫
sj

f ω

for some (s1, . . . , sm) ∈ Υ(S). For each j ∈ {1, . . . ,m}, we have sj ⊂ Uj for some
positively oriented chart (Uj, ϕj) in M , so

∫
sj

f ω =

∫
ϕj(sj)

(ϕ−1
j )∗

(
(fω)|sj

)
ωRn

dλ =

∫
ϕj(sj)

(f ◦ ϕ−1
j )

(ϕ−1
j )∗

(
ω|sj

)
ωRn

dλ .

Define

gj :=
(ϕ−1

j )∗
(
ω|sj

)
ωRn

: ϕj(sj) → [0,+∞) .

Since f ◦ ϕ−1
j is a nonnegative measurable function on ϕj(sj), there exists an in-

creasing sequence {hjk}k∈N of nonnegative simple functions on ϕj(sj) converging

to f ◦ ϕ−1
j . Then, the sequence {hjk gj}k∈N is also increasing and it converges to

(f ◦ ϕ−1
j ) gj, so by the Monotone Convergence Theorem,

∫
ϕj(sj)

hjk gj dλ→
∫
ϕj(sj)

(f ◦ ϕ−1
j ) gj dλ =

∫
sj

f ω as k → ∞ .

It follows that

ck :=
m∑
j=1

∫
ϕj(sj)

hjk gj dλ→
m∑
j=1

∫
sj

f ω = y as k → ∞ .

We now fix k ∈ N, and choose j ∈ {1, . . . ,m}. Write

hjk =

mjk∑
i=1

αjki χTjki ,
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where αjk1, . . . , αjkmjk
∈ [0,+∞) are the finitely many values taken by hjk, and

Tjki := (hjk)
−1({αjki}) for each i ∈ {1, . . . ,mjk}. Then,∫

ϕj(sj)

hjk gj dλ =

∫
ϕj(sj)

mjk∑
i=1

αjki χTjki gj dλ

=

mjk∑
i=1

∫
ϕj(sj)

αjki χTjki gj dλ

=

mjk∑
i=1

∫
Tjki

αjki gj|Tjki dλ

=

mjk∑
i=1

αjki

∫
Tjki

(ϕ−1
j )∗

(
ω|sj

)
ωRn

∣∣∣∣
Tjki

dλ

=

mjk∑
i=1

αjki

∫
T̃jki

ω

=

mjk∑
i=1

αjki λω(T̃jki) ,

where T̃jki := ϕ−1(Tjki) ⊂ sj for each i ∈ {1, . . . ,mjk}. Then,

ck =
m∑
j=1

∫
ϕj(sj)

hjk gj dλ =
m∑
j=1

mjk∑
i=1

αjki λω(T̃jki) =

∫
S

ηk ,

where ηk : S → [0,+∞) is the nonnegative simple function defined by

ηk :=
m∑
j=1

mjk∑
i=1

αjki χT̃jki .

Moreover, since the sets {T̃jki} are mutually disjoint for j ∈ {1, . . . ,m} and i ∈
{1, . . . ,mjk}, on each T̃jki we have

ηk|T̃jki = αjki = hjk ◦ ϕj|T̃jki ≤ (f ◦ ϕ−1
j ) ◦ ϕj|T̃jki = f |T̃jki ,

while ηk is zero at the points in S that are not in T̃jki for any j ∈ {1, . . . ,m} and
i ∈ {1, . . . ,mjk}. In conclusion, ηk ≤ f on S, which implies that

ck =

∫
S

ηk ∈ R .

Since k ∈ N was arbitrary, the sequence {ck}k∈N is in R, as claimed. It is left to the
reader to show that this implies that no real number strictly smaller than supQ
can be an upper bound for R, so that supR = supQ.

PHEEEEEEEEEEEEEWWW! □

Definition 2.73. Suppose M is oriented, S ⊂M is measurable, and ω is a measurable,
real nonnegative n-form on S. We then call the measure λω on S provided by Proposition
2.72 (i) the measure associated to ω.
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Remark 2.74. Using notation from Proposition 2.72, suppose T ⊂ S is a measurable
set of measure 0 (Definition 2.43). Then, if t ⊂ T and t ⊂ U for some positively oriented
chart (U, ϕ) in M , we have ∫

t

ω =

∫
ϕ(t)

(ϕ−1)∗
(
ω|t
)

ωRn

dλ = 0 ,

since λ(ϕ(t)) = 0. Thus,

λω(T ) =

∫
T

ω = sup
(t1,...,tm)∈Υ(T )

m∑
j=1

∫
tj

ω = 0 .

Proposition 2.75. Suppose M is oriented and S ⊂M is measurable.

(i) If ω is a measurable, real nonnegative n-form on S, and if R ⊂ S is measurable,
then ∫

S

χR ω =

∫
R

ω ,

where χR : S → R denotes the characteristic function on R, that is,

χR(p) :=

{
1 if p ∈ R

0 if p ∈ S \R
, p ∈ S .

(ii) If ω and τ are measurable, real nonnegative n-forms on S, and if c ∈ [0,+∞), then

(a)

∫
S

(ω + τ) =

∫
S

ω +

∫
S

τ

and

(b)

∫
S

(c ω) = c

∫
S

ω .

(iii) If ω and τ are measurable, real nonnegative n-forms on S such that ω ≥ τ , then

(a)

∫
S

ω =

∫
S

(ω − τ) +

∫
S

τ

and

(b)

∫
S

ω ≥
∫
S

τ .

Moreover, if
∫
S
τ < +∞ then

(c)

∫
S

ω −
∫
S

τ =

∫
S

(ω − τ) .

(iv) If ω and τ are measurable, real nonnegative n-forms on S and ω = τ almost
everywhere in S, then ∫

S

ω =

∫
S

τ .

(v) If ω is a measurable, real nonnegative n-form on S, then the set Z := {p ∈ S |ωp =
0} is measurable. If τ is another measurable, real nonnegative n-form on S such
that τ = 0 almost everywhere in Z, then∫

S

τ =

∫
S\Z

τ

ω
ω =

∫
S\Z

τ

ω
dλω .
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Proof. (i) By Proposition 2.72 (ii),∫
S

χR ω =

∫
S

χR dλω = λω(R) =

∫
R

ω .

(ii) (a) We first show that the result is true when S ⊂ U for some positively oriented
chart (U, ϕ) in M . If this is the case, then∫

S

(ω + τ) =

∫
ϕ(S)

(ϕ−1)∗(ω + τ)

ωRn

dλ

=

∫
ϕ(S)

(
(ϕ−1)∗ω

ωRn

+
(ϕ−1)∗τ

ωRn

)
dλ

=

∫
ϕ(S)

(ϕ−1)∗ω

ωRn

dλ+

∫
ϕ(S)

(ϕ−1)∗τ

ωRn

dλ

=

∫
S

ω +

∫
S

τ .

We now prove the general case. Write∫
S

(ω + τ) = supP ,

∫
S

ω = supQ1 ,

∫
S

τ = supQ2 ,

for

P :=

{ m∑
j=1

∫
sj

(ω + τ)

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
,

Q1 :=

{ m∑
j=1

∫
sj

ω

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
,

Q2 :=

{ m∑
j=1

∫
sj

τ

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
.

We claim that
(1) For every x ∈ P there exist y1 ∈ Q1 and y2 ∈ Q2 such that x = y1 + y2;
(2) For every y1 ∈ Q1 and y2 ∈ Q2 there exists x ∈ P such that x ≥ y1 + y2.
For (1), choosing x =

∑m
j=1

∫
sj
(ω + τ) ∈ P for some (s1, . . . , sm) ∈ Υ(S), we

have

x =
m∑
j=1

∫
sj

(ω + τ) =
m∑
j=1

(∫
sj

ω +

∫
sj

τ

)
= y1 + y2 ,

where

y1 :=
m∑
j=1

∫
sj

ω ∈ Q1 and y2 :=
m∑
j=1

∫
sj

τ ∈ Q2 .

To prove (2), choose elements y1 =
∑m1

j=1

∫
rj
ω ∈ Q1 and y2 =

∑m2

i=1

∫
ti
τ ∈

Q2, for (r1, . . . , rm1), (t1, . . . , tm2) ∈ Υ(S). For each j ∈ {1, . . . ,m1} and i ∈
{1, . . . ,m2}, define

aj := rj \
( m2⋃
k=1

tk

)
, bij := rj ∩ ti , ci := ti \

( m1⋃
k=1

rk

)
.
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Then, the collection

C := {aj}m1
j=1 ∪ {bij}j∈{1,...,m1}

i∈{1,...,m2}
∪ {ci}m2

i=1

is in Υ(S). We then have

P ∋
m1∑
j=1

∫
aj

(ω + τ) +

m1∑
j=1

m2∑
i=1

∫
bij

(ω + τ) +

m2∑
i=1

∫
ci

(ω + τ)

=

m1∑
j=1

(∫
aj

ω +

m2∑
i=1

∫
bij

ω

)
+

m2∑
i=1

(∫
ci

τ +

m1∑
j=1

∫
bij

τ

)
+

m1∑
j=1

∫
aj

τ +

m2∑
i=1

∫
ci

ω

= δ1 + δ2 +R ,

where

δ1 :=

m1∑
j=1

(∫
aj

ω +

m2∑
i=1

∫
bij

ω

)
,

δ2 :=

m2∑
i=1

(∫
ci

τ +

m1∑
j=1

∫
bij

τ

)
,

R =

m1∑
j=1

∫
aj

τ +

m2∑
i=1

∫
ci

ω ∈ [0,+∞] .

We show that δ1 = y1 and δ2 = y2. For each j ∈ {1, . . . ,m1}, we have
rj = aj ∪

⋃m2

i=1 bij, so by (i),∫
aj

ω +

m2∑
i=1

∫
bij

ω =

∫
rj

χaj ω +

m2∑
i=1

∫
rj

χbij ω

=

∫
rj

(
χaj ω +

m2∑
i=1

χbij ω

)
=

∫
rj

ω .

Thus,

δ1 =

m1∑
j=1

(∫
aj

ω +

m2∑
i=1

∫
bij

ω

)
=

m1∑
j=1

∫
rj

ω = y1 .

The proof that δ2 = y2 is similar. Then,

P ∋ δ1 + δ2 +R = y1 + y2 +R ≥ y1 + y2 ,

so (2) is proved. It is left to the reader to show that (1) and (2) imply that

supP = supQ1 + supQ2 .

(b) Suppose first that S ⊂ U for some positively oriented chart (U, ϕ) inM . Then,∫
S

c ω =

∫
ϕ(S)

(ϕ−1)∗(c ω)

ωRn

dλ =

∫
ϕ(S)

c
(ϕ−1)∗ω

ωRn

dλ = c

∫
ϕ(S)

(ϕ−1)∗ω

ωRn

dλ = c

∫
S

ω .

For the general case, write∫
S

ω = supP and

∫
S

c ω = supQ ,
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for

P :=

{ m∑
j=1

∫
sj

ω

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
,

Q :=

{ m∑
j=1

∫
sj

c ω

∣∣∣∣ (s1, . . . , sm) ∈ Υ(S)

}
.

Then, we have Q = {c x |x ∈ P}, from which it follows that supQ = c supP .
(iii) (a) Since ω ≥ τ , the measurable n-form ω − τ is nonnegative on S. The result

then follows from (ii)(a).
(b) Follows from (iii)(a).
(c) Follows from (iii)(a).

(iv) Since ω = τ almost everywhere in S, there exists a measurable subset A ⊂ S of
measure 0 such that ωp = τp for all p ∈ S \ A. Then, the measurable nonnegative
n-forms χS\A ω and χS\A τ are equal on S, so by (ii)(a) and Remark 2.74,∫

S

ω =

∫
S

(χA ω + χS\A ω) =

∫
A

ω +

∫
S

χS\A ω =

∫
S

χS\A ω

and ∫
S

τ =

∫
S

(χA τ + χS\A τ) =

∫
A

τ +

∫
S

χS\A τ =

∫
S

χS\A τ .

Thus, ∫
S

ω =

∫
S

τ .

(v) We first show that Z is measurable. Choose any chart (U, ϕ) in M . Since ω is
measurable, on U∩S we have ω = (ω/ωϕ)ωϕ, where the function ω/ωϕ : U∩S → R
is measurable. Then,

U ∩ Z = {p ∈ U ∩ S |ωp = 0} =

(
ω

ωϕ

)−1

({0}) ,

which is a measurable subset of U ∩S and hence a measurable subset of M . Thus,
ϕ(U ∩Z) is measurable in Rn, so Z is measurable. Since τ = 0 almost everywhere
in Z, by (iv) we have

∫
Z
τ =

∫
Z
0 = 0, so∫

S

τ =

∫
S

(χZ τ + χS\Z τ) =

∫
Z

τ +

∫
S\Z

τ =

∫
S\Z

τ

ω
ω =

∫
S\Z

τ

ω
dλω .

□

Proposition 2.76. Suppose M is oriented and S ⊂M is measurable.

(i) If ω is an integrable measurable n-form over F on S, and if R ⊂ S is measurable,
then the measurable n-form χR ω is integrable on S, the restriction ω|R is integrable

on R, and ∫
S

χR ω =

∫
R

ω .

(ii) If ω and τ are integrable measurable n-forms over F on S and c ∈ F, then
(a) the n-form ω + τ on S is integrable and∫

S

(ω + τ) =

∫
S

ω +

∫
S

τ ;
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(b) the n-form c ω on S is integrable and∫
S

(c ω) = c

∫
S

ω .

(iii) If ω and τ are integrable measurable real n-forms on S such that ω ≥ τ , then∫
S

ω ≥
∫
S

τ .

(iv) If ω and τ are integrable measurable n-forms over F on S such that ω = τ almost
everywhere in S, then ∫

S

ω =

∫
S

τ .

Proof. (i) Suppose first that F = R. On S,

(χR ω)
+ = χR ω

+ ≤ ω+ and (χR ω)
− = χR ω

− ≤ ω− ,

so by integrability of ω,∫
S

(χR ω)
+ ≤

∫
S

ω+ < +∞ and

∫
S

(χR ω)
− ≤

∫
S

ω− < +∞.

Thus, χR ω is integrable on S. Moreover, on R we have(
ω|R
)+

= ω+|R and
(
ω|R
)−

= ω−|R ,

so ∫
R

(
ω|R
)+

=

∫
R

ω+|R =

∫
S

χR ω
+ =

∫
S

(χR ω)
+

and ∫
R

(
ω|R
)−

=

∫
R

ω−|R =

∫
S

χR ω
− =

∫
S

(χR ω)
− .

Thus, ω|R is integrable on R and∫
S

χR ω =

∫
S

(χR ω)
+ −

∫
S

(χR ω)
− =

∫
R

(
ω|R
)+ −

∫
R

(
ω|R
)−

=

∫
R

ω|R .

If F = C, then the measurable real n-forms Re(ω) and Im(ω) on S are integrable
on S, and on S we have

Re(χR ω) = χR Re(ω) and Im(χR ω) = χR Im(ω) .

Thus, by the real case, Re(χR ω) and Im(χR ω) are integrable on S, which implies
that χR ω is integrable on S. Moreover, on R we have

Re
(
ω|R
)
= (Re(ω))|R and Im

(
ω|R
)
= (Im(ω))|R ,
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so, again by the real case, Re
(
ω|R
)
and Im

(
ω|R
)
are both integrable on R, which

implies that ω|R is integrable on R. Then,∫
S

χR ω =

∫
S

Re(χR ω) + i

∫
S

Im(χR ω)

=

∫
S

χR Re(ω) + i

∫
S

χR Im(ω)

=

∫
R

(Re(ω))|R + i

∫
R

(Im(ω))|R

=

∫
R

Re
(
ω|R
)
+ i

∫
R

Im
(
ω|R
)

=

∫
R

ω|R .

(ii) (a) Suppose first that F = R. Let p ∈ S. If (ω + τ)p ≥ 0, then

(ω + τ)+p = (ω + τ)p = ωp + τp = ω+
p − ω−

p + τ+p − τ−p

≤ ω+
p + τ+p = (ω+ + τ+)p

and

(ω + τ)−p = 0 ≤ (ω− + τ−)p ,

while if (ω + τ)p < 0, then

(ω + τ)+p = 0 ≤ (ω+ + τ+)p

and

(ω + τ)−p = −(ω + τ)p = −ωp − τp = −ω+
p + ω−

p − τ+p + τ−p

≤ ω−
p + τ−p = (ω− + τ−)p .

Thus, on S we have

(ω + τ)+ ≤ ω+ + τ+ and (ω + τ)− ≤ ω− + τ− ,

so∫
S

(ω + τ)+ ≤
∫
S

ω+ +

∫
S

τ+ < +∞ and

∫
S

(ω + τ)− ≤
∫
S

ω− +

∫
S

τ− < +∞ .

Thus, ω + τ is integrable. Moreover, on S,

(ω + τ)+ − (ω + τ)− = ω + τ = ω+ − ω− + τ+ − τ− ,

so

ω+ + τ+ − (ω + τ)+ = ω− + τ− − (ω + τ)− .
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Then, by Proposition 2.75,∫
S

ω+ +

∫
S

τ+ −
∫
S

(ω + τ)+ =

∫
S

(ω+ + τ+)−
∫
S

(ω + τ)+

=

∫
S

(ω+ + τ+ − (ω + τ)+)

=

∫
S

(ω− + τ− − (ω + τ)−)

=

∫
S

(ω− + τ−)−
∫
S

(ω + τ)−

=

∫
S

ω− +

∫
S

τ− −
∫
S

(ω + τ)− ,

so that ∫
S

(ω + τ) =

∫
S

(ω + τ)+ −
∫
S

(ω + τ)−

=

∫
S

ω+ −
∫
S

ω− +

∫
S

τ+ −
∫
S

τ−

=

∫
S

ω +

∫
S

τ .

The proof of the case when F = C is left to the reader.
(b) Suppose first that F = R. If c = 0, the result is immediate. If c > 0, then on S

(c ω)+ = c ω+ and (c ω)− = c ω− ,

so that ∫
S

(c ω)+ =

∫
S

c ω+ = c

∫
S

ω+ < +∞

and ∫
S

(c ω)− =

∫
S

c ω− = c

∫
S

ω− < +∞ .

Thus, c ω is integrable and∫
S

c ω =

∫
S

(c ω)+ −
∫
S

(c ω)− = c

(∫
S

ω+ −
∫
S

ω−
)

= c

∫
S

ω .

If c < 0, then

(c ω)+ = −c ω− and (c ω)− = −c ω+ ,

so ∫
S

(c ω)+ =

∫
S

−c ω− = −c
∫
S

ω− < +∞

and ∫
S

(c ω)− =

∫
S

−c ω+ = −c
∫
S

ω+ < +∞ .

Thus, again c ω is integrable and∫
S

c ω =

∫
S

(c ω)+ −
∫
S

(c ω)− = −c
(∫

S

ω− −
∫
S

ω+

)
= c

∫
S

ω .

If F = C, we have

Re(c ω) = Re(c) Re(ω)− Im(c) Im(ω)
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and

Im(c ω) = Re(c) Im(ω) + Im(c) Re(ω) ,

so Re(c ω) and Im(c ω) are integrable and∫
S

c ω =

∫
S

Re(c ω) + i

∫
S

Im(c ω)

= Re(c)

∫
S

Re(ω)− Im(c)

∫
S

Im(ω) + i

(
Re(c)

∫
S

Im(ω) + Im(c)

∫
S

Re(ω)

)
= c

(∫
S

Re(ω) + i

∫
S

Im(ω)

)
= c

∫
S

ω .

(iii) Since ω ≥ τ , we have

ω+ ≥ τ+ and ω− ≤ τ− ,

so ∫
S

ω =

∫
S

ω+ −
∫
S

ω− ≥
∫
S

τ+ −
∫
S

τ− =

∫
S

τ .

(iv) Suppose first that F = R. Since ω = τ almost everywhere in S, we have ω+ = τ+

almost everywhere in S and ω− = τ− almost everywhere in S, so∫
S

ω =

∫
S

ω+ −
∫
S

ω− =

∫
S

τ+ −
∫
S

τ− =

∫
S

τ .

If F = C, then Re(ω) = Re(τ) almost everywhere in S and Im(ω) = Im(τ) almost
everywhere in S, so the result follows from the real case.

□

Lemma 2.77. SupposeM is oriented, S ⊂M is a compact subset, and ω is a continuous
n-form over F on S. Then, S is measurable and ω is measurable and integrable on S.

Proof. Since S is compact andM is Hausdorff, S is closed and hence measurable. More-
over, since ω is continuous on S, it is measurable. Suppose first that F = R. Since ω
is continuous on S, so too are ω+ and ω−. For each point p ∈ S, choose a positively
oriented chart (Up, ϕp) about p in M . Since M is locally compact, we may also choose a
neighbourhood Vp of p inM such that the closure Vp of Vp inM is compact and Vp ⊂ Up.
Since S is compact and the collection {Vp}p∈S covers S, we may find a finite subcover
{Vpj}mj=1. Then, S ⊂

⋃m
j=1 Vpj , so S =

⋃m
j=1(S ∩ Vpj). This implies that on S,

ω+ ≤
m∑
j=1

χS∩Vpj
ω+ ,

so ∫
S

ω+ ≤
∫
S

m∑
j=1

χS∩Vpj
ω+ =

m∑
j=1

∫
S∩Vpj

ω+ =
m∑
j=1

∫
ϕpj (S∩Vpj )

(ϕ−1
pj
)∗ω+

ωR2

dλ .

For each j ∈ {1, . . . ,m}, the set S ∩ Vpj is compact, so ϕpj(S ∩ Vpj) is compact in R2.

Moreover, since ω+ is continuous on S ∩ Vpj , the function ((ϕ−1
pj
)∗ω+)/ωR2 is continuous
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on ϕpj(S ∩ Vpj). In conclusion,∫
ϕpj (S∩Vpj )

(ϕ−1
pj
)∗ω+

ωR2

dλ < +∞

for all j ∈ {1, . . . ,m}, so
∫
S
ω+ < +∞. By a similar argument,

∫
S
ω− < +∞, which

shows that ω is integrable on S. If F = C, then the result follows from the real case:
Re(ω) and Im(ω) are continuous real n-forms on S and hence integrable on S, so ω is
integrable on S. □

Remark 2.78. Recall that if M has dimension n ∈ {1, 2} and γ : [a, b] → M is a
piecewise C1 path, then the line integral along γ of a continuous (real or complex)
1-form α on M is given by ∫

γ

α =
m∑
k=1

∫ sk

sk−1

αγ(t)(γ̇k(t)) dt ,

where a = s0 < · · · < sm = b is a partition of [a, b] such that for each k ∈ {1, . . . ,m}
the restriction γk := γ|[sk−1,sk]

is a C1 path. Fixing some k ∈ {1, . . . ,m}, and letting

now γk := γ|(sk−1,sk)
, for each s ∈ (sk−1, sk) we have

(γ∗kα)s =

[
(γ∗kα)s

(
d

dt

∣∣∣∣
s

)]
(dt)s

=

[
αγk(s)

(
(γk)∗

(
d

dt

∣∣∣∣
s

))]
(dt)s

= αγ(s)(γ̇k(s))(dt)s .

Since the function s 7→ αγ(s)(γ̇k(s)) on [sk−1, sk] is Riemann integrable, it is also Lebesgue
integrable. Then, assuming first that α is real,

+∞ >

∫
[sk−1,sk]

(αγ(s)(γ̇k(s)))
± dλ(s)

=

∫
(sk−1,sk)

(αγ(s)(γ̇k(s)))
± dλ(s)

=

∫
(sk−1,sk)

(γ∗kα)
± .

Thus, the continuous 1-form γ∗kα is integrable on (sk−1, sk) and∫
(sk−1,sk)

γ∗kα =

∫ sk

sk−1

αγ(s)(γ̇k(s)) ds .

If α is complex, then for each s ∈ (sk−1, sk),

(Re γ∗kα)s = Re
(
αγ(s)(γ̇k(s))

)
(dt)s and (Im γ∗kα)s = Im

(
αγ(s)(γ̇k(s))

)
(dt)s .

Then, reasoning as in the case when α is real, we conclude that Re(γ∗kα) and Im(γ∗kα)
are integrable on (sk−1, sk), so that γ∗kα is integrable on (sk−1, sk), and∫

(sk−1,sk)

γ∗kα =

∫ sk

sk−1

αγ(s)(γ̇k(s)) ds .
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In conclusion, for real or complex α, we have∫
γ

α =
m∑
k=1

∫
(sk−1,sk)

γ∗kα .

Lemma 2.79. Suppose γ : [a, b] → M is a piecewise C1 path and α is a continuous
1-form over F on M . Suppose also that the set N := γ((a, b)) ⊂M has a 1-dimensional
smooth manifold structure such that the inclusion map ι : N → M is C∞, and that the
map γ̃ : (a, b) → N , t 7→ γ(t) ∈ N , is a diffeomorphism. If we give N the orientation
induced from the diffeomorphism γ̃, then the 1-form ι∗α is integrable on N and∫

N

ι∗α =

∫
γ

α .

Proof. First note that the restriction γ|(a,b) : (a, b) →M may be written as the composi-

tion ι ◦ γ̃. Then, since ι and γ̃ are both C∞, the restriction γ|(a,b) is C
∞. It then follows

from the fact that γ is piecewise C1 on [a, b] and C1 on (a, b) that γ is actually C1 on
[a, b] (that is, it has a C1 extension). Then, by Remark 2.78, the continuous 1-form
γ|∗(a,b)α on (a, b) is integrable and∫

γ

α =

∫
(a,b)

γ|∗(a,b)α .

Since the map γ̃ : (a, b) → N is a diffeomorphism, the pair (N, γ̃−1) is a chart in N , and
it is positively oriented. Suppose first that F = R. Then, on N we have ι∗α = f dγ̃−1

for f := ι∗α/dγ̃−1 : N → R, so∫
N

(ι∗α)± =

∫
N

f± dγ̃−1 =

∫
(a,b)

(f± ◦ γ̃) dλ =

∫
(a,b)

(f ◦ γ̃)± dλ .

Moreover, on (a, b) we have

γ|∗(a,b)α = (ι ◦ γ̃)∗α = γ̃∗(ι∗α) = γ̃∗(f dγ̃−1) = (f ◦ γ̃) dt ,

so

+∞ >

∫
(a,b)

(γ|∗(a,b)α)
± =

∫
(a,b)

(f ◦ γ̃)± dλ =

∫
N

(ι∗α)± .

Thus, ι∗α is integrable on N and∫
N

ι∗α =

∫
(a,b)

γ|∗(a,b)α =

∫
γ

α .

Suppose now that F = C. Then, the real 1-forms Re(α) and Im(α) onM are continuous,
so ι∗Re(α) and ι∗ Im(α) are integrable on N and we have∫

N

ι∗Re(α) =

∫
γ

Re(α) and

∫
N

ι∗ Im(α) =

∫
γ

Im(α) .
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Moreover, on N we have ι∗Re(α) = Re(ι∗α) and ι∗ Im(α) = Im(ι∗α), so ι∗α is integrable
on N and ∫

N

ι∗α =

∫
N

Re(ι∗α) + i

∫
N

Im(ι∗α)

=

∫
γ

Re(α) + i

∫
γ

Im(α)

=

∫
(a,b)

γ|∗(a,b) Re(α) + i

∫
(a,b)

γ|∗(a,b) Im(α)

=

∫
(a,b)

Re(γ|∗(a,b)α) + i

∫
(a,b)

Im(γ|∗(a,b)α)

=

∫
(a,b)

γ|∗(a,b)α

=

∫
γ

α .

□

Definition 2.80. Suppose M has dimension 2 and Ω ⊂ M is open. Then, Ω is called
smooth, or C∞, if for all p ∈M there exists a chart (U, ϕ) = (U, x, y) about p in M such
that

U ∩ Ω = {q ∈ U |x(q) < 0} = ϕ−1
(
{(r, s) ∈ ϕ(U) | r < 0}

)
.

Proposition 2.81. Suppose M has dimension 2 and Ω ⊂ M is a smooth open set.
Then, the topological boundary ∂Ω of Ω is either empty or a 1-dimensional smooth
submanifold of M .

Proof. Suppose ∂Ω is nonempty. For each p ∈ ∂Ω, we may choose a chart (U, ϕ) about
p in M such that U ∩ Ω = {q ∈ U |x(q) < 0}. Let A := {q ∈ U |x(q) = 0}. We show
that U ∩ ∂Ω = A. If q ∈ A and W ⊂ M is a neighbourhood of q, then ϕ(U ∩ W )
is open in ϕ(U) ⊂ R2 and ϕ(q) = (0, y(q)) ∈ ϕ(U ∩W ), so there exists ε ∈ (0,+∞)
such that a := (−ε, y(q)) ∈ ϕ(U ∩W ). Then, ϕ−1(a) ∈ U ∩W and x(ϕ−1(a)) < 0, so
ϕ−1(a) ∈ Ω ∩W . Thus, q is not an exterior point of Ω, and since q ̸∈ Ω, we must have
q ∈ ∂Ω. Since q ∈ A ⊂ U , we have q ∈ U ∩ ∂Ω, which shows that A ⊂ U ∩ ∂Ω. To show
the opposite inclusion, observe that if q ∈ U \ A, then either x(q) < 0, in which case
q ∈ Ω ⊂ (∂Ω)c, or x(q) > 0. If the latter holds, then denoting by R ⊂ R2 the open right
half-plane, we have ϕ(q) ∈ ϕ(U) ∩ R, so B := ϕ−1(ϕ(U) ∩ R) ⊂ U is a neighbourhood
of q such that for all r ∈ B, x(r) > 0. Thus, B ⊂ Ωc, so q is an exterior point of Ω. In
conclusion, if q ∈ ∂Ω then we must have q ∈ A. Thus, U ∩ ∂Ω = {q ∈ U |x(q) = 0}.
Then, since ∂Ω is closed in M , it is a smooth 1-dimensional submanifold of M . □

Lemma 2.82. Suppose M has dimension 2 and is oriented, and let Ω ⊂M be a smooth
open subset such that ∂Ω ̸= ∅.
(i) The collection U of all positively oriented charts (U, ϕ) = (U, x, y) in M such that

U ∩ Ω = {q ∈ U |x(q) < 0} covers M .
(ii) The collection V :=

{(
U ∩ ∂Ω, y ◦

(
ι|U∩∂Ω

))
| (U, ϕ) = (U, x, y) ∈ U

}
of charts in

∂Ω induced from U, where ι : ∂Ω → M is the inclusion map, is an oriented atlas
in ∂Ω and hence defines an orientation on ∂Ω.
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Proof. (i) First note that if (U, ϕ) = (U, x, y) is a chart in M such that U ∩ Ω =
{q ∈ U |x(q) < 0} and U ′ ⊂ U is an open subset, then the chart (U ′, ϕ|U ′) =

(U ′, x|U ′ , y|U ′) also fulfils U ′∩Ω = {q ∈ U ′ |x|U ′(q) < 0}. For each p ∈M , choose a

chart (Up, ϕp) = (Up, xp, yp) about p in M such that Up ∩Ω = {q ∈ Up |xp(q) < 0}.
Then, without loss of generality, we may assume that Up ⊂ Vp for some positively
oriented chart (Vp, ψp) about p, and that Up is connected. Then, the transition
map

F := ψp ◦ ϕ−1
p : ϕp(Up ∩ Vp) = ϕp(Up) → ψp(Up) = ψp(Up ∩ Vp)

has either JF > 0 everywhere or JF < 0 everywhere. If the latter holds, we may
redefine ϕp by changing the sign of yp, so that JF > 0 everywhere in ϕp(Up) and
the redefined chart (Up, ϕp) still fulfils Up ∩ Ω = {q ∈ Up |xp(q) < 0}. We show
that the chart (Up, ϕp) is positively oriented. If (W, γ) is any positively oriented
chart in M , then the transition map

G := γ ◦ ψ−1
p : ψp(Vp ∩W ) → γ(Vp ∩W )

has positive Jacobian determinant everywhere. Then, the restrictions

F |ϕp(Up∩W )
: ϕp(Up ∩W ) → ψp(Up ∩W )

and

G|ψp(Up∩W )
: ψp(Up ∩W ) → γ(Up ∩W )

have positive Jacobian determinant in their respective domains, and thus so too
does the composition G|ψp(Up∩W )

◦ F |ϕp(Up∩W )
: ϕp(Up ∩W ) → γ(Up ∩W ), which

is precisely the transition map γ ◦ ϕ−1
p of the charts (Up, ϕp) and (W, γ). Thus,

(Up, ϕp) is positively oriented, so (Up, ϕp) ∈ U. Since p ∈ Up, the result is proved.
(ii) Since U is an atlas in M such that for all (U, ϕ) = (U, x, y) ∈ U we have U ∩ ∂Ω =

{q ∈ U |x(q) = 0}, the collection V of charts in ∂Ω induced from U is an atlas. We

show that V is oriented. Choose two charts (U ∩ ∂Ω, ϕ̃) =
(
U ∩ ∂Ω, y ◦

(
ι|U∩∂Ω

))
and (V, ψ̃) =

(
V ∩ ∂Ω, ỹ ◦

(
ι|V ∩∂Ω

))
in V induced respectively from two charts

(U, ϕ) = (U, x, y) and (V, ψ) = (V, x̃, ỹ) in U. The transition map ψ̃ ◦ ϕ̃−1 between

the charts (U ∩ ∂Ω, ϕ̃) and (V ∩ ∂Ω, ψ̃) can be written as the composition

π ◦ (ψ ◦ ϕ−1) ◦ ι̃ : y(U ∩ V ∩ ∂Ω) → ỹ(U ∩ V ∩ ∂Ω) ⊂ R ,

where

ι̃ : y(U ∩ V ∩ ∂Ω) → ϕ(U ∩ V ) , t 7→ (0, t) ,

is the inclusion map, and

π : ψ(U ∩ V ) → R , (0, t) 7→ t ,

is the projection map. Then, denoting by (r, s) the standard coordinates on R2,
and letting f := r ◦ ψ ◦ ϕ−1 and g := s ◦ ψ ◦ ϕ−1 be the component functions of
the transition map ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ), the Jacobian matrix of the

transition map ψ̃ ◦ ϕ̃−1 at a point t ∈ y(U ∩ V ∩ ∂Ω) is the product

(
0 1

)∂f
∂r
(0, t) ∂f

∂s
(0, t)

∂g
∂r
(0, t) ∂g

∂s
(0, t)


0

1

 =
(
∂g
∂s
(0, t)

)
.
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Thus,

Jψ̃◦ϕ̃−1(t) =
∂g

∂s
(0, t) .

We show that ∂g
∂s
(0, t) > 0. Since (0, t) ∈ ϕ(U ∩ V ∩ ∂Ω), we have ϕ−1(0, t) ∈

U ∩V ∩ ∂Ω, which implies that f(0, t) = 0. If {tk}k∈N is a sequence in R \ {t} such
that (0, tk) ∈ ϕ(U ∩ V ) for all k ∈ N, and tk → t as k → ∞, then we also have
f(0, tk) = 0 for all k ∈ N, so

∂f

∂s
(0, t) = lim

k→∞

f(0, tk)− f(0, t)

tk − t
= 0 .

Thus, Jψ◦ϕ−1(0, t) = ∂f
∂r
(0, t) · ∂g

∂s
(0, t). This implies that the partial derivatives

∂f
∂r
(0, t) and ∂g

∂s
(0, t) are either both positive or both negative, so to show that

∂g
∂s
(0, t) > 0, it suffices to show that ∂f

∂r
(0, t) > 0. If {ck}k∈N is a sequence in R\{0}

such that (ck, t) ∈ ϕ(U ∩ V ) for all k ∈ N, and ck → 0 as k → ∞, then for each
k ∈ N the numbers ck and f(ck, t) are either both positive or both negative: if
ck > 0, then ϕ−1(ck, t) ∈ U ∩ V ∩ (Ω)c, so f(ck, t) > 0 ; while if ck < 0, then
ϕ−1(ck, t) ∈ U ∩ V ∩ Ω, so f(ck, t) < 0. Thus,

∂f

∂r
(0, t) = lim

k→∞

f(ck, t)− f(0, t)

ck − 0
= lim

k→∞

f(ck, t)

ck
≥ 0 ,

so we must have ∂f
∂r
(0, t) > 0.

□

Definition 2.83. IfM has dimension 2 and is oriented, and if Ω ⊂M is a smooth open
subset with nonempty boundary ∂Ω, we call the orientation on ∂Ω given by Lemma
2.82 the induced orientation (from M with respect to Ω).

Proposition 2.84. Let M and N be 2-dimensional smooth manifolds, and F :M → N
a diffeomorphism. Suppose Ω ⊂M is a smooth open set. Then,

(i) F (Ω) is a smooth open subset of N ;
(ii) if M and N are oriented, F is orientation-preserving, and ∂Ω ̸= ∅, then the

diffeomorphism F : ∂Ω → ∂F (Ω) is orientation-preserving, assuming that ∂Ω and
∂F (Ω) are given the induced orientations from M and N and with respect to Ω
and F (Ω), respectively.

Proof. (i) Denote by (r, s) the standard coordinates on R2. For each chart (U, ϕ) in
M such that U ∩Ω = {q ∈ U | (r ◦ϕ)(q) < 0}, the chart (F (U), ϕ ◦F−1) in N fulfils
F (U) ∩ F (Ω) = {q ∈ F (U) | (r ◦ ϕ ◦ F−1)(q) < 0}. Since we can cover M by such
charts (U, ϕ), it follows that F (Ω) is a smooth open set in N .

(ii) Let U denote the atlas in M consisting of all positively oriented charts (U, ϕ) in M
that fulfil U ∩ Ω = {q ∈ U | (r ◦ ϕ)(q) < 0}. Then, the oriented atlas

V := {(U ∩ ∂Ω, s ◦ ϕ ◦ ι) | (U, ϕ) ∈ U}

in ∂Ω is in its orientation. For each (U, ϕ) ∈ U, the chart (F (U), ϕ ◦ F−1) in N is
positively oriented and fulfils F (U) ∩ F (Ω) = {q ∈ F (U) | (r ◦ ϕ ◦ F−1)(q) < 0}, so
the chart (F (U)∩ ∂F (Ω), s ◦ ϕ ◦F−1 ◦ ι) in ∂F (Ω) is positively oriented. Moreover,
(F (U)∩ ∂F (Ω), s ◦ ϕ ◦F−1 ◦ ι) is precisely the chart induced from (U ∩ ∂Ω, s ◦ ϕ ◦ ι)
by F : ∂Ω → ∂F (Ω). Thus, V is an oriented atlas in the orientation of ∂Ω such
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that for all (V, ψ) ∈ V, the chart (F (V ), ψ ◦ F−1) in ∂F (Ω) is positively oriented.
It follows that F : ∂Ω → ∂F (Ω) is orientation-preserving.

□

Theorem 2.85 (Stokes’ Theorem). Suppose M is a 2-dimensional oriented smooth
manifold. Let Ω ⊂M be a nonempty smooth open subset, and suppose α is a C1 1-form
over F on M such that Ω ∩ suppα is compact. Denote by ι : ∂Ω → M the inclusion
map. Then, dα is integrable on Ω, the pullback ι∗α is integrable on ∂Ω, and∫

Ω

dα =

∫
∂Ω

ι∗α .

Proof. We first prove the theorem for the case when F = R. First note that since
∂Ω ⊂ M can be covered by charts (U, ϕ) = (U, x, y) in M such that U ∩ ∂Ω = {q ∈
U |x(q) = 0} = ϕ−1(ϕ(U)∩L), where L denotes the y-axis in R2, the set ∂Ω has measure
0 in M . Since α is C1 on M , the exterior derivative dα is a continuous 2-form on M ,
and hence measurable. We have∫

Ω

(dα)± =

∫
∂Ω

(dα)± +

∫
Ω

(dα)± =

∫
Ω

(dα)± ,

where the notation ± means that the array of equalities holds when read only with
the + signs and when read only with the − signs. Note also that (suppα)c ⊂ M is
an open subset where α = 0, so we also have dα = 0 on (suppα)c. We then have
supp (dα)± ⊂ supp dα ⊂ suppα. Then, letting K := Ω ∩ suppα,∫

Ω

(dα)± =

∫
Ω

(dα)± =

∫
Ω∩(suppα)c

(dα)± +

∫
K

(dα)± =

∫
K

(dα)± ,

which is finite by Lemma 2.77. Thus, dα is integrable on Ω.

Let p ∈ K ⊂ Ω. If p ∈ Ω, choose a positively oriented chart (Up, ϕp) = (Up, xp, yp)
about p in M such that Up ∩ Ω = {q ∈ Up |xp(q) < 0} and Up ⊂ Ω. If p ∈ ∂Ω, choose
a positively oriented chart (Up, ϕp) = (Up, xp, yp) about p in M such that Up ∩ Ω =
{q ∈ Up |xp(q) < 0} and ϕp(Up) is an open disc of finite radius in R2. Then, the
collection {(Up, ϕp)}p∈K has a finite subcollection that covers K, which we index by
{(Uj, ϕj) = (Uj, xj, yj)}mj=1. Let W :=

⋃m
j=1 Uj. Since W is a finite union of coordinate

open sets inM , it is a second countable smooth manifold with the induced differentiable
structure from M . Thus, there exists a smooth partition of unity {ρj}mj=1 on W such
that for each j ∈ {1, . . . ,m}, suppWρj ⊂ Uj, where for a function or differential form
ρ on W the notation suppWρ denotes the closure in W of the set {q ∈ W | ρ(q) ̸= 0}
(which may differ from the closure of this set inM). Then, onW we have α =

∑m
j=1 ρjα.

We now fix some j ∈ {1, . . . ,m}. We have suppWρjα ⊂ suppWρj ∩ suppα. We consider
two cases.

(i) Uj ∩ ∂Ω = ∅. We then have Uj ⊂ Ω, so

Sj := suppWρjα ⊂ suppWρj ∩ suppα

⊂ Uj ∩ suppα

⊂ Ω ∩ suppα

= K .
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Then, since Sj is closed in W , it is closed in K ⊂ W , so Sj is compact. Moreover,
the 1-form ρjα is C1 on W , so d(ρjα) is a continuous 2-form on W (and hence
measurable), and suppW (d(ρjα))

± ⊂ suppW d(ρjα) ⊂ Sj ⊂ Uj. Then,∫
Ω∩W

(d(ρjα))
± =

∫
Uj

(d(ρjα))
± =

∫
Sj

(d(ρjα))
± ,

which is finite, since Sj is compact and (d(ρjα))
± is continuous. Thus, d(ρjα) is

integrable on Ω∩W . On Uj, we have ρjα = f j dxj+g
j dyj for some C1 real-valued

functions f j and gj on Uj, so on Uj,

d(ρjα) = hj dxj ∧ dyj for hj :=
∂gj

∂xj
− ∂f j

∂yj
.

Then,

+∞ >

∫
Uj

(d(ρjα))
± =

∫
ϕj(Uj)

(hj)± ◦ ϕ−1
j dλ

=

∫
ϕj(Uj)

(hj ◦ ϕ−1
j )± dλ ,

so the (continuous) function hj ◦ ϕ−1
j : ϕj(Uj) → R is integrable, and∫

Uj

d(ρjα) =

∫
ϕj(Uj)

hj ◦ ϕ−1
j dλ

=

∫
ϕj(Uj)

(
∂gj

∂xj
− ∂f j

∂yj

)
◦ ϕ−1

j dλ

=

∫
ϕj(Uj)

(
∂gj

∂xj
◦ ϕ−1

j − ∂f j

∂yj
◦ ϕ−1

j

)
dλ .

The continuous functions ∂gj

∂xj
◦ ϕ−1

j and ∂fj

∂yj
◦ ϕ−1

j vanish outside of the compact set

ϕj(Sj), and thus they are integrable. Then,∫
Ω∩W

d(ρjα) =

∫
Uj

d(ρjα)

=

∫
ϕj(Uj)

∂gj

∂xj
◦ ϕ−1

j dλ−
∫
ϕj(Uj)

∂f j

∂yj
◦ ϕ−1

j dλ

=

∫
ϕj(Uj)

∂(gj ◦ ϕ−1
j )

∂r
dλ−

∫
ϕj(Uj)

∂(f j ◦ ϕ−1
j )

∂s
dλ ,

where (r, s) are the standard coordinates on R2. Then, since the functions f j ◦

ϕ−1
j and gj ◦ ϕ−1

j are C1 and have compact support on ϕj(Uj), one may apply
iterated integration (Fubini’s Theorem) and the Fundamental Theorem of Calculus
to conclude that∫

ϕj(Uj)

∂(gj ◦ ϕ−1
j )

∂r
dλ =

∫
ϕj(Uj)

∂(f j ◦ ϕ−1
j )

∂s
dλ = 0 ,

so that ∫
Ω∩W

d(ρjα) = 0 .
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(ii) Uj ∩ ∂Ω ̸= ∅. We have

Tj := suppWρjα ∩ Ω ⊂ suppα ∩ Ω = K ,

so Tj is compact. Moreover, suppW d(ρjα) ∩ Ω ⊂ Tj ⊂ Uj ∩ Ω, so∫
W∩Ω

(d(ρjα))
± =

∫
Uj∩Ω

(d(ρjα))
± =

∫
Tj

(d(ρjα))
± < +∞ .

Thus, d(ρjα) is integrable onW ∩Ω. As before, on Uj we have ρjα = f j dxj+g
j dyj

for some C1 real-valued functions f j and gj on Uj, and d(ρjα) = hj dxj ∧ dyj for
hj = ∂gj

∂xj
− ∂fj

∂yj
. Moreover,

+∞ >

∫
Uj∩Ω

d(ρjα)
± =

∫
ϕj(Uj∩Ω)

(hj)± ◦ ϕ−1
j dλ

=

∫
ϕj(Uj∩Ω)

(hj ◦ ϕ−1
j )± dλ ,

so the function hj ◦ ϕ−1
j : ϕj(Uj ∩ Ω) → R is integrable, and∫

W∩Ω
d(ρjα) =

∫
Uj∩Ω

d(ρjα)

=

∫
ϕj(Uj∩Ω)

hj ◦ ϕ−1
j dλ

=

∫
ϕj(Uj∩Ω)

(
∂gj

∂xj
◦ ϕ−1

j − ∂f j

∂yj
◦ ϕ−1

j

)
dλ .

Since the continuous functions ∂gj

∂xj
◦ ϕ−1

j , ∂f
j

∂yj
◦ ϕ−1

j : ϕj(Uj ∩Ω) → R vanish outside

of the compact set ϕj(Tj), they are integrable, so∫
W∩Ω

d(ρjα) =

∫
ϕj(Uj∩Ω)

∂gj

∂xj
◦ ϕ−1

j dλ−
∫
ϕj(Uj∩Ω)

∂f j

∂yj
◦ ϕ−1

j dλ

=

∫
ϕj(Uj∩Ω)

∂(gj ◦ ϕ−1
j )

∂r
dλ−

∫
ϕj(Uj∩Ω)

∂(f j ◦ ϕ−1
j )

∂s
dλ .

By our choice of the chart (Uj, ϕj), denoting by H the closed left half-plane in R2

and by L the y-axis in R2, we have

ϕj(Uj ∩ Ω) = ϕj(Uj) ∩H ,

ϕj(Uj ∩ ∂Ω) = ϕj(Uj) ∩ L ̸= ∅ .

Moreover, ϕj(Uj) is an open disc of finite radius in R2, so ϕj(Uj) ∩ L is an open
interval (aj, bj) in L for some aj, bj ∈ R with aj < bj. Then, one may again use
iterated integration and the Fundamental Theorem of Calculus to conclude that∫

ϕj(Uj)

∂(f j ◦ ϕ−1
j )

∂s
dλ = 0

and ∫
ϕj(Uj)

∂(gj ◦ ϕ−1
j )

∂r
dλ =

∫ bj

aj

(gj ◦ ϕ−1
j

◦ ι̃)(t) dt ,

where ι̃ : (aj, bj) → ϕj(Uj) is the inclusion map t 7→ (0, t).
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In conclusion, for each j ∈ {1, . . . ,m} we have

∫
Ω∩W

d(ρjα) =

0 if Uj ∩ ∂Ω = ∅∫ bj
aj
(gj ◦ ϕ−1

j
◦ ι̃)(t) dt if Uj ∩ ∂Ω ̸= ∅ .

We now consider the pullback ι∗α on the 1-dimensional smooth submanifold ∂Ω. Since
the map ι : ∂Ω → M is C∞, the 1-form ι∗α on ∂Ω is C1. Since ι∗α vanishes on
∂Ω ∩ (suppα)c ⊃ ∂Ω ∩W c, we have

∫
∂Ω

(ι∗α)± =

∫
∂Ω∩W

(ι∗α)± =

∫
∂Ω∩suppα

(ι∗α)± ,

which is finite, since (ι∗α)± is continuous and ∂Ω ∩ suppα is compact. Thus, ι∗α is
integrable on ∂Ω. Moreover, on ∂Ω ∩ W we have ι∗α =

∑m
j=1(ρj ◦ ι)ι∗α. Fix j ∈

{1, . . . ,m}, and consider the 1-form ι∗(ρjα) = (ρj ◦ ι)ι∗α on ∂Ω ∩W . As before, we
consider the two cases Uj ∩ ∂Ω = ∅ and Uj ∩ ∂Ω ̸= ∅ :

(i) If Uj ∩∂Ω = ∅, then ∂Ω∩W ⊂ (Uj)
c∩W ⊂ (suppWρj)

c∩W , so for all p ∈ ∂Ω∩W
we have ((ρj ◦ ι)ι∗α)p = ρj(ι(p))(ι

∗α)p = 0. Thus,

∫
∂Ω∩W

(ρj ◦ ι)ι∗α =

∫
∂Ω∩W

0 = 0 =

∫
Ω∩W

d(ρjα) .

(ii) Suppose that Uj ∩ ∂Ω ̸= ∅. Since (ρj ◦ ι)ι∗α vanishes on

∂Ω ∩W ∩ (suppWρj ∩ suppα)c ⊃ ∂Ω ∩W ∩ (Uj)
c ,

we have∫
∂Ω∩W

((ρj ◦ ι)ι∗α)± =

∫
∂Ω∩Uj

((ρj ◦ ι)ι∗α)± =

∫
∂Ω∩suppW ρj∩suppα

((ρj ◦ ι)ι∗α)± ,

which is finite, since ((ρj ◦ ι)ι
∗α)± is continuous and ∂Ω∩ suppWρj ∩ suppα is com-

pact. Thus, (ρj ◦ι)ι
∗α is integrable on ∂Ω∩W . Since the chart (Uj, ϕj) = (Uj, xj, yj)

was chosen to be positively oriented and to fulfil Uj ∩Ω = {q ∈ Uj |xj(q) < 0}, the
induced chart (Uj ∩ ∂Ω, yj ◦ ι) in ∂Ω is positively oriented. Since on Uj we have
ρjα = f j dxj + gj dyj, on Uj ∩ ∂Ω

(ρj ◦ ι)ι∗α = ι∗(ρjα)

= ι∗(f j dxj + gj dyj)

= (f j ◦ ι) d(xj ◦ ι) + (gj ◦ ι) d(yj ◦ ι)

= (gj ◦ ι) d(yj ◦ ι) ,
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since d(xj ◦ ι) = 0 on Uj ∩ ∂Ω. Then,

∫
∂Ω∩W

(ρj ◦ ι)ι∗α =

∫
∂Ω∩Uj

((ρj ◦ ι)ι∗α)+ −
∫
∂Ω∩Uj

((ρj ◦ ι)ι∗α)−

=

∫
∂Ω∩Uj

(gj ◦ ι)+ d(yj ◦ ι)−
∫
∂Ω∩Uj

(gj ◦ ι)− d(yj ◦ ι)

=

∫
yj(∂Ω∩Uj)

(gj ◦ ι)+ ◦ (yj ◦ ι)−1 dλ−
∫
yj(∂Ω∩Uj)

(gj ◦ ι)− ◦ (yj ◦ ι)−1 dλ

=

∫
(aj ,bj)

(gj ◦ ϕ−1
j

◦ ι̃)+ dλ−
∫
(aj ,bj)

(gj ◦ ϕ−1
j

◦ ι̃)− dλ

=

∫
(aj ,bj)

(gj ◦ ϕ−1
j

◦ ι̃) dλ

=

∫ bj

aj

(gj ◦ ϕ−1
j

◦ ι̃)(t) dt

=

∫
Ω∩W

d(ρjα) .

In conclusion, the following hold:

• dα is integrable on Ω and ι∗α is integrable on ∂Ω;
• we have

∫
Ω

dα =

∫
Ω∩W

dα

and

∫
∂Ω

ι∗α =

∫
∂Ω∩W

ι∗α ;

• dα =
∑m

j=1 d(ρjα) on Ω ∩W , and ι∗α =
∑m

j=1(ρj ◦ ι)ι∗α on ∂Ω ∩W ;

• for each j ∈ {1, . . . ,m}, d(ρjα) is integrable on Ω ∩W , (ρj ◦ ι)ι∗α is integrable
on ∂Ω ∩W , and

∫
Ω∩W

d(ρjα) =

∫
∂Ω∩W

(ρj ◦ ι)ι∗α .
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Then, finally (YES!), ∫
Ω

dα =

∫
Ω∩W

dα

=

∫
Ω∩W

m∑
j=1

d(ρjα)

=
m∑
j=1

∫
Ω∩W

d(ρjα)

=
m∑
j=1

∫
∂Ω∩W

(ρj ◦ ι)ι∗α

=

∫
∂Ω∩W

m∑
j=1

(ρj ◦ ι)ι∗α

=

∫
∂Ω∩W

ι∗α

=

∫
∂Ω

ι∗α .

For the case when F = C, observe that the real 1-forms Re(α) and Im(α) on M are
C1 and we have supp Re(α) ⊂ suppα and supp Im(α) ⊂ suppα, so that the sets
Ω∩ supp Re(α) and Ω∩ supp Im(α) are compact. Thus, by the case F = R, the 2-forms
d(Re(α)) and d(Im(α)) on M are integrable over Ω, the 1-forms ι∗Re(α) and ι∗ Im(α)
on ∂Ω are integrable over ∂Ω, and∫

Ω

d(Re(α)) =

∫
∂Ω

ι∗Re(α) and

∫
Ω

d(Im(α)) =

∫
∂Ω

ι∗ Im(α) .

Moreover, on Ω we have d(Re(α)) = Re(dα) and d(Im(α)) = Im(dα), and on ∂Ω we
have ι∗Re(α) = Re(ι∗α) and ι∗ Im(α) = Im(ι∗α). Thus, dα is integrable over Ω, ι∗α is
integrable over ∂Ω, and ∫

Ω

dα =

∫
Ω

Re(dα) + i

∫
Ω

Im(dα)

=

∫
Ω

d(Re(α)) + i

∫
Ω

d(Im(α))

=

∫
∂Ω

ι∗Re(α) + i

∫
∂Ω

ι∗ Im(α)

=

∫
∂Ω

Re(ι∗α) + i

∫
∂Ω

Im(ι∗α)

=

∫
∂Ω

ι∗α .

□
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3. Analysis in Rn

3.1. C∞ approximation.
We recall a theorem from the theory of Lebesgue integration:

Theorem 3.1. (Dominated derivation) Suppose X is a measure space with measure µ,
let U ⊂ R be open, and let F be R or C. Suppose F : X ×U → F is a function fulfilling

(i) for each y ∈ U the function Fy : X → F, x 7→ F (x, y), is integrable,
(ii) for each x ∈ X the function Fx : U → F, y 7→ F (x, y) is differentiable,
(iii) there exists an integrable function g : X → [0,+∞) such that for all x ∈ X we

have
∣∣dFx

dy

∣∣ ≤ g(x) on U .

Then, we have

(a) the function

U → F , y 7→
∫
X

F (x, y) dµ(x)

is differentiable,
(b) for each y0 ∈ U the function

X → F , x 7→ dFx
dy

(y0)

is integrable,
(c) for all y0 ∈ U ,

d

dy

(∫
X

F (x, y) dµ(x)

)∣∣∣∣
y0

=

∫
X

dFx
dy

(y0) dµ(x) .

Definition 3.2. For a point x ∈ Rn and a nonempty subset S ⊂ Rn, we define the
distance between x and S by

dist(x, S) := inf{|x− s| | s ∈ S} .

It may be useful to also define

dist(x, ∅) := +∞ .

Lemma 3.3. Let Ω ⊂ Rn be open and u : Ω → C a locally integrable function. Suppose
k : Rn → R is a C∞ function such that supp k ⊂ B(0, 1). Fix δ ∈ (0,+∞).

(i) The set

Ωδ := {x ∈ Rn | dist(x,Ωc) > δ}
is open and contained in Ω.

(ii) For every x ∈ Ωδ, we have B(x, δ) ⊂ Ω. Moreover, the function

vδ,x : Ω → C , y 7→ u(y) k

(
x− y

δ

)
1

δn
,

is integrable and∫
Ω

u(y) k

(
x− y

δ

)
1

δn
dλ(y) =

∫
B(x,δ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

=

∫
B(0,1)

u(x− δy)k(y) dλ(y) .
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(iii) The function

uδ : Ωδ → C , x 7→
∫
Ω

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

is C∞.
(iv) The extension ûδ : Ω → C of uδ to Ω by 0 is locally integrable.

Suppose further that k is nonnegative on Rn and
∫
Rn k dλ = 1. Then,

(v) If u is continuous, then for any compact subset K ⊂ Ω we have ûδ → u uniformly
as δ → 0+ on K.

(vi) For u not necessarily continuous, ûδ → u in L1
loc(Ω,C) as δ → 0+.

Proof. (i) If Ω = Rn, then we have Ωδ = Ω. Suppose Ω ̸= Rn. If x ∈ Ωδ then we
cannot have x ∈ Ωc, so Ωδ ⊂ Ω. For any x0 ∈ Ωδ we may let a := dist(x0,Ω

c) and
choose σ ∈ (δ, a). Then, for all x ∈ B(x0, a− σ) and y ∈ Ωc we have

|x− y| ≥|x0 − y| −|x− x0| > a+ σ − a = σ ,

so

dist(x,Ωc) = inf{|x− y| | y ∈ Ωc} ≥ σ > δ ,

which implies that x ∈ Ωδ. Thus, Ωδ is open.
(ii) Fix x ∈ Ωδ. For every y ∈ Ωc, we have

|x− y| ≥ dist(x,Ωc) > δ ,

so y ∈ B(x, δ)
c
. Thus, B(x, δ) ⊂ Ω. Moreover, if y is any point in B(x, δ)

c
then∣∣(x− y)/δ

∣∣ > 1, so

k

(
x− y

δ

)
= 0 .

Thus, for all y ∈ Ω we have

vδ,x(y) = u(y) k

(
x− y

δ

)
1

δn
= χB(x,δ)(y)u(y) k

(
x− y

δ

)
1

δn
.

Since k is bounded on Rn and u is locally integrable on Ω, the function

y 7→ u(y) k

(
x− y

δ

)
1

δn

on B(x, δ) is integrable, so vδ,x is integrable on Ω. Moreover, applying change of
variables via the diffeomorphism

F : B(0, 1) → B(x, δ) , y 7→ −δy + x ,

we have∫
Ω

u(y) k

(
x− y

δ

)
1

δn
dλ(y) =

∫
B(x,δ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

=

∫
B(x,δ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

=

∫
B(0,1)

u(−δy + x) k(y) dλ(y) .
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(iii) First note that since supp k is compact and contained in B(0, 1), we may find

γ ∈ (0, 1) such that supp k ⊂ B(0, γ). Then, for any x ∈ Ωδ we have

uδ(x) =

∫
B(x,δ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y) =

∫
B(x,δγ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y) .

We first show that uδ is continuous on Ωδ. Define the set

C :=
⋃
x∈Ωδ

B(x, δγ) .

Then, for any c ∈ C there is x ∈ Ωδ and s ∈ B(x, δγ) such that |c− s| < δ(1− γ),
so that

|c− x| ≤|c− s|+|s− x| < δ(1− γ) + δγ = δ .

Thus, c ∈ B(x, δ) ⊂ Ω, so C ⊂ Ω. Suppose r ∈ Ωδ and {rm}m∈N is a sequence in
Ωδ converging to r. Then, the set

E :=

( ⋃
m∈N

B(rm, δγ)

)
∪B(r, δγ) ⊂ C

is compact and contained in Ω. For all x ∈ {rm}m∈N ∪ {r}, we have

uδ(x) =

∫
E

u(y) k

(
x− y

δ

)
1

δn
dλ(y) .

The functions

E → C , y 7→ u(y) k

(
rm − y

δ

)
1

δn

for m ∈ N converge pointwise to the function

E → C , y 7→ u(y) k

(
r − y

δ

)
1

δn
;

and choosing an upper bound M ∈ (0,+∞) for |k| on Rn, for all m ∈ N and y ∈ E
we have ∣∣∣∣∣u(y) k

(
rm − y

δ

)
1

δn

∣∣∣∣∣ ≤ ∣∣u(y)∣∣Mδn .
(please admire my superior skillz of deployment of the semicolon above). Then, by
the Dominated Convergence Theorem,

uδ(rm) =

∫
E

u(y) k

(
rm − y

δ

)
1

δn
dλ(y) →

∫
E

u(y) k

(
r − y

δ

)
1

δn
dλ(y) = uδ(r)

as m→ ∞. Thus, uδ is continuous.
Let r = (r1, . . . , rn) ∈ Ωδ, and choose ε ∈ (0, δ(1 − γ)) such that B(r, ε) ⊂

Ωδ. Then, for every point t in the interval (r1 − ε, r1 + ε) ⊂ R, we have st :=

(t, r2, . . . , rn) ∈ Ωδ. Moreover, if t ∈ (r1 − ε, r1 + ε) and y ∈ B(st, δγ) then

|y − r| ≤|y − st|+|st − r| < δγ + ε < δγ + δ(1− γ) = δ ,
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and hence B(st, δγ) ⊂ B(r, δ) for all t ∈ (r1 − ε, r1 + ε). Consider the function

G : B(r, δ)× (r1 − ε, r1 + ε) → C , (y, t) 7→u(y) k

(
st − y

δ

)
1

δn

=χB(st,δγ)
(y)u(y) k

(
st − y

δ

)
1

δn
.

We have:
(a) For all t ∈ (r1 − ε, r1 + ε), the function y 7→ G(y, t) on B(r, δ) is integrable.

(b) For each y ∈ B(r, δ) the function t 7→ G(y, t) on (r1−ε, r1+ε) is differentiable.
Denoting by x1, . . . , xn the standard coordinates on Rn, for each t0 ∈ (r1 −
ε, r1 + ε) the chain rule gives

dG(y, t)

dt

∣∣∣∣
t0

= u(y)
∂k

∂x1

(
st0 − y

δ

)
1

δn+1
.

(c) Choose P ∈ (0,+∞) with
∣∣∣ ∂k∂x1 ∣∣∣ ≤ P on Rn. Then, for all y ∈ B(r, δ) and

t0 ∈ (r1 − ε, r1 + ε) we have∣∣∣∣∣dG(y, t)dt

∣∣∣∣
t0

∣∣∣∣∣ =
∣∣∣∣∣u(y) ∂k∂x1

(
st0 − y

δ

)
1

δn+1

∣∣∣∣∣ ≤ ∣∣u(y)∣∣ P

δn+1
,

and |u| P
δn+1 is integrable on B(r, δ).

Then, by dominated derivation, the function

(r1 − ε, r1 + ε) → C , t 7→
∫
B(r,δ)

G(y, t) dλ(y) = uδ(t, r2, . . . , rn)

is differentiable at r1, so uδ has a partial derivative with respect to x1 at r and

∂uδ
∂x1

∣∣∣∣
r

=
d

dt

(∫
B(r,δ)

G(y, t) dλ(y)

)∣∣∣∣
r1

=

∫
B(r,δ)

u(y)
∂k

∂x1

(
r − y

δ

)
1

δn+1
dλ(y)

=

∫
Ω

u(y)
∂k

∂x1

(
r − y

δ

)
1

δn+1
dλ(y) .

Then, letting ℓ := 1
δ
∂k
∂x1

on Rn, for all x ∈ Ωδ we have

∂uδ
∂x1

(x) =

∫
Ω

u(y) ℓ

(
x− y

δ

)
1

δn
dλ(y) .

Since ℓ is C∞ and supp ℓ ⊂ supp k ⊂ B(0, 1), the function ℓ fulfils all our as-
sumptions for k. Thus, we can reason for ℓ exactly as we did for k to conclude
that the function ∂uδ

∂x1
on Ωδ is continuous and also has a partial derivative with

respect to x1. Reasoning similarly for the partial derivatives of uδ with respect to
the remaining coordinates x2, . . . , xn, and applying induction on the order of the
derivatives, we can conclude that uδ is C

∞ on Ωδ.
(iv) Let K be a compact subset of Ω. If K ∩ Ωδ = ∅, then ûδ = 0 on K and thus it is

integrable on K. Suppose K ∩ Ωδ ̸= ∅, and define the set

S :=
⋃

x∈K∩Ωδ

B(x, δγ) ⊂ C ⊂ Ω .
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Since K is bounded, so too is S, so S is compact. Then, for each x ∈ K, we have

∣∣ûδ(x)∣∣ =

∣∣∣∣∣
∫
B(x,δγ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

∣∣∣∣∣ if x ∈ K ∩ Ωδ ,

0 if x ∈ K \ Ωδ ,

so that for all x ∈ K,∣∣ûδ(x)∣∣ ≤ ∫
S

∣∣u(y)∣∣M
δn
dλ(y) =: R ∈ [0,+∞) .

Thus, ∫
K

∣∣ûδ(x)∣∣ dλ(x) ≤ ∫
K

Rdλ = Rλ(K) < +∞ .

For the proofs of parts (v) and (vi), fix a nonempty compact subset K ⊂ Ω. Define
d1 ∈ (0,+∞] to be +∞ if Ωc = ∅, and

inf{|x− y| | x ∈ K and y ∈ Ωc} ∈ (0,+∞)

if Ωc ̸= ∅. Choose d2 ∈ (0, d1) and suppose δ ≤ d2. If Ωc = ∅ then K ⊂ Ω = Ωδ. If
Ωc ̸= ∅, then for each x ∈ K and y ∈ Ωc we have |x− y| ≥ d1 , so

dist(x,Ωc) ≥ d1 > d2 ≥ δ ,

and hence x ∈ Ωδ. Thus, K ⊂ Ωδ for all δ ∈ (0, d2]. In particular, K ⊂ Ωd2 , and thus
the set

CK :=
⋃
x∈K

B(x, d2γ) ,

which is compact, is contained in Ω.

(v) Suppose u is continuous on Ω, and let ε ∈ (0,+∞). Since u is uniformly continuous
on CK , there exists a ∈ (0,+∞) such that for all y1, y2 ∈ CK with |y1 − y2| < a,
we have

∣∣u(y1)− u(y2)
∣∣ < ε. Let d := min{d2, a} ∈ (0,+∞), and suppose δ < d.

Since δ < d2, we have K ⊂ Ωδ. Then, for all x ∈ K we have∣∣ûδ(x)− u(x)
∣∣ = ∣∣∣∣∣

∫
B(x,δγ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y)− u(x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(x,δγ)

u(y) k

(
x− y

δ

)
1

δn
dλ(y)−

∫
B(x,δγ)

u(x) k

(
x− y

δ

)
1

δn
dλ(y)

∣∣∣∣∣
=

∣∣∣∣∣
∫
B(x,δγ)

(u(y)− u(x)) k

(
x− y

δ

)
1

δn
dλ(y)

∣∣∣∣∣
≤
∫
B(x,δγ)

∣∣u(y)− u(x)
∣∣ k(x− y

δ

)
1

δn
dλ(y) ,

and since for all y ∈ B(x, δγ) ⊂ B(x, d2γ) we have x, y ∈ CK and |y − x| ≤ δγ <
δ < d ≤ a, we know that

∣∣u(y)− u(x)
∣∣ < ε. Thus,∫

B(x,δγ)

∣∣u(y)− u(x)
∣∣ k(x− y

δ

)
1

δn
dλ(y) ≤

∫
B(x,δγ)

ε k

(
x− y

δ

)
1

δn
dλ(y) = ε .

In conclusion, for all δ ∈ (0,+∞) such that δ < d and for all x ∈ K, we have∣∣ûδ(x)− u(x)
∣∣ < ε .
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(vi) If λ(K) = 0, then for all δ ∈ (0,+∞) we have

∥ûδ − u∥L1(K) =

∫
K

|ûδ − u| dλ = 0 ,

so ∥ûδ − u∥L1(K) → 0 as δ → 0+. Suppose λ(K) > 0, and let again ε ∈ (0,+∞).
Since u is locally integrable on Ω and CK ⊂ Ω is compact, there exists a continuous
function f : Ω → C with compact support such that

∥u− f∥L1(CK) <
ε

3
.

It follows that

∥u− f∥L1(K) ≤∥u− f∥L1(CK) <
ε

3
.

Moreover, since f is integrable (and hence locally integrable) and continuous on
Ω, by (v) there exists d ∈ (0, d2] such that for all δ ∈ (0,+∞) with δ < d and for

all x ∈ K,
∣∣∣f̂δ(x)− f(x)

∣∣∣ < ε
3λ(K)

. Fix δ ∈ (0, d). We have∥∥∥f̂δ − f
∥∥∥
L1(K)

=

∫
K

∣∣∣f̂δ − f
∣∣∣ dλ ≤

∫
K

ε

3λ(K)
dλ =

ε

3
.

Since δ < d ≤ d2, we know that K ⊂ Ωδ. Then,∥∥∥ûδ − f̂δ

∥∥∥
L1(K)

=

∫
K

∣∣∣∣∣
∫
B(x,δγ)

(u(y)− f(y)) k

(
x− y

δ

)
1

δn
dλ(y)

∣∣∣∣∣ dλ(x)
≤
∫
K

(∫
B(x,δγ)

∣∣u(y)− f(y)
∣∣ k(x− y

δ

)
1

δn
dλ(y)

)
dλ(x)

=

∫
K

(∫
CK

∣∣u(y)− f(y)
∣∣ k(x− y

δ

)
1

δn
dλ(y)

)
dλ(x) .

We wish to show that the function

H : K × CK → R , (x, y) 7→
∣∣u(y)− f(y)

∣∣ k(x− y

δ

)
1

δn

is measurable on K × CK ⊂ R2n. Since the function |u− f | is measurable on CK ,
if U ⊂ R is open then the set

AU :=
{
y ∈ CK

∣∣∣ ∣∣u(y)− f(y)
∣∣ ∈ U

}
is measurable in CK ⊂ Rn. Observe that as subsets of K × CK ,{

(x, y) ∈ K × CK

∣∣∣ ∣∣u(y)− f(y)
∣∣ ∈ U

}
= K × AU .

Since AU is measurable in CK ⊂ Rn, the setK×AU is measurable inK×CK ⊂ R2n,
which shows that the function

K × CK → R , (x, y) 7→
∣∣u(y)− f(y)

∣∣
is measurable. Moreover, the function

K × CK → R , (x, y) 7→ k

(
x− y

δ

)
1

δn
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is continuous and hence measurable. Thus, H is a product of two measurable
functions and so it is itself measurable. We may then apply the Fubini-Tonelli
theorem to write∥∥∥ûδ − f̂δ

∥∥∥
L1(K)

=

∫
CK

(∫
K

∣∣u(y)− f(y)
∣∣ k(x− y

δ

)
1

δn
dλ(x)

)
dλ(y) .

For each y ∈ CK , we have∫
K

∣∣u(y)− f(y)
∣∣ k(x− y

δ

)
1

δn
dλ(x) =

∣∣u(y)− f(y)
∣∣ ∫

K

k

(
x− y

δ

)
1

δn
dλ(x)

=
∣∣u(y)− f(y)

∣∣ ∫
Rn

χK(x) k

(
x− y

δ

)
1

δn
dλ(x)

≤
∣∣u(y)− f(y)

∣∣ ∫
Rn

k

(
x− y

δ

)
1

δn
dλ(x)

=
∣∣u(y)− f(y)

∣∣ .
Thus, ∥∥∥ûδ − f̂δ

∥∥∥
L1(K)

≤
∫
CK

∣∣u(y)− f(y)
∣∣ dλ(y) =∥u− f∥L1(CK) <

ε

3
.

In conclusion, by the triangle inequality,

∥ûδ − u∥L1(K) ≤∥u− f∥L1(K) +
∥∥∥f̂δ − f

∥∥∥
L1(K)

+
∥∥∥ûδ − f̂δ

∥∥∥
L1(K)

<
ε

3
+
ε

3
+
ε

3
= ε ,

where δ ∈ (0, d) is arbitrary.

□

Lemma 3.4. Let Ω ⊂ Rn be open, and suppose u : Ω → C is a locally integrable function
such that ∫

K

u dλ = 0

for every compact subset K ⊂ Ω. Then, u = 0 almost everywhere in Ω.

Proof. We first prove the statement for the case when u is real-valued. Recall that the
Lebesgue measure is inner regular, that is, for any measurable set S ⊂ Rn,

λ(S) = sup{λ(K) |K is a compact subset of S} .
Let n ∈ N, and suppose λ

(
u−1
(
( 1
n
,+∞)

))
> 0. Then, there exists a compact set

Kn ⊂ u−1
(
( 1
n
,+∞)

)
with λ(Kn) > 0. Since u > 1

n
on Kn, we then have∫

Kn

u dλ ≥
∫
Kn

1

n
dλ =

1

n
λ(Kn) > 0 ,

which is a contradiction. Thus, we must have λ
(
u−1
(
( 1
n
,+∞)

))
= 0. Similarly, if

λ
(
u−1
(
(−∞,− 1

n
)
))
> 0, we may find a compact set K−n ⊂ u−1

(
(−∞,− 1

n
)
)
with posi-

tive measure, and we would then obtain the contradiction∫
K−n

u dλ ≤
∫
K−n

− 1

n
dλ = − 1

n
λ(K−n) < 0 .
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This shows that for all n ∈ N we must have

λ

(
u−1

(( 1
n
,+∞

)))
= λ

(
u−1

((
−∞,− 1

n

)))
= 0 .

Thus, the set

T := u−1(R \ {0}) =
⋃
n∈N

[
u−1

(( 1
n
,+∞

))
∪ u−1

((
−∞,− 1

n

))]
has measure 0 and u = 0 on Ω \ T . Thus, the lemma holds when u is real-valued. If u
is complex-valued and its integral over any compact subset of Ω vanishes, then for all
compact K ⊂ Ω we have∫

K

Re(u) dλ+ i

∫
K

Im(u) dλ =

∫
K

u dλ = 0 .

Thus, the integrals of Re(u) and Im(u) over any compact subset of Ω vanish, which
implies that Re(u) and Im(u) vanish almost everywhere in Ω and hence also u = 0
almost everywhere in Ω. □

Definition 3.5. For an open set Ω ⊂ Rn, and letting F be R or C, we denote by D(Ω,F)
the vector space of C∞ F-valued functions on Ω with compact support in Ω. In this
text, we will also write D(Ω) to denote D(Ω,C).

Lemma 3.6. Suppose Ω ⊂ Rn is open.

(i) If u : Ω → C is a locally integrable function such that for all ψ ∈ D(Ω,R)∫
Ω

ψu dλ = 0 ,

then u = 0 almost everywhere on Ω.
(ii) As a consequence, if u, v ∈ L1

loc(Ω,C) fulfil∫
Ω

ψu dλ =

∫
Ω

ψv dλ ,

for all ψ ∈ D(Ω,R), then u = v almost everywhere in Ω.

Proof. (i) Fix a compact setK ⊂ Ω, and let δ ∈ (0,+∞). Using notation from Lemma
3.3, for every x ∈ Ωδ we have

uδ(x) =

∫
Ω

u(y) k

(
x− y

δ

)
1

δn
dλ(y) = 0 ,

since the function y 7→ k
(
x−y
δ

)
1
δn

∈ R on Ω is C∞ with compact support. Thus,
we have ûδ = 0 on Ω. Then, choosing a sequence {δm}m∈N in (0,+∞) converging
to 0, for all m ∈ N we have∣∣∣∣∫

K

u dλ

∣∣∣∣ ≤ ∫
K

|u| dλ

=

∫
K

|u− ûδm| dλ ,

which by Lemma 3.3 (vi) converges to 0 as m→ ∞. Thus,∫
K

u dλ = 0
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for every compact subset K ⊂ Ω, which by Lemma 3.4 implies that u = 0 almost
everywhere in Ω.

(ii) It follows from (i) that u− v = 0 almost everywhere in Ω and hence u = v almost
everywhere in Ω.

□

3.2. Differential Operators and Formal Adjoints.
Let Ω ⊂ Rn be open, and let V(Ω) denote the vector space of complex-valued functions
on Ω. For each α = (α1, . . . , αn) ∈ (Z≥0)

n, let |α| := α1 + · · · + αn. We define the
notation (

∂

∂x

)α
:=

∂|α|

(∂x1)α1 · · · (∂xn)αn

if α ̸= (0, · · · , 0), and we let
(
∂
∂x

)(0,··· ,0)
denote the identity operator V(Ω) → V(Ω).

For k ∈ Z≥0, we define a linear differential operator A of order k on Ω to be a
C-linear map of the form

A : Ck(Ω) → V(Ω) , Af :=
∑

α∈(Z≥0)
n

|α|≤k

aα

(
∂

∂x

)α
f

for f ∈ Ck(Ω), where for each α ∈ (Z≥0)
n with |α| ≤ k, aα is a complex-valued function

on Ω and is called a coefficient of A. We may define the notation

Θn
k :=

{
α ∈ (Z≥0)

n
∣∣ |α| ≤ k

}
,

and write

A =
∑
α∈Θn

k

aα

(
∂

∂x

)α
.

If U ⊂ Ω is an open set, we may also denote by A the operator

Ck(U) → V(U) , g 7→
∑
α∈Θn

k

aα|U

(
∂

∂x

)α
g

on U , if there is no possibility of confusion. We also define the conjugate of A to be the
linear differential operator on Ω given by

Ā : Ck(Ω) → V(Ω) , Āf := Af =
∑
α∈Θn

k

aα

(
∂

∂x

)α
f

for each f ∈ Ck(Ω). Note that if k = 0, and letting 0 := (0, . . . , 0) ∈ Rn, the action
of the operator A is simply multiplication by the function a0 : Ω → C, so we may also
regard A as a linear map from the vector space V(Ω) of complex-valued functions on Ω
to itself.

Note that the set of linear differential operators of a given order k ∈ Z≥0 on Ω forms
a complex vector space, which we may denote by LDk(Ω). Moreover, if k, ℓ ∈ Z≥0 and
k ≤ ℓ, then we may regard LDk(Ω) as a subspace of LDℓ(Ω). Then, if A and B are
linear differential operators on Ω of respective orders k and ℓ, we may denote by A+B
the sum of A and B in LDℓ(Ω) = LDmax{k,ℓ}(Ω).
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Definition 3.7. Let Ω ⊂ Rn be open, let k ∈ Z≥0, and suppose

A =
∑
α∈Θn

k

aα

(
∂

∂x

)α
is a linear differential operator of order k on Ω. Suppose further that for each α ∈ Θn

k ,
we have aα ∈ C |α|(Ω).

(i) We define the formal transpose of A to be the linear differential operator tA of
degree k on Ω given by

tA : Ck(Ω) → V(Ω) , f 7→
∑
α∈Θn

k

(−1)|α|
(
∂

∂x

)α
(aαf) ,

for f ∈ Ck(Ω).
(ii) The formal adjoint of A is defined to be A∗ := tĀ = tA, that is, the linear

differential operator of degree k on Ω given by

A∗ : Ck(Ω) → V(Ω) , f 7→
∑
α∈Θn

k

(−1)|α|
(
∂

∂x

)α
(aαf)

for each f ∈ Ck(Ω).
(iii) If u, v ∈ L1

loc(Ω,C), we say that v = Adistru if for every function φ ∈ D(Ω) we have∫
Ω

u · tAφdλ =

∫
Ω

vφ dλ ,

or, equivalently, ∫
Ω

u · A∗φdλ =

∫
Ω

vφ̄ dλ

for every function φ ∈ D(Ω).

Remark 3.8. In Definition 3.7 (iii), if w ∈ L1
loc(Ω,C) is another function such that

w = Adistru, then for all φ ∈ D(Ω) we have∫
Ω

vφ dλ =

∫
Ω

u · tAφdλ =

∫
Ω

wφdλ ,

so that v = w almost everywhere by Lemma 3.6 (ii).

Definition 3.9. Let k, ℓ ∈ Z≥0 and suppose A and B are linear differential operators
on Ω of orders k and ℓ respectively. Suppose further that the coefficients of B are Ck.
We then define AB to be the linear differential operator of order k + ℓ on Ω given by

AB : Ck+ℓ(Ω) → V(Ω) , (AB)f := A(Bf)

for each f ∈ Ck+ℓ(Ω).

Lemma 3.10. Suppose Ω ⊂ Rn is open, k ∈ Z≥0, and

A =
∑
α∈Θn

k

aα

(
∂

∂x

)α
is a linear differential operator of order k on Ω with C∞ coefficients.

(i) Let u : Ω → C be a function. If k = 0 and u is locally integrable (which includes
the case when u is C0), or if k ≥ 1 and u is Ck, then Au is locally integrable on Ω
and Au = Adistru.
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(ii) Let u, v ∈ L1
loc(Ω,C). Then, v = Adistru if and only if for every point p ∈ Ω there

is a neighbourhood U of p in Ω such that v|U = Adistr

(
u|U
)
.

(iii) t(tA) = A and (A∗)∗ = A.

Suppose now that ℓ ∈ Z≥0 and

B =
∑
α∈Θn

ℓ

bα

(
∂

∂x

)α
is another linear differential operator on Ω, of order ℓ and with C∞ coefficients.

(iv) For every ζ ∈ C, we have t(ζA+B) = ζ tA+ tB and (ζA+B)∗ = ζ̄A∗ +B∗.
(v) t(AB) = tBtA and (AB)∗ = B∗A∗.
(vi) Suppose u, v, û, v̂ ∈ L1

loc(Ω) with v = Adistru and v̂ = Adistrû. Then, for any ζ ∈ C
we have ζv+v̂ = Adistr(ζu+û), or in other words, Adistr(ζu+û) = ζAdistru+Adistrû.

(vii) Suppose u, v, w ∈ L1
loc(Ω) with v = Adistru and w = Bdistru. Then, for any ζ ∈ C we

have ζv+w = (ζA+B)distru, or in other words, (ζA+B)distru = ζAdistru+Bdistru.
(viii) Suppose u, v, w ∈ L1

loc(Ω) with v = Bdistru. Then, w = (AB)distru if and only if
w = Adistrv = Adistr(Bdistru).

(ix) Suppose k = 1 and a0 = 0, that is, A may be written as

A =
n∑
j=1

fj
∂

∂xj

for some C∞ complex-valued functions f1, · · · , fn on Ω. Suppose also that u, v ∈
L1
loc(Ω) with v = Adistru, and let ρ ∈ C∞(Ω). Then, we have

ρv + uAρ = Adistr(ρu) ,

or in other words,

Adistr(ρu) = (Adistrρ)u+ ρAdistru .

Proof. (i) Suppose first that k = 0 and u is locally integrable. Then, letting again
0 := (0, . . . , 0) ∈ Rn, the function Au on Ω is the product a0u, where the function
a0 is continuous on Ω. Then, if K ⊂ Ω is a compact set, u is integrable on K
and a0 is measurable and bounded on K, and hence a0u is integrable on K. Thus,
Au ∈ L1

loc(Ω), and the fact that Au = Adistru is immediate. Assume now that
k ≥ 1 and u ∈ Ck(Ω). Since the function Au : Ω → C is continuous, it is in
L1
loc(Ω). To show that Au = Adistru, let φ ∈ D(Ω). For a fixed α ∈ Θn

k \ {0}, we
may write (

∂

∂x

)α
=

|α|∏
j=1

∂

∂rj
,

where for each j ∈ {1, . . . ,|α|}, rj is one of the standard coordinates x1, . . . , xn on
Rn. If |α| = 1, we have

aαφ

(
∂

∂x

)α
u = aαφ

∂u

∂r1
=
∂(aαφu)

∂r1
− ∂(aαφ)

∂r1
u =

∂(aαφu)

∂r1
−
((

∂

∂x

)α
(aαφ)

)
u ,
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and for |α| = 2, we have

aαφ

(
∂

∂x

)α
u = aαφ

∂2u

∂r1∂r2

=
∂

∂r1

(
aαφ

∂u

∂r2

)
− ∂

∂r2

(
∂(aαφ)

∂r1
u

)
+

((
∂

∂x

)α
(aαφ)

)
u .

If |α| ≥ 3, we may continue using the product rule repeatedly to show that

aαφ

(
∂

∂x

)α
u = aαφ

[ |α|∏
j=1

∂

∂rj

]
u

=
∂

∂r|α|

(
aαφ

[|α|−1∏
j=1

∂

∂rj

]
u

)

+

|α|−2∑
ℓ=1

(−1)ℓ
∂

∂r|α|−ℓ

(([ |α|∏
j=|α|−ℓ+1

∂

∂rj

]
(aαφ)

)([|α|−ℓ−1∏
j=1

∂

∂rj

]
u

))

+ (−1)|α|−1 ∂

∂r1

(([ |α|∏
j=2

∂

∂rj

]
(aαφ)

)
u

)
+ (−1)|α|

((
∂

∂x

)α
(aαφ)

)
u .

Thus, allowing any value of |α| ∈ Z≥1, we have

aαφ

(
∂

∂x

)α
u = Sα + (−1)|α|

((
∂

∂x

)α
(aαφ)

)
u ,

where Sα is a sum of functions Ω → C, each of which is the partial derivative ∂ϑ
∂r

with respect to some standard coordinate r on Rn of a C1 function ϑ : Ω → C
with compact support suppϑ ⊂ suppφ. We may choose an open bounded rectangle
R ⊂ Rn containing suppφ, and write the integral over Ω of each term ∂ϑ

∂r
of the

sum Sα as an integral over R by restricting ϑ to R, extending it by 0 if R ̸⊂ Ω.
We may then apply Fubini’s theorem to write the integral over R of each term
∂ϑ
∂r

of Sα so that the innermost integral is taken with respect to the corresponding
coordinate r of the outermost partial derivative, and then apply the Fundamental
Theorem of Calculus to conclude that∫

Ω

Sα dλ = 0 ,

so that ∫
Ω

aαφ

(
∂

∂x

)α
u dλ =

∫
Ω

(−1)|α|
((

∂

∂x

)α
(aαφ)

)
u dλ .
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Note that the above equality also holds for α = 0 and hence it holds for all α ∈ Θn
k .

It follows that∫
Ω

(Au)φdλ =

∫
Ω

( ∑
α∈Θn

k

aα

(
∂

∂x

)α
u

)
φdλ

=
∑
α∈Θn

k

∫
Ω

aαφ

(
∂

∂x

)α
u dλ

=
∑
α∈Θn

k

∫
Ω

(−1)|α|
((

∂

∂x

)α
(aαφ)

)
u dλ

=

∫
Ω

∑
α∈Θn

k

(−1)|α|
((

∂

∂x

)α
(aαφ)

)
u dλ

=

∫
Ω

u · tAφdλ ,

which shows that indeed Au = Adistru.
(ii) (⇐) Suppose that for every point p ∈ Ω there exists a neighbourhood U of p in

Ω such that v|U = Adistr

(
u|U
)
. Let φ ∈ D(Ω). We may find a finite collection

{Uj}mj=1 of open subsets of Ω, for m ∈ N, such that suppφ ⊂
⋃m
j=1 Uj and for

all j ∈ {1, . . . ,m} we have v|Uj
= Adistr

(
u|Uj

)
. The collection U := {Uj}mj=1 ∪

{Ω \ suppφ} is then an open cover for Ω, which is second countable, and hence
there exists a smooth partition of unity {ρj}m+1

j=1 on Ω such that suppρj ⊂ Uj
for all j ∈ {1, . . . ,m} and suppρm+1 ⊂ Ω \ suppφ. Fix j ∈ {1, . . . ,m}. The
function ρjφ is smooth on Ω and suppρjφ ⊂ suppρj ∩ suppφ. Since suppρjφ is
a closed subset of the compact set suppφ, it is itself compact, and we also have
suppρjφ ⊂ suppρj ⊂ Uj. It follows that the restriction ρjφ|Uj

is in D(Uj). Since

ρjφ vanishes on the open set Ω \ suppρjφ ⊃ Ω \ Uj, so too does tA(ρjφ), and thus∫
Ω

u · tA(ρjφ) dλ =

∫
Uj

u|Uj
·
(
tA(ρjφ)

)
|Uj

dλ

=

∫
Uj

u|Uj
· tA(ρjφ|Uj

) dλ

=

∫
Uj

v|Uj
· ρjφ|Uj

dλ

=

∫
Ω

vρjφdλ .

For a point p ∈ Ω, if p ∈ suppφ then(
φ

m∑
j=1

ρj

)
(p) =

(
φ
m+1∑
j=1

ρj

)
(p) = φ(p) ,

while if p ∈ Ω \ suppφ we also have(
φ

m∑
j=1

ρj

)
(p) = 0 = φ(p) .
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Thus, ∫
Ω

u · tAφdλ =

∫
Ω

u · tA
(
φ

m∑
j=1

ρj

)
dλ

=

∫
Ω

m∑
j=1

u · tA(ρjφ) dλ

=
m∑
j=1

∫
Ω

u · tA(ρjφ) dλ

=
m∑
j=1

∫
Ω

vρjφdλ

=

∫
Ω

m∑
j=1

vρjφdλ

=

∫
Ω

vφ dλ ,

which shows that v = Adistru on Ω.
(⇒) Obviously.

(iii) We first show that t(tA)φ = Aφ for all φ ∈ D(Ω). Choose φ ∈ D(Ω). Then, for
any other ϑ ∈ D(Ω), by (i) we have∫

Ω

ϑ · t(tA)φdλ =

∫
Ω

(tAϑ)φdλ =

∫
Ω

ϑAφdλ ,

which implies that ∫
Ω

ϑ
(
t(tA)φ− Aφ

)
dλ = 0 .

Since the function t(tA)φ − Aφ is locally integrable on Ω, by Lemma 3.6 (i) we
have t(tA)φ − Aφ = 0 almost everywhere, and continuity of t(tA)φ − Aφ then
implies t(tA)φ−Aφ = 0 on Ω. To show that t(tA) = A in general, choose arbitrary
f ∈ Ck(Ω) and φ ∈ D(Ω). Applying again (i), we have∫

Ω

f · t(t(tA))φdλ =

∫
Ω

(
t(tA)f

)
φdλ

and ∫
Ω

f · t(t(tA))φdλ =

∫
Ω

f · tAφdλ =

∫
Ω

(Af)φdλ ,

so that ∫
Ω

(
t(tA)f − Af

)
φdλ = 0 .

Since the function t(tA)f −Af is continuous on Ω, it is locally integrable, so again
it follows from Lemma 3.6 (i) that t(tA)f −Af = 0 almost everywhere; and again
by continuity, we must then have t(tA)f − Af = 0 on Ω. This shows that indeed
t(tA) = A. The fact that (A∗)∗ = A follows, since

(A∗)∗ = t(tA) = A = A .

(iv) This part is left for the reader to check.
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(v) Given arbitrary f ∈ Ck+ℓ(Ω) and φ ∈ D(Ω), we have∫
Ω

φ · t(AB)f =

∫
Ω

f · (AB)φdλ

=

∫
Ω

f · A(Bφ) dλ

=

∫
Ω

(tAf)Bφdλ

=

∫
Ω

tB(tAf)φdλ

=

∫
Ω

(
(tBtA)f

)
φdλ

By a similar argument as in part (iii), continuity of the function t(AB)f − (tBtA)f
implies that t(AB)f−(tBtA)f = 0 on Ω, and since f ∈ Ck+ℓ(Ω) was arbitrary, this
shows that t(AB) = tBtA as operators. We may then show that (AB)∗ = B∗A∗ as
follows: for any f ∈ Ck+ℓ(Ω), we have

(AB)∗f = t(AB)f = t(AB)f = (tBtA)f = tB(tAf) = tB(tAf) = (B∗A∗)f .

Statements (vi), (vii) and (viii) are left for the reader to check.

(ix) First observe that under our requirements for A, for any g, h ∈ C1(Ω) we have

A(gh) = (Ag)h+ gAh

and

tAg = −g
n∑
j=1

∂fj
∂xj

− Ag .

Then, for any φ ∈ D(Ω),

tA(ρφ) = −ρφ
n∑
j=1

∂fj
∂xj

− A(ρφ)

= −ρφ
n∑
j=1

∂fj
∂xj

− (Aρ)φ− ρ(Aφ)

= ρ tAφ− (Aρ)φ ,

and hence

uρ tAφ = u tA(ρφ) + u(Aρ)φ .

Since ρφ ∈ D(Ω), we have∫
Ω

u tA(ρφ) dλ =

∫
Ω

vρφ dλ ,

so that ∫
Ω

uρ tAφdλ =

∫
Ω

vρφ dλ+

∫
Ω

u(Aρ)φdλ

=

∫
Ω

φ(vρ+ uAρ) dλ ,

which proves the claim.
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□

Lemma 3.11. Suppose k : Rn → R is a C∞ function with supp k ⊂ B(0, 1), let Ω ⊂ Rn

be open, and let δ ∈ (0,+∞). Define Ωδ ⊂ Ω as in Lemma 3.3, that is,

Ωδ := {x ∈ Rn | dist(x,Ωc) > δ} ;
and for any u ∈ L1

loc(Ω), define uδ : Ωδ → C also as in Lemma 3.3, that is,

uδ(x) :=

∫
Ω

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

for each x ∈ Ωδ. For ℓ ∈ Z≥0, let

A :=
∑
α∈Θn

ℓ

aα

(
∂

∂x

)α
be a linear differential operator of order ℓ on Rn with constant coefficients. Then, if
u, v ∈ L1

loc(Ω) with v = Adistru, on Ωδ we have

vδ = A(uδ) .

Proof. For each x ∈ Ωδ, define

ψδ,x : Ω → Rn , y 7→ x− y

δ
and

kδ,x :=
1

δn
k ◦ ψδ,x ∈ D(Ω) .

If ℓ = 0, then for any x ∈ Ωδ

A(uδ)(x) =

∫
Ω

u(y) a0 k

(
x− y

δ

)
1

δn
dλ(y)

=

∫
Ω

u · tAkδ,x dλ

=

∫
Ω

v kδ,x dλ

=

∫
Ω

v(y) k

(
x− y

δ

)
1

δn
dλ(y)

= vδ(x) .

Suppose ℓ ≥ 1 and fix α ∈ Θn
ℓ \ {0}. We have(

∂

∂x

)α
=

|α|∏
j=1

∂

∂rj
,

where for each j ∈ {1, . . . ,|α|} we have rj = xp(j) for some p(j) ∈ {1, . . . , n}. By
the proof of Lemma 3.3 (iii), we know that for any w ∈ L1

loc(Ω) and any C∞ function
l : Rn → R with supp l ⊂ B(0, 1), the C∞ function

g : Ωδ → C , x 7→
∫
Ω

w(y) l

(
x− y

δ

)
1

δn
dλ(y)

fulfils
∂g

∂rj
=

(
x 7→

∫
Ω

w(y)

δ

∂l

∂rj

(
x− y

δ

)
1

δn
dλ(y)

)
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for each j ∈ {1, . . . ,|α|}. Using this fact, we may show by induction that(
∂

∂x

)α
uδ =

[ |α|∏
j=1

∂

∂rj

](
x 7→

∫
Ω

u(y) k

(
x− y

δ

)
1

δn
dλ(y)

)

=

(
x 7→

∫
Ω

u(y)

δ|α|

([ |α|∏
j=1

∂

∂rj

]
k

)(
x− y

δ

)
1

δn
dλ(y)

)
=

(
x 7→

∫
Ω

u(y)

δ|α|

((
∂

∂x

)α
k

)(
x− y

δ

)
1

δn
dλ(y)

)
.

Since this equality also holds for α = 0, we have

A(uδ) =
∑
α∈Θn

ℓ

aα

(
∂

∂x

)α
uδ

=

(
x 7→

∑
α∈Θn

ℓ

∫
Ω

aα
u(y)

δ|α|

((
∂

∂x

)α
k

)(
x− y

δ

)
1

δn
dλ(y)

)
.

Let again α ∈ Θn
ℓ \ {0} and (

∂

∂x

)α
=

|α|∏
j=1

∂

∂rj
,

where for each j ∈ {1, . . . ,|α|} we have rj = xq(j) for some q(j) ∈ {1, . . . , n}. Observe
that for any C∞ function l : Rn → R, we have

∂

∂rj

(
1

δn
l ◦ ψδ,x

)
=

1

δn

(
−1

δ

)
∂l

∂rj
◦ ψδ,x .

for each j ∈ {1, . . . ,|α|}. Using this, we may show by induction that(
∂

∂x

)α
kδ,x =

(
∂

∂x

)α(
1

δn
k ◦ ψδ,x

)
=

1

δn

(
−1

δ

)|α|((
∂

∂x

)α
k

)
◦ ψδ,x ,

which also holds if α = 0. Then, for any x ∈ Ωδ, we have

vδ(x) =

∫
Ω

v kδ,x dλ

=

∫
Ω

u · tAkδ,x dλ

=

∫
Ω

u
∑
α∈Θn

ℓ

(−1)|α|
(
∂

∂x

)α
(aαkδ,x) dλ

=

∫
Ω

∑
α∈Θn

ℓ

u

(
(−1)|α| aα

1

δn

(
−1

δ

)|α|((
∂

∂x

)α
k

)
◦ ψδ,x

)
dλ

=
∑
α∈Θn

ℓ

∫
Ω

u(y)

δ|α|
aα

1

δn

((
∂

∂x

)α
k

)(
x− y

δ

)
dλ(y)

= (A(uδ))(x) .

□
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4. Complex Analysis in C

For the remainder of this text, for any z0 ∈ C and R ∈ (0,+∞], we define

∆(z0;R) := {z ∈ C | |z − z0| < R}

and

∆∗(z0;R) := {z ∈ C | 0 < |z − z0| < R} .
Also, for r ∈ [0, R), we define

∆(z0; r, R) := {z ∈ C | r < |z − z0| < R} .

4.1. Background Material on Holomorphic Functions.
In this section, we recall some basic definitions and results about holomorphic functions
that are normally studied in a first course on complex analysis. We therefore skip proofs.

Definition 4.1. Let A ⊂ C. Suppose f : A → C is a function defined on some
neighbourhood U of a point z0 in C. Then, f is said to be complex-differentiable at z0
if the function

z 7→ f(z)− f(z0)

z − z0
∈ C ,

which is defined on U \ {z0}, has a limit at z0. Then, we define the complex derivative
of f at z0 to be the complex number

f ′(z0) =
df

dz
(z0) := lim

z→z0

f(z)− f(z0)

z − z0
.

Definition 4.2. Let Ω ⊂ C be open. A function f : Ω → C is said to be holomorphic
on Ω (or just holomorphic) if it is complex-differentiable at every point in Ω. We then
define the function f ′ : Ω → C, which maps a point z ∈ Ω to the derivative of f at z.
We denote the set of holomorphic functions on Ω by O(Ω). A function f ∈ O(C) is said
to be entire.

Theorem 4.3. A holomorphic function f : Ω → C, where Ω ⊂ C is open, is continuous
on Ω.

Theorem 4.4. Let f and g be two holomorphic functions on an open subset Ω ⊂ C.
Then,

(i) the function f + g is holomorphic on Ω, and (f + g)′ = f ′ + g′;
(ii) the function fg is holomorphic on Ω, and (fg)′ = f ′g + fg′;
(iii) if g is nowhere-vanishing on Ω, then the function f

g
is holomorphic on Ω, and(

f
g

)′
= f ′g−fg′

g2
.

Moreover, if f ∈ O(Ω) and g ∈ O(Υ), where Ω,Υ ⊂ C are open and f(Ω) ⊂ Υ, then
the function g ◦ f : Ω → C is holomorphic on Ω, and (g ◦ f)′ = (g′ ◦ f)f ′.

Example 4.5. (i) A constant function mapping C to a fixed complex number is entire
and its derivative is the zero function on C.

(ii) For all n ∈ N, the function z 7→ zn on C is entire, and its derivative is the function
z 7→ nzn−1 on C. In particular, the identity function on C is entire and is derivative
is the constant function 1.
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(iii) It follows from (i),(ii) and Theorem 4.4 that every polynomial on C is entire, and
that every rational function defined on some open subset U ⊂ C is holomorphic
on U .

(iv) The function mapping a complex number z to its complex conjugate z̄ ∈ C is not
holomorphic on any open subset of C.

For the remainder of Section 4.1, we fix an open subset Ω ⊂ C and write Ck(Ω) to
denote Ck(Ω,C), for k ∈ N0 ∪ {∞}.

We define the following linear differential operators, which map Ck(Ω) to Ck−1(Ω)
for any k ∈ Z≥1 ∪ {∞}:

∂

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

One can check that these operators, apart from being C-linear, fulfill the following
properties:

(i)
∂z

∂z
= 1 ,

∂z̄

∂z
= 0 ,

∂z

∂z̄
= 0 ,

∂z̄

∂z̄
= 1 ,

where z and z̄ are the identity and conjugate functions respectively on Ω;
(ii) (Leibniz rule) for k ∈ Z≥1 ∪ {∞} and f, g ∈ Ck(Ω),

∂(fg)

∂z
=

(
∂f

∂z

)
g + f

(
∂g

∂z

)
,

and similarly for ∂(fg)
∂z̄

;
(iii) if a, b ∈ R, a < b, γ : (a, b) → C is real-differentiable and f ∈ C1(Ω), and assuming

γ(a, b) ⊂ Ω, then

d

dt
(f ◦ γ) =

(
∂f

∂z
◦ γ

)
dγ

dt
+

(
∂f

∂z̄
◦ γ

)
dγ̄

dt

on (a, b).

Suppose f ∈ C1(Ω), and let u := Re(f) and v := Im(f). Then, on Ω,

∂f

∂z̄
= 0

⇐⇒ 1

2

(
∂u

∂x
+ i

∂v

∂x
+ i

∂u

∂y
− ∂v

∂y

)
= 0

⇐⇒ ∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
.

We will refer to the two equations on the last line as the homogenous Cauchy-Riemann
equations.

Theorem 4.6. A function f : Ω → C is holomorphic on Ω if and only if it is real-
differentiable and ∂f

∂z̄
= 0 on Ω, that is, if and only if it is real-differentiable and its partial

derivatives (whose existence follows from real-differentiability) fulfil the homogeneous
Cauchy-Riemann equations on Ω. Moreover, the derivative of f on Ω is given by

f ′ =
∂f

∂z
=
∂f

∂x
= −i ∂f

∂y
.
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Definition 4.7. Let f : Ω → C, and suppose there is a holomorphic function F : Ω → C
such that F ′ = f on Ω. Then, F is said to be a primitive for f on Ω.

4.2. C as a manifold.
We give C the smooth manifold structure and standard orientation of R2, and we let
(x, y) denote the standard coordinates on C. Since the functions z := x + iy and
z̄ := x− iy on C are C∞, we may take their differentials

dz = dx+ i dy , dz̄ = dx− i dy .

For each p ∈ C, the elements (dz)p, (dz̄)p ∈ (T ∗
pC)C are linearly independent and hence

form a basis for (T ∗
pC)C. Then, any complex 1-form α on an open subset Ω ⊂ C can be

written as

α = P dx+Qdy = Adz +B dz̄

for some unique functions P,Q,A,B : Ω → C , with

A =
1

2
(P − iQ) , B =

1

2
(P + iQ) .

and

P = A+B , Q = i(A−B)

Thus, for k ∈ Z≥0 ∪ {∞}, by Proposition 2.13, α is Ck if and only the functions P
and Q are Ck, or if and only if the functions A and B are Ck.

Suppose Ω ⊂ C is open and γ : [a, b] → Ω is a C1 path, for a, b ∈ R with a < b. If
α = P dx + Qdy = Adz + B dz̄ is a continuous complex 1-form on Ω, for continuous
functions P,Q,A,B : Ω → C, then letting u := x ◦ γ = Re γ and v := y ◦ γ = Im γ, we
have ∫

γ

α =

∫ b

a

(
P (γ(s))

du

dt

∣∣∣∣
s

+Q(γ(s))
dv

dt

∣∣∣∣
s

)
ds

=

∫ b

a

(
A(γ(s))

dγ

dt

∣∣∣∣
s

+B(γ(s))
dγ̄

dt

∣∣∣∣
s

)
ds .

For each p ∈ C, we have

(dz)p ∧ (dz̄)p = −2i (dx)p ∧ (dy)p ,

so dz ∧ dz̄ = −2i dx ∧ dy on C. Then, a complex 2-form β on a subset E ⊂ C can be
written as

β = f dx ∧ dy = f
i

2
dz ∧ dz̄ ,

where f := β/(dx ∧ dy) : E → C. Moreover, for k ∈ Z≥0 ∪ {∞} and assuming E ⊂ C
is open if k ≥ 1, the 2-form β is Ck on E if and only if f is Ck on E, or if and only if
f i

2
is Ck on E. If the set E is measurable in C and the function f is measurable on E,

then the 2-form β is measurable on E, and∫
E

β± =

∫
E

f± dx ∧ dy =

∫
E

f± dλ ,

which shows that β is integrable on E if and only if f is integrable on E.
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Suppose Ω ⊂ C is open and f : Ω → C is a C1 function. Then, on Ω we have

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z̄
dz̄ = ∂f + ∂̄f ,

where

∂f :=
∂f

∂z
dz and ∂̄f :=

∂f

∂z̄
dz̄ .

Moreover, f is holomorphic on Ω if and only if ∂̄f = 0 on Ω, or if and only if df = h dz
on Ω for some function h : Ω → C.

If Ω ⊂ C is open and

α = P dx+Qdy = Adz +B dz̄

is a C1 complex 1-form, for some C1 functions P,Q,A,B : Ω → C, on Ω we have

dα =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

and

dα = dA ∧ dz + dB ∧ dz̄

=

(
∂B

∂z
− ∂A

∂z̄

)
dz ∧ dz̄

= ∂α + ∂̄α ,

where

∂α :=
∂B

∂z
dz ∧ dz̄ = ∂B ∧ dz̄

and

∂̄α := −∂A
∂z̄

dz ∧ dz̄ = ∂̄A ∧ dz .

4.3. Polar Coordinates.
For any θ0 ∈ R, the map

[0,+∞)× [θ0, θ0 + 2π) → R2 , (r, θ) 7→ (r cos θ, r sin θ) ,

is continuous and surjective. Its restriction (0,+∞)× [θ0, θ0 + 2π) → R2 \ {(0, 0)} is a
bijection, while its restriction (0,+∞)× (θ0, θ0 + 2π) → R2 \ Zθ0 , where

Zθ0 := {(r cos θ0, r sin θ0) ∈ R2 | r ≥ 0}

is the closed ray emerging from the origin at an angle θ0 with the positive x-axis, is a
diffeomorphism. Denoting this diffeomorphism by Fθ0 , we have

JFθ0
(r, θ) =

∣∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣∣ = r

at each (r, θ) ∈ (0,+∞)× (θ0, θ0 +2π). Note that λ(Zθ0) = 0 in R2. Then, by Theorem
2.44, the Fubini-Tonelli Theorem and Fubini’s Theorem, if X is R,R or C and f : R2 →
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X is nonnegative measurable (for X = R or R := [0,+∞]) or integrable (for X = R or
C), we have ∫

R2

f dλ =

∫
R2\Zθ0

f dλ

=

∫
(0,+∞)×(θ0,θ0+2π)

(f ◦ Fθ0)
∣∣∣JFθ0

∣∣∣ dλ
=

∫
(0,+∞)

∫
(θ0,θ0+2π)

f(r cos θ, r sin θ) r dλ(θ) dλ(r) .

Definition 4.8. For any point (x, y) ∈ R2 and (r, θ) ∈ [0,+∞)× R such that (x, y) =
(r cos θ, r sin θ), we call (r, θ) polar coordinates for (x, y). For any θ ∈ R, we define

eiθ := cos θ + i sin θ ∈ C ,

so that if (x, y) = x+ iy is a point in C with polar coordinates (r, θ) under the identifi-
cation of C with R2, we have

x+ iy = r cos θ + i r sin θ = reiθ .

Suppose θ0 ∈ R. Since F−1
θ0

: R2 \Zθ0 → (0,+∞)× (θ0, θ0 +2π) is a diffeomorphism,

the pair (R2 \ Zθ0 , F−1
θ0

) is a chart on R2. Denoting by (s, t) the standard coordinates

on (0,+∞)× (θ0, θ0 + 2π), and letting r := s ◦ F−1
θ0

and θ := t ◦ F−1
θ0

, we have

dx ∧ dy = (JFθ0
◦ F−1

θ0
) dr ∧ dθ = r dr ∧ dθ

on R2 \ Zθ0 , since Fθ0 is the transition map between the charts (R2 \ Zθ0 , F−1
θ0

) and
(R2,1R2). Moreover, we have JFθ0

> 0 on (0,+∞) × (θ0, θ0 + 2π), so that the atlas

{(R2 \ Zθ0 , F−1
θ0

), (R2,1R2)} is oriented and thus (R2 \ Zθ0 , F−1
θ0

) is positively oriented.

Proposition 4.9. For any R ∈ (0,+∞), the open disc ∆(0;R) ⊂ R2 of radius R centred
at the origin is a smooth open set in R2.

Proof. Let θ0 ∈ R. By the above discussion, (R2 \ Zθ0 , F−1
θ0

) = (R2 \ Zθ0 , r, θ) is a chart
in R2, and we have

(R2 \ Zθ0) ∩∆(0;R) = {p ∈ R2 \ Zθ0 | r(p) < R} .
Consider the diffeomorphism

G : R2 → R2 , (x, y) 7→ (x−R, y) .

Restricting G to the diffeomorphism

(0,+∞)× (θ0, θ0 + 2π) → (−R,+∞)× (θ0, θ0 + 2π) ,

we obtain another chart (R2 \Zθ0 , G ◦F−1
θ0

). Denoting by (s, t) the coordinate functions
of this chart, we have

(R2 \ Zθ0) ∩∆(0;R) = {p ∈ R2 \ Zθ0 | s(p) < 0} .
To show that ∆(0;R) is a smooth open set, we need to cover R2 by charts (U, ϕ) =
(U, x1, x2) such that

U ∩∆(0;R) = {p ∈ U |x1(p) < 0} .
Choosing any θ1, θ2 ∈ R that do not differ by an integer multiple of 2π, for example
θ1 := 0 and θ2 := π, the charts (R2\Zθ1 , G◦F−1

θ1
) and (R2\Zθ2 , G◦F−1

θ2
) cover R2\{(0, 0)}.
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To cover the origin, choose a chart (∆(0, R
2
), ϕ) where ϕ is any diffeomorphism mapping

∆(0, R
2
) to the open left half-plane, for example G. □

Remark 4.10. Referring to the proof of Proposition 4.9, note that for any θ0 ∈ R the
chart (R2 \ Zθ0 , G ◦ F−1

θ0
) = (R2 \ Zθ0 , s, t) in R2 is positively oriented. Thus, if we give

the boundary ∂∆(0;R) the induced orientation from R2 with respect to ∆(0;R), the
chart

(Uθ0 , ϕθ0) := ((R2 \ Zθ0) ∩ ∂∆(0;R), s ◦ ι) = ({Reiθ ∈ R2 | θ ∈ (θ0, θ0 + 2π)}, s ◦ ι)

in ∂∆(0;R) is positively oriented. As a consequence, the diffeomorphism

ϕθ0 = s ◦ ι : {Reiθ ∈ R2 | θ ∈ (θ0, θ0 + 2π)} = Uθ0 → (θ0, θ0 + 2π) , Reiθ 7→ θ

is orientation-preserving (since for any positively oriented chart (V, ψ) in an oriented
smooth manifold M , the map ψ : V → ψ(V ) is an orientation-preserving diffeomor-
phism). Let Ω ⊂ R2 be an open subset such that ∂∆(0;R) ⊂ Ω. Consider the map

γ : [θ0, θ0 + 2π] → Ω , θ 7→ Reiθ = (R cos θ, R sin θ) .

We have:

(a) γ is a C1 path. Indeed, the map

R → Ω , θ 7→ (R cos θ, R sin θ)

is C∞ and restricts to γ on [θ0, θ0 + 2π].
(b) The image γ((θ0, θ0 + 2π)) = Uθ0 is a 1-dimensional smooth manifold as an open

subset of ∂∆(0;R). Moreover, the inclusion map ι : Uθ0 → Ω is C∞, as the restriction
Uθ0 → Ω of the inclusion map ∂∆(0;R) → R2.

(c) The map

(θ0, θ0 + 2π) → Uθ0 , θ 7→ γ(θ) = Reiθ

is precisely

ϕ−1
θ0

: ϕθ0(Uθ0) = (θ0, θ0 + 2π) → Uθ0

and hence it is a diffeomorphism. Moreover, since ϕ−1
θ0

is orientation-preserving, Uθ0
has the orientation induced from (θ0, θ0 + 2π) via ϕ−1

θ0
.

In conclusion, γ fulfils all the conditions in the hypothesis of Lemma 2.79, so that if α
is a continuous 1-form on Ω, then ι∗α is integrable on Uθ0 and∫

γ

α =

∫
Uθ0

ι∗α .

The following proposition is a useful application of polar coordinates:

Proposition 4.11. For R ∈ (0,+∞), the function z 7→ 1
z
on ∆∗(0;R) = ∆(0;R) \ {0}

is integrable. As a consequence, the function

g : C → C , z 7→

{
0 if z = 0
1
z

if z ̸= 0

is locally integrable.
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Proof. Denote by f the function z 7→
∣∣1
z

∣∣ on ∆∗(0;R). Regarding ∆∗(0;R) to be a subset

of R2, we have f(x, y) = 1√
x2+y2

for each (x, y) ∈ ∆∗(0;R). Let

A := {(x, 0) ∈ R2 |x ≥ 0}.

Since A has measure 0 in R2, we have∫
∆∗(0;R)

f dλ =

∫
∆∗(0;R)\A

f dλ ,

so we may use the diffeomorphism

F : (0, R)× (0, 2π) → ∆∗(0;R) \ A , (r, θ) 7→ (r cos θ, r sin θ)

to write ∫
∆∗(0;R)

f dλ =

∫
∆∗(0;R)\A

f dλ

=

∫
(0,R)×(0,2π)

(f ◦ F )|JF | dλ

=

∫
(0,R)×(0,2π)

1

r
r dλ

= 2πR .

Since f has finite integral over ∆∗(0;R), the function z 7→ 1
z
is integrable over this set,

or in other words, g is integrable over ∆(0;R). For any p ∈ C \ {0}, we may choose a
bounded neighbourhood U of p such that U ⊂ C \ {0}. Then, since g is continuous on
the compact set U , it is integrable on U and hence on U . Thus, g is locally integrable
on C. □

Remark 4.12. For any z0 ∈ C, the map

F : C → C , z 7→ z + z0

is an orientation-preserving diffeomorphism. Thus, by Remark 2.84 and Proposition
4.9, for each R ∈ (0,+∞) the open set ∆(z0;R) = F (∆(0;R)) ⊂ C is smooth, and F
restricts to an orientation-preserving diffeomorphism F : ∂∆(0;R) → ∂∆(z0;R). Then,
for θ0 ∈ R and using notation from Remark 4.10, since the chart (Uθ0 , ϕθ0) in ∂∆(0;R)
is positively oriented, the chart

(F (Uθ0), ϕθ0 ◦ F−1) = ({z0 +Reiθ | θ ∈ (θ0, θ0 + 2π)}, z0 +Reiθ 7→ θ)

in ∂∆(z0;R) is also positively oriented.

Definition 4.13. For z0 ∈ C and R ∈ (0,+∞), we call the orientation on ∂∆(z0;R)
induced from C with respect to ∆(z0;R) the counterclockwise orientation on ∂∆(z0;R).
The remaining orientation on ∂∆(z0;R) is called the clockwise orientation. If nothing
else is stated, we will assume ∂∆(z0;R) is equipped with the counterclockwise orienta-
tion.
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4.4. Local Solutions of the Cauchy-Riemann Equation.

Lemma 4.14. Let Ω ⊂ C be a smooth relatively compact open subset, and suppose f is
a C1 complex-valued function on a neighbourhood W of Ω.

(i) (Cauchy Integral Formula). For each z0 ∈ Ω, we have

f(z0) =
1

2πi

(∫
∂Ω

f(z)

z − z0
dz +

∫
Ω\{z0}

∂f/∂z̄

z − z0
dz ∧ dz̄

)
.

(ii) (Cauchy’s Theorem). ∫
∂Ω

f(z) dz +

∫
Ω

∂f

∂z̄
dz ∧ dz̄ = 0 .

Proof. (i) Fix z0 ∈ Ω, and consider the C1 1-form

α := − f(z)

z − z0
dz

on W \ {z0}. Choose N ∈ N such that ∆(z0;
1
N
) ⊂ Ω, and for each n ∈ N,

define εn := 1
N+n

and Ωn := Ω \ ∆(z0; εn). Then, for a fixed n ∈ N, we have
∂Ωn = ∂Ω ∪ ∂∆(z0; εn) and ∂Ω ∩ ∂∆(z0; εn) = ∅. Denote by (r, s) the standard
coordinates in R2. For each p ∈ ∂Ω, we may choose a chart (U, ϕ) about p in

C such that U ∩ Ω = {q ∈ U | (r ◦ ϕ)(q) < 0} and U ⊂ ∆(z0; εn)
c
, so that

U ∩ Ω ⊂ ∆(z0; εn)
c
∩ Ω = Ωn and we actually have

U ∩ Ωn = U ∩ Ω = {q ∈ U | (r ◦ ϕ)(q) < 0} .

As the exterior of a smooth open set, ∆(z0; εn)
c
= ext∆(z0; εn) is also a smooth

open set. Thus, for each p ∈ ∂∆(z0; εn) we may choose a chart (V, ψ) about p in

C such that V ∩∆(z0; εn)
c
= {q ∈ V | (r ◦ ψ)(q) < 0} and V ⊂ ∆(z0;

1
N
) ⊂ Ω, so

that V ∩∆(z0; εn)
c
⊂ Ω and we have

V ∩ Ωn = V ∩∆(z0; εn)
c
∩ Ω = V ∩∆(z0; εn)

c
= {q ∈ V | (r ◦ ψ)(q) < 0} .

It follows that Ωn is a smooth open set in C and hence in W \ {z0}. Since Ωn ⊂
W \ {z0}, the closure of Ωn in W \ {z0} is precisely Ωn, and hence it is compact.

Moreover, since ∆(z0;
1
N
) \∆(z0, εn) ⊂ Ωn, we have Ωn ̸= ∅. Then, since α is a C1

1-form on W \ {z0} and Ωn ∩ suppW\{z0}α is compact, by Stokes’ Theorem,∫
Ωn

dα =

∫
∂Ωn

ι∗α .

Since ∂Ωn is the union of the disjoint sets ∂Ω and ∂∆(z0; εn),∫
∂Ωn

ι∗α =

∫
∂Ω

ι∗α +

∫
∂∆(z0;εn)

ι∗α

=

∫
∂Ω

(
− f(z)

z − z0
◦ ι

)
d(z ◦ ι) +

∫
∂∆(z0;εn)

ι∗α .

Letting Z := {z0 + r ∈ C | r ≥ 0}, the map

F : (−εn,+∞)× (0, 2π) → C \ Z , (r, θ) 7→ z0 + (r + εn)e
iθ
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is a diffeomorphism, and the chart (C\Z, F−1) on C is positively oriented and fulfils
(C\Z)∩∆(z0; εn) = {q ∈ C\Z | (r ◦F−1)(q) < 0}. F restricts to a diffeomorphism
F̃ : (−εn, 1

N
− εn)× (0, 2π) → ∆(z0;

1
N
) \ Z, and the chart

(∆(z0;
1

N
) \ Z,−F̃−1) =

(
∆(z0;

1

N
) \ Z,−r ◦ F̃−1,−s ◦ F̃−1

)
is in W \ {z0}, is positively oriented, and fulfils(

∆(z0;
1

N
) \ Z

)
∩ Ωn =

(
∆(z0;

1

N
) \ Z

)
∩ ext∆(z0; εn)

= {q ∈ ∆(z0;
1

N
) \ Z | (−r ◦ F̃−1)(q) < 0}.

Thus, we may induce from (∆(z0;
1
N
)\Z,−F̃−1) a positively oriented chart (Un, ϕn)

on ∂Ωn, given by

Un :=

(
∆(z0;

1

N
) \ Z

)
∩ ∂Ωn = {z0 + εne

iθ | θ ∈ (0, 2π)} ,

ϕn : Un → (−2π, 0) , z0 + εne
iθ 7→ −θ .

Then, we have∫
∂∆(z0,εn)

ι∗α =

∫
Un

ι∗α

=

∫
(−2π,0)

−f(z0 + εne
−iθ)

εne−iθ
d(z0 + εne

−iθ)

=

∫
(−2π,0)

if(z0 + εne
−iθ) dθ

=

∫
(−2π,0)

if(z0 + εne
−iθ) dλ(θ) .

For each n ∈ N, let gn : (−2π, 0) → C be the function θ 7→ if(z0 + εne
−iθ). For

each θ ∈ (−2π, 0), we have

Ω ⊃ z0 + εne
−iθ → z0 as n→ ∞ ,

so, by continuity of f ,

gn(θ) = if(z0 + εne
−iθ) → if(z0) as n→ ∞ .

Thus, the sequence of functions {gn}n∈N converges pointwise to the constant func-
tion if(z0) on (0, 2π). Since f is continuous, we have |f | ≤ P on Ω for some
P ∈ (0,+∞), so for all n ∈ N we also have |gn| ≤ P on (−2π, 0). Since the con-
stant function P on (−2π, 0) is integrable, by the Dominated Convergent Theorem∫

∂∆(z0,εn)

ι∗α =

∫
(−2π,0)

gn dλ→
∫
(−2π,0)

if(z0) dλ = 2πif(z0) as n→ ∞ .

Fix again some n ∈ N. On Ω \ {z0}, and hence on Ωn, we have

dα =
∂f/∂z̄

z − z0
dz ∧ dz̄ = −2i

∂f/∂z̄

z − z0
dx ∧ dy ,
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so ∫
Ωn

dα =

∫
Ωn

−2i
∂f/∂z̄

z − z0
dλ =

∫
Ω\{z0}

χΩn(−2i)
∂f/∂z̄

z − z0
dλ .

Choose R ∈ (0,+∞) such that Ω ⊂ ∆(z0;R). By Proposition 4.11, the function
z 7→ 1

z
is integrable on ∆∗(0;R), which implies that the function z 7→ 1

z−z0 is

integrable on ∆∗(z0;R) and hence on Ω \ {z0}. Moreover, the function −2i ∂f
∂z̄

is

continuous on Ω and hence there exists Q ∈ (0,+∞) such that
∣∣−2i ∂f

∂z̄

∣∣ ≤ Q on Ω.
Thus, for all n ∈ N and z ∈ Ω \ {z0} we have∣∣∣∣χΩn(−2i)

∂f/∂z̄

z − z0

∣∣∣∣ ≤ ∣∣∣∣−2i
∂f/∂z̄

z − z0

∣∣∣∣ =
∣∣−2i ∂f/∂z̄

∣∣
|z − z0|

≤ Q

|z − z0|
.

Since Q
|z−z0| is integrable on Ω \ {z0} and

χΩn(−2i)
∂f/∂z̄

z − z0
→ (−2i)

∂f/∂z̄

z − z0
as n→ ∞

pointwise on Ω \ {z0}, we have∫
Ω\{z0}

χΩn(−2i)
∂f/∂z̄

z − z0
dλ→

∫
Ω\{z0}

−2i
∂f/∂z̄

z − z0
dλ as n→ ∞ .

It follows that the 2-form −2i ∂f/∂z̄
z−z0 dx∧dy = ∂f/∂z̄

z−z0 dz∧dz̄ is integrable on Ω\{z0}
and ∫

Ωn

dα →
∫
Ω\{z0}

∂f/∂z̄

z − z0
dz ∧ dz̄ as n→ ∞ .

In conclusion, taking limits on both sides of the equality∫
Ωn

dα =

∫
∂Ω

(
− f(z)

z − z0

)
dz +

∫
∂∆(z0;εn)

ι∗α ,

we obtain ∫
Ω\{z0}

∂f/∂z̄

z − z0
dz ∧ dz̄ =

∫
∂Ω

− f(z)

z − z0
dz + 2πif(z0) ,

or

f(z0) =
1

2πi

(∫
∂Ω

f(z)

z − z0
dz +

∫
Ω\{z0}

∂f/∂z̄

z − z0
dz ∧ dz̄

)
.

(ii) Follows directly from Stokes’ Theorem applied to the C1 1-form f dz on W .

□

Lemma 4.15. (Local solution of the inhomogeneous Cauchy-Riemann equation). Let
D := ∆(z0;R) ⊂ C for z0 ∈ C and R ∈ (0,+∞). Suppose α : ∂D → C is a continuous
function, k ∈ Z≥1∪{∞}, and β is a Ck complex-valued function on a neighbourhood W
of D. Then, the function

f : D → C , f(z) :=
1

2πi

(∫
∂D

α(ζ)

ζ − z
dζ +

∫
D\{z}

β(ζ)

ζ − z
dζ ∧ dζ̄

)
is Ck and fulfils

∂f

∂z̄
= β

on D. In particular, f is holomorphic on D \ suppβ.
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Proof. We first show that the function

f1 : D → C , z 7→
∫
∂D

α(ζ)

ζ − z
dζ

is C∞ and holomorphic. Using the fact that the map

∂D \ {z0 +R} = {z0 +Reiθ ∈ ∂D | θ ∈ (0, 2π)} → (0, 2π) , z0 +Reiθ 7→ θ

defines a positively oriented chart on ∂D, for each z ∈ D we have

f1(z) =

∫
∂D

α(ζ)

ζ − z
dζ =

∫
(0,2π)

α(z0 +Reiθ)

z0 +Reiθ − z
iReiθ dλ(θ) .

Suppose σ : (0, 2π) → C is a continuous bounded function and let n ∈ N. Then, for any
z ∈ D the function

(0, 2π) → C , θ 7→ σ(θ)

(z0 +Reiθ − z)n

is continuous and bounded and hence integrable. We aim to differentiate the function

g : D → C , z 7→
∫
(0,2π)

σ(θ)

(z0 +Reiθ − z)n
dλ(θ) .

Choose any w ∈ D and let a := Re(w) and b := Im(w). Let I ⊂ R be the open interval
I := {x ∈ R |x+ ib ∈ D}, and choose c, d ∈ R such that a ∈ (c, d) and [c, d] ⊂ I. Then,
the function

F : (0, 2π)× (c, d) → C , (θ, x) 7→ σ(θ)

(z0 +Reiθ − (x+ ib))n

fulfils

(i) for all x ∈ (c, d) the function θ 7→ F (θ, x) on (0, 2π) is integrable;
(ii) for all θ ∈ (0, 2π) the function x 7→ F (θ, x) on (c, d) is differentiable with derivative

x 7→ nσ(θ)

(z0 +Reiθ − (x+ ib))n+1

on (c, d);
(iii) since the sets S := {x + ib |x ∈ [c, d]} and ∂D are compact and disjoint, there is

P ∈ (0,+∞) such that for all z1 ∈ S and z2 ∈ ∂D we have |z1 − z2| ≥ P . Then,
choosing Q ∈ (0,+∞) such that |σ| ≤ Q on (0, 2π), for all θ ∈ (0, 2π) and x ∈ (c, d)
we have ∣∣∣∣ nσ(θ)

(z0 +Reiθ − (x+ ib))n+1

∣∣∣∣ ≤ nQ

P n+1
.

Thus, applying Theorem 3.1, we conclude that the function

(c, d) → C , x 7→
∫
(0,2π)

σ(θ)

(z0 +Reiθ − (x+ ib))n
dλ(θ)

is differentiable and that

∂g

∂x

∣∣∣∣
w=a+ib

=
d

dx

(∫
(0,2π)

σ(θ)

(z0 +Reiθ − (x+ ib))n
dλ(θ)

)∣∣∣∣
a

=

∫
(0,2π)

nσ(θ)

(z0 +Reiθ − (a+ ib))n+1
dλ(θ) .
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Since w ∈ D was arbitrary, we conclude that for z ∈ D

∂g

∂x
(z) =

∂

∂x

∫
(0,2π)

σ(θ)

(z0 +Reiθ − z)n
dλ(θ) =

∫
(0,2π)

nσ(θ)

(z0 +Reiθ − z)n+1
dλ(θ) .

Analogous reasoning shows that for z ∈ D

∂g

∂y
(z) =

∂

∂y

∫
(0,2π)

σ(θ)

(z0 +Reiθ − z)n
dλ(θ) =

∫
(0,2π)

in σ(θ)

(z0 +Reiθ − z)n+1
dλ(θ) = i

∂g

∂x
(z) .

We show that ∂g
∂x

and ∂g
∂y

are continuous on D. Suppose z ∈ D and let {zk}k∈N be a

sequence in D converging to z. Define the functions

hk : (0, 2π) → C , hk(θ) :=
nσ(θ)

(z0 +Reiθ − zk)n+1

for each k ∈ N, and

h : (0, 2π) → C , h(θ) :=
nσ(θ)

(z0 +Reiθ − z)n+1
.

Then, hk → h pointwise very wisely as k → ∞ on (0, 2π). We may choose ε ∈ (0,+∞)

such that ∆(z; ε) ⊂ D, and N ∈ N such that for all k ≥ N we have |zk − z| < ε. Then,
the set

S ′ := ∆(z; ε) ∪ {zk}k≤N ⊂ D

is compact and zk ∈ S ′ for all k ∈ N. Thus, since S ′ and ∂D are compact and disjoint,
there exists P ′ ∈ (0,+∞) such that for all w1 ∈ S ′ and w2 ∈ ∂D we have |w1 − w2| ≥ P ′.
Then, for all k ∈ N and θ ∈ (0, 2π),∣∣hk(θ)∣∣ = ∣∣∣∣ nσ(θ)

(z0 +Reiθ − zk)n+1

∣∣∣∣ ≤ nQ

(P ′)n+1
.

Thus, by the Dominated Convergence Theorem,

∂g

∂x
(zk) =

∫
(0,2π)

nσ(θ)

(z0 +Reiθ − zk)n+1
dλ(θ) →

∫
(0,2π)

nσ(θ)

(z0 +Reiθ − z)n+1
dλ(θ) =

∂g

∂x
(z)

as k → ∞. This shows that ∂g
∂x

is continuous on D, and hence so is ∂g
∂y

= i ∂g
∂x
. Observe

also that the fact that g is real-differentiable and ∂g
∂y

= i ∂g
∂x

implies that g is holomorphic
on D.

Now, since the function θ 7→ α(z0+Re
iθ) iReiθ on (0, 2π) is continuous and bounded,

the function

f1 : D → C , z 7→
∫
(0,2π)

α(z0 +Reiθ) iReiθ

z0 +Reiθ − z
dλ(θ) ,

has continuous partial derivatives of first order, of the form

∂f1
∂x

(z) =

∫
(0,2π)

σ1(θ)

(z0 +Reiθ − z)2
dλ(θ) ,

∂f1
∂y

(z) =

∫
(0,2π)

σ2(θ)

(z0 +Reiθ − z)2
dλ(θ)

for z ∈ D, where σ1, σ2 : (0, 2π) → C are the continuous bounded functions defined by

σ1(θ) := α(z0 +Reiθ) iReiθ , σ2(θ) := i α(z0 +Reiθ) iReiθ , θ ∈ (0, 2π) .

Moreover, if n ∈ N and f1 has continuous partial derivatives of nth order, each of which
can be written as

z 7→
∫
(0,2π)

σ(θ)

(z0 +Reiθ − z)n+1
dλ(θ) ,
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for some continuous bounded function σ : (0, 2π) → C, then f1 also has continuous
partial derivatives of (n+ 1)th order which can each be written as

z 7→
∫
(0,2π)

ν(θ)

(z0 +Reiθ − z)n+2
dλ(θ) ,

for some continuous bounded function ν : (0, 2π) → C. Thus, by induction, f1 has
continuous partial derivatives of all orders on D and is therefore C∞. Moreover, f1 is
holomorphic on D and so too are all its partial derivatives of all orders.

We now wish to show that the function

f2 : D → C , z 7→
∫
D\{z}

β(ζ)

ζ − z
dζ ∧ dζ̄

is Ck on D. For this, we show that for any r ∈ (0, R), f2 is Ck on ∆(z0; r). Choose
r, r1, r2 ∈ (0, R) with r < r1 < r2 . Multiplying β by a suitable C∞ bump function, we

may obtain a Ck function β1 : W → C that is equal to β on ∆(z0; r1) and such that

suppβ1 ⊂ ∆(z0; r2). Then, the function β2 := β − β1 is also Ck. For z ∈ ∆(z0; r), we
have

f2(z) =

∫
D\{z}

β(ζ)

ζ − z
dζ ∧ dζ̄

=

∫
D\{z}

β(ζ)

ζ − z
(−2i) dx ∧ dy

=

∫
D\{z}

(β1 + β2)(ζ)

ζ − z
(−2i) dλ(ζ)

=

∫
D\{z}

β1(ζ)

ζ − z
(−2i) dλ(ζ) +

∫
D\{z}

β2(ζ)

ζ − z
(−2i) dλ(ζ) .

Let m ∈ Z>0 ∪ {∞}. Suppose η : D → C is a Cm function with suppη ⊂ ∆(z0; r2).
Since η is bounded on D, for any z ∈ ∆(z0; r) the integral∫

D\{z}

η(ζ)

ζ − z
dλ(ζ)

exists. Define the function

ℓ : ∆(z0; r) → C , z 7→
∫
D\{z}

η(ζ)

ζ − z
dλ(ζ) .

Choose any w ∈ ∆(z0; r) and set a := Re(w) and b := Im(w). Let J ⊂ R be the open
interval

J := {x ∈ R |x+ ib ∈ ∆(z0; r)} .
For each x ∈ J , let Dx := ∆(z0−(x+ib);R) and B := ∆∗(0, R+r). Then, Dx\{0} ⊂ B,
and

ℓ(x+ ib) =

∫
D\{x+ib}

η(ζ)

ζ − (x+ ib)
dλ(ζ)

=

∫
Dx\{0}

η(ζ + x+ ib)

ζ
dλ(ζ)

=

∫
B

χDx\{0}(ζ)
η(ζ + x+ ib)

ζ
dλ(ζ) .
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Consider the function

G : B × J → C , (ζ, x) 7→ χDx\{0}(ζ)
η(ζ + x+ ib)

ζ
.

The following hold:

(i) For each x ∈ J , the function ζ 7→ G(x, ζ) on B is integrable.
(ii) For each ζ ∈ B and x ∈ J , we have

G(ζ, x) =


η(ζ + x+ ib)

ζ
if |ζ − z0 + x+ ib| < R

0 if |ζ − z0 + x+ ib| > r2 .

Fix some ζ ∈ B and x0 ∈ J . If |ζ − z0 + x0 + ib| < R, then there is some neigh-
bourhood U of x0 in J such that for all x ∈ U we also have |ζ − z0 + x+ ib| < R
and hence

G(ζ, x) =
η(ζ + x+ ib)

ζ

for all x ∈ U . Thus, applying the chain rule and denoting by (s1, s2) the standard
coordinates on R2, we have

d

dx
G(ζ, x)

∣∣∣∣
x0

=
d

dx

(
η(ζ + x+ ib)

ζ

)∣∣∣∣
x0

=
1

ζ

∂η

∂s1

∣∣∣∣
ζ+x0+ib

.

On the other hand, if |ζ − z0 + x0 + ib| > r2, there is some neighbourhood U ′ of x0
in J such that for all x ∈ U ′ we also have |ζ − z0 + x+ ib| > r2. Then, G(ζ, x) = 0
for all x ∈ U ′ and thus

d

dx
G(ζ, x)

∣∣∣∣
x0

= 0 .

In conclusion, for each ζ ∈ B the function x 7→ G(ζ, x) is C1 on J and

d

dx
G(ζ, x)

∣∣∣∣
x0

=


1

ζ

∂η

∂s1

∣∣∣∣
ζ+x0+ib

if |ζ − z0 + x0 + ib| < R

0 if |ζ − z0 + x0 + ib| > r2 .

(iii) Since ∂η
∂s1

is continuous on D and supp ∂η
∂s1

⊂ ∆(z0; r2), we may choose T ∈ (0,+∞)

such that
∣∣∣ ∂η∂s1 ∣∣∣ < T on D. Then, for each ζ ∈ B and x0 ∈ J ,∣∣∣∣∣ ddx G(ζ, x)

∣∣∣∣
x0

∣∣∣∣∣ ≤ T

|ζ|
.

Thus, we may apply dominated derivation to conclude that

d

dx

(∫
D\{x+ib}

η(ζ)

ζ − (x+ ib)
dλ(ζ)

)∣∣∣∣
a

=
d

dx

(∫
B

χDa\{0}(ζ)
η(ζ + x+ ib)

ζ
dλ(ζ)

)∣∣∣∣
a

=

∫
B

χDa\{0}(ζ)
1

ζ

∂η

∂s1

∣∣∣∣
ζ+a+ib

dλ(ζ)

=

∫
Da\{0}

1

ζ

∂η

∂s1
(ζ + a+ ib) dλ(ζ)

=

∫
D\{a+ib}

1

ζ − (a+ ib)

∂η

∂s1
(ζ) dλ(ζ) ,
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so that
∂ℓ

∂x
(w) =

∫
D\{w}

1

ζ − w

∂η

∂s1
(ζ) dλ(ζ) =

∫
B

χ∆(z0−w;R)\{0}(ζ)
1

ζ

∂η

∂s1
(ζ + w) dλ(ζ) .

Similar reasoning shows that

∂ℓ

∂y
(w) =

∫
D\{w}

1

ζ − w

∂η

∂s2
(ζ) dλ(ζ) =

∫
B

χ∆(z0−w;R)\{0}(ζ)
1

ζ

∂η

∂s2
(ζ + w) dλ(ζ) .

Note that the functions ζ 7→ ∂η
∂s1

(ζ) and ζ 7→ ∂η
∂s2

(ζ) are Cm−1 on D and have support

in ∆(z0; r2). We show that ∂ℓ
∂x

and ∂ℓ
∂y

are continuous on ∆(z0; r). Let z ∈ ∆(z0; r) and

suppose {zk}k∈N is a sequence in ∆(z0; r) converging to z. For each k ∈ N, define the
function

vk : B → C , vk(ζ) := χ∆(z0−zk;R)\{0}(ζ)
1

ζ

∂η

∂s1
(ζ + zk)

=


1

ζ

∂η

∂s1
(ζ + zk) if |ζ − z0 + zk| < R

0 if |ζ − z0 + zk| > r2 ,

and define also

v : B → C , v(ζ) := χ∆(z0−z;R)\{0}(ζ)
1

ζ

∂η

∂s1
(ζ + z)

=


1

ζ

∂η

∂s1
(ζ + z) if |ζ − z0 + z| < R

0 if |ζ − z0 + z| > r2 .

For each ζ ∈ B, if |ζ − z0 + z| < R then there is N ∈ N such that for all k ≥ N we also
have |ζ − z0 + zk| < R; and similarly, if |ζ − z0 + z| > r2 then there is N ′ ∈ N such that
for all k ≥ N ′ we also have |ζ − z0 + zk| > r2. As a result, vk → v pointwise as k → ∞.
Moreover, for all k ∈ N and ζ ∈ B, ∣∣vk(ζ)∣∣ ≤ T

|ζ|
.

We may then apply the Dominated Convergence Theorem to conclude that

∂ℓ

∂x
(zk) =

∫
B

vk dλ→
∫
B

v dλ =
∂ℓ

∂x
(z) as k → ∞ .

Thus, ∂ℓ
∂x

is continuous on ∆(z0; r), and by a similar argument, ∂ℓ
∂y

is continuous on

∆(z0; r). We use this to show that the function

ϑ1 : ∆(z0; r) → C , z 7→
∫
D\{z}

(−2i)β1(ζ)

ζ − z
dλ(ζ)

is Ck. Since the function ζ 7→ (−2i)β1(ζ) on D is Ck and has support in ∆(z0; r2), the
function ϑ1 has continuous partial derivatives of first order, of the form

∂ϑ1

∂x
(z) =

∫
D\{z}

δ1(ζ)

ζ − z
dλ(ζ)

and
∂ϑ1

∂y
(z) =

∫
D\{z}

δ2(ζ)

ζ − z
dλ(ζ) ,
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on D, where δ1 := (−2i)∂β1
∂s1

and δ2 := (−2i)∂β1
∂s2

are Ck−1 functions D → C also sup-

ported in ∆(z0; r2). If k = 1, then we have shown ϑ1 is Ck. Suppose k ≥ 2 and let
m ∈ {1, . . . , k− 1}. If ϑ1 has continuous partial derivatives of mth order, each of which
can be written as

z 7→
∫
D\{z}

δ(ζ)

ζ − z
dλ(ζ)

for some Ck−m function δ : D → C supported in ∆(z0; r2), then ϑ1 has continuous
partial derivatives of (m+ 1)th order, which can each be written as

z 7→
∫
D\{z}

γ(ζ)

ζ − z
dλ(ζ)

for some Ck−(m+1) function γ : D → C supported in ∆(z0; r2). Thus, ϑ1 has continuous
partial derivatives of all orders up to k and hence it is Ck on ∆(z0; r).

It remains to show that the function

ϑ2 : ∆(z0; r) → C , z 7→
∫
D\{z}

(−2i)β2(ζ)

ζ − z
dλ(ζ)

is Ck. Suppose φ : D → C is a measurable bounded function such that φ = 0 on
∆(z0; r1). Suppose w ∈ ∆(z0; r) with a := Re(w) and b := Im(w), and let J ′ ⊂ R be
the open interval J ′ := {x ∈ R |x+ ib ∈ ∆(z0; r)}. Let also D′ := D \ {x+ ib |x ∈ R}.
For any n ∈ N, the function

H : D′ × J ′ → C , (ζ, x) 7→ φ(ζ)

(ζ − (x+ ib))n

fulfils:

(i) For a fixed x ∈ J ′, if E ∈ (0,+∞) is an upper bound for |φ| on D, then the function
ζ 7→ H(ζ, x) on D′ is bounded by E

(r1−r)n and hence it is integrable.

(ii) For each ζ ∈ D′ the function x 7→ H(ζ, x) on J ′ is differentiable with

d

dx
H(ζ, x)

∣∣∣∣
x0

=
nφ(ζ)

(ζ − (x0 + ib))n+1

for each x0 ∈ J ′.
(iii) For each ζ ∈ D′ and x0 ∈ J ′, we have∣∣∣∣∣ ddxH(ζ, x)

∣∣∣∣
x0

∣∣∣∣∣ ≤ nE

(r1 − r)n+1
.

Applying again dominated derivation, we conclude that

d

dx

(∫
D′

φ(ζ)

(ζ − (x+ ib))n
dλ(ζ)

)∣∣∣∣
a

=

∫
D′

nφ(ζ)

(ζ − (a+ ib))n+1
dλ(ζ) .

Thus, letting

Γ : ∆(z0; r) → C , z 7→
∫
D\{z}

φ(ζ)

(ζ − z)n
dλ(ζ) ,

for x ∈ J ′ we have

Γ(x+ ib) =

∫
D\{x+ib}

φ(ζ)

(ζ − (x+ ib))n
dλ(ζ) =

∫
D′

φ(ζ)

(ζ − (x+ ib))n
dλ(ζ) .
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Then,
∂Γ

∂x
(w) =

∫
D′

nφ(ζ)

(ζ − w)n+1
dλ(ζ) =

∫
D\{w}

nφ(ζ)

(ζ − w)n+1
dλ(ζ) ,

and, by a similar argument,

∂Γ

∂y
(w) =

∫
D′

in φ(ζ)

(ζ − w)n+1
dλ(ζ) =

∫
D\{w}

in φ(ζ)

(ζ − w)n+1
dλ(ζ) = i

∂Γ

∂x
(w).

As before, we show that ∂Γ
∂x

and ∂Γ
∂y

are continuous. Let z ∈ ∆(z0; r) and let {zk}k∈N be

a sequence in ∆(z0; r) converging to z. Define the functions

uk : D → C , ζ 7→ χD\{zk}(ζ)
nφ(ζ)

(ζ − zk)n+1

for k ∈ N, and

u : D → C , ζ 7→ χD\{z}(ζ)
nφ(ζ)

(ζ − z)n+1
.

Then, uk → u as k → ∞ pointwise on D, and for all k ∈ N we have |uk| ≤ nE
(r1−r)n+1 . By

the Dominated Convergence Theorem,

∂Γ

∂x
(zk) =

∫
D

uk dλ→
∫
D

u dλ =
∂Γ

∂x
(z)

as k → ∞. This shows that ∂Γ
∂x

and ∂Γ
∂y

are continuous on ∆(z0; r). Again, since Γ is

real-differentiable and fulfils ∂Γ
∂y

= i∂Γ
∂x
, it is holomorphic on ∆(z0; r).

Then, since the function ζ 7→ (−2i)β2(ζ) on D is continuous, bounded, and vanishes

on ∆(z0; r1), the function ϑ2 has continuous partial derivatives of first order given by

∂ϑ2

∂x
(z) =

∫
D\{z}

(−2i)β2(ζ)

(ζ − z)2
dλ(ζ)

and
∂ϑ2

∂y
(z) =

∫
D\{z}

2β2(ζ)

(ζ − z)2
dλ(ζ)

for z ∈ ∆(z0; r). If n ∈ N and ϑ2 has continuous partial derivatives of nth order which
can each be written as

z 7→
∫
D\{z}

φ(ζ)

(ζ − z)n+1
dλ(ζ)

for some measurable bounded function φ : D → C that vanishes on ∆(z0; r1), then ϑ2

has continuous partial derivatives of (n+ 1)th order that can each be written as

z 7→
∫
D\{z}

♡(ζ)

(ζ − z)n+2
dλ(ζ)

for some measurable bounded hearty function ♡ : D → C that vanishes on ∆(z0; r1) (a
function is defined to be hearty when the author has run out of letters in the Latin and
Greek alphabets to write it). Thus, ϑ2 is C∞ on ∆(z0; r), and it is also holomorphic.

We gather all the results to conclude the proof. As we showed initially, the function
f1 is C∞ and holomorphic on D. Moreover, the function

ϑ1 : ∆(z0; r) → C , z 7→
∫
D\{z}

(−2i)β1(ζ)

ζ − z
dλ(ζ)
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is Ck and the function

ϑ2 : ∆(z0; r) → C , z 7→
∫
D\{z}

(−2i)β2(ζ)

ζ − z
dλ(ζ)

is C∞ and holomorphic. Then, we have:

(a) f2|∆(z0;r)
= ϑ1 + ϑ2 is Ck, and since r ∈ (0, R) is arbitrary, f2 is Ck on D. Thus,

f =
1

2πi
(f1 + f2)

is Ck on D.
(b) Returning to our choice of r, for all z ∈ ∆(z0; r) we have

∂f

∂z̄
(z) =

1

2πi

(
∂f1
∂z̄

(z) +
∂ϑ1

∂z̄
(z) +

∂ϑ2

∂z̄
(z)

)
=

1

2πi

∂ϑ1

∂z̄
(z)

and

∂ϑ1

∂z̄
(z) =

1

2

(∫
D\{z}

1

ζ − z
(−2i)

∂β1
∂s1

(ζ) dλ(ζ) + i

∫
D\{z}

1

ζ − z
(−2i)

∂β1
∂s2

(ζ) dλ(ζ)

)
=

1

2

(∫
D\{z}

1

ζ − z

∂β1
∂s1

(ζ) dζ ∧ dζ̄ + i

∫
D\{z}

1

ζ − z

∂β1
∂s2

(ζ) dζ ∧ dζ̄
)

=

∫
D\{z}

∂β1/∂ζ̄

ζ − z
dζ ∧ dζ̄ .

Since β1 is Ck on a neighbourhood of D, for each z ∈ ∆(z0; r) ⊂ ∆(z0; r1) ⊂ D
Cauchy’s Integral Formula gives∫

D\{z}

∂β1/∂ζ̄

ζ − z
dζ ∧ dζ̄ = 2πiβ1(z)−

∫
∂D

β1(ζ)

ζ − z
dζ = 2πiβ(z) ,

so that
∂f

∂z̄
(z) = β(z) .

Again, since r ∈ (0, R) was arbitrary, we have

∂f

∂z̄
= β

on D.
(c) By (b), for all z ∈ D \ suppβ we have

∂f

∂z̄
(z) = 0 ,

and since D \ suppβ is open and f is Ck, this implies that f is holomorphic on
D \ suppβ.

□

Lemma 4.16. Suppose Ω ⊂ C is open and f : Ω → C is a C1 holomorphic function.
Then, f is C∞ and f ′ is also holomorphic.
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Proof. Let z0 ∈ Ω and choose R ∈ (0,∞) such that D := ∆(z0;R) fulfils D ⊂ Ω.
Since f is continuous on Ω, so too is its restriction to ∂D (that is, the pullback ι∗f by
ι : ∂D → Ω). Then, by Lemma 4.15 with α = f on ∂D and β = 0 on Ω, the function

g : D → C , z 7→ 1

2πi

∫
∂D

f(ζ)

ζ − z
dζ

is C∞. Moreover, since f is C1 and ∂f/∂z̄ = 0 on Ω, Cauchy’s Integral Formula gives

f(z) =

∫
∂D

f(ζ)

ζ − z
dζ

for all z ∈ D, which shows that f is C∞ on D. Thus, f is C∞ on Ω. Moreover, as
we saw in the proof of Lemma 4.15, the partial derivatives ∂g

∂x
and ∂g

∂y
on D are also

holomorphic, so that

∂f ′

∂z̄
(z0) =

(
∂

∂z̄

∂f

∂x

)
(z0) = 2πi

(
∂

∂z̄

∂g

∂x

)
(z0) = 0 .

Thus, f ′ is also holomorphic on Ω. □

Theorem 4.17. (Goursat’s Theorem) Let S = (a, b) × (c, d) ⊂ C be an open bounded
rectangle, for suitable a, b, c, d ∈ R. If f : Ω → C is a complex-differentiable function on
some neighbourhood Ω of S, then letting

γ1 : [a, b] → Ω , t 7→ t+ ic ,

γ2 : [c, d] → Ω , t 7→ b+ it ,

γ3 : [−b,−a] → Ω , t 7→ −t+ id ,

γ4 : [−d,−c] → Ω , t 7→ a− it ,

which are C1 paths whose images are respectively the bottom, right, top, and left sides
of ∂S, we have

ISf :=

∫
γ1

f dz +

∫
γ2

f dz +

∫
γ3

f dz +

∫
γ4

f dz = 0 .

Proof. For any open bounded rectangle R in Ω such that R ⊂ Ω and any continuous
function h : Ω → C, denote by IRh the sum of the integrals of h dz along each of the
four sides of R as defined above for S and f . Then, if R = (a′, b′)× (c′, d′), we have

IRh =

∫
(a′,b′)

h(t+ ic′) dλ(t) +

∫
(c′,d′)

h(b′ + it)i dλ(t)

+

∫
(−b′,−a′)

h(−t+ id′)(−1) dλ(t) +

∫
(−d′,−c′)

h(a′ − it)(−i) dλ(t) ,

and

|IRh| ≤
∫
(a′,b′)

∣∣h(t+ ic′)
∣∣ dλ(t) + ∫

(c′,d′)

∣∣h(b′ + it)
∣∣ dλ(t)

+

∫
(−b′,−a′)

∣∣h(−t+ id′)
∣∣ dλ(t) + ∫

(−d′,−c′)

∣∣h(a′ − it)
∣∣ dλ(t)

≤
(
sup
z∈R

∣∣h(z)∣∣ ) · LR ,
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where LR := 2(b′ − a′ + d′ − c′) denotes the sum of the lengths of the four sides of R.
Let S1 := S. For each n ∈ N, starting from n = 1, divide Sn into a 2× 2 array of four
equally sized subrectangles Rn

1 , R
n
2 , R

n
3 and Rn

4 as in the figure, and define Sn+1 := Rn
j

for any j ∈ {1, 2, 3, 4} such that∣∣∣IRn
j
f
∣∣∣ = max

{∣∣∣IRn
1
f
∣∣∣ ,∣∣∣IRn

2
f
∣∣∣ ,∣∣∣IRn

3
f
∣∣∣ ,∣∣∣IRn

4
f
∣∣∣ } .

Define also Dn := sup{ |z1 − z2| | z1, z2 ∈ Sn} (which is the length of the diagonal of Sn)
for all n ∈ N.

Fix n ∈ N. One can check that

ISnf = IRn
1
f + IRn

2
f + IRn

3
f + IRn

4
f ,

so that

|ISnf | ≤
∣∣∣IRn

1
f
∣∣∣+∣∣∣IRn

2
f
∣∣∣+∣∣∣IRn

3
f
∣∣∣+∣∣∣IRn

4
f
∣∣∣ ≤ 4

∣∣ISn+1f
∣∣ .

We also have LSn+1 =
1
2
LSn , and Dn+1 =

1
2
Dn. Then, for all n ∈ N we have

|ISf | ≤ 4n−1|ISnf | ,

LSn =
1

2n−1
LS ,

Dn =
1

2n−1
D1 .

Since {Sn}n∈N is a decreasing sequence of compact subsets of C, there exists a point
z0 ∈

⋂
n∈N Sn ⊂ Ω. Since f is complex-differentiable on Ω, the function

g : Ω → C , z 7→


f(z)− f(z0)

z − z0
− f ′(z0) if z ̸= z0

0 if z = z0

is continuous, and for all z ∈ Ω we have f(z) = g(z)(z − z0) + f ′(z0)(z − z0) + f(z0).
For each n ∈ N, explicit computation gives

ISn(z 7→ f ′(z0)(z − z0) + f(z0)) = 0 ,

so that

|ISf | ≤ 4n−1|ISnf |
= 4n−1

∣∣ISn(z 7→ g(z)(z − z0))
∣∣

≤ 4n−1

(
sup
z∈Sn

∣∣g(z)(z − z0)
∣∣ ) · LSn

≤ 4n−1

(
sup
z∈Sn

∣∣g(z)∣∣ ) ·DnLSn

= 4n−1

(
sup
z∈Sn

∣∣g(z)∣∣ ) · 1

4n−1
D1LS

=

(
sup
z∈Sn

∣∣g(z)∣∣ ) ·D1LS .
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For any ε ∈ (0,+∞), we may find δ ∈ (0,+∞) such that for all z ∈ Ω with |z − z0| < δ,
we have

∣∣g(z)∣∣ < ε/(D1LS). We may also find N ∈ N with DN < δ, so that for all

z ∈ SN we have |z − z0| < δ and hence
∣∣g(z)∣∣ < ε/(D1LS). Then,

|ISf | ≤
(

sup
z∈SN

∣∣g(z)∣∣ ) ·D1LS ≤ ε

D1LS
·D1LS = ε .

□

Lemma 4.18. Let S ⊂ C be an open bounded rectangle, and f : S → C a holomorphic
function. Choose any z0 = x0 + iy0 ∈ S, with x0, y0 ∈ R, and define the function

F : S → C , z 7→
∫ x

x0

f(t+ iy0) dt+ i

∫ y

y0

f(x+ it) dt

for z ∈ S with x := Re(z) and y := Im(z). Then, F is C1 and holomorphic with F ′ = f .

Proof. We first show that ∂F
∂y

= if . Suppose S = (a, b)× (c, d) for suitable a, b, c, d ∈ R.
Choose w ∈ S and set α := Re(w) and β := Im(w). Consider the function

g : S → C , z 7→
∫ y

y0

f(x+ it) dt .

We have {y ∈ R |α + iy ∈ S} = (c, d). If {yk}k∈N is a sequence in (β, d) converging to
β, for each k ∈ N we have

g(α + iyk)− g(α + iβ)

yk − β
=

∫ yk

y0

f(α + it) dt−
∫ β

y0

f(α + it) dt

yk − β

=

∫ yk

β

f(α + it) dt

yk − β

=

∫
(0,1)

f
(
α + i(t(yk − β) + β)

)
· (yk − β

)
dλ(t)

yk − β

=

∫
(0,1)

f
(
α + i(t(yk − β) + β)

)
dλ(t) .

For all t ∈ (0, 1), we have f
(
α + i(t(yk − β) + β)

)
→ f(α + iβ) as k → ∞. Moreover,

there exists a compact subset A ⊂ S such that for all k ∈ N and t ∈ (0, 1) we have

α+i(t(yk−β)+β) ∈ A. Thus, for some P ∈ (0,+∞) we have
∣∣∣f(α + i(t(yk − β) + β)

)∣∣∣ ≤
P for all k ∈ N and t ∈ (0, 1). We may then apply the Dominated Convergence Theorem
to conclude that

g(α + iyk)− g(α + iβ)

yk − β
→ f(α + iβ) as k → ∞ .
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On the other hand, if {yk}k∈N is a sequence in (c, β) converging to β, for each k ∈ N we
have

g(α + iyk)− g(α + iβ)

yk − β
=

∫ yk

y0

f(α + it) dt−
∫ β

y0

f(α + it) dt

yk − β

=

∫ β

yk

f(α + it) dt

β − yk

=

∫
(0,1)

f
(
α + i(t(β − yk) + yk)

)
· (β − yk

)
dλ(t)

β − yk

=

∫
(0,1)

f
(
α + i(t(β − yk) + yk)

)
dλ(t) ,

and reasoning as above, we obtain

g(α + iyk)− g(α + iβ)

yk − β
→ f(α + iβ) as k → ∞ .

Thus,
∂g

∂y
(w) = f(w) ,

so
∂F

∂y
(w) = if(w) .

We now show that ∂F
∂x

= f . By Goursat’s Theorem (Theorem 4.17), for each z =
x+ iy ∈ S we also have

F (z) = i

∫ y

y0

f(x0 + it) dt+

∫ x

x0

f(t+ iy) dt .

Then, reasoning analogously, for any w ∈ S we have

∂F

∂x
(w) = f(w).

In conclusion, we have ∂F
∂x

= f and ∂F
∂y

= if on S. Thus, F has continuous partial

derivatives of first order on S and hence it is C1, and the fact that ∂F
∂y

= i∂F
∂x

guarantees

that the Cauchy-Riemann equations are fulfilled, so that F is holomorphic. Moreover,
we have

F ′ =
∂F

∂x
= f .

□

Theorem 4.19. A holomorphic complex-valued function on an open subset of C is
smooth.

Proof. Suppose Ω ⊂ C is open and f : Ω → C is holomorphic. For any point w ∈ Ω, we
may choose an open bounded rectangle S in C such that w ∈ S ⊂ Ω. By Lemmas 4.16
and 4.18, there exists a holomorphic C∞ function F : S → C such that F ′ = f |S on S.

Since F ′ = ∂F
∂x

is C∞ on S, so too is f |S. □
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Remark 4.20. Note that it follows from Lemma 4.16 and Theorem 4.19 that if Ω ⊂ C
is open and f is holomorphic on Ω, then f ′ = df

dz
= ∂f

∂x
is also holomorphic on Ω.

Theorem 4.21. Suppose Ω ⊂ C is open, K ⊂ Ω is compact and nonempty, and

A :=
∑
α∈Θ2

ℓ

aα

(
∂

∂x

)α
is a linear differential operator of order ℓ ∈ Z≥0 on Ω such that for all α ∈ Θ2

ℓ we have
aα ∈ L∞

loc(Ω). Then, there exists C = C(Ω, K,A) ∈ [0,+∞) such that for all f ∈ O(Ω)
and for all p ∈ [1,+∞],

∥Af∥L∞(K) ≤ C∥f∥Lp(Ω) ,

where we let ∥f∥Lp(Ω) := +∞ if f ̸∈ Lp(Ω).

Proof. Choose an open set U ⊂ Ω such that K ⊂ U ⋐ Ω, and let

C1 :=

{
1 if λ(U) ≤ 1

λ(U) if λ(U) > 1 .

Fix f ∈ O(Ω) and p ∈ [1,+∞], and suppose f ∈ Lp(Ω). Define

q :=


+∞ if p = 1
p
p−1

if p ∈ (1,+∞)

1 if p = +∞ .

Then, we have
1

p
+

1

q
= 1 ,

with the conventions 1
0
:= +∞ and 1

+∞ := 0. Since U ⊂ Ω, we have f ∈ Lp(U);

moreover, letting g : U → C denote the constant function 1 on U , we have g ∈ Lq(U).
By Hölder’s inequality, we know that the function f = fg on U is in L1(U) and

∥f∥L1(U) =∥fg∥L1(U) ≤∥f∥Lp(U)∥g∥Lq(U) =∥f∥Lp(U) λ(U)
1
q

(where λ(U)
1
q = 1 if q = +∞). Then, we have

∥f∥L1(U) ≤ C1∥f∥Lp(U) ≤ C1∥f∥Lp(Ω) .

If f ̸∈ Lp(Ω), the above equality also holds.

Since K ⊂ U is compact, we may choose a ∈ (0,+∞) such that for all z0 ∈ K,
∆(z0; a) ⊂ U . Choose also b ∈ (0, a) ∩ (0, 3), and let ρ : ∆(0; a) → R be a C∞ bump

function such that ρ = 1 on ∆(0; b
3
) and suppρ ⊂ ∆(0; 2b

3
). Define

M := max
m∈{0,...,ℓ}

∥∥∥∥ ∂m∂xm ∂ρ∂z̄
∥∥∥∥
L∞(∆(0,b))

∈ (0,+∞) .

Fix z0 ∈ K, and define the functions

µz0 : ∆(z0; a) → ∆(0; a) , z 7→ z − z0

and

ρz0 := ρ ◦ µz0 : ∆(z0; a) → R .
109



Fix also m ∈ {0, . . . , ℓ}. Since the function ρz0
dmf
dzm

on ∆(z0; a) is C1, by Cauchy’s
Integral Formula we have

dmf

dzm
(z0) =

(
ρz0

dmf

dzm

)
(z0) =

1

2πi

(∫
∂∆(z0;b)

(
ρz0

dmf
dzm

)
(z)

z − z0
dz+

∫
∆(z0;b)\{z0}

∂
(
ρz0

dmf
dzm

)
/∂z̄

z − z0
dz∧dz̄

)
.

Since suppρz0 ⊂ ∆(z0;
2b
3
), we have∫

∂∆(z0;b)

(
ρz0

dmf
dzm

)
(z)

z − z0
dz = 0 .

Moreover,∫
∆(z0;b)\{z0}

∂
(
ρz0

dmf
dzm

)
/∂z̄

z − z0
dz ∧ dz̄ =

∫
∆(z0;b)\{z0}

(∂ρz0/∂z̄)
dmf
dzm

z − z0
(−2i) dλ .

Define

φz0 : ∆(z0; b) \ {z0} → C , z 7→ (∂ρz0/∂z̄)(z)

z − z0
.

Since ρz0 = 1 on ∆(z0;
b
3
) and ρz0 = 0 on ∆(z0; a) \∆(z0;

2b
3
), the function φz0 vanishes

outside of the annulus {
z ∈ C

∣∣∣∣ b3 ≤|z − z0| ≤
2b

3

}
,

and hence we have φz0 ∈ D(∆(z0; b) \ {z0}). Since f is holomorphic, we have

dmf

dzm
=
∂mf

∂xm
;

so, regarding B := ∂m

∂xm
as a linear differential operator of order m on ∆(z0; b) \ {z0},

and applying Lemma 3.10 (i), we have∫
∆(z0;b)\{z0}

(∂ρz0/∂z̄)
dmf
dzm

z − z0
(−2i) dλ =

∫
∆(z0;b)\{z0}

φz0B(−2if) dλ

=

∫
∆(z0;b)\{z0}

(−2i)f · tBφz0 dλ

=

∫
∆(z0;b)\{z0}

(−2i)f · (−1)m
∂mφz0
∂xm

dλ .

As one can check, on ∆(z0; a), and hence on ∆(z0; b) \ {z0}, for all q ∈ {0, . . . , ℓ} we
have

∂q

∂xq
∂ρz0
∂z̄

=
∂q

∂xq
∂

∂z̄
(ρ ◦ µz0) =

(
∂q

∂xq
∂ρ

∂z̄

)
◦ µz0 .

Then, on ∆(z0; b) \ {z0},
∂mφz0
∂xm

=
∂m

∂xm

(
∂ρz0/∂z̄

z − z0

)
=

m∑
q=0

(
m

q

)(
∂m−q

∂xm−q
∂ρz0
∂z̄

)
∂q

∂xq

(
1

z − z0

)

=
m∑
q=0

(
m

q

)((
∂m−q

∂xm−q
∂ρ

∂z̄

)
◦ µz0

)
(−1)q q !

1

(z − z0)q+1
.
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Let now w ∈ ∆(z0; b) \ {z0}. If |w − z0| ≥ b
3
, using the fact that 3

b
> 1, we have∣∣∣∣∂mφz0∂xm

(w)

∣∣∣∣ =
∣∣∣∣∣∣
m∑
q=0

(
m

q

)((
∂m−q

∂xm−q
∂ρ

∂z̄

)
(w − z0)

)
(−1)q q!

1

(w − z0)q+1

∣∣∣∣∣∣
≤

m∑
q=0

(
m

q

)
Mq!

(
3

b

)q+1

≤
ℓ∑

q=0

ℓ!Mℓ!

(
3

b

)ℓ+1

= (ℓ+ 1)(ℓ!)2M

(
3

b

)ℓ+1

;

while if |w − z0| < b
3
, we have ∣∣∣∣∂mφz0∂xm

(w)

∣∣∣∣ = 0 .

Thus, we have ∣∣∣∣∂mφz0∂xm

∣∣∣∣ ≤ (ℓ+ 1)(ℓ!)2M

(
3

b

)ℓ+1

=: C2

on ∆(z0; b) \ {z0}. Gathering our results so far, we have∣∣∣∣dmfdzm
(z0)

∣∣∣∣ =
∣∣∣∣∣ 1

2πi

∫
∆(z0;b)\{z0}

(−2i)f · (−1)m
∂mφz0
∂xm

dλ

∣∣∣∣∣
≤ 1

π

∫
∆(z0;b)\{z0}

∣∣∣∣f ∂mφz0∂xm

∣∣∣∣ dλ
≤ 1

π
C2

∫
∆(z0;b)\{z0}

|f | dλ

≤ 1

π
C2∥f∥L1(U)

≤ 1

π
C2C1∥f∥Lp(Ω) ,

which implies that ∥∥∥∥dmfdzm

∥∥∥∥
L∞(K)

≤ 1

π
C2C1∥f∥Lp(Ω) .

Now, observe that for each α = (α1, α2) ∈ Θ2
ℓ , on Ω we may write(

∂

∂x

)α
f =

∂α2

∂yα2

∂α1f

∂xα1
= iα2

d|α|f

dz|α|
.

Then, we have

Af =
ℓ∑

q=0

bq
dqf

dzq
,

where

bq :=

q∑
j=0

ija(q−j,j) ∈ L∞
loc(Ω)
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for each q ∈ {0, . . . , ℓ}. We may then choose a set S ⊂ K of measure 0 such that on
K \ S we have ∣∣bq∣∣ ≤∥∥bq∥∥L∞(K)

for all q ∈ {0, . . . , ℓ}. Then, letting

C3 := max
q∈{0,...,ℓ}

∥∥bq∥∥L∞(K)
,

for all z0 ∈ K \ S we have

∣∣(Af)(z0)∣∣ =
∣∣∣∣∣∣
ℓ∑

q=0

bq(z0)
dqf

dzq
(z0)

∣∣∣∣∣∣
≤

ℓ∑
q=0

∥∥bq∥∥L∞(K)

1

π
C2C1∥f∥Lp(Ω)

≤ (ℓ+ 1)
1

π
C3C2C1∥f∥Lp(Ω) .

Thus, letting C := (ℓ+ 1) 1
π
C3C2C1 ∈ [0,+∞), we have

∥Af∥L∞(K) ≤ C∥f∥Lp(Ω) .

□

Corollary 4.22. Suppose Ω ⊂ C is open. Then, for every nonempty compact subset
K ⊂ Ω there exists a constant C = C(Ω, K) ∈ [0,+∞) such that for all f ∈ O(Ω),
p ∈ [1,+∞], and z, w ∈ K, we have∣∣f(z)− f(w)

∣∣ ≤|z − w|C∥f∥Lp(Ω) .

Proof. Choose an open subset U ⊂ Ω such that K ⊂ U ⋐ Ω, and choose a ∈ (0,+∞)
such that for all z0 ∈ K we have ∆(z0; a) ⊂ U . Choose also C1, C2 ∈ [0,+∞) such that
for all f ∈ O(Ω) and for all p ∈ [1,+∞],∥∥∥∥dfdz

∥∥∥∥
L∞(U)

=

∥∥∥∥∂f∂x
∥∥∥∥
L∞(U)

≤ C1∥f∥Lp(Ω)

and

∥f∥L∞(U) ≤ C2∥f∥Lp(Ω) .

Fix f ∈ O(Ω), p ∈ [1,+∞], and z, w ∈ K. We consider two cases:

(i) |w − z| < a. Choosing small enough ε ∈ (0,+∞), for all t ∈ (−ε, 1 + ε) we have
z + (w − z)t ∈ ∆(z; a), so we may define the function

µ : (−ε, 1 + ε) → ∆(z; a) , t 7→ z + (w − z)t .

The composition g := f ◦ µ : (−ε, 1 + ε) → C is then C∞, and as one can check,
for each t0 ∈ (−ε, 1 + ε) we have

dg

dt
(t0) = (w − z) · df

dz
(z + (w − z)t0) .

Applying the Fundamental Theorem of Calculus, we obtain∫
[0,1]

dg

dt
dλ = g(1)− g(0) = f(w)− f(z) ,
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so that ∣∣f(w)− f(z)
∣∣ = ∣∣∣∣∣

∫
[0,1]

dg

dt
dλ

∣∣∣∣∣
=

∣∣∣∣∣
∫
[0,1]

(w − z) · df
dz

(z + (w − z)t) dλ(t)

∣∣∣∣∣
≤|w − z|

∫
[0,1]

∣∣∣∣dfdz (z + (w − z)t)

∣∣∣∣ dλ(t)
≤|w − z|

∥∥∥∥dfdz
∥∥∥∥
L∞(U)

≤|w − z|
∥∥∥∥dfdz

∥∥∥∥
L∞(U)

≤|w − z|C1∥f∥Lp(Ω) .

(ii) |w − z| ≥ a. We have∣∣f(w)− f(z)
∣∣

|w − z|
≤

2∥f∥L∞(U)

a
≤

2∥f∥L∞(U)

a
≤

2C2∥f∥Lp(Ω)

a
.

Thus, letting C := max{C1,
2C2

a
}, we have∣∣f(w)− f(z)

∣∣ ≤|w − z|C∥f∥Lp(Ω)

for all f ∈ O(Ω), p ∈ [1,+∞], and z, w ∈ K. □

Corollary 4.23. Let Ω ⊂ C be open. Suppose {fn}n∈N is a sequence of holomorphic
functions on Ω, and suppose f : Ω → C is a function such that {fn} converges uniformly
to f on compact subsets of Ω. Then, f is holomorphic and for all m ∈ N the sequence

{f (m)
n }n∈N of mth complex derivatives converges to the mth complex derivative f (m)

uniformly on compact subsets of Ω.

Proof. First note that the fact that {fn} converges uniformly to f on compact subsets
of Ω implies that f is continuous on Ω. Let w ∈ Ω, and choose a ∈ (0,+∞) fulfilling

∆(w; a) ⊂ Ω. Then, for each n ∈ N and z0 ∈ ∆(w; a), we have

fn(z0) =

∫
∂∆(w;a)

fn(z)

z − z0
dz =

∫
(0,2π)

fn(w + aeiθ)

w + aeiθ − z0
aieiθ dλ(θ).

Since f is continuous on ∂∆(w; a), the function

g : ∆(w; a) → C , z0 7→
∫
∂∆(w;a)

f(z)

z − z0
dz =

∫
(0,2π)

f(w + aeiθ)

w + aeiθ − z0
aieiθ dλ(θ)

is holomorphic. Fix z0 ∈ ∆(w; a), and let Mz0 := dist(z0, ∂∆(w; a)) ∈ (0,+∞). Let
ε ∈ (0,+∞), and choose N ∈ N such that for all n ≥ N

sup
∂∆(w;a)

|fn − f | ≤ Mz0ε

2πa
.
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Then, for all n ≥ N we have∣∣fn(z0)− g(z0)
∣∣ = ∣∣∣∣∣

∫
(0,2π)

fn(w + aeiθ)

w + aeiθ − z0
aieiθ dλ(θ)−

∫
(0,2π)

f(w + aeiθ)

w + aeiθ − z0
aieiθ dλ(θ)

∣∣∣∣∣
≤
∫
(0,2π)

∣∣∣∣∣aieiθ
(
fn(w + aeiθ)− f(w + aeiθ)

)
w + aeiθ − z0

∣∣∣∣∣ dλ(θ)
≤
∫
(0,2π)

a
Mz0ε/(2πa)

Mz0

dλ(θ)

= ε ,

which shows that fn(z0) → g(z0) as n → ∞. By uniqueness of the limit, we must then
have g(z0) = f(z0). Since z0 ∈ ∆(w; a) was arbitrary, we have f = g on ∆(w; a), so f is
holomorphic on ∆(w; a). It follows that f ∈ O(Ω).

We now show that for all m ∈ N, f (m)
n → f (m) uniformly on compact subsets of

Ω. Fix m ∈ N and let K ⊂ Ω be compact. Choose open subsets U, V ⊂ Ω fulfilling
K ⊂ U ⋐ Ω and U ⊂ V ⋐ Ω. Choose also Cm ∈ (0,+∞) such that for all g ∈ O(V ) we
have ∥∥∥g(m)

∥∥∥
L∞(U)

=

∥∥∥∥∂mg∂xm

∥∥∥∥
L∞(U)

≤ Cm∥g∥L∞(V ) .

Let ε ∈ (0,+∞) and choose N ∈ N such that for all n ≥ N we have

sup
V

|fn − f | ≤ ε

Cm
.

Then, for all n ≥ N and z0 ∈ K we have∣∣∣f (m)
n (z0)− f (m)(z0)

∣∣∣ = ∣∣∣∣∂m(fn − f)

∂xm
(z0)

∣∣∣∣
≤
∥∥∥∥∂m(fn − f)

∂xm

∥∥∥∥
L∞(U)

≤
∥∥∥∥∂m(fn − f)

∂xm

∥∥∥∥
L∞(U)

≤ Cm∥fn − f∥L∞(V )

≤ ε .

□

To prove the next corollary, we will apply the following theorem, which we state
without proof:

Theorem 4.24. (Arzelà–Ascoli theorem). Suppose Ω ⊂ C is open and {fn}n∈N is
a sequence of complex-valued functions on Ω such that on every compact subset of Ω
the functions {fn}n∈N are uniformly bounded and equicontinuous. Then, there exists a
function f : Ω → C and a subsequence of {fn}n∈N converging to f uniformly on compact
subsets of Ω.

Corollary 4.25. (Montel’s theorem). Suppose Ω ⊂ C is open and {fn}n∈N is a sequence
of holomorphic functions on Ω that is uniformly bounded on compact subsets of Ω. Then,
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there exists a subsequence {fnk
}k∈N and a function f ∈ O(Ω) such that {fnk

} converges
uniformly to f on compact subsets of Ω.

Proof. We first show that the functions {fn}n∈N are equicontinuous on compact subsets
of Ω; that is, that given a compact subset K ⊂ Ω, for every ε ∈ (0,+∞) there exists
δ ∈ (0,+∞) such that for all n ∈ N and for all z, w ∈ K fulfilling |z − w| < δ, we
have

∣∣fn(z)− fn(w)
∣∣ < ε. Let K ⊂ Ω be compact and nonempty, and choose an open

subset U ⋐ Ω containing K. Choose also M ∈ (0,+∞) such that for all n ∈ N we have
|fn| ≤M on U . By Corollary 4.22, there exists C ∈ (0,+∞) such that for all g ∈ O(U)
and for all z, w ∈ K, ∣∣g(z)− g(w)

∣∣ ≤|z − w|C∥g∥L∞(U) .

Let ε ∈ (0,+∞), and let δ := ε/(2CM). Then, for all n ∈ N and for all z, w ∈ K such
that |z − w| < δ, we have∣∣fn(z)− fn(w)

∣∣ ≤|z − w|C∥fn∥L∞(U) ≤ δ CM =
ε

2
< ε .

Thus, the functions {fn}n∈N are equicontinuous on K. By Theorem 4.24, it follows that
there exists a subsequence {fnk

}k∈N and a function f : Ω → C such that {fnk
} converges

uniformly to f on compact subsets on Ω. By Corollary 4.23, we have f ∈ O(Ω), which
concludes the proof. □

Lemma 4.26. Suppose Ω ⊂ C is open and v : Ω → C is a locally integrable function
fulfilling

0 =

(
∂

∂z̄

)
distr

v .

Then, there exists a function f ∈ O(Ω) such that v = f almost everywhere in Ω.

Proof. Choose a smooth nonnegative function k : C → R fulfilling supp k ⊂ ∆(0; 1)

and
∫
C k dλ = 1. Choose also w ∈ Ω and a ∈ (0,+∞) such that ∆(w; a) ⊂ Ω, and let

D := ∆(w; a). Since v is locally integrable on Ω, for each δ ∈ (0,+∞) we may consider
the function

vδ : Ωδ := {x ∈ C | dist(x,Ωc) > δ} → C , x 7→
∫
D

v(y) k

(
x− y

δ

)
1

δ2
dλ(y) ,

which is C∞. Moreover, since ∂/∂z̄ is a linear differential operator with constant coef-
ficients, by Lemma 3.11 we have

0 = 0δ =
∂vδ
∂z̄

on Ωδ. This shows that for each δ ∈ (0,+∞) the function vδ : Ωδ → C is holomorphic.
Since D is compact, we may choose N ∈ N such that for all n ∈ N≥N we have

D ⊂ Ω 1
N
⊂ Ω 1

n
.

We then obtain a sequence {v 1
n
}n≥N of holomorphic functions on Ω1/N . We wish to

show that this sequence is uniformly bounded on compact subsets of Ω1/N . Fix then a
compact set K ⊂ Ω1/N , and choose open subsets U, V ⊂ Ω1/N fulfilling K ⊂ U ⋐ Ω1/N

and U ⊂ V ⋐ Ω1/N . By Lemma 3.3 (vi), we know that
∥∥∥v 1

n
− v
∥∥∥
L1(V )

→ 0 as N≥N ∋
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n → ∞, which implies that there exists M ∈ (0,∞) such that for all n ∈ N≥N we have∥∥∥v 1
n
− v
∥∥∥
L1(V )

≤M . We may also choose C ∈ (0,+∞) such that for all g ∈ O(V ),

∥g∥L∞(U) ≤ C∥g∥L1(V ) .

Then, for all n ∈ N≥N and z0 ∈ K we have∣∣∣v 1
n
(z0)

∣∣∣ ≤∥∥∥v 1
n

∥∥∥
L∞(U)

≤
∥∥∥v 1

n

∥∥∥
L∞(U)

≤ C
∥∥∥v 1

n

∥∥∥
L1(V )

≤ C
∥∥∥v 1

n

∥∥∥
L1(V )

≤ C
(∥∥∥v 1

n
− v
∥∥∥
L1(V )

+∥v∥L1(V )

)
≤ C

(
M +∥v∥L1(V )

)
,

which shows that {v 1
n
}n≥N is uniformly bounded on K. By Montel’s theorem (Corollary

4.25), it follows that there exists a subsequence {v 1
nk

}k∈N and a function fD ∈ O(Ω1/N)

such that {v 1
nk

}k∈N converges to g uniformly on compact subsets of Ω1/N . Then, since

D ⊂ Ω1/N is compact, for each k ∈ N we have∥∥∥∥v 1
nk

− g

∥∥∥∥
L1(D)

=

∫
D

∣∣∣∣v 1
nk

− g

∣∣∣∣ dλ ≤
(
sup
D

∣∣∣∣v 1
nk

− g

∣∣∣∣ )πa2 → 0

as k → ∞. Thus, we have v 1
nk

→ g in L1(D) as k → ∞, and again by Lemma 3.3 (vi),

we also have v 1
nk

→ v in L1(D) as k → ∞. It follows that v = g almost everywhere in

D and hence also v = g almost everywhere in D.

We may find a countable open cover {Dm}m∈N for Ω such that for all m ∈ N we

have Dm = ∆(w; a) for some w ∈ Ω and a ∈ (0,+∞) fulfilling ∆(w; a) ⊂ Ω. Then,
by the above reasoning, for each m ∈ N there exists a function fm ∈ O(Dm) such that
v = fm almost everywhere on Dm, that is, there exists a measurable subset Sm ⊂ Dm

of measure 0 such that v = fm on Dm \ Sm. Suppose m1,m2 ∈ N and Dm1 ∩Dm2 ̸= ∅.
We wish to show that then fm1 = fm2 on Dm1 ∩ Dm2 . Fix z0 ∈ Dm1 ∩ Dm2 . If
z0 /∈ Sm1 ∪ Sm2 , then we have fm1(z0) = v(z0) = fm2(z0). Suppose that z0 ∈ Sm1 ∪ Sm2 ,
and choose ε ∈ (0,∞) such that ∆(z0; ε) ⊂ Dm1 ∩ Dm2 . For each n ∈ N, we cannot
have ∆(z0;

ε
n
) ⊂ Sm1 ∪ Sm2 , since Sm1 ∪ Sm2 has measure 0. Thus, we may choose a

point zn ∈ ∆(z0;
ε
n
) \ (Sm1 ∪ Sm2), which fulfils fm1(zn) = v(zn) = fm2(zn). We then

obtain a sequence {zn}n∈N ⊂ Dm1 ∩ Dm2 converging to z0 such that for all n ∈ N we
have fm1(zn) = fm2(zn), and by continuity of fm1 and fm2 on Dm1 ∩Dm2 it then follows
that fm1(z0) = fm2(z0). Then, the function

f : Ω → C , z 7→ fm(z) if z ∈ Dm for m ∈ N

is well defined and holomorphic on Ω. Moreover, the set S :=
⋃
m∈N Sm ⊂ Ω has measure

0, and for each z0 ∈ Ω \ S we have v(z0) = f(z0). This concludes the proof. □
116



Theorem 4.27. (Regularity theorem). Suppose Ω ⊂ C is open and let k ∈ Z≥1. If
β ∈ Ck(Ω) and u ∈ L1

loc(Ω) are functions satisfying

β =

(
∂

∂z̄

)
distr

u ,

then there exists a function f ∈ Ck(Ω) such that u = f almost everywhere in Ω.

Proof. Choose w ∈ Ω and a ∈ (0,+∞) fulfilling ∆(w; a) ⊂ Ω, and let D := ∆(w; a). By
Lemma 4.15, there exists a function gD ∈ Ck(D) fulfilling ∂gD/∂z̄ = β on D. Then, on
D we have

β =

(
∂

∂z̄

)
distr

u and β =
∂gD
∂z̄

=

(
∂

∂z̄

)
distr

gD ,

from which it follows that

0 =

(
∂

∂z̄

)
distr

(u− gD) .

Then, by Lemma 4.26, there exists a function hD ∈ O(D) such that u − gD = hD
almost everywhere in D. It follows that u = gD + hD almost everywhere on D, where
gD + hD ∈ Ck(D).

As in the proof of Lemma 4.26, we may find a countable open cover {Dm}m∈N for
Ω such that for each m ∈ N we have Dm = ∆(w; a) for some w ∈ Ω and a ∈ (0,+∞)

fulfilling ∆(w; a) ⊂ Ω. Then, for each m ∈ N there exists a function fm ∈ Ck(Dm) such
that u = fm almost everywhere on Dm. The proof that for each m1,m2 ∈ N we have
fm1 = fm2 on Dm1 ∩Dm2 is exactly as in the proof of Lemma 4.26. Then, the function

f : Ω → C , z 7→ fm(z) if z ∈ Dm for m ∈ N

is well defined and Ck on Ω, and we have u = f almost everywhere in Ω. □

Theorem 4.28. (Mean value property). Suppose z0 ∈ C, R ∈ (0,+∞), and f ∈
O(∆(z0;R)). Then, for all r ∈ (0, R) we have

1

2π

∫
(0,2π)

f(z0 + reiθ) dλ(θ) = f(z0) =
1

πr2

∫
∆(z0;r)

f dλ .

Proof. Fix r ∈ (0, R). The first equality is given by Cauchy’s Integral Formula:

f(z0) =
1

2πi

∫
∂∆(z0;r)

f(z)

z − z0
dz

=
1

2πi

∫
(0,2π)

f(z0 + reiθ)

reiθ
ireiθ dλ(θ)

=
1

2π

∫
(0,2π)

f(z0 + reiθ) dλ(θ) .
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For the second equality, we have

1

πr2

∫
∆(z0;r)

f dλ =
1

πr2

∫
(0,r)

ρ

(∫
(0,2π)

f(z0 + ρeiθ) dλ(θ)

)
dλ(ρ)

=
1

πr2

∫
(0,r)

ρ 2πf(z0) dλ(ρ)

=
1

πr2
2πf(z0)

r2

2
= f(z0) .

□

Lemma 4.29. Suppose Ω ⊂ C is open and z0 ∈ Ω. If f : Ω → C is a continuous
function that is holomorphic on Ω \ {z0}, then f is holomorphic on Ω.

Proof. Define the function

g : Ω → C , z 7→ (z − z0)f(z) .

On Ω \ {z0}, g is holomorphic as a product of holomorphic functions. Moreover, if
{zn}n∈N is a sequence in Ω \ {z0} converging to z0, then for each n ∈ N

g(zn)− g(z0)

zn − z0
= f(zn) ,

which converges to f(z0) as n→ +∞. This shows that g is holomorphic on Ω.

Choose a ∈ (0,+∞) such that ∆(z0; a) ⊂ Ω. Fix w ∈ ∆(z0; a) \ {z0}, and choose
r ∈ (0,|w − z0|). Denote by Ar the open annulus

Ar := ∆(z0; r, a) = {z ∈ C | r < |z − z0| < a} ,

which contains w. Since Ar is a relatively compact smooth open set in C, and since f
is holomorphic on a neighbourhood of the closure of Ar in C, we have

f(w) =
1

2πi

∫
∂Ar

f(z)

z − w
dz ,

where ∂Ar has the smooth manifold structure and orientation induced from C with
respect to Ar. Defining

U := {z0 + reiθ | θ ∈ (0, 2π)} = ∂∆(z0; r) \ {z0 + r}

and

ϕ : U → (−2π, 0) , z0 + reiθ 7→ −θ ,
the pair (U, ϕ) is a positively oriented chart on ∂Ar. We may then write

f(w) =
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz +

1

2πi

∫
∂∆(z0;r)

f(z)

z − w
dz

=
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz +

1

2πi

∫
(−2π,0)

f(z0 + re−iθ)

z0 + re−iθ − w
(−i)re−iθ dλ(θ)

=
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz − 1

2πi

∫
(0,2π)

f(z0 + reiθ)

z0 + reiθ − w
ireiθ dλ(θ) .
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We wish to show that

1

2πi

∫
(0,2π)

f(z0 + reiθ)

z0 + reiθ − w
ireiθ dλ(θ) = 0 .

For this, observe that on Ω \ {w}, which is a neighbourhood of ∆(z0; r), the function

z 7→ g(z)
z−w is holomorphic. Then, Cauchy’s Integral Formula gives

g(z0)

z0 − w
=

1

2πi

∫
∂∆(z0;r)

g(z)

(z − w)(z − z0)
dz ,

where the boundary ∂∆(z0; r) now has the counterclockwise orientation. Since g(z0) = 0,
we then have

0 =
1

2πi

∫
∂∆(z0;r)

g(z)

(z − w)(z − z0)
dz

=
1

2πi

∫
∂∆(z0;r)

f(z)

z − w
dz

=
1

2πi

∫
(0,2π)

f(z0 + reiθ)

z0 + reiθ − w
ireiθ dλ(θ) .

It then follows that

f(w) =
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz ,

where ∂∆(z0; a) has the counterclockwise orientation and w was an arbitrary point in
∆(z0; a) \ {z0}. Since f is continuous, the function

h : ∆(z0; a) → C , ζ 7→ 1

2πi

∫
∂∆(z0;a)

f(z)

z − ζ
dz

is holomorphic, and by the above reasoning, we have f = h on ∆(z0; a) \ {z0}. By
continuity of f and h, we must then have f = h on ∆(z0; a), from which it follows that
f is holomorphic on ∆(z0; a) and hence on Ω. □

Theorem 4.30. (Riemann’s extension theorem) Suppose Ω ⊂ C is open and z0 ∈ Ω,
and suppose f : Ω → C is a function that is holomorphic on Ω \ {z0}. If

(i) lim
z→z0

(z − z0)f(z) = 0 ,

or if

(ii) f ∈ Lploc(Ω) for some p ∈ [2,+∞],

then there exists a (unique) function f̂ ∈ O(Ω) such that f̂ = f on Ω \ {z0}.

Proof. Choose a ∈ (0,+∞) such that ∆(z0; a) ⊂ Ω, and fix w ∈ ∆(z0; a) \ {z0}. As in
the proof of Lemma 4.29, it follows from the fact that f is holomorphic on Ω \{z0} that
for any r ∈ (0,|w − z0|) we have

f(w) =
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz − 1

2πi

∫
(0,2π)

f(z0 + reiθ)

z0 + reiθ − w
ireiθ dλ(θ) ,
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where ∂∆(z0; a) has the counterclockwise orientation. In particular, this means that for
all r ∈ (0,|w − z0|) we have

1

2πi

∫
(0,2π)

f(z0 + reiθ)

z0 + reiθ − w
ireiθ dλ(θ) = α ,

where

α :=
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz − f(w)

is independent of r. We wish to show that whenever (i) or (ii) hold, we have α = 0.

Suppose first that (i) holds, and fix r ∈ (0,|w − z0|). The function

g : Ω → C , z 7→ (z − z0)f(z)

is continuous on Ω and holomorphic on Ω \ {z0}, and hence by Lemma 4.29 we have

g ∈ O(Ω). Moreover, also as in the proof of Lemma 4.29, since the function z 7→ g(z)
z−w

on Ω \ {w} ⊃ ∆(z0; r) is holomorphic, we have

0 =
g(z0)

z0 − w
=

1

2πi

∫
(0,2π)

f(z0 + reiθ)

z0 + reiθ − w
ireiθ dλ(θ) = α .

Suppose now that (ii) holds. Let {rn}n∈N be a sequence in (0,|w − z0|) converging
to 0, and fix n ∈ N. Defining

q :=


p

p− 1
∈ (1, 2] if p ∈ [2,+∞)

1 if p = +∞ ,

we have 1
p
+ 1

q
= 1. Since the function

h : Ω \ {w} → C , z 7→ z − z0
z − w

is continuous, it is in Lq(∆(z0; rn)). Since f ∈ Lp(∆(z0; rn)), by Hölder’s inequality we
then have fh ∈ L1(∆(z0; rn)) and∣∣∣∣∣

∫
∆(z0;rn)

fh dλ

∣∣∣∣∣ ≤
∫
∆(z0;rn)

|fh| dλ ≤∥f∥Lp(∆(z0;rn))
∥h∥Lq(∆(z0;rn))

.

Note that ∫
∆(z0;rn)

fh dλ =

∫
∆(z0;rn)

f(z)(z − z0)

z − w
dλ(z)

=

∫
(0,rn)

ρ

(∫
(0,2π)

f(z0 + ρeiθ) ρeiθ

z0 + ρeiθ − w
dλ(θ)

)
dλ(ρ)

=

∫
(0,rn)

ρ 2πα dλ(ρ)

= πr2nα .

Moreover, for each z ∈ ∆(z0; rn) we have

|z − w| ≥|w − z0| −|z − z0| ≥|w − z0| − rn > 0 ,

so that ∣∣h(z)∣∣ = ∣∣∣∣z − z0
z − w

∣∣∣∣ ≤ rn
|w − z0| − rn

.
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Then,

∥h∥Lq(∆(z0;rn))
=

(∫
∆(z0;rn)

|h|q dλ
) 1

q

≤
(∫

∆(z0;rn)

∣∣∣∣ rn
|w − z0| − rn

∣∣∣∣q dλ) 1
q

=

(
π(rn)

2

∣∣∣∣ rn
|w − z0| − rn

∣∣∣∣q ) 1
q

= π
1
q (rn)

2
q

rn
|w − z0| − rn

.

Then, we have

πr2n|α| =

∣∣∣∣∣
∫
∆(z0;rn)

fh dλ

∣∣∣∣∣ ≤∥f∥Lp(∆(z0;rn))
π

1
q (rn)

2
q

rn
|w − z0| − rn

,

so that

|α| ≤∥f∥Lp(∆(z0;rn))
π

1
q
−1 (rn)

2
q
−1

|w − z0| − rn
.

Suppose first that p ∈ [2,+∞). As n → ∞, we then have (rn)
2
q−1

|w−z0|−rn → 0 if q ∈ (1, 2),

and (rn)
2
q−1

|w−z0|−rn → 1
|w−z0| if q = 2. Thus, since ∥f∥Lp(∆(z0;rn))

→ 0, we must have |α| = 0.

If p = +∞, the sequence
{
∥f∥Lp(∆(z0;rn))

}
n∈N is bounded and (rn)

2
q−1

|w−z0|−rn = rn
|w−z0|−rn → 0

as n → +∞, which also implies that |α| = 0 (alternatively, we could use the fact that
L∞
loc(Ω) ⊂ Lsloc(Ω) for all s ∈ [1,+∞], so that we can always assume p ∈ [2,+∞)). This

shows that we also have α = 0 when (ii) holds.

It follows that whenever either (i) or (ii) hold, we have

f(w) =
1

2πi

∫
∂∆(z0;a)

f(z)

z − w
dz

for all w ∈ ∆(z0; a) \ {z0}. Since f is continuous on Ω \ {z0}, and hence on ∂∆(z0; a),
the function

∆(z0; a) → C , ζ 7→ 1

2πi

∫
∂∆(z0;a)

f(z)

z − ζ
dz

is holomorphic. Then, the function

f̂ : Ω → C , ζ 7→


f(ζ) if ζ ∈ Ω \ {z0},
1

2πi

∫
∂∆(z0;a)

f(z)

z − ζ
dz if ζ = z0

is holomorphic and fulfils f̂ = f on Ω \ {z0}. □

4.5. Power Series Representation and Global Solution to the Inhomogeneous
Cauchy-Riemann Equation.
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Definition 4.31. (Complex power series) Let z0 ∈ C. A (complex) power series centered
at z0 is a formal expression of the form

∞∑
n=0

an(z − z0)
n ,

where {an}n∈N0 is a collection of complex numbers. We say that the power series∑∞
n=0 an(z − z0)

n converges at some w ∈ C if the series{ N∑
n=0

an(w − z0)
n

}
N∈N0

⊂ C

converges in C to some limit
∑∞

n=0 an(w − z0)
n. We say that a power series converges

on a set A ⊂ C if it converges at all points in A. If the power series does not converge
at some point w ∈ C, we say it diverges at w.

Theorem 4.32. Let
∑∞

n=0 an(z − z0)
n be a complex power series centered at z0 ∈ C,

and let

S := lim sup
n→∞

|an|
1
n ∈ [0,+∞] , R :=

1

S
,

where 1
S
:= +∞ if S = 0, and 1

S
:= 0 if S = +∞. Then,

(i) if R = +∞, the power series converges absolutely on C;
(ii) if R ∈ (0,+∞), the power series converges absolutely on the open disc {z ∈

C | |z − z0| < R} = ∆(z0;R), and diverges on the set {z ∈ C | |z − z0| > R};
(iii) if R = 0, then the power series converges only at z0.

Proof. (i) Suppose R = +∞, and let z ∈ C \ {z0}. Since S = 0, there exists N ∈ N
such that

sup
n≥N

|an|
1
n <

1

2|z − z0|
.

Then, for every n ∈ N≥N we have

|an|
1
n |z − z0| <

1

2
,

which implies that

|an||z − z0|n <
1

2n
.

Thus, for every n ∈ N≥N we have

n∑
k=0

|ak||z − z0|k =
N−1∑
k=0

|ak||z − z0|k +
n∑

k=N

|ak||z − z0|k

≤
N−1∑
k=0

|ak||z − z0|k +
n∑

k=N

1

2k

≤
N−1∑
k=0

|ak||z − z0|k + 1 .

It follows that the increasing sequence{ n∑
k=0

|ak||z − z0|k
}
n∈N

⊂ R
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is bounded and hence it converges in R.
(ii) Since R ∈ (0,+∞), we must also have S ∈ (0,+∞). Suppose z ∈ ∆

(
z0;

1
S

)
.

Letting

a :=
1
S
−|z − z0|

2
> 0 ,

we have |z − z0| < 1
S
− a. Since S = lim sup

n→∞
|an|

1
n , there exists N ∈ N such that

sup
n≥N

|an|
1
n < S + aS2 .

Then, for all n ∈ N≥N we have

|an|
1
n |z − z0| <

(
1

S
− a

)
(S + aS2) = 1− a2S2 < 1 ,

so that

|an||z − z0|n < (1− a2S2)n .

It follows that for all n ∈ N≥N we have

n∑
k=0

|ak||z − z0|k =
N−1∑
k=0

|ak||z − z0|k +
n∑

k=N

|ak||z − z0|k

<
N−1∑
k=0

|ak||z − z0|k +
n∑

k=N

(1− a2S2)k

<
N−1∑
k=0

|ak||z − z0|k +
∞∑
k=N

(1− a2S2)k ∈ R .

Thus, the increasing sequence{ n∑
k=0

|ak||z − z0|k
}
n∈N

⊂ R

is bounded and hence it converges in R.
We now show that the power series

∑∞
n=0 an(z − z0)

n diverges at every point of
A := {z ∈ C | |z − z0| > 1

S
}. Let z ∈ A, and define

b :=
|z − z0| − 1

S

2
> 0 .

We then have |z − z0| > 1
S
+ b. Since for every n ∈ N we have

sup
m≥n

|am|
1
m ≥ S > S − bS2

1 + bS
,

we may find a subsequence
{∣∣ank

∣∣ 1
nk

}
k∈N such that for every k ∈ N we have∣∣ank

∣∣ 1
nk > S − bS2

1 + bS
.

Then, for every k ∈ N,∣∣ank

∣∣ 1
nk |z − z0| >

(
S − bS2

1 + bS

)(
1

S
+ b

)
= 1 ,
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so that ∣∣ank

∣∣|z − z0|nk > 1 .

It follows that the sequence {an(z−z0)n}n∈N does not converge to 0, which implies
that the series

∑∞
n=0 an(z − z0)

n cannot converge in C.
(iii) Since R = 0, we have S = +∞, which means that the sequence

{
|an|

1
n
}
n∈N is

unbounded. Then, for any z ∈ C \ {z0} we may find a subsequence
{∣∣ank

∣∣ 1
nk

}
k∈N

such that for all k ∈ N we have
∣∣ank

∣∣ 1
nk > 1

|z−z0| . Then, for all k ∈ N,∣∣ank

∣∣ 1
nk |z − z0| > 1 ,

so that ∣∣ank

∣∣|z − z0|nk > 1 .

As before, this implies the sequence {an(z − z0)
n}n∈N does not converge to 0, so

the series
∑∞

n=0 an(z − z0)
n cannot converge in C.

□

The number R in Theorem 4.32 is referred to as the radius of convergence of the
power series. We call the set ∆(z0;R) the (open) disc of convergence of the power series,
where we let ∆(z0; 0) := ∅. Note that the open disc of convergence is the largest open
set on which the power series converges.

Theorem 4.33. A complex power series
∑∞

n=0 an(z − z0)
n with radius of convergence

R ∈ (0,+∞] converges uniformly to its limit function

f : ∆(z0;R) → C , z 7→
∞∑
n=0

an(z − z0)
n

on compact subsets of ∆(z0;R). Moreover, f is holomorphic on ∆(z0;R).

Proof. For each n ∈ N0, define the function

gn : ∆(z0;R) → C , z 7→ an(z − z0)
n .

Then, we have
∑N

n=0 gn → f pointwise on ∆(z0;R) as N0 ∋ N → ∞. Let K ⊂ ∆(z0;R)
be compact. Then, there exists r ∈ (0, R) such that K ⊂ ∆(z0; r) ⊂ ∆(z0;R). Since
z0 + r ∈ ∆(z0;R), the power series converges absolutely at z0 + r, that is, the series∑∞

n=0|an| rn converges. For each n ∈ N0, and for every w ∈ K, we have∣∣gn(w)∣∣ = |an||w − z0|n ≤|an| rn =:Mn .

Thus, since
∑∞

n=0Mn converges, by the Weierstrass M -test it follows that
∑∞

n=0 gn
converges uniformly on K to some function h : K → C. We must then have h = f |K ,
which shows that the power series converges uniformly to f on compact subsets of
∆(z0;R). Then, by Corollary 4.23, we have f ∈ O(∆(z0;R)). □

Theorem 4.34. Let z0 ∈ C, and let
∑∞

n=0 an(z − z0)
n be a complex power series with

radius of convergence R ∈ [0,+∞].

(i) The power series
∞∑
n=1

nan(z − z0)
n−1 =

∞∑
n=0

(n+ 1)an+1(z − z0)
n
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also has radius of convergence R. Moreover, if R ∈ (0,+∞], and letting

f : ∆(z0;R) → C , z 7→
∞∑
n=0

an(z − z0)
n ,

we have
∞∑
n=1

nan(z − z0)
n−1 = f ′(z)

for all z ∈ ∆(z0;R).
(ii) The power series

∞∑
n=0

an
n+ 1

(z − z0)
n+1 =

∞∑
n=1

an−1

n
(z − z0)

n

also has radius of convergence R, and if R ∈ (0,+∞], then defining

g : ∆(z0;R) → C , z 7→
∞∑
n=0

an
n+ 1

(z − z0)
n+1 ,

we have

g′(z) =
∞∑
n=0

an(z − z0)
n

for all z ∈ ∆(z0;R).

Proof. (i) Let S be the radius of convergence of the power series
∞∑
n=1

nan(z − z0)
n−1 =

∞∑
n=0

(n+ 1)an+1(z − z0)
n .

We first show that S ≤ R. This is automatically true if S = 0. Suppose then that
S ∈ (0,+∞], and let w ∈ ∆(z0;S). Then, the (increasing) sequence{ N∑

n=1

n|an||w − z0|n−1

}
N∈N

⊂ R

converges to some L ∈ [0,+∞) as N → +∞. For each N ∈ N, we have

N∑
n=0

|an||w − z0|n = |a0|+|w − z0|
N∑
n=1

|an||w − z0|n−1

≤|a0|+|w − z0|
N∑
n=1

n|an||w − z0|n−1

≤|a0|+|w − z0|L .

Thus, the increasing sequence{ N∑
n=0

|an||w − z0|n
}
N∈N

⊂ R

is bounded and hence it converges. It follows that the power series
∑∞

n=0 an(z−z0)n
converges at w. Thus, the power series

∑∞
n=0 an(z − z0)

n converges at all points

of ∆(z0;S), which implies that R > 0 and ∆(z0;S) ⊂ ∆(z0;R). Thus, we must
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have S ≤ R. We now show that R ≤ S. As before, this holds if R = 0. Suppose
R ∈ (0,+∞], and define the functions

f : ∆(z0;R) → C , z 7→
∞∑
n=0

an(z − z0)
n

and

fN : ∆(z0;R) → C , z 7→
N∑
n=0

an(z − z0)
n

for each N ∈ N0. By Theorem 4.33, the sequence {fN}N∈N0 ⊂ O(∆(z0;R)) con-
verges to f uniformly on compact subsets of ∆(z0;R). Then, by Corollary 4.23, the
sequence {f ′

N}N∈N0 of complex derivatives converges uniformly on compact subsets
of ∆(z0;R) to f

′. Since f ′
0 = 0 and for each N ∈ N we have

f ′
N =

(
z 7→

N∑
n=1

nan(z − z0)
n−1 =

N−1∑
n=0

(n+ 1)an+1(z − z0)
n

)
,

it follows that the power series
∑∞

n=0(n+1)an+1(z− z0)
n converges on ∆(z0;R) to

f ′. We must then have R ≤ S, which concludes the proof that S = R. Moreover,
if R ∈ (0,+∞], then we have

∞∑
n=1

nan(z − z0)
n−1 =

∞∑
n=0

(n+ 1)an+1(z − z0)
n = f ′(z)

for each z ∈ ∆(z0;R).
(ii) Let T be the radius of convergence of the power series

∞∑
n=0

an
n+ 1

(z − z0)
n+1 =

∞∑
n=1

an−1

n
(z − z0)

n ,

and for each n ∈ N, let
bn :=

an−1

n
.

By (i), the power series

∞∑
n=1

nbn(z − z0)
n−1 =

∞∑
n=0

(n+ 1)bn+1(z − z0)
n =

∞∑
n=0

an(z − z0)
n

also has radius of convergence T , so we must have T = R. Suppose R ∈ (0,+∞],
and let

g : ∆(z0;R) → C , z 7→
∞∑
n=0

an
n+ 1

(z − z0)
n+1 =

∞∑
n=1

bn(z − z0)
n .

Then, also by (i), for all z ∈ ∆(z0;R) we have

g′(z) =
∞∑
n=1

nbn(z − z0)
n−1 =

∞∑
n=0

an(z − z0)
n .

□
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Definition 4.35. A function f : Ω → C is said to be (complex) analytic at a point
z0 ∈ Ω if there exist a neighbourhood U of z0 in Ω and a power series

∑∞
n=0 an(z − z0)

n

converging on U whose sum is equal to f on U . We say that f is analytic on Ω if it is
analytic at all points of Ω.

We know from Theorem 4.33 that a complex analytic function f : Ω → C on an
open subset Ω ⊂ C is holomorphic on Ω. The next theorem shows that, conversely, a
holomorphic function on an open subset Ω ⊂ C is analytic on Ω.

Theorem 4.36. Let z0 ∈ C and R ∈ (0,+∞], and suppose f : ∆(z0;R) → C is a
holomorphic function. Then, the power series

∞∑
n=0

f (n)(z0)

n!
(z − z0)

n

converges to f on ∆(z0;R).

Proof. Fix z ∈ ∆(z0;R), and choose rz ∈ (|z − z0| , R). For each n ∈ N0, define

an(z) :=
1

2πi

∫
∂∆(z0;rz)

f(ζ)

(ζ − z0)n+1
dζ =

1

2π

∫
(0,2π)

f(z0 + rze
iθ)

(rzeiθ)n
dλ(θ)

and

gn : (0, 2π) → C , θ 7→ 1

2π

f(z0 + rze
iθ)

(rzeiθ)n
(z − z0)

n

(where, throughout this proof, we let 00 := 1). Define also

h : (0, 2π) → C , θ 7→ 1

2π
f(z0 + rze

iθ)
rze

iθ

z0 + rzeiθ − z
.

For each θ ∈ (0, 2π), we have ∣∣∣∣z − z0
rzeiθ

∣∣∣∣ = |z − z0|
rz

∈ [0, 1) ,

so for N ∈ N0,

N∑
n=0

gn(θ) =
f(z0 + rze

iθ)

2π

N∑
n=0

(
z − z0
rzeiθ

)n
→ f(z0 + rze

iθ)

2π
· 1

1− z−z0
rzeiθ

=
f(z0 + rze

iθ)

2π
· rze

iθ

z0 + rzeiθ − z
= h(θ)

as N → ∞. Moreover, letting P ∈ (0,+∞) be an upper bound for |f | on ∂∆(z0; rz), for
each n ∈ N0 we have

|gn| ≤
P

2π

(
|z − z0|
rz

)n
=:Mn

on (0, 2π). Then, by the Weierstrass M -test, the series
∑∞

n=0 gn converges uniformly to
h on (0, 2π). It then follows that∫

(0,2π)

N∑
n=0

gn dλ→
∫
(0,2π)

h dλ
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as N → +∞. For each N ∈ N0, we have∫
(0,2π)

N∑
n=0

gn dλ =
N∑
n=0

∫
(0,2π)

1

2π

f(z0 + rze
iθ)

(rzeiθ)n
(z − z0)

n dλ(θ)

=
N∑
n=0

(
1

2π

∫
(0,2π)

f(z0 + rze
iθ)

(rzeiθ)n
dλ(θ)

)
(z − z0)

n

=
N∑
n=0

an(z)(z − z0)
n ,

and ∫
(0,2π)

h dλ =

∫
(0,2π)

1

2π
f(z0 + rze

iθ)
rze

iθ

z0 + rzeiθ − z
dλ(θ)

=
1

2πi

∫
(0,2π)

f(z0 + rze
iθ)

irze
iθ

z0 + rzeiθ − z
dλ(θ)

=
1

2πi

∫
∂∆(z0;rz)

f(ζ)

ζ − z
dζ

= f(z) .

Thus, we have
∞∑
n=0

an(z)(z − z0)
n = f(z) .

We now show that for each n ∈ N0 and for all z ∈ ∆(z0;R), we have

an(z) =
f (n)(z0)

n!
.

Fix n ∈ N0, and let z, w ∈ ∆(z0;R). We may assume without loss of generality that
rz ≤ rw. If rz = rw, then

an(z) =
1

2πi

∫
∂∆(z0;rz)

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∫
∂∆(z0;rw)

f(ζ)

(ζ − z0)n+1
dζ = an(w) .

Suppose rz < rw. Since the function ζ 7→ f(ζ)
(ζ−z0)n+1 on ∆(z0;R) \ {z0} is holomorphic

and ∆(z0; rz, rw) ⊂ ∆(z0;R) \ {z0}, Cauchy’s Theorem gives

0 =

∫
∂∆(z0;rz ,rw)

f(ζ)

(ζ − z0)n+1
dζ

=

∫
∂∆(z0;rw)

f(ζ)

(ζ − z0)n+1
dζ −

∫
∂∆(z0;rz)

f(ζ)

(ζ − z0)n+1
dζ

= 2πi
(
an(w)− an(z)

)
,

where ∂∆(z0; rw) and ∂∆(z0; rz) have the counterclockwise orientation. Thus, in this
case we also have an(z) = an(w). It follows that an(z) = an(w) for all z, w ∈ ∆(z0;R),
so that we may then define an := an(z) for any z ∈ ∆(z0;R). We then have

∞∑
n=0

an(z − z0)
n = f(z)
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for every z ∈ ∆(z0;R), that is, the power series
∑∞

n=0 an(z − z0)
n converges to f on

∆(z0;R). Then, applying induction on Theorem 4.34 (i), for all m ∈ N0 the power
series

∞∑
n=0

(n+m)!

n!
an+m(z − z0)

n

converges on ∆(z0;R) to f
(m). It follows that for each m ∈ N0 we have

f (m)(z0) = m! am ,

or

am =
f (m)(z0)

m!
,

which concludes the proof. □

Remark 4.37. It follows from Theorems 4.36 and 4.33 that if f ∈ O(∆(z0;R)) for
z0 ∈ C and R ∈ (0,+∞], then there exists a sequence {gn}n∈N0 of holomorphic functions
on C that converges to f uniformly on compact subsets of ∆(z0;R), namely

gn : C → C , z 7→
n∑
k=0

f (k)(z0)

k!
(z − z0)

k

for each n ∈ N0.

We are now ready to prove the existence of a global solution to the inhomogeneous
Cauchy-Riemann equation on an open disc of radius R ∈ (0,+∞]. An alternative proof
can be found in [1]. We first prove the particular case of compact support:

Lemma 4.38. Let z0 ∈ C and R ∈ (0,+∞]. Suppose k ∈ Z≥1∪{∞} and f : ∆(z0;R) →
C is a Ck function with compact support. Then, the function

g : ∆(z0;R) → C , z 7→ 1

2πi

∫
∆(z0;R)\{z}

f(ζ)

ζ − z
dζ ∧ dζ̄

is also Ck and fulfils
∂g

∂z̄
= f

on ∆(z0;R).

Proof. If R ∈ (0,+∞), we may extend f to a Ck function on a neighbourhood of

∆(z0;R), by defining it to be 0 outside of ∆(z0;R). The result then follows directly
from Lemma 4.15. Suppose R = +∞, and let w ∈ C. Since suppf ∪ {w} is compact,
we may choose r ∈ (0,+∞) such that suppf ∪ {w} ⊂ ∆(z0; r). For each z ∈ ∆(z0; r),
we have

g(z) =
1

2πi

∫
C\{z}

f(ζ)

ζ − z
dζ ∧ dζ̄

=
1

2πi

∫
∆(z0;r)\{z}

f(ζ)

ζ − z
dζ ∧ dζ̄ .

Since f is Ck on a neighbourhood of ∆(z0; r), it follows from Lemma 4.15 that the
restriction g|∆(z0;r)

is Ck and fulfils

∂
(
g|∆(z0;r)

)
∂z̄

= f
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on ∆(z0; r). Thus, every point w ∈ C has a neighbourhood where g is Ck and satisfies
∂g/∂z̄ = f . The desired result then follows. □

Theorem 4.39. (Global solution of the inhomogeneous Cauchy-Riemann equation).
Let z0 ∈ C and R ∈ (0,+∞]. For k ∈ Z≥1, suppose f : ∆(z0;R) → C is a Ck function.
Then, there exists another Ck function g : ∆(z0;R) → C fulfilling

∂g

∂z̄
= f

on ∆(z0;R).

Proof. If R ∈ (0,+∞), choose N ∈ N with 1
N
< R. For each n ∈ N, define

An :=

∆

(
z0;R− 1

N + n

)
if R ∈ (0,+∞),

∆(z0;n) if R = +∞ .

Also, for each n ∈ N define ρn : ∆(z0;R) → C to be a smooth bump function that is
equal to 1 on An+1 and has support in An+2, and let Fn : ∆(z0;R) → C be a Ck function
fulfilling ∂Fn/∂z̄ = ρnf on ∆(z0;R) (Lemma 4.38). Let G1 := F1. On A2, we have

∂(F2 −G1)

∂z̄
= ρ2f − ρ1f = f − f = 0 ,

so F2−G1 ∈ O(A2). Then, by Remark 4.37, there exists a function h1 ∈ O(C) such that∣∣(F2 −G1)− h1
∣∣ < 1

2
on A1, which is a compact subset of A2. Restrict h1 to ∆(z0;R),

and define G2 := F2−h1. Then, G2 is C
k on ∆(z0;R) and ∂G2/∂z̄ = ρ2f . We repeat the

process inductively: for each n ∈ N≥2, starting from n = 2, we have Gn ∈ Ck(∆(z0;R))
and ∂Gn/∂z̄ = ρnf , so on An+1,

∂(Fn+1 −Gn)

∂z̄
= ρn+1f − ρnf = f − f = 0 .

Thus, since Fn+1 − Gn ∈ O(An+1), we may find a function hn ∈ O(C) such that∣∣(Fn+1 −Gn)− hn
∣∣ < 1

2n
on An. Restrict hn to ∆(z0;R) and define Gn+1 := Fn+1 − hn.

We then have again Gn+1 ∈ Ck(∆(z0;R)) and ∂Gn+1/∂z̄ = ρn+1f .

Now, for all m ∈ N≥2, on A1 we have ∂(Gm −G1)/∂z̄ = 0 and

|Gm −G1| ≤
m−2∑
j=0

∣∣Gm−j −Gm−j−1

∣∣ ≤ m−2∑
j=0

1

2m−j−1
< 1 .

Thus, the holomorphic functions {Gm −G1}m∈N≥2
on A1 are uniformly bounded there.

It follows that there exist a function g1 ∈ O(A1) and a subsequence {Gm1(k) −G1}k∈N,
where m1 is a strictly increasing function N → N≥2, such that Gm1(k) −G1 converges to
g1 on A1 as k → ∞. It follows that the sequence {Gm1(k)}k∈N converges to G1 + g1 on
A1. We use induction again. For each n ∈ N and for all m ∈ N≥n+1, on An we have
∂(Gm −Gn)/∂z̄ = 0 and

|Gm −Gn| ≤
m−n−1∑
j=0

∣∣Gm−j −Gm−j−1

∣∣ ≤ m−n−1∑
j=0

1

2m−j−1
< 1 ,

so the holomorphic functions {Gm − Gn}m∈N≥n+1
are uniformly bounded on An. For a

fixed n ∈ N, suppose we have strictly increasing functions {mℓ}nℓ=1 from N to N≥2 (note
that then the composition m1 ◦ · · · ◦ mn is a strictly increasing function mapping N to
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N≥n+1) such that the sequence of holomorphic functions {G(m1◦ ··· ◦mn)(k)−Gn}k∈N on An
converges to some function gn ∈ O(An). Then, the sequence {G(m1◦ ··· ◦mn)(k)}k∈N con-
verges to Gn+ gn on An. Since the sequence of holomorphic functions {G(m1◦ ··· ◦mn)(k)−
Gn+1}k∈N≥2

on An+1 is uniformly bounded, it has a subsequence, which we may write
{G(m1◦ ··· ◦mn ◦mn+1)(k) −Gn+1}k∈N for some strictly increasing function mn+1 : N → N≥2,
converging to some function gn+1 ∈ O(An+1). Then, {G(m1◦ ··· ◦mn ◦mn+1)(k)}k∈N con-
verges to Gn+1+ gn+1 on An+1. On An, since {G(m1◦ ··· ◦mn ◦mn+1)(k)}k∈N is a subsequence
of {G(m1◦ ··· ◦mn)(k)}k∈N, we must have Gn + gn = Gn+1 + gn+1. We may then define the
function

g : ∆(z0;R) → C , g|An
:= Gn|An

+ gn for each n ∈ N .

Then, for each n ∈ N, on An the function g is Ck and fulfils

∂g

∂z̄
= ρnf = f .

Since ∆(z0;R) =
⋃
n∈NAn, this concludes the proof. □

Theorem 4.40. Suppose Ω ⊂ C is a connected open set, and suppose f : Ω → C is a
holomorphic function that vanishes on a nonempty open subset U of Ω. Then, f = 0 on
Ω.

Proof. Define the set

S := {w ∈ Ω | f vanishes on a neighbourhood of w in Ω}
Then, S is open, and it is also nonempty, since U ⊂ S. We show that S is also closed
in Ω. First note that for each w ∈ S we have f (n)(w) = 0 for all n ∈ N0. Suppose
z0 is a point in Ω such that there exists a sequence {wk}k∈N in S converging to z0.
Then, for each n ∈ N0 we have 0 = f (n)(wk) → f (n)(z0) as k → ∞, which implies that
f (n)(z0) = 0. Choosing R ∈ (0,+∞) such that ∆(z0;R) ⊂ Ω, Theorem 4.36 then gives
f = 0 on ∆(z0;R). It follows that z0 ∈ S, which shows that S is closed in Ω. Since Ω
is connected, we must then have S = Ω. Thus, f = 0 on Ω. □

Corollary 4.41. Suppose Ω ⊂ C is a connected open set, and let f : Ω → C be a
nonconstant holomorphic function.

(i) For all z0 ∈ Ω there exists m ∈ N such that f (m)(z0) ̸= 0.
(ii) For each z0 ∈ Ω, there exist unique m ∈ N0 and unique g ∈ O(Ω) such that

g(z0) ̸= 0 and f(z) = (z − z0)
mg(z) for all z ∈ Ω.

(iii) (Identity Theorem) The set f−1(0) has no limit points in Ω.
(iv) The sets (Re(f))−1(0) and (Im(f))−1(0) are nowhere dense in Ω.

Proof. (i) Let z0 ∈ Ω, and suppose f (m)(z0) = 0 for all m ∈ N. Then, choosing
R ∈ (0,+∞) such that ∆(z0;R) ⊂ Ω, by Theorem 4.36 we must have f = f(z0)
on ∆(z0;R). Then, the holomorphic function z 7→ f(z) − f(z0) on Ω vanishes on
∆(z0;R), which by Theorem 4.40 implies that it vanishes on Ω. It follows that
f = f(z0) in Ω, which contradicts the fact that f is nonconstant.

(ii) Let z0 ∈ Ω. We first show that if there exist m,n ∈ N0 and g, h ∈ O(Ω) such
that g(z0), h(z0) ̸= 0 and f(z) = (z − z0)

mg(z) = (z − z0)
nh(z) for all z ∈ Ω,

then we have n = m and g = h. If n = m, then we must have g = h on
Ω \ {z0}, so g = h on Ω by continuity. If n ̸= m, and assuming n < m, we
have (z − z0)

m−n(z − z0)
ng(z) = (z − z0)

nh(z) for all z ∈ Ω. It follows that
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(z− z0)
m−ng(z) = h(z) for all z ∈ Ω, so h(z0) = 0, which is a contradiction. Thus,

we must have n = m and g = h. We now show the existence of such m ∈ N0 and
g ∈ O(Ω). If f(z0) ̸= 0, then letting m := 0 and g := f the desired conditions are
fulfilled. Suppose f(z0) = 0, and let

m := min{n ∈ N | f (n)(z0) ̸= 0} .

Choosing R ∈ (0,+∞) such that ∆(z0;R) ⊂ Ω, for every z ∈ ∆(z0;R) we have

N∑
n=m

f (n)(z0)

n!
(z − z0)

n = (z − z0)
m

N∑
n=m

f (n)(z0)

n!
(z − z0)

n−m → f(z)

as N≥m ∋ N → ∞. Then, for all z ∈ ∆(z0;R) \ {z0} we have

N∑
n=m

f (n)(z0)

n!
(z − z0)

n−m → f(z)

(z − z0)m

as N≥m ∋ N → ∞. It follows that the power series
∞∑
n=0

f (n+m)(z0)

(n+m)!
(z − z0)

n

converges on ∆(z0;R), and it does so to f(z)
(z−z0)m for each z ∈ ∆(z0;R)\{z0}. Then,

defining the function

g : Ω → C , g(z) :=


∞∑
n=0

f (n+m)(z0)

(n+m)!
(z − z0)

n if z ∈ ∆(z0;R)

f(z)

(z − z0)m
otherwise

=


f(z)

(z − z0)m
if z ∈ Ω \ {z0}

f (m)(z0)

m!
if z = z0 ,

we have g ∈ O(Ω), g(z0) ̸= 0 and f(z) = (z − z0)
mg(z) for all z ∈ Ω.

(iii) Suppose there exist z0 ∈ Ω and a sequence {wn}n∈N in f−1(0) \ {z0} converging to
z0. Let g ∈ O(Ω) and m ∈ N0 such that g(z0) ̸= 0 and f(z) = (z− z0)

mg(z) for all
z ∈ Ω, as given by (ii). Then, for each n ∈ N we have 0 = f(wn) = (wn−z0)mg(wn),
which implies that g(wn) = 0. It follows that g(z0) = 0, which is a contradiction.
Thus, the set f−1(0) has no limit points in Ω.

(iv) Let u := Re(f) and v := Im(f). Suppose u−1(0) is not nowhere dense, that is, the
closure of u−1(0) in Ω, which is u−1(0) itself, has nonempty interior in Ω. Then,
there exists a nonempty open subset U ⊂ Ω contained in u−1(0). On U , we have

f ′ =
∂u

∂x
− i

∂u

∂y
= 0 ,

which implies that f (m) = 0 on U for all m ∈ N. This contradicts (i), which shows
that indeed u−1(0) must be nowhere dense in Ω. The proof that v−1(0) also is
nowhere dense in Ω is similar.

□
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Remark 4.42. Suppose f is a holomorphic function on an open subset Ω ⊂ C, not
necessarily connected, and let z0 ∈ Ω. If f is not identically 0 on any neighbourhood of
z0 in Ω, then the set

{n ∈ N0 | f (n)(z0) ̸= 0}
is nonempty and hence it has a minimum m ∈ N0. Then, by the proof of Corollary 4.41
(ii), defining

g : Ω → C , g(z) :=


f(z)

(z − z0)m
if z ∈ Ω

f (m)(z0)

m!
if z = z0,

m and g are respectively the unique number m ∈ N0 and unique function g ∈ O(Ω)
such that g(z0) ̸= 0 and f(z) = (z− z0)

mg(z) for all z ∈ Ω. We then call m the order of
f at z0, and denote it by ordz0f . If ordz0f ≥ 1, then we have f(z0) = 0, and z0 is called
a zero of order m (a simple zero if ordz0f = 1). If f does vanish on a neighbourhood of
z0 in Ω, then we say that f has order ordz0f = ∞ at z0.

Theorem 4.43. (Open Mapping Theorem). Suppose Ω ⊂ C is a connected open set
and f : Ω → C a nonconstant holomorphic function. Then, the image f(Ω) is open in
C.

Proof. We wish to show that for each z0 ∈ Ω there exists a neighbourhood Uz0 of z0 in
Ω such that f(Uz0) is open in C. Let z0 ∈ Ω, and suppose first that f ′(z0) ̸= 0. Then,
letting u := Re(f) and v := Im(f), the Jacobian determinant of f at z0 is given by∣∣∣∣∣∣∣∣∣∣

∂u

∂x
(z0)

∂u

∂y
(z0)

∂v

∂x
(z0)

∂v

∂y
(z0)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∂u

∂x
(z0) −∂v

∂x
(z0)

∂v

∂x
(z0)

∂u

∂x
(z0)

∣∣∣∣∣∣∣∣∣ =
(
∂u

∂x
(z0)

)2

+

(
∂v

∂x
(z0)

)2

=
∣∣f ′(z0)

∣∣2
and hence it is nonzero. It follows from the Inverse Function Theorem that there exist a
neighbourhood Uz0 of z0 in Ω and a neighbourhood V of f(z0) in C such that f(Uz0) = V .
Thus, f(Uz0) is open in C.

Suppose now that f ′(z0) = 0. By Corollary 4.41 (iii), we may find R ∈ (0,+∞) such

that ∆(z0;R) ⊂ Ω and for all z ∈ ∆(z0;R) \ {z0} we have f ′(z) ̸= 0 and f(z) ̸= f(z0).
Then, by the above argument, for each z ∈ ∆(z0;R) \ {z0} = ∆∗(z0;R) we may find a
neighbourhood Wz of z in ∆∗(z0;R) such that f(Wz) is open in C. We have

f(∆∗(z0;R)) = f

( ⋃
z∈∆∗(z0;R)

Wz

)
=

⋃
z∈∆∗(z0;R)

f(Wz) ,

so f(∆∗(z0;R)) is open in C. Moreover, since f(∆(z0;R)) is closed and contains
f(∆∗(z0;R)), we have

∂
(
f(∆∗(z0;R))

)
⊂ f(∆(z0;R))

= f(∆∗(z0;R)) ∪ f(∂∆(z0;R)) ∪ {f(z0)} .

Since f(∆∗(z0;R)) is open, we must then have

∂
(
f(∆∗(z0;R))

)
⊂ f(∂∆(z0;R)) ∪ {f(z0)} .
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Now, since the sets f(∂∆(z0;R)) and {f(z0)} in C are compact and disjoint, there exists
a ∈ (0,+∞) such that ∆(f(z0); a) ∩ f(∂∆(z0;R)) = ∅. It follows that

∆∗(f(z0); a) ∩ ∂
(
f(∆∗(z0;R))

)
= ∅ ,

so
∆∗(f(z0); a) ⊂ f(∆∗(z0;R)) ∪ ext (f(∆∗(z0;R))) .

Since ∆∗(f(z0); a) is connected, we must then have either ∆∗(f(z0); a) ⊂ f(∆∗(z0;R))
or ∆∗(f(z0); a) ⊂ ext (f(∆∗(z0;R))). Choosing a sequence {wn}n∈N in ∆∗(z0;R) con-
verging to z0, the sequence {f(wn)}n∈N ⊂ f(∆∗(z0;R)) must have points in ∆∗(f(z0); a).
Thus, we must have

∆∗(f(z0); a) ⊂ f(∆∗(z0;R)) ,

so that, letting Uz0 := ∆(z0;R), the image

f(Uz0) = f(∆∗(z0;R)) ∪ {f(z0)}
= f(∆∗(z0;R)) ∪∆∗(f(z0); a) ∪ {f(z0)}
= f(∆∗(z0;R)) ∪∆(f(z0); a)

is open in C.
Since for each z0 ∈ Ω there is a neighbourhood Uz0 of z0 in Ω such that f(Uz0) is

open in C, the image

f(Ω) = f

( ⋃
z0∈Ω

Uz0

)
=
⋃
z0∈Ω

f(Uz0)

is open in C. □

Corollary 4.44. (Maximum Principle). Suppose Ω ⊂ C is a connected open set and
f : Ω → C a holomorphic function. If |f | attains a local maximum at some z0 ∈ Ω,
then f is constant.

Proof. Let z0 ∈ Ω, and suppose there exists a neighbourhood U of z0 in Ω such that
for all z ∈ U we have

∣∣f(z)∣∣ ≤ ∣∣f(z0)∣∣. We may assume that U is connected. Then,
f(U) cannot contain an open disc about f(z0), so f(U) is not open in C. It follows
from Theorem 4.43 that f is constant on U . Since Ω is connected, it follows that f is
constant on Ω. □
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