
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

138,000 170M

TOP 1%154

5,600



Chapter

Porous Flow with Diffuse
Interfaces
Paul Papatzacos

Abstract

This chapter presents a model developed by the author, in publications dated
from 2002 to 2016, on flow in porous media assuming diffuse interfaces. It contains
five sections. Section 1 is an Introduction, tracing the origin of the diffuse interface
formalism. Section 1 also presents the traditional compositional model, pointing out
its emphasis on phases and questioning the concept of relative permeabilities.
Section 2 presents the mass, momentum, and energy balance equations, for a
multicomponent continuous fluid, in their most general form, at the pore level. The
existence of constitutive equations with phase-inducing terms is mentioned, but the
equations are not introduced at this level, and phases are not an explicit concern.
Section 3 is about the averaging of the pore level equations inside a region
containing many pores. There is no explicit mention of phases and therefore not of
relative permeabilities. Section 4 is the technical basis from which the constitutive
equations of the model arise, and it is shown that many models can exist. Section 5
introduces constitutive equations and presents a minimal model for
multicomponent, multiphase, and thermal flow in neutrally wetting porous media,
i.e., a model with a minimal amount of phenomenological parameters.

Keywords: flow in porous media, Marle averaging, diffuse interface,
multiphase flow, phase segregation, relative permeabilities

1. Introduction

The model presented in this chapter was developed in Refs. [1–3]. Ref. [1] covers
the one-component two-phase case, Ref. [2] is a generalisation to an arbitrary
number of components and three phases (two liquids, one gas), Ref. [3] generalises
to variable temperature. All three show applications to neutrally wetting media. The
way wetting can be accounted for is discussed in general terms in Ref. [1]. A partial
practical implementation, valid for incomplete wetting, is suggested in Ref. [4] but
a fully satisfactory solution that accounts for total wetting (or capillary condensa-
tion in adsorption terms) is still a matter for further research.

The diffuse interface theory was initiated in 1893 in a paper by van der Waals
(see the translation by Rowlinson [5]) where he proposes to replace the old
assumption of a surface between phases by the assumption of a continuous transi-
tion inside a thin interphase region, where certain quantities, notably the density,
vary continuously. The core of his theory consists of a Helmholtz function modified
by the addition of a term proportional to the squared gradient of the density, thus
accounting for the energy stored in the region. In the model presented in the following
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pages, the van der Waals theory is introduced at the upscaled level. See Section 4.
Generalising the van der Waals expression to ν chemical components [2], one
obtains

F F ¼ F bF þ
X

ν

α¼1

1

2
Λ
α
∇Rαj j2, (1)

where Rα is the upscaled density of fluid component α, F is the Helmholtz
function per unit volume, the superscript F referring to the fluid, while bF means
“bulk fluid” and refers to fluid regions that are far away from interphase layers. The

Λ
α are constants (Assumption A7, Appendix 1). For later reference F bF and its

differential are

F bF ¼ �PbF þ
X

ν

α¼1

CbFαRα, dF bF ¼ �SbFdT þ
X

ν

α¼1

CbFαdRα, (2)

where PbF is the pressure in the bulk fluid, SbF the entropy per unit volume, and

CbFα the chemical potential of component α, divided by its molar mass (the Cα=Mα

of Refs. [2, 3]).
The van der Waals paper was followed, in 1901, by a paper by Korteweg [6]

about the equations of motion of a fluid with large but continuous density changes,
where Korteweg showed that, for such a fluid, the usual scalar pressure must be
replaced by a symmetric second order tensor.

The van der Waals-Korteweg papers were apparently forgotten, then
rediscovered in the nineteen seventies, the diffuse-interface method being intro-
duced as a novel way to solve fluid mechanics problems in two-phase flow. For a
review, see [7]. While van der Waals and Korteweg assumed that the gradients in
Eq. (1) are small, modern advances have shown that this limitation can be
lifted [7, 8].

Ref. [8] is, to the author’s knowledge, the first formulation of flow in porous
media with diffuse interfaces.1 The purpose with such a novel formulation is to
avoid some of the known weaknesses of the traditional compositional models
treating multiple phase problems. The mathematical core of the compositional
models used in reservoir engineering, consists of equations expressing mass balance
for each chemical component. The distribution of the phases in the reservoir is
essential to the formulation, and is determined at the beginning of each time step. A
component, present in a phase, is transported with the Darcy velocity of the phase.
Each phase-dependent Darcy velocity is written with a permeability that is modi-
fied by a multiplicative factor, the relative permeability. The above description
emphasises two of the weaknesses of the traditional models. The first is the
assumption that well-defined phases exist at all times. The second is the use of
relative permeabilities, a concept that is “seriously questioned”, as expressed by
Adler and Brenner in a 1988 paper [9]. Concerning the understanding of relative
permeabilities in the framework of the model presented here, see the comments
following Eq. (100) below.

The mathematical core of the model (actually a family of models) to be
presented consists of mass balance equations, one per chemical component, of a
momentum balance equation, and of an entropy balance equation. The

1 The author first became aware of this paper in 2015. There is one important difference with what is

presented in the pages that follow. See the footnote in Section 4.

2

Porous Fluids - Advances in Fluid Flow and Transport Phenomena in Porous Media



thermodynamical description of the fluid mixture involved is part of the core. The
central purpose is to calculate the component densities, and other characteristic
quantities such as fluid velocity and fluid temperature, as functions of space and
time. If the approximation of constant temperature is valid, only the mass and
momentum balance equations are necessary.

Phases (and thereby relative permeabilities) do not take part in the formulation. They
result from the solutions of the model equations, and are detected by rapid variations of
densities, and by regions of approximately uniform densities. They can be shown to
exist in static equilibrium or steady state dynamical situations [1–3].

A minimal model is presented in Section 5, consisting of a minimal amount of
parameters.

A note on the appendices: Some concepts are grouped in appendices for easy
reference. Appendix 1, for example, lists all the assumptions the model is built on.

A note on wetting: The problem of accounting for the wetting properties of the
pore surface remains to be solved. There are two approaches to the problem:
through boundary conditions to the Navier–Stokes equations at pore level, or
through the theory of adsorption at the upscaled Darcy level. The first approach has
been used in the publications considered here, and it is explained in Ref. [10] that
the diffuse interface theory presented in Ref. [1] is consistent for neutral wetting,
i.e., for pore level wetting angles around 90∘: see Appendix 1, Assumption A0. Refs.
[2, 3] assume this limitation.

A note on notation: Right-handed Cartesian coordinates x1, x2, x3ð Þ are
assumed, the plane x1, x2ð Þ being horizontal, and axis x3 pointing upwards. Any
vector A has components Ak where k is 1, 2, or 3. In addition, the notation ∂t ¼ ∂=∂t
and ∂k ¼ ∂=∂xk is used. The summation convention applies to latin indexes i, j, k, l:
an index that is repeated in a term (as in A jB j, or Ckk) indicates summation

(
P3

j¼1A jB j, or
P3

k¼1Ckk). Note that an index that is repeated, but not in the same

term (as in Ai ¼ Bi), means that the expression is valid for all values of the index in
the set 1, 2, 3f g. Symbols are otherwise defined when introduced.

2. Pore level equations

The fluid is a mixture of ν chemical components, it is continuous, and if phases
exist, there are interphase regions where quantities vary continuously, possibly
rapidly. With assumptions A1 to A3 (Appendix 1) the balance equations for mass,
momentum, and energy, are written below in a most general manner:

∂tρ
α þ ∂k ραvk þ iαk

� �

¼ 0, α ¼ 1, … , νð Þ, (3)

∂t ρvið Þ þ ∂k ρvivk � tkið Þ ¼ ρ f i, (4)

∂tεþ ∂k εvk þ jk � tkivi
� �

¼ ρ f kvk: (5)

For the theoretical basis of these equations see chapter 11 of the book by
Hirschfelder et al [11]. Greek superscripts indicate the species so that ρα is the mass
density of component α, while ρ is the total density:

ρ ¼
X

ν

α¼1

ρα: (6)

Further, v is the local velocity, defined as the total momentum divided by the
total mass, both per volume; ια is the non-convective mass current of component α,
with the property
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X

ν

α¼1

ι
α ¼ 0, (7)

J is the non-convective energy current, and tij is the stress tensor; ε ¼ uþ 1
2 ρv

2 is
the total energy, u is the internal energy, both per unit volume, and f is an external
force per unit mass of fluid, thus being species-independent. In the case of gravity

f ¼ g, g ¼ 0, 0,�gð Þ, g ¼ 9:81m=s2: (8)

It is convenient, for later use, to introduce the gravitational potential

W ¼ �g � x, whereby f i ¼ �∂iW: (9)

The symmetry tij ¼ tji is assumed below. It is reminded that it expresses angular
momentum balance for a fluid where no other torques exist than the one due to the
external force f, and the one due the surface stress n � t acting on every surface
element where the normal vector is n.

Within the van der Waals theory, one expects that ιαk, Jk, and tki, contain terms
whose magnitudes are important in the interphase regions, but are otherwise negli-
gible. No constitutive equations are introduced at the pore level, but it is mentioned
for later reference, that for a simple one-phase fluid,

tij ¼ �pδij þ θij, (10)

where p is the pressure and θij is the viscous stress tensor (symmetric and linear
in the gradients of the vi, with coefficients of shear and bulk viscosity).

The upscaling, i.e., the averaging over many pores, is done in the next section by
the method due to Marle [12]. This method assumes that the physical quantities that
appear in the balance equations above are treated as distributions [12, 13], the
underlying reason being that such quantities are discontinuous, and that one needs
to average their partial derivatives. Taking ρ as an example, it is (i) a fluid density in
a pore, (ii) a rock density in the rock matrix, (iii) undefined on the pore surface,
and one needs to average ∂tρ and ∂kρ.

The physical quantities appearing in Eqs. (3) to (5) are listed in the first line of
Table 1. Their values in the pores, or in the rock, are denoted with a superscript F,
or S, as shown in the second and third lines of the table. In the third line, a missing
entry indicates non-existence, the first two 0-values indicate no material transport
in the solid, the third zero value follows from Assumption A4 (Appendix 1): as
shown by Marle [12], this assumption implies that the momentum balance equa-
tions in the solid and on the pore surface have the form 0 ¼ 0. It is important to
keep in mind, especially when averaging, that any quantity with an F superscript is

Generic ρ
α

ρ vk ι
α

k tki fk u jk

In fluid ρFα ρF vFk ιFαk tki f k uF jFk

In solid ρS 0 0 0 uS jSk

Table 1.

First line, left of the vertical: quantities appearing in Eqs. (3) and (4); right of the vertical: quantities only
appearing in Eq. (5). Second and third lines: notation when specialising to the fluid and the solid. Concerning
the missing entries and the three 0-values, see beginning of paragraph containing Eq. (11).
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equal to 0 on the pore surface (denoted by Σ) and in the solid; likewise, any
quantity with superscript S is equal to 0 on Σ and in the fluid. The quantities in the
first line of the table are not defined on Σ, but limit values are, as in

vF
� �Σ

¼ 0, (11)

expressing that the fluid velocity vanishes on Σ. Expressions of the type Xð ÞΣ for
some X, used in this section and in the next, define the limit of the quantity X at Σ,
along the line carrying the normal to Σ pointing towards the fluid. The existence of
the normal implies some idealisation of the pore surface.

Note finally that, according to Eq. (6),

ρF ¼
X

ν

α¼1

ρFα: (12)

As a preliminary to upscaling, Eqs. (3)–(5) are now explicitly written in terms of
distributions, using the notation of Appendix 2 where A is replaced by Fα or F, as
appropriate, while B is replaced by S. As an example, ρα x, tð Þ, is a distribution
depending on space x and time t. It is continuous in time but not in space, being
equal to ρFα x, tð Þ if x is inside a pore and to ρS x, tð Þ if x is in the rock. It is not defined

when x is on Σ but we assume that ρFα
� �Σ

and ρS
� �Σ

exist.
The generalised mass balance equation is obtained from Eq. (3), using

Eqs. (112), (113), and (11):

∂tρ
αf g þ ∂k ραvk þ iαk

� �� �

þ ια � nð ÞΣ
h i

δΣ ¼ 0, α ¼ 1, … , νð Þ: (13)

From this equation one now gets, using Table 1, the equations that are sepa-
rately valid inside the pores, on Σ, and in the solid:

3∂tρ
Fα þ ∂k ρFαvFk þ iFαk

� �

¼ 0, α ¼ 1, … , νð Þ, in Fð Þ (14)

ι
Fα � n

� �Σ
h i

δΣ ¼ 0,        α ¼ 1, … , νð Þ, on Σð Þ (15)

∂tρ
S ¼ 0: in Sð Þ (16)

Turning to the generalised momentum balance equation, one must account for
Assumption A4 (Appendix 1), implying that the momentum balance equations in
the solid and on the pore surface have the form 0 ¼ 0. Inside the pores, one simply
re-writes Eq. (4), with the superscript F on the density and velocity:

∂t ρFvFi
� �

þ ∂k ρFvFkv
F
i � tki

� �

¼ ρF f i, in Fð Þ: (17)

The generalised energy balance equation is obtained from Eq. (5), using
Eqs. (112), (113), and (11):

∂t uþ
1

2
ρ vj j2

� �� 	

þ ∂k uvk þ
1

2
ρ vj j2vk þ jk � tkivi

� �� 	

þ JF � n
� �Σ

� JS � n
� �Σ

h i

δΣ ¼ f kρvk:

(18)
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Using Table 1, one then obtains:

∂t uF þ
1

2
ρF vF












2
� �

þ ∂k uFvFk þ
1

2
ρF vF












2
vFk þ JFk � tkiv

F
i

� �

¼ f kρ
FvFk , in Fð Þ

(19)

JF � n
� �Σ

� JS � n
� �Σ

h i

δΣ ¼ 0, on Σð Þ (20)

∂tu
S þ ∂kJ

S
k ¼ 0, in Sð Þ: (21)

3. Averaging

The Marle averaging process [12] is followed in all essentials, except in the
assumption that well-defined phases exist, separated by interphase surfaces. The
averaging volume is a sphere of radius r, large when compared to a pore radius,
small when compared to a linear dimension of the reservoir. A C∞ function m xð Þ is
introduced, somewhat flat around ∣x∣ ¼ 0 and equal to zero for ∣x∣ ≥ r, normalised
so that its integral over all space is equal to 1. (See Eq. (17) in Ref. [12] for an
example of such a function.) Given any function of space and time, f x, tð Þ, its
average F x, tð Þ is obtained by the convolution

F x, tð Þ � f ∗mð Þ x, tð Þ ¼

ð


3
f y, t
� �

m x� y
� �

dy, (22)

where the integration is over all of space. The convolution ensures that F is
C∞ [12].

The averaged balance equations are differential equations in the averaged quanti-
ties (averaged densities, velocities, ...). These equations are established by a three-
step process. Step 1: the generalised equations for mass, momentum, and energy
balance are each in turn convoluted with m. Step 2: the following rules [12] are
applied, allowing to take the differential operators out of the averaging convolutions:

∂t f
Z

n o

∗m ¼ ∂t f Z ∗m
� �

, (23)

∂i f
Z

n o

∗m ¼ ∂i fZ ∗m
� �

� εZ f Z
� �Σ

niδΣ

 �

∗m, (24)

where fZ � f Z x, tð Þ and Z is F, Fα, or S; εZ is 1 if Z is F or Fα, �1 if Z is S.
Eq. (11) is also applied at step 2. Step 3: the remaining convolutions are used to
define averaged quantities, where the following constraints should be obeyed: (i)
except for the definition of porosity, the way to define the averages is suggested by
the equations obtained after completion of step 2; (ii) the averaged equations have
essentially the same forms as Eqs. (3) to (5).

Differential equations in the averaged quantities result from the three steps. It is
shown below that the mass and momentum balance equations should be treated
together, and that the energy equation can be treated as an addition.

The averaging of the mass and momentum balance equations follows. Steps 1
and 2 are applied to Eqs. (14) to (17), and lead to:

∂t ρFα ∗m
� �

þ ∂k ρFαvFk þ ιFαk
� �

∗m
� �

¼ ι
Fα � n

� �Σ

δΣ

� �

∗m, (25)

ι
Fα � n

� �Σ

δΣ

� �

∗m ¼ 0, (26)
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∂t ρS ∗m
� �

¼ 0, (27)

∂t ρFvFi
� �

∗m
� �

þ ∂k ρFvFkv
F
i � tki

� �

∗m
� �

¼ � nktkið ÞΣδΣ

� �

∗mþ f i ρ
F ∗m

� �

: (28)

Note that the last term on the right-hand side of the last equation originally is
ρF f i
� �

∗m, but f i can be taken out of the convolution integral because of Assump-
tion A5 (Appendix 2). The definitions of averaged (or upscaled) quantities now
follow (step 3). Porosity Φ is defined first, then follow definitions suggested by the
convolution operations in the equations above.

Porosity Let a function χ xð Þ be 1 when x is in F, and let it be 0 otherwise.
Then

χ ∗m ¼ Φ: (29)

Note that, according to definition (22), Φ can depend on x.

Species adsorption The left-hand side of Eq. (26) defines the amount, KΣα, of
component α adsorbed at the pore surface:

ι
Fα � n

� �Σ

δΣ

� �

∗m ¼ KΣα: (30)

Density of solid Eq. (27) suggests defining the solid density RS by:

ρS ∗m ¼ 1�Φð ÞRS: (31)

Density of component α The first term on the left-hand side of Eq. (25)
suggests defining the density Rα of fluid component α by

ρFα ∗m ¼ Rα: (32)

Note that Eq. (12) implies that the averaged total fluid density, R, is

R ¼
X

ν

α¼1

Rα ¼ ρF ∗m: (33)

Fluid velocity The first term on the lef-hand side of Eq. (28) has the
convolution of a product of two term, where the average of one of them is known
from Eqs. (32) and (33). The averaged fluid velocity, denoted V i (without the F
superscript since there is no velocity in S or on Σ) is then defined by

ρFvFi
� �

∗m ¼ ΦRV i: (34)

Diffusive mass current of component α The second convolution on the left-
hand side of Eq. (25) is used to define the upscaled diffusive current in the fluid,
denoted Iαk (without the F superscript since there are no diffusive currents in S or on

Σ). It is not defined as the average of ιFαk because both pore level effects of
convection and diffusion contribute to it [12]. Keeping in mind the constraint
that the averaged equations should have the same form as the original ones, Iαk is
defined by

ρFαvFk þ ιFαk
� �

∗m ¼ ΦRαVk þΦIαk: (35)
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Note that, summing this equation over α from 1 to ν, and using previous results,
one gets

X

ν

α¼1

Iαk ¼ 0: (36)

Stress tensor The second convolution on the left-hand side of Eq. (28) suggests
defining Tki, the upscaled version of tki, by

ρFvFkv
F
i � tki

� �

∗m ¼ ΦRViVk � Tki: (37)

Note that tki ¼ tik implies Tki ¼ Tik.
Frictional force per unit volume The first convolution on the right-hand side

of Eq. (28) suggests defining the frictional force per unit volume FF
i by

nktkið ÞΣδΣ

� �

∗m ¼ FF
i : (38)

The upscaled mass and momentum balance equations now follow, in the
following order: mass balance for the solid, mass balance at the pore surface, mass
balance for the fluid in the pores, and momentum balance for the fluid in the pores:

∂t 1�Φð ÞRS
� �

¼ 0, (39)

KΣα ¼ 0, α ¼ 1… νð Þ, (40)

∂t ΦRαð Þ þ ∂k ΦRαVk þΦIαk
� �

¼ 0, α ¼ 1… νð Þ, (41)

∂t ΦRVið Þ þ ∂k ΦRVkV i � Tkið Þ ¼ FF
i þΦRf i: (42)

The first equation states that porosity and solid density do not vary with time
(consistently with Assumption 4 (Appendix 2) but can vary in space. The second
equation states that adsorption is negligibly small, for any component, consistent
with Assumption A0 (Appendix 2). The remaining two equations determine the ν
component densities and the three velocity components. This means that the com-
ponents of the diffusive mass current, of the stress tensor, and of the frictional force
must be provided. (Constitutive equations).

The averaging of the energy balance equations now follows. Steps 1 and 2 are
applied to Eqs. (19) to (21), giving:

∂t uF þ
1

2
ρF vF












2
� �

∗m

 �

þ ∂k uFvFk þ
1

2
ρF vF












2
vFk þ JFk � tkiv

F
i

� �

∗m

 �

¼ JF � n
� �Σ

δΣ

h i

∗mþ f k ρFvFk ∗m
� �

,

(43)

JF � n
� �Σ

δΣ

� �

∗m� JS � n
� �Σ

δΣ

� �

∗m ¼ 0, (44)

∂t uS ∗m
� �

þ ∂k JSk ∗m
� �

¼ � JS � n
� �Σ

δΣ

h i

∗m: (45)

As in the case of Eq. (28), Assumption A4 (Appendix 2) has been used to take f k
out of the convolution on the right-hand side of Eq: (43). Six definitions are
introduced below, built on the definitions that were introduced in connection with
the averaging of the mass and momentum balance equations. An underscore
indicates the defined quantity.
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Internal energy per unit volume of solid

uS ∗m ¼ 1�Φð ÞUS, (46)

Internal energy current of solid

jSk ∗m ¼ JSk, (47)

Solid to fluid energy transfer

jS � n
� �Σ

δΣ

� �

∗m ¼ QS!F, (48)

Fluid to solid energy transfer

jF � n
� �Σ

δΣ

� �

∗m ¼ �QF!S, (49)

Internal energy per unit volume of fluid

uF þ
1

2
ρF vF












2
� �

∗m ¼ ΦUF þ
1

2
ΦR Vj j2, (50)

Internal energy current of fluid

uFvFk þ
1

2
ρF vF












2
vFk þ jFk � tkiv

F
i

� �

∗m ¼ ΦUFVk þ
1

2
ΦR Vj j2Vk þ JFk � TkiV i:

(51)

Using these definitions in Eqs. (43) to (45) one obtains:

∂t ΦUF þ
1

2
ΦR Vj j2

� �

þ ∂k ΦUFVk þ
1

2
ΦR Vj j2Vk þ JFk � TkiVi

� �

¼ �QF!S þΦRVk f k: in Fð Þ

(52)

QF!S þQS!F ¼ 0: on Σð Þ (53)

∂t 1�Φð ÞUS
� �

þ ∂kJ
S
k ¼ �QS!F: in Sð Þ: (54)

Eq. (52) contains a redundancy in the form of a balance equation for kinetic
energy. This equation can be obtained directly by multiplying both sides of Eq. (42)
with V i, summing over i, and using Eq. (41). Subtracting the equation thus obtained
from Eq. (52), one gets

∂t ΦUF
� �

þ ∂k ΦUFVk þ JFk
� �

¼ �QF!S � FF
kVk þ Tji∂ jV i: (55)

4. Basis for constitutive equations

In practical application, the upscaled balance equations will be used to calculate,
primarily, the densities Rα, the velocity components V i and the temperature T.
Assuming that the approximation of constant T is valid, one needs only focus on the
mass and momentum balance equations, (39) to (42). One sees in this case that one
needs expressions for the Iαk, the Tij, and the Fi in terms of T and the Rα. If the
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approximation of constant temperature is not valid, one must first distinguish
between the temperatures of the solid and the fluid, and one needs an equation for
the energy transfer in case of a temperature difference. One introduces the simpli-
fying Assumption A6 (see Ref. [12] and Appendix 1), from which it follows that just
one additional equation is needed for calculating T x, tð Þ. Such an equation usually
describes the evolution of either total energy or total entropy. In either case,

expressions are needed for the currents JSk and JFk . (Expressions for the energy
transfers QS!F and QF!S are unnecessary since they cancel when taking the sum of
the solid and fluid energies). Most of what is needed is obtained in Section 5 by
applying the theory of irreversible processes, starting from the evolution equation
for entropy, although it seems that some preliminary work is unavoidable to
directly obtain an expression for the pressure tensor Pij that replaces the usual scalar
pressure.

The derivation of the pressure tensor is given below, followed by the derivation
of the evolution equation for the total entropy. It is essential to use expression (1) in
both derivations.2

4.1 The pressure tensor

One considers the upscaled fluid, consisting of a mixture of ν components in a
container with surface ∂Ω and volume Ω, inside a large bath at uniform and
constant temperature T. One looks for conditions of equilibrium in the presence of
gravity. The fluid has the Helmholtz free energy density given by Eq. (1), and it is
assumed that the bounding surface is neutrally wetting so that there is no energy
stored on ∂Ω. The total energy stored in the fluid is

F ¼

ð

Ω

F F þW
X

ν

α¼1

Rα

" #

dΩ, (56)

where W is the gravitational potential (see Eqs. (8) and (9)).
One now looks for the conditions the Rα satisfy when F is at its minimum, given

that the total mass,
Ð

Ω
RdΩ, is constant. This is minimisation with constraint, a

standard problem in variational calculus. It is easily found that

∂F bF

∂Rα þW � κ � Λ
α∇2Rα ¼ 0, in Ωð Þ, (57)

n � ∇Rα ¼ 0, on ∂Ωð Þ, (58)

where κ is a Lagrange multiplier, possibly a function of T but not of the Rα. See
Ref. [14] for the technique and the theorems involved: essentially, the expression on
the left-hand side of Eq. (57) must be continuous. Note that Eq. (58) expresses the
non-wetting property of the outer boundary: the density neither increases nor
decreases along the normal.

The next step consists in multiplying Eq. (57) with ∂iR
α and summing over α.

Each term of the resulting equation can then be re-written as a gradient (first term),
or as a sum of a gradient and the component of a force (sum of second and third
terms), or as a sum of a gradient and a divergence (fourth term). The result is the
following expression:

2 This is where the present paper and Ref. [8] differ most.
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∂kPik � f i ¼ 0: (59)

where

Pik ¼ PbF �
X

ν

α¼1

Λ
αRα∇2Rα �

X

ν

α¼1

1

2
Λ
α
∇Rαj j2

" #

δik þ
X

ν

α¼1

Λ
α
∂iR

αð Þ ∂kR
αð Þ: (60)

The first equation obviously generalises the classical ∇P ¼ f , and it is natural to
generalise Eq. (10) by setting

Tij ¼ �ΦPij þ Θij: (61)

Tij and Pij are symmetric, so that Θij ¼ Θji. Eqs. (60) and (61) are used in the
long calculation that lead to the evolution equation for the entropy. They are also
used to get expressions (99) and (100) for the modified Darcy equation, where the
presence of the Λ‘s is exclusively due to their presence in Eq. (60).

4.2 The entropy evolution equation

Eqs. (1) and (2), together with Eqs. (41), (54), (55), (60), and (61), are needed
to get the entropy equation for the fluid.

Taking the differential of Eq. (1) and using Eq. (2), one obtains, keeping in mind
the assumption that the Λα are constants,

dF F ¼ �SbFdT þ
X

ν

α¼1

CbFαdRα þ
X

ν

α¼1

Λ
α
∂iR

αð Þd ∂iR
αð Þ: (62)

This equation leads immediately to two conclusions. There is no additional
entropy, and no additional chemical potentials due to large density gradients, since:

(i) SF, defined as ∂F F=∂T, is equal to SbF; (ii) CFα, defined as ∂F F=∂Rα, is equal to

CbFα. The differential of F F can now be re-written with a simpler notation:

dF F ¼ �SFdT þ
X

ν

α¼1

CFαdRα þ
X

ν

α¼1

Λ
α
∂iR

αð Þd ∂iR
αð Þ: (63)

To obtain dSF in terms of dUF and dF F one differentiates UF ¼ TSF þ F F,
obtaining

TdSF ¼ dUF �
X

ν

α¼1

CFαdRα �
X

ν

α¼1

Λ
α
∂kR

αð Þd ∂kR
αð Þ: (64)

This expression is now used to construct an evolution equation for the total
entropy (including fluid and solid). Such an equation must be of the form

∂t ΦSF þ 1�Φð ÞSS
� �

þ ∂k ΦSFVk þ Pk

� �

¼ Q, (65)

where SS is the entropy of the rock, Pk is a diffusive current, and Q is a source
term.

Eq. (64) directly gives the two equations that follow, by replacing d with ∂t (first
equation), then with V i∂i (second equation):
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T∂tS
F ¼ ∂tU

F �
X

ν

α¼1

CFα∂tR
α �

X

ν

α¼1

Λ
α
∂kR

αð Þ∂t ∂kR
αð Þ: (66)

T∂i S
FV i

� �

¼ TSF
∂iVi þ Vi∂iU

F �
X

ν

α¼1

CFαV i∂iR
α � V i

X

ν

α¼1

Λ
α
∂kR

αð Þ ∂i∂kR
αð Þ: (67)

Since it is ΦSF that is needed to get Eq. (65), one needs to multiply the two
equations above with Φ and then commute Φ with ∂t and ∂i. The same commuta-

tions are necessary on the right-hand sides of the above equations, so as to get ΦUF

and thus allow the use of Eq. (55). Assumption A8 (Appendix 2) has been added to
Assumption A4 so as to avoid the proliferation of ∂iΦ-terms in the minimal model
to be presented. With this simplification in place, and remembering to replace Tij in
Eq. (55) with the expression obtained from Eqs. (60) and (61), one obtains, after
elementary but somewhat long calculations:

T ∂t ΦS
F

� �

þ ∂i ΦS
FV i

� �� �

¼� ∂kJ
F
k þQS!F � FF

kVk þ Θji∂jVi

þΦ

X

ν

α¼1

C
Fα
∂iI

α
i þΦ

X

ν

α¼1

Λ
α
∂kR

αð Þ∂k∂iI
α
i

þΦ

X

ν

α¼1

Λ
α Rα

∂iV ið Þ∂k∂kR
α þ ∂kR

αð Þ∂k Rα
∂iVið Þ½ �:

(68)

Keeping in mind that one is looking for an entropy equation of the form of
Eq. (65), and in anticipation of using the methods of irreversible processes, one now
considers each term, or group of terms, on the right-hand side above and writes it
either as a divergence, or as the sum of a divergence and a scalar product. Most
terms on the first line already have the required form. The general term in the first
sum on the second line is easily transformed as required, the general term in the
second sum also, although with somewhat more work. As to the third line, it is
easily seen to be a sum of divergences. One then gets:

T ∂t ΦSF
� �

þ ∂i ΦSFV i

� �� �

¼  ∂k �JFk þΦ

X

ν

α¼1

AαIαk

"

þΦ

X

ν

α¼1

Λ
α
∂kR

αð Þ Rα
∂iV i þ ∂iI

α
i

� �

#

þQS!F � FF
kVk þ Θji∂ jV i �Φ

X

ν

α¼1

Iαi ∂iA
α,

(69)

where Aα ¼ CFα � Λ
α∇2Rα. Note that Aα occurs twice on the right-hand side of

Eq. (69), once as Aα, and once as ∂iA
α, both times multiplying Iαk in a sum over α.

Eq. (36) then implies that one can modify the above expression of Aα by the
addition of any expression that does not depend on α. To conform with the notation
of Ref. [2], and especially Ref. [3], one then sets

Aα ¼ CFα þW � Λ
α∇2Rα: (70)

as the expression to substitute on the right-hand side of Eq. (69).
The entropy equation for the solid is much easier to obtain because of

Assumption A4 (Appendix 2). Indeed, Eq. (64) is replaced by
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TdSS ¼ dUS, (71)

which implies

T∂t 1�Φð ÞSS
� �

¼ ∂t 1�Φð ÞUS
� �

, (72)

and, using (54):

T∂t 1�Φð ÞSS
� �

¼ �∂kJ
S
k �QS!F: (73)

Taking the sum of Eqs. (69) and (73) one sees that QS!F cancels, and that the
right-hand side consists of a sum of scalar products and of a divergence, say ∂kKk. A
last step remains because the left-hand side has a multiplicative factor T (see
Eqs. (69) and (73)). Dividing both sides by T does not affect the scalar products but
it modifies the divergence, at least if one assumes that T is variable, to ∂kKk=T. This
is easily remedied by writing

1

T
∂kKk ¼ ∂k

Kk

T

� �

þ
Kk

T2 ∂kT: (74)

One finally obtains

∂t ΦSF þ 1�Φð ÞSS
� �

þ ∂k ΦSFVk þ
Kk

T

� �

¼ Q, (75)

where

Kk ¼ JFk þ JSk �Φ

Xν

α¼1
Λ
α
∂kR

αð Þ Rα
∂iV i þ ∂iI

α
i

� �

�Φ

X

ν

α¼1

AαIαk: (76)

TQ ¼ � Kk=Tð Þ∂kT þ Θji∂ jV i � FF
kVk �Φ

X

ν

α¼1

Iαk∂kA
α: (77)

QF!S and QS!F do not appear in the entropy equation, and are thus not

determinable inside the model. Similarly, the currents JFk and JSk only appear as
summed, so that they are not determined individually inside the model. (See the
next section.)

5. Constitutive equations and the minimal model

The source term in the entropy equation plays a central role in what follows. It
has been written as a sum of scalar products. Each term of this sum is the scalar

product of a force (explicit or generalised) and a current. FF
k is an explicit force,

while the gradient of some quantity (temperature, velocity component, ...) is a
generalised force. The theory of irreversible processes states that linear relations
exist (at least for processes not far from equilibrium), between forces and currents.
The coefficients, called phenomenological coefficients, are parameters whose signs
must be such that the source term cannot be negative, to ensure against a decrease
of the entropy when the system is isolated. The linear relations just mentioned are
constitutive equations, and it is implied that the phenomenological coefficients
must be provided as input. For various reasons, some coefficients can be put equal
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to zero, one often recurring reason being the belief that they are negligible in the
physical situation considered. Thus there is a family of models, each member being
characterised by its set of non-zero phenomenological coefficients.

The previously mentioned minimal model (see the text after Eq. (67)), is the
model that contains the least possible number of non-zero phenomenological coef-
ficients. “Least possible” means that one must obey the constraints that exist for
these coefficients (Onsager symmetry, isotropy, sign) and arbitrarily setting some
of them equal to zero is not always possible. A certain amount of trial and error is
also required to avoid unduly reducing the model’s predictive power.

The usual vector notation is used for tensors of order 1, i.e., a bold faced letter is
used when the subscript can be suppressed. Vector forces are here denoted X (with
components Xi), and vector currents are denoted Y (with components Y i), with a
superscript to discriminate between the different currents and forces in an alpha-
betic order aa shown below. (Y has been chosen instead of the traditional J so as to
avoid confusion with the currents related to the energy equations.) The usual tensor
conventions are assumed for latin subscripts (see “A note on notation” in the
Introduction). Concerning the second order tensors Θji and ∂ jV i, on the right-hand
side of Eq. (77), one sets Δji � ∂ jV i and, referring to Appendix 3, especially to
Eq. (115), one writes

Δij ¼ XAδij þ XB
ij þ εijk ~Xk, (78)

Θij ¼ YAδij þ YB
ij, (79)

where XA and XB
ij are found by replacing Z by Δ in Eqs. (115). Note that YB

ij,

being symmetric, has no antisymmetric part.
Referring now to the vectors on the right-hand side of Eq. (77), one introduces

the following notation:

XC
k ¼ �∂kT

XD
k ¼ �FF

k

Xα
k ¼ �Φ∂kA

α,

YC
k ¼ Kk=T

YD
k ¼ Vk

Yα
k ¼ Iαk:

(80)

Using Eq. (116), one easily finds that

TQ ¼ 3XAYA þ XB
ijY

B
ij þXC � YC þXD � YD þ

X

ν

α¼1

Xα � Yα: (81)

Note that Q is a proper scalar since the source of entropy is independent of the
coordinate system, and does not change sign when the coordinate system changes
handedness. The right-hand side of Eq. (81) is then a sum of scalar products of

proper tensors, the only pseudo vector, ~Xk, having dropped out.
Referring to the first sentence of this section, one writes the currents as linear

combinations of the forces:

YA ¼ LAAXA þ LAB
kl X

B
kl þ LAC

k XC
k þ LAD

k XD
k þ

X

ν

β¼1

LAβ
k Xβ

k

YB
ij ¼ LBA

ij XA þ LBB
ijklX

B
kl þ LBC

ijk X
C
k þ LBD

ijk X
D
k þ

X

ν

β¼1

LBβ
ijkX

β

k

(82)
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YC
i ¼ LCA

i XA þ LCB
iklX

B
kl þ LCC

ik XC
k þ LCD

ik XD
k þ

X

ν

β¼1

LCβ
ik X

β

k

YD
i ¼ LDA

i XA þ LDB
ikl X

B
kl þ LDC

ik XC
k þ LDD

ik XD
k þ

X

ν

β¼1

LDβ

ik Xβ

k

Yα
i ¼ LαA

i XA þ LαB
iklX

B
kl þ LαC

ik X
C
k þ LαD

ik XD
k þ

X

ν

β¼1

Lαβ

ik X
β

k, α ¼ 1… νð Þ:

In these expressions, the L are the phenomenological coefficients. They are
independent of the generalised forces, but they can depend on the temperature and
the component densities. They are tensors, their orders being equal to the number
of subscripts. They obey the Onsager relations [11, 15]: any coefficient with n sub-

scripts, denoted say, LMN
nð Þ , obeys

LMN
nð Þ ¼ LNM

nð Þ , M 6¼ N ¼ A,B,C,D, 1, … , νð Þ, (83)

where the n subscripts are the same but not necessarily in the same order. Details
concerning subscripts are not needed in what follows.

5.1 The viscosity tensor Θij

With hindsight, one knows that the upscaled viscosity tensor is not required, so
that one is justified in setting equal to zero all the L‘s in the first two lines of the
system of Eqs. (82), and also setting to zero all the L‘s related to the zeroed ones by
the Onsager symmetry:

LAZ ¼ LBZ ¼ LZA ¼ LZB ¼ 0, for any Z: (84)

Then YA ¼ YB
ij ¼ 0, so that

Θij ¼ 0, (85)

and the source term of the entropy equation reduces to

TQ ¼ XC � YC þXD � YD þ
X

ν

α¼1

Xα � Yα: (86)

5.2 Vector currents and forces

System (82) now reduces to linear relations between vectors, the coefficients
being second order tensors:

YC
i ¼ LCC

ik XC
k þ LCD

ik XD
k þ

X

ν

β¼1

LCβ
ik X

β

k (87)

YD
i ¼ LCD

ik XC
k þ LDD

ik XD
k þ

X

ν

β¼1

LDβ

ik Xβ

k (88)

Yα
i ¼ LCα

ik X
C
k þ LDα

ik XD
k þ

X

ν

β¼1

Lαβ

ik X
β

k, α ¼ 1… νð Þ, (89)
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where Onsager symmetry is accounted for. Remembering that Yα
i ¼ Iαk, Eq. (36)

leads to three constraints on the L-coefficients of Eq. (89):

X

ν

α¼1

LCα
ik ¼

X

ν

α¼1

LDα
ik ¼

X

ν

α¼1

Lαβ

ik ¼ 0: (90)

The linear combinations above show the possibilities of constructing models
where interactions between thermal conduction, fluid flow, and mass diffusion are
quantified by choosing the L coefficients. Also, thermal conduction and permeabil-

ity can be modelled by second order tensors, through tensors LCC
ik and LDD

ik .
However, if one limits oneself to the minimal model where: (i) the diffusive

entropy current, Ki=T, is only due to the ∂kT force, (ii) the FF
k frictional force is only

due to fluid velocity, V i, (iii) each non-convective mass current, Iαi , is only due to

the gradients of the Aβ, then one requires

LCD
ik ¼ 0, and LCα

ik ¼ LDα
ik ¼ 0 for all α, (91)

not violating the constraints in Eqs. (90).
Note that it is not possible to simplify the model to the extent that all cross-

couplings are eliminated, since that would imply that Lαβ

ik are zero except when the
superscripts are equal: such a matrix would not obey the third constraint in (90).

One could of course set Lαβ

ik ¼ 0 for all α and β, but that would eliminate all the
non-convective mass currents from the model, and probably make it useless.

In the minimal model one can add a fourth requirement to the three above: the
upscaled fluid and the upscaled medium are isotropic. Then further simplifications

result since the remaining second order tensors, LCC
ik , LDD

ik , and Lαβ

ik , that are
properties of the solid and the fluid, must be invariant under rotations of the
coordinate axes. Such tensors are called isotropic and it can be shown that an
isotropic second order tensor is proportional to the Kronecker delta (see Ref. [15]).
Isotropy thus introduces the following restrictions:

LCC
ik ¼ ℓ

CCδik, LDD
ik ¼ ℓ

DDδik, Lαβ

ik ¼ ℓ
αβδik, (92)

and one gets

YC ¼ ℓ
CCXC, XD ¼ 1=ℓDD

� �

YD, Yα ¼
X

ν

β¼1

ℓ
αβXβ: (93)

The source term of the entropy equation is now

TQ ¼ ℓ
CC XC













2
þ 1=ℓDD
� �

YD












2
þ
X

ν

α¼1

X

ν

β¼1

ℓ
αβXα �Xβ: (94)

Keeping in mind that the ℓαβ-matrix is symmetric, and that the sum of all
elements on the same line or the same column is zero, it can be shown that

X

ν

α¼1

X

ν

β¼1

ℓ
αβXα �Xβ ¼ �

X

α, β, α< β

ℓ
αβ Xα �Xβ












2
: (95)

According to the expression for the source of entropy above, the remaining
phenomenological coefficients must then satisfy
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ℓ
CC

>0, ℓ
DD

>0, ℓ
αβ
<0, α< βð Þ: (96)

These coefficients are determined below.
Using the notation of expressions (80) in the first of expressions (93) one gets Ki

proportional to ∂iT. Now Ki=T is an entropy transport by diffusion, so that Ki is
heat transport by diffusion. To recover Fourier’s law one sets

ℓ
CC ¼ k=T, implying Ki ¼ �k∂iT, (97)

where k>0 is the thermal conductivity of the averaged solid–fluid system.
See Ref. [3].

The second of expressions (93) gives FF
i ¼ V i=ℓ

DD, and it is shown below that
the choice

ℓ
DD ¼

K

Φ
2η

, implies Vi ¼
K

Φη
∂iP

bF � Rf i
� �

, (98)

away from interphase regions. In this expression, η is the viscosity of the pore
fluid, and K is the absolute permeability. As already mentioned, the phenomeno-
logical coefficients can be functions of the component densities and of the temper-
ature, and it is known that η is such a function (see Section 3.4 in Ref. [3]). The
possibility of letting K be such a function is not used in the minimal model. To
prove the implication (98), one uses Eq. (42), with the upscaled stress tensor given
by Eqs. (60), (61), and (85). Using Eq. (41) one obtains:

Vi ¼ �
K

Φη
∂iP

bF � Rf i þ R ∂tV i þ Vk∂kVið Þ �
X

ν

α¼1

Λ
αRα

∂i∇
2Rα

" #

: (99)

The sum over α vanishes in the bulk fluid and one is left with the Darcy formula
with an additional term, proportional to the material derivative of the velocity. One
can carry out order of magnitude estimates of the three first terms in the square
brackets above, in the manner of Section 4.1 of Ref. [3]. Using the numerical values
given in the Appendix of the same reference, one easily finds that, if the gradient of

pressure is of order 1, then the gravity term Rf i is of order 10
�3, and the material

derivative term is of order 10�9. Neglecting the material derivative, one obtains the
Darcy formula, modified by terms that only become significant inside the inter-
phase regions. Specialised to a one component fluid, this modified Darcy formula is:

V i ¼ �
K

Φη
∂iP

bF � Rf i
� �

þ Λ
KR

Φη
∂i∇

2R: (100)

It is shown in Ref. [4] that the added non-Darcy term can, in some well-defined
flow types, produce a relative permeability when its numerical contribution is taken
away as an added term, then put back as a multiplicative factor to the Darcy term.
However, it is concluded in Ref. [4] that relative permeabilities cannot capture the
full complexity of two-phase flow.

Given below is another version of V i, that follows by application of the Gibbs-

Duhem equation, obtained by differentiating F bF and using the expression of dF bF

(Eqs. (2)):

Vi ¼ �
K

Φη

X

ν

α¼1

Rα
∂iA

β þ SF
∂iT

" #

, (101)
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where Aα is given by Eq. (70). Using now the notation of expressions (79) in the
third of expressions (93) one gets the diffuse mass current of component α:

Iαk ¼ �Φ

X

ν

β¼1

ℓ
αβ
∂kA

β, (102)

where it is reminded that the ℓαβ-matrix is symmetric, its off diagonal elements
are negative, and the elements of any line (or column) sum to zero. In addition, the
elements can be functions of the densities. This last turns out to be extremely useful

because the ∂kC
Fβ behave as 1=Rβ when Rβ goes to zero, which is not acceptable

when the differential equations of the model are solved numerically. In the minimal
model one then sets

ℓ
αβ ¼ �a RαRβ

� �2
, α 6¼ βð Þ, (103)

using the same positive number a for all elements. Each diagonal element ℓαα is
then the negative sum of the off diagonal elements of line α. For an example of such
a matrix in the case ν ¼ 3, see Refs. [2, 3].

5.3 Closing details

It is easy to see that the first two restrictions displayed in Eqs. (92) do not
implicate any other assumptions done in the minimal model so that the restrictions
can be lifted, either singly or together, thus allowing thermal conductivity and/or
permeability to be represented by a second order tensor when experiments indicate
that such upgrading is required.

A non-thermal version of the model consists of ν mass balance equations, see
Eqs. (41), where the Darcy velocity is given by Eq. (101) and the mass diffusion
velocities by Eqs. (102) and (103), the auxiliary variables being defined by
Eqs. (70). Fot the thermal version of the model one needs to re-write the entropy
equation, Eq. (75), in terms of temperature: see Section 2.3 of Ref. [3].

Start and boundary conditions must be supplied for the numerical solutions of
the differential equations of the model. Special attention must be taken with the
boundary conditions since the equations are of the fourth degree in the space
variables. See Ref. [3] for a detailed presentation.

The transport coefficients, k and η, of Eqs. (97) and (98), are needed as
functions of T and of the Rα. See Ref. [3] and references given there.

The central thermodynamical function of the model is the Helmholtz function,
especially in the bulk, introduced by Eq. (1). It is calculated from the equation of
state of the mixture considered, which must be van der Waals or related (Redlich-
Kwong, ...) so that, for temperatures less than the critical, regions of unstable fluid
insure the existence of interphase regions; association terms must be included for
the polar molecules of the mixture (see Ref. [16] and references given there).

It is shown in Ref. [16] that, independently of the equation of state that is
chosen, the Helmholtz function contains the sum of the Helmholtz functions of the
components, each considered as a gas where molecular interactions are neglected
(ideal). Each ideal gas Helmholtz function contains a function of T that drops out
under differentiation when T is assumed constant, but is important for the thermal
model in accounting for the energy stored in the internal degrees of freedom of the
molecules. The Helmholtz function of one mole of an ideal gas of component α is
(see Refs. [2, 16] and references given there):
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f id:gas,α ¼ RGT ln
Vα Tð Þ

evα
, (104)

where vα is the molar volume, RG is the gas constant, e ¼ exp 1ð Þ, and Vα Tð Þ is a
function of temperature with the dimension of a volume per mole. Vα depends on
the atomic masses, the principal moments of inertia of the molecule, .... It can be
obtained from statistical physics, as shown in Ref. [16].

It is briefly shown below that Vα can also be obtained from an expression of

f id:gas,α in terms of the heat capacity of the component. Assuming Pvα ¼ RGT, one
easily finds that, with T and vα as independent variables, the molar internal energy
uα (the “id.gas” superscript is dropped for simplicity) is independent of vα, and that
one can write

duα ¼ cαV Tð ÞdT, (105)

where cαV is the molar heat capacity of component α. The molar entropy, sα,
obeying Tdsα ¼ duα þ Pdvα, one obtains

dsα ¼ cαV Tð ÞdT=T þ RGdv
α=vα: (106)

Integrating the last two displayed equations, one obtains f id:gas,α as uα � Tsα:

f id:gas,α ¼ uα0 � Tsα0 � RGT ln
vα

vα0
þ

ðT

T0

1�
T

T0

� �

cαV T0ð ÞdT0, (107)

where uα0 and sα0 are the internal energy and the entropy at a reference state
where volume, temperature, and pressure are vα0, T0, and P0 ¼ RGT0=v

α
0. Equating

the right-hand sides of Eqs. (104) and (107), one obtains an expression for T lnVα

in terms of the experimentally measurable function cαV. As stated in Ref. [16], it is in
fact the derivative with respect to T of T lnVα that is needed in the differential
equations of the thermal model. Assuming sα0 ¼ 0, one obtains

d

dT
RGT lnVα Tð Þ½ � ¼ RG ln

eRGT0

P0
�

ðT

T0

cαV T0ð Þ

T0 dT0: (108)

Concerning examples of numerical solutions of the equations of the minimal
model, see Ref. [2] for phase segregation, and for coning at uniform temperature;
see Ref. [3] for an injection-production situation at variable temperature.

A. Appendices

A.1 Appendix 1: Assumptions

A0: None of the chemical species completely wets the rock
A1: There are no sources or sinks
A2: There is no loss of energy by radiation
A3: There are no chemical reactions between the chemical components
A4: The solid is perfectly rigid
A5: The external force per unit volume f i is approximately constant in the

averaging volume
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A6: At each point, the difference between the solid and fluid temperatures is
negligible

A7: The Λα are constant numbers inside the porous medium
A8: The porosity Φ is uniform in space

A.2 Appendix 2: Derivatives of distibutions – Formulas

The following is a set of formulas for the space derivatives of distributions
having discontinuities across a given surface Σ. For proofs, see [12, 13].

Consider a function f x, tð Þ symbolising a physical quantity, continuous in time
but dicontinuous in space across a surface Σ that divides space in two regions, called

A-side and B-side; f ¼ f B on the B-side, f ¼ fA on the A-side. Σ has a normal vector
n at each point, pointing towards A:

f x, tð Þ ¼
fA x, tð Þ x on the A‐side of Σ

f B x, tð Þ x on the B‐side of Σ,

(

(109)

One now defines the following regular distributions:

∂kf x, tð Þf g ¼
∂k f

A x, tð Þ x on the A‐side of Σ

∂k f
B x, tð Þ x on the B‐side of Σ,

(

(110)

∂tf x, tð Þf g ¼
∂t f

A x, tð Þ x on the A‐side of Σ

∂t f
B x, tð Þ x on the B‐side of Σ:

(

(111)

Then [12, 13].

∂tf ¼ ∂tff g, (112)

∂kf ¼ ∂kff g þ fA
� �Σ

� f B
� �Σ

 �

nk δΣ, (113)

where δΣ is a surface-Dirac distribution, its action δΣ,φh i on a so-called test
function φ [13] being defined as:

δΣ,φh i ¼

ð

Σ

φ dΣ: (114)

A.3 Appendix 3: Formulas concerning tensors

Let Zij be an arbitrary second order tensor. It can be shown (see Ref. [15]) that
the following expression has general validity:

Zij ¼ Zδij þ Ẑij þ εijk~Zk, where

Z ¼
1

3
Zkk,

Ẑij ¼
1

2
Zij þ Zji

� �

�
1

3
Zkkδij,

~Zk ¼
1

2
εklmZlm:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

(115)
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If Zij is a tensor, then Z is a scalar, Ẑ is a symmetric traceless tensor, and ~Zk is a
pseudo-vector. A most useful property is as follows: if Uij and V ij are two tensors
then

UijV ij ¼ 3UV þ ÛijV̂ ij þ 2~Ui
~V i: (116)
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