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Abstract

Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution
to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended
genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488
population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease
severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2
peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ∼0.9-Mb inversion polymorphism that creates
two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th
release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new
locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.

Introduction
In the past year, Coronavirus disease 2019 (COVID-19),
caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), has evolved into a global pan-
demic with more than 532 million confirmed cases and
6.3 million COVID-19-related deaths worldwide (frequen-
cies reported by the World Health Organization, June
11, 2022). The clinical manifestations of COVID-19 are
variable and range from complete absence of symptoms
to severe respiratory failure and death. Severe COVID-
19 requires intensive medical care with respiratory sup-
port and can result in long-term damages detrimental
to the individual. The pathogenesis of severe COVID-19
is, however, still poorly understood. This condition has
been associated with clinical risk factors such as old age,
male sex and comorbidities including diabetes, active
cancer, hypertension and coronary artery disease (CAD)
as well as solid organ transplant or other conditions that
promote an immunosuppressive state (1–4).

Different studies, including the first genome-wide
association analysis (GWAS) by of our Severe COVID-19
GWAS study group, have shown that genetic predisposi-
tion plays a role in COVID-19 susceptibility and severity
(5–7). In particular, we reported significant associations
between genetic variants at loci 3p21.31 (around LZTF1)
and 9q34.2 (ABO blood group locus) to severe respiratory
failure and SARS-CoV-2 infection in 1610 severe COVID-
19 patients and 2205 population controls of European
ancestry. Since then, these loci have been replicated
in subsequent studies and extended also to non-
European cohorts (8–10). Eleven additional genome-wide
significant loci, associated with SARS-CoV-2 infection
or COVID-19 manifestations, have been reported by
various studies, including the Genetics Of Mortality In
Critical Care (GenOMICC) Initiative and, more recently,
the largest genetic consortium for COVID-19, the COVID-
19 Host Genetics initiative (HGI) (6,7). Six of these loci
have been linked to critical illness by COVID-19 and
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include genes that were previously associated with pul-
monary or autoimmune and inflammatory diseases (7).

Since our primary publication, the Severe COVID-19
GWAS study group dataset has been extended to 3255
severe COVID-19 patients with respiratory failure (5) and
12 488 controls with unknown COVID-19 status from
30 study centers across Italy, Spain, Norway and Ger-
many/Austria (after quality control (QC); Supplementary
Material, Table S1A and D). Compared with our previous
study, we increased the number of patients and controls
by approximate factors of 2 and 5.5, respectively (from
1610 and 2205). Furthermore, detailed information on
age, sex and comorbidities as hypertension, diabetes
and CAD is available in this dataset. The control cohort
included predominantly population controls recruited
at the respective centers as blood or bone marrow
donors with unknown or negative COVID-19 status
(Supplementary Material, Table S1C). With this unique
resource at hand, we performed an extended genome-
wide association study (GWAS) and meta-analysis of
severe COVID-19 as well as a meta-analysis with the
COVID-19 HGI release 5 GWAS summary statistics,
followed by stratified analyses of age, sex and disease
and a detailed analysis of ABO secretor status. Using Y-
chromosomal genotype calls from the Global Screening
Array (GSA), we additionally performed an imputation
and disease association of chromosome Y haplotypes.
Compared with our first study, we also performed an
even more detailed analysis of the human leukocyte
antigen (HLA) which includes classical fine-mapping
of the HLA region based on local imputation of SNP,
amino acid and classical allele information, as well as a
broad range of other approaches, including a peptidome-
wide association study (PepWAS) (11) computational
prediction of SARS-CoV-2 peptide presentation, HLA
class I supertype association analysis and tests for
heterozygote advantage, divergent allele advantage and
molecular mimicry. Finally, by inversion imputation, we
present a functional analysis of the established 17q21.31
locus (7), which has been described by COVID-19 HGI but
not characterized in depth.

Results
GWAS meta-analyses for severe COVID-19 with
respiratory failure
Genotyping was carried out using Illumina’s GSA,
followed by genotype QC analysis and TOPMed genotype
imputation (Material and Methods, Supplementary
Material, Figure S1, patient numbers before and after QC
are shown in Supplementary Material, Table S1A and C).
Respiratory failure was defined as respiratory support
with supplemental oxygen [class 1] or non-invasive
and invasive ventilation [classes 2 and 3, respectively],
or by extracorporeal membrane oxygenation (ECMO)
[class 4]).(5) Analogously to the COVID-19 HGI (7),
we conducted two GWAS discovery meta-analyses for
two main categories of COVID-19 disease state: First,
‘hospitalization with respiratory support’ (respiratory

support classes 1–4 with a total of 3255 patients and
12 488 controls, main analysis), and second, a more
stringent definition of severe COVID-19 ‘hospitalization
with mechanical ventilation’ (classes 2–4 with 1911
critically ill individuals and 12 226 controls, subtype
analysis). Details of per cohort patient numbers are
shown in Supplementary Material, Table S1E. The
characteristics of patients and controls included in our
analyses are shown in Table 1 and Supplementary Mate-
rial, Table S2. After imputation, we carried out a GWAS
of 9 223 806 and 9175283 high-quality genetic variants
[imputation R2 ≥ 0.6 and minor allele frequency (MAF)
≥1%] stratified by ancestry (Italy, Spain, Norway and
Germany/Austria) using a logistic mixed model analysis
as implemented in SAIGE (12), followed by a fixed-effect
inverse variance-weighted meta-analysis using METAL
(13) (low genomic inflation of 1.017; Supplementary
Material, Figs S2 and S3). Genome-wide comparison of
the case–control frequencies [conservatively adjusted
for age, sex, age∗age, sex∗age and top 10 principal
components (PCs) from principal component analysis
(PCA) as employed by the COVID-19 HGI; Material and
Methods], revealed genome-wide significant associations
(P < 5 × 10−8; Table 2 and Supplementary Material, Table
S3, Figs S4 and S5) at three known loci in the main anal-
ysis: chr3:45848457:C:T (rs35731912) within LZTFL1 at
the 3p21.31 locus, chr9:133261703:A:G (rs687289) within
ABO at 9q34.2, chr19:10351837:C:T (rs11085725) within
TYK2 at 19p13.2. In addition to the same TYK2 variant,
chr19:4717660:A:G (rs12610495) within DPP9 at 19p13.3
was genome-wide significant in the subtype analysis.
Additional suggestive loci (P < 10−6) from both analyses
include previously reported associations at 17q21.31
(MAPT), 19p13.3 (DPP9) and 21q22.11 (IFNAR2) (Table 2
and Supplementary Material, Table S3) (7). Of note, the
respective lead risk variants (this study versus COVID-
19 HGI) at reported loci are linked with r2 or D’ > 0.9
across our study cohorts (Supplementary Material,
Table S4). Although hierarchical mixture model analysis
with MAMBA (14) (Materials and Methods) showed a
high posterior probability of replication (PPR > 0.8) for
suggestive associations at PCDH7 at 4p15.1, FREM1 at
9p22.3 (main analysis), OLMF4 at 13q21.1 and PTPRM at
18p11.23 (subtype analysis), they were not observed as
significantly associated with COVID-19 in the COVID-19
HGI 5 release dataset, which is why we did not consider
them further (forest plots including all data are shown
in Supplementary Material, Fig. S6). Future analyses
will be required to determine the significance of these
associations to COVID-19.

Next, we performed a replication analysis of the
13 variants reported to be genome-wide significantly
associated with COVID-19 by the COVID-19 HGI. Since
data from the Severe COVID-19 group where shared
with the COVID-19 HGI, release 5 of the HGI con-
tains 3815 individuals from our previous analysis. We
therefore included only individuals from the Severe
COVID-19 GWAS group not contained in the COVID-
19 HGI release 5 datasets (Material and Methods and

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac158/6644888 by guest on 08 N

ovem
ber 2022

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data


Human Molecular Genetics, 2022, Vol. 00, No. 00 | 7

Table 1. Overview of patients included in the genome-wide discovery analysis

Italy Spain Norway Germany/Austria

Total N severe COVID-19 patients 1536 1421 262 241
Respiratory support categories N (%)
Supplemental oxygen only (1) 276 (17.97) 897 (63.53) 80.65 109 (45.23)
Non-invasive ventilation (2) 933 (60.74) 122 (8.62) 3.23 21 (8.71)
Ventilator (3) 320 (20.83) 381 (26.91) 16.13 86 (35.68)
ECMO (4) 7 (0.46) 16 (1.13) 0 25 (10.37)
Median age (IQR)—years (1) 75 (21) 69 (21) 59 (20) 63 (23)
Median age (IQR)—years (2) 66 (23) 72 (17) 68.5 (10) 68 (20)
Median age (IQR)—years (3) 63 (14) 65 (15) 66 (19) 64 (18)
Median age (IQR)—years (4) 49 (12) 57 (10) / 56 (12)
Main analysis
N severe COVID-19 patients 1536 1421 262 241
Female sex—% 32.81 35.88 33.87 26.97
Median age (IQR)—year 67 (22) 68 (18) 59.5 (21) 63 (19)
Hypertension—% affected (% missing) 40.55 (21.16) 49.6 (1.91) 41.3 (25.81) 53.09 (32.78)
CAD—% affected (% missing) 17.09 (21.16) 10.16 (1.98) 25.81 (0) 15.23 (37.34)
Diabetes—% affected (% missing) 14.86 (21.16) 24.55 (1.91) 14.52 (0) 19.63 (32.37)
Subtype analysis
N severe COVID-19 patients 1260 519 132
Female sex—% 29.68 27.55 / 22.73
Hypertension % affected (% missing) 38.26 (23.25) 52.19 (3.28) / 62.96 (38.64)
CAD—% affected (% missing) 16.03 (23.25) 12.55 (3.28) / 18.75 (39.39)
Diabetes—% affected (% missing) 14.58 (23.25) 25.3 (3.28) / 19.75 (38.64)

Overview of patients included in our first analysis (3260 patients) and second analysis (1911 patients). Individuals of the Italian, Spanish, Norwegian and
German/Austrian cohorts were recruited at 5, 7, 8 and 10 different hospitals/centers, respectively. Shown are respiratory support status groups 1–4, age and
median age across all individuals as well as within each respiratory support group, percentage of females within each cohort, as well as percentage of individuals
affected by known comorbidities of COVID-19. Commonly reported comorbidities in COVID-19 are shown, hypertension, CAD and diabetes. Characteristics of
control individuals are shown in Supplementary Material, Table S2.

Table 2. Candidate variants from the main and subtype analysis

snpid rsid A1 A2 FRQ OR OR_95L OR_95U PPR P gene

Main analysis chr3:45848457:C:T rs35731912 T C 0.09 1.784 1.723 1.847 1.000 2.32E−21 LZTFL1
chr19:10351837:C:T rs11085725 T C 0.273 1.269 1.254 1.283 1.000 1.02E−10 TYK2
chr9:133261703:A:G rs687289 A G 0.358 1.240 1.219 1.262 1.000 4.49E−10 ABO
chr19:4717660:A:G rs12610495 G A 0.27 1.216 1.188 1.244 0.990 9.91E−08 DPP9
chr9:14754866:A:G rs7023573 A G 0.285 1.207 1.185 1.231 0.954 5.21E−07 FREM1
chr17:45933112:G:A rs8065800 G A 0.328 1.194 1.145 1.247 0.925 8.90E−07 MAPT
chr4:30946048:T:C rs12512667 C T 0.444 0.850 0.828 0.873 0.922 8.95E−07 PCDH7

Subtype analysis chr19:10351837:C:T rs11085725 T C 0.272 1.309 1.294 1.325 0.999 3.24E−09 TYK2
chr19:4717660:A:G rs12610495 G A 0.267 1.286 1.257 1.316 0.993 2.87E−08 DPP9
chr13:55031860:T:C rs111671068 C T 0.012 2.802 2.794 2.810 0.806 1.43E−07 OLFM4
chr9:133271182:T:C rs550057 T C 0.266 1.262 1.238 1.286 0.939 4.56E−07 ABO
chr18:7897309:A:C rs17565758 C A 0.078 1.510 1.470 1.550 0.938 4.84E−07 PTPRM
chr21:33247902:C:T rs2834161 C T 0.371 1.250 1.175 1.331 0.923 6.10E−07 IFNAR2

We show only variants that have a PPR > 0.8 in the MAMBA analysis. A more detailed overview of all variants is shown in Supplementary Material, Table S3. snpid:
id of the marker as chr:pos:alleles, genome build hg38; A1: minor allele from TopMed imputation; A2: major allele from TopMed imputation; OR/OR_95L/OR_95U:
OR and 95% CI of A1; PPR: posterior probability of replication; P: P value of association.

Supplementary Methods) for this analysis. 8 of the 13
variants reported as genome-wide significant by the
COVID-19 HGI (7) replicated at least a nominal P-value
of 0.05 (located near LZTFL1, ABO, TYK2, DDP9, IFNAR2,
MAPT/KANSL1, OAS1; Supplementary Material, Table S5).
Subsequently, we performed a fixed-effect inverse
variance-weighted meta-analysis using METAL (13)
across the main (hospitalized with respiratory support)
analysis and COVID-19 HGI B2 statistics as well as
the subtype analysis (critically ill: hospitalized with
mechanical ventilation) and COVID-19 A2 statistics,
resulting in a total of 1 320 760 (14 467 and cases
and 1 306 293 controls) and 725 601 (6526 cases and
719 075 controls) analysed individuals in the respective

analyses as well as 9 163 456 and 9 309 373 high quality
variants (imputation R2 ≥ 0.6 in our cohorts and overall
MAF ≥ 1%; Supplementary Material, Figs S7 and S8).
This analysis prioritized rs1819040 at the 17q21.31
locus within the KANSL1 gene as the most strongly
associated variant in this region (P = 3.27 × 10−11 for
rs1819040; OR = 0.88 for minor allele T; 95%CI = 0.84–0.92)
over rs8065800 from the main analysis (Supplementary
Material, Tables S3, S4 and S6). The meta-analysis
of our subtype analysis with the COVID-19 HGI A2
summary statistics revealed an additional genome-wide
significant locus not previously associated with severe
COVID-19, chr19:50379362:T:C (rs1405655, P = 3.25 × 10−8;
OR = 1.09; 95%CI = 1.06–1.13) located near the NAPSA
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Figure 1. Forest plot of candidates from the in-depth stratified analysis. The plots show the variants chr3:45823240, chr3:45848457:C:T,
chr17:46142465:T:A which were significantly associated with age (interaction P-value [P_FDR(I) < 0.05]) when comparing age groups ≤60 and >60. We
additionally show variants chr19:4717660:A:G and chr21:33242905:T:C with insignificant, though strong trends for association with age. ORs and their
respective 95% confidence intervals (CIs) are visualized for each of our four cohorts separately. The size of the dots indicates the size of the respective
cohort (N). The OR value is displayed in addition as a numerical value. Only cohorts in which N > 50 in both cases and controls are shown. The headers
are built as follows: gene variant id (chr:pos(hg38):allele)—rs-id—effect allele ∗/∗∗. ∗ indicates a variant that was observed as associated from data in this
study; ∗∗indicates a variant that was observed as associated in the release 5 of the COVID-19 HGI.

gene at 19q13.33 (regional association and forest plots
are shown in Supplementary Material, Fig. S9, Table
S6). Bayesian fine-mapping analysis of this locus with
FINEMAP (15) (Material and Methods) identified a total
of 15 (log10(Bayes factor) = 5.95) variants that belong to
the 95% most likely to be causal (Fig. 1, Supplementary
Material, Table S7), indicating that a small number of
SNPs could be considered causal in subsequent analyses.

In-depth stratified analysis of lead variants
To estimate differences in genetic effects across different
age groups and different biological sex categories, we
performed an in-depth stratified analysis for selected
variants. These included genome-wide and suggestively
significant variants from this study (LZTFL1, ABO, TYK2,
DPP9; MAPT, IFNAR2; 7 lead variants in total from
the main and the subtype analysis). We additionally
included all of the 13 variants from the COVID-19
HGI release 5 analysis (7) and the novel association,
chr19:50379362:T:C, at the NAPSA locus. A detailed
overview of these loci is shown in Supplementary
Material, Table S8. We additionally investigated the
association of these variants to known comorbidities

such as hypertension, CAD and diabetes in cases
only and performed sex-stratified analysis within age
groups and with respect to disease severity groups. We
performed interaction analysis of the SNP with sex and
age (age group ≤ 60 and >60), respectively, to investigate
sex-specific and age-specific effects, i.e. to determine
whether differences in effects within these groups
were statistically significant (Materials and Methods and
Supplementary Methods). Results of these analyses are
shown in Figure 1, Supplementary Material, Tables S8
and S9, Figures S10 and S11. We confirmed our previously
described associations with age (Fig. 1) and with disease
severity at 3p21.31 for chr3:45848457:C:T (severity:
P = 9.73 × 10−7, OR = 1.65; 95%CI = 1.35–2.03), which is
also discussed in detail in a study by Nakanishi et al.
(16). Differential association with age was also observed
for chr17:46142465:T:A (rs1819040, MAPT) (Fig. 1). Strong
but non-significant trends for an association were also
observed for chr19:4717660:A:G (rs12610495; DPP9) at
the 19p13.3 locus, and chr21:33242905:T:C (rs13050728;
IFNAR2) which was significantly associated with severe
COVID-19 only in younger individuals before correction
for multiple testing (Fig. 1). We analysed these 5 variants
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even more in-depth within the age groups of 41–50, 51–
60 and 61–70 as well as 41–60 and 61–80 (Supplementary
Material, Fig. S10C) and observed a tendency for stronger
effects in the younger population at the four loci.
Interestingly, the German population showed opposite
effect sizes than the other cohorts in the broad age group
analysis for chr17:46142465:T:A (see also below).

We did not observe any statistically significant asso-
ciations with age, sex, severity or comorbidities for the
remaining analysed lead variants. Additional age and
sex stratified forest plots of this analysis are shown in
Supplementary Material, Figure S11A and B.

As the genome-wide significant association near
LTZF1, TYK2, DDP9 and ABO have been followed up in
detail before, we next focused on the novel association
at the 19q13.33 (NAPSA) locus from the meta-analysis
with COVID-19 HGI release 5 summary statistics and
performed an in-depth analysis of the 17q21.31 (MAPT,
KANSL1) locus associated with age. The 17q21.31 locus
has been previously reported to be linked to a common
inversion polymorphism of two highly divergent haplo-
types H1 and H2 (17). Indeed, Bayesian fine-mapping
(15) at this locus showed that the 95% credible set
includes 1530 variants among these chr17:45933112:G:A
(rs8065800) from our initial discovery analysis and
chr17:46142465:T:A (rs1819040) from the COVID-19 HGI
analysis with certainty <0.3%, indicating, based on
the overlap of LD boundaries of highly associated SNP
variants with the inversion boundaries (Fig. 2A), that the
individual SNP associations may be proxy variants for
the associated inversion polymorphism.

We therefore imputed the inversion haplotypes
H1 and H2 for our cohorts by genotype imputation
with IMPUTE2 (18), employing as reference 109 indi-
viduals from the 1000 Genomes Project for which
17q21.31 inversion genotypes were obtained exper-
imentally by FISH and droplet digital polymerase-
chain-reaction (PCR; Material and Methods). LD between
the chr17:46142465:T:A (rs1819040) variant, which
was prioritized over chr17:45933112:G:A (rs8065800) in
the meta-analysis with the COVID-19 HGI summary
statistics, and the inversion in our cohorts is near perfect
(r2 = 0.98, D′ = 0.99). Genome-wide significant association
with severe respiratory COVID-19 for the inversion
was confirmed using logistic regression followed by
meta-analysis across this study’s panels and summary
statistics derived for the from the COVID-19 HGI data
(Materials and Methods) (meta-analysis main analysis
and COVID-19 HGI release 5 B2: P = 7.61 × 10−10, OR = 0.89;
95%CI = 0.84–0.92; meta-analysis subtype analysis and
COVID-19 HGI release 5 A2: P = 1.5 × 10−4, OR = 0.90;
95%CI = 0.85–0.95; Fig. 2B, Supplementary Material, Table
S10). Using stratified analysis, we also show an age effect
for the inversion (Supplementary Material, Table S7,
Fig. S10). The opposite effects direction observed for
the German cohort for linking SNP chr17:46142465:T:A
was shifted for individuals aged 40–61 when analysing
the inversion. We did not observe any association of the
inversion with disease severity.

Functional analysis of 17q21.31 and 19q13.33
using publicly available datasets
We next performed several follow-up analyses to better
understand possible functional implications of the
associations at the 17q21.31 inversion and at the novel
19q13.33 locus, including a phenome-wide association
study (PheWas) and exploratory gene expression
analysis.

We queried variants in high LD (r2 > 0.9) with chr19:50-
379362:T:C (rs1405655) or the 17q21.31 inversion, using a
wide range of phenotypes from the NHGRI GWAS Cat-
alog (Material and Methods) (19). While no known phe-
notypes were found to be linked to chr19:50379362:T:C
(rs1405655) or its proxy variants, 161 GWAS associations
were identified for variants in high LD (r2 > 0.9) with
the 17q21.31 inversion, illustrating its multiple effects
(Supplementary Material, Table S11). These associations
included several traits potentially related to COVID-19
pathology, such as blood and immune cell composition
or lung function (Fig. 2C).

Variants within the credible set from Bayesian fine
mapping at 19q13.33 overlap with several genes, includ-
ing for instance NAPSA, NR1H2 and KCNC3, while the
17q21.31 inversion spans multiple genes including MAPT,
KANSL1, FMNL1 and CRHR1 (Supplementary Material,
Figs S4, S5 and S9 and Fig. 2). To identify possible
target genes relevant in COVID-19 disease pathology, we
performed an exploratory gene expression analysis using
several publicly available datasets to: (i) examine the
direct effect of both loci on gene expression by analysing
colocalization of lead SNPs with expression and splicing
quantitative trait loci (eQTL and sQTL), (ii) identify in
which tissues or cell types our candidate genes are
expressed by analysing their RNA expression at bulk and
single-cell levels and (iii) infer the possible contribution
of these genes to COVID-19 pathology by looking at
their expression patterns in (a) monocytes exposed to
different viral and non-viral immune stimulators; (b)
organoids infected with COVID-19 and (c) single-cell
RNA-seq of lung and other tissues from patients who
died after experiencing a SARS-CoV-2 severe disease
(Material and Methods). Results of these analyses are
displayed in Figure 3.

The potential functional role of the 17q21.31 inversion
is supported by the fact that the inversion locus
(chr17:45883776 ± 75 kb) strongly colocalizes (regional
probability > 0.9) with eQTLs and sQTLs (i.e. displaying
the strongest association with the target), for 36 (eQTL)
and 15 (sQTL) genes, respectively (Fig. 3A, Supplementary
Material, Table S12, Fig. S12). Expression patterns of
protein-coding genes with eQTLs associated to the
inversion are shown in Supplementary Material, Figure
S13, with the best candidates to play a role in the
effects of the inversion on COVID-19, including MAPT,
KANSL1, FMNL1 and CRHR1, being summarized in
Figure 3. Many of these genes are highly expressed in
neural tissues and testis (Supplementary Material, Fig.
S13). However, several of them are also expressed in
major immune cell types in COVID-19 relevant tissues

D
ow

nloaded from
 https://academ

ic.oup.com
/hm

g/advance-article/doi/10.1093/hm
g/ddac158/6644888 by guest on 08 N

ovem
ber 2022

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac158#supplementary-data


10 | Human Molecular Genetics, 2022, Vol. 00, No. 00

Figure 2. Association of the 17q21.31 locus with severe COVID-19 with respiratory failure. (A) Regional association plot showing the variant most strongly
associated with severe COVID-19 (rs1819040, purple diamond) a ∼ 0.9 Mb inversion polymorphism at 17q21.21 (56) (white line with blue rectangles
representing the variable segmental duplication (SD) blocks at the breakpoints), and the large credible set obtained by statistical fine-mapping including
2178 SNPs in high LD (median [LD] = 0.97) with the inversion (Supplementary Material, Table S7). Pairwise LD values (r2) with lead variant rs1819040
were calculated from merged Italian, Spanish, German/Austrian and Norwegian GWAS main anlysis datasets. The dotted line indicates the genome-
wide significance threshold (P = 5 × 10−8). Below, organization of the 17q21.31 inversion genomic region, with the extended haplotypes associated with
each orientation (H1 and H2) shown as red and blue arrows, respectively, and breakpoint SDs as dark rectangles. Protein-coding genes for which the
inversion is a lead eQTL in at least one GTEx tissue are shown as pointed rectangles indicating the direction of transcription. (B) Forest plot and extended
meta-analysis of our first discovery analysis and the COVID-19 HGI release 5 analysis B2 dataset (Material and Methods) of the association between
severe COVID-19 and the 17q21.31 inversion based on the presence relative to the absence of the inversion haplotype H2. We visualized the ORs and
their 95% confidence invervals (CIs) across all analysed cohorts of the main analysis and the COVID-19 HGI release 5 analysis B2 data. In this analysis,
the overlap between the main analysis cohort and the COVID-19 HGI data was excluded from the main analysis cohort. The OR value is displayed
in addition as a numerical value. The size of the dots indicates the size of the respective cohort (N). (C) Phenome-wide association study (PheWAS)
results for the 17q21.31 inversion allele H2 showing only potentially COVID-19-related phenotypes from the GWAS Catalog (P = 10−7) grouped by disease
categories using different colors. The effect direction of known SNP-trait associations from the corresponding GWAS is shown using triangles pointing
upward (increase) and downward (decrease), whereas dots represent unknown effect direction. Phenotypes shown were selected according to previously
reported COVID-19 links with lung damage, blood cell alterations and exacerbated immune response, as well as some potential co-morbidities. The whole
list of phenotypic associations is included in Supplementary Material, Table S11.

(Fig. 3B, Supplementary Material, Fig. S13A/B), such
as KANSL1, which is expressed in lung tissue-resident
alveolar macrophages, or FMNL1 (Fig. 3B, Supplementary
Material, Fig. S13B). These two genes especially show sig-
nificantly higher expression in different lung cell types in
acute COVID-19 patients who died with the disease as
compared with healthy controls (20) (Fig. 3C, Supple-
mentary Material, Fig. S13C). Moreover, RNA-seq data
of monocytes under different bacterial and viral stimuli
that activate toll-like receptor pathways, including bacte-
rial lipopolysaccharide, Pam3CSK4, R848 and influenza A
virus, show expression changes in several genes affected
by the inversion (21) (Supplementary Material, Fig. S14,

Table S13). For example, KANSL1, that could have anti-
inflammatory effects, shows higher expression in H2
carrier monocytes stimulated with Influenza A virus
infection-like conditions which appears to be related
to a significant increase of coding and non-coding
isoforms (Supplementary Material, Fig. S15). Similarly,
in SARS-CoV-2 infected brain organoids, the expression
of MAPT was significantly downregulated in premature
and mature neuronal cells (Supplementary Material, Fig.
S16, Table S14).

In the case of the 19q13.33 locus, expression of candi-
date genes shows high tissue specificity, with NAPSA
mRNA being specific to lung and lung parenchyma
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Figure 3. Expression analysis of the most plausible candidate genes associated with the 17q.21.31 and 19q.13.33 loci in organ tissues and COVID-19
relevant cell types. (A) GTEx tissue-specific expression QTL (eQTL, upper panel) and splicing QTL (sQTL, middle panel) effects of the 17q21.31 and
19q.13.33 loci on selected candidate genes as well as expression of these genes in GTEx (20) tissues (lower panel). The direction of the normalized
eQTL and sQTL effect size (NES) of the lead SNP rs1405655 and the inversion tagger rs62055540 in perfect LD with the inversion is represented by color
intensities, and statistical significance by dot size. Black rectangles indicate genes for which the expression colocalizes (regional probability > 0.9) with
GWAS loci in a given human tissue from the GTEx dataset. Heatmap displays gene-wise centered median by tissue expression values (represented by
color intensities), showing in which tissues candidate genes are mostly enriched. (B) Expression levels of candidate genes in scRNA-seq datasets from
healthy upper airways (nasal, bronchi) and lung (parenchyma) cells (47) and adult human brain cells from recently deceased, non-diseased donors (48).
Figure displays log-normalized mean expression (represented by color) and fraction of cells expressing those genes (indicated by dot size). Processed
and cell-type-annotated gene expression levels from studies were retrieved from COVID-19 Cell Atlas (49). (C) The figure shows differential expression
of candidate genes in lung cells of COVID-19 patients compared with healthy controls. Log2 fold change (log2FC) values are presented as color gradient.
Nominal P-values in −log10 scale are shown proportionally to dot size. Black-bordered circles indicate significantly differentially expressed genes after
FDR correction. Results were obtained from pseudo-bulk differential expression analysis by Delorey et al. (21). More detailed figures are shown in
Supplementary Material, Figures S11, S12 and S15.

and KCNC3 being highly expressed in brain and thyroid
tissue, while NR1H2 is more broadly expressed among
human tissues, including many immune cell types
(Fig. 2B, Supplementary Material, Fig. S12). Of those
candidates, expression of KCNC3 and especially NAPSA

appears to be clearly affected by the rs1405655 lead SNP
which is also displayed by strong colocalization [regional
probability > 0.9] of the loci with eQTLs in multiple
tissues (Fig. 3A). Single SNP Mendelian randomization
analysis using cis-eQTL data and assessment of effect
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heterogeneity identified higher expression of NAPSA
as a potentially causal protective factor for severe
COVID-19 (Beta = −0.39; P = 1.26 × 10−7) (Supplementary
Material, Table S15). Notably, NAPSA shows significantly
increased expression in type 1 alveolar cells of COVID-19
patients as compared with healthy controls (20) (Fig. 3,
Supplementary Material,Fig. S13). On the other hand,
the NR1H2 gene is significantly down-regulated in some
parenchymal (basal, ciliated, club) and endothelial
(pericyte) lung cells and is up-regulated in monocytes of
COVID-19 patients when compared with healthy controls
(Fig. 3C, Supplementary Material, Fig. S13) (20).

Association analysis of specific candidate
genomic regions: ABO locus, HLA locus and
Y-chromosome haplogroups
The ABO locus has one of the most significant associa-
tions with COVID-19 infection, as highlighted in several
publications (5,7). In our initial publication, we showed
that the genetic association at the ABO locus could be
explained by differences in the actual ABO blood type.
ABO secretor status, i.e. secretion of ABO antigens into
body fluids, is determined by genetic variation in the
FUT2 gene. Recent studies suggest that A secretors have
a higher risk of COVID-19 susceptibility (22). Here, we
sought to replicate this finding (Material and Methods)
81% of all individuals were secretors irrespective of blood
group on average across all control cohorts. In our study,
though not statistically significant in an interaction anal-
ysis of blood group and secretion status, a trend was
observed for increased risk of COVID-19 infection for A
secretors when comparing COVID-19 cases to the general
population (A secretors: OR = 1.32; 95%CI = 1.20–1.46; A
non-secretors: OR = 1.08; 95%CI = 0.91–1.28) (Supplemen-
tary Material, Table S16). B secretion was not significantly
associated with COVID-19 susceptibility and both A/B
secretion were not significantly associated with disease
severity.

The HLA fine-mapping approach yielded no associ-
ation at the genome-wide or nominal (P < 10−5) signif-
icance threshold, neither in the overall meta-analysis
across the four cohorts nor within the separate cohorts
(Supplementary Material, Table S17, Fig. S17). Further-
more, we found no significant association for any HLA-
presented viral peptide in a so-called PepWAS approach
(Supplementary Material, Table S18, Figs S18 and S19),
where associations between HLA-presented peptides and
disease are unraveled by integrating similarities and dif-
ferences in peptide binding among HLA alleles across
patients nor robust statistical associations with any of
the other tested HLA parameters (Supplementary Mate-
rial, Table S19).

With male sex identified as a risk factor for severe
COVID-19 and COVID-19-related death (3), we explored
possible associations between genetic variants on the Y
chromosome and the risk of developing severe COVID-19
and COVID-19 mortality in males (3). Variations on the

Y chromosome describe so-called Y-chromosome hap-
logroups with letters A–Z (defined by the Y Chromosome
Consortium) (23) and follow a pattern of ancestral popu-
lation migrations in Europe and on a global scale.

Results of the Y-chromosome haplogroup analysis are
shown in Supplementary Material, Table S20. We did not
observe any statistically significant or consistent results
for Y chromosomal haplotype association with COVID-
19 across the Spanish, Italian and German populations in
our main or subtype analysis after correction of P-values
for multiple testing using Bonferroni. We found that
cohort-specific suggestive (P < 0.05) associations within
the Italian population for the R1b haplogroup were par-
tially driven by single genotyping batches with diverging
haplogroup frequencies (i.e. high coefficient of variation
between control batches). COVID-19-related mortality
showed a strong trend for association with haplogroup
R1b1a2a1 (U106) (P = 9.49 × 10−3, OR = 2.8, 95%CI = 1.29–
6.2) in both the Spanish and Italian populations. This
association remained after adjusting for the comorbidi-
ties hypertension, CAD and diabetes. COVID-19-related
death remains, however, a challenging endpoint influ-
enced by many factors.

Discussion
We here present a large collaborative COVID-19 genetics
study of different centers from Italy, Spain, Norway and
Germany/Austria. With our clearly defined phenotype
of severe respiratory COVID-19, a centralized genotyp-
ing and rigorous QC, we have generated a valuable
resource for further COVID-19-related genetic studies. By
conservatively including only severely affected COVID-
19 patients in our analysis, we aimed to balance out
a potential bias from selection of controls from the
general population, which is however general practice in
GWA analyses. Our study replicates known associations
with COVID-19 from our previous and other studies
and suggests associations at four novel loci, PCDH7 at
4p15.1; FREM1 at 9p22.3; OLMF4 at 13q21.1 and PTPRM
at 18p11.23. These associations do not replicate in the
COVID-19 HGI release 5 statistics despite their high
level of replicability across all our different cohorts.
Future studies in independent cohorts will be required
to confirm their association to COVID-19 disease.

Genome-wide meta-analysis of COVID19 HGI release
5 summary statistics with our data revealed a so-far
unreported association at the 19q13.33 locus, near the
gene NAPSA. Our in-depth stratified analysis showed sig-
nificant age-associations for LZTFL1 at the 3p21.31 locus
and the inversion at 17q21.31. Effects of age in genetic
variation are frequently observed in genetic studies; how-
ever, reasons for this are not clear. Possible models are
discussed in detail in Jiang et al. (24).

Our functional analysis focused on two loci of interest
associated with severe COVID-19, the previously known
17q21.31 inversion and the 19q13.33 locus, including the
NAPSA gene. For the novel association at the 19q13.33
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locus, additional analyses provided first hints for a func-
tional involvement in COVID-19 through its regulation
of the NAPSA gene. NAPSA encodes for a protease highly
expressed in Type 1 (AT1) and Type 2 (AT2) alveolar cells,
where two cell types required for the gas exchange at the
lung surface and the secretion of surfactant proteins as
well as immunomodulatory factors (AT2) (25). Comple-
mentary findings were observed in another recent study
dissecting the lung transcriptome of COVID-19 infected
patients in which NAPSA expression is increased in AT1
cells. This study also linked NAPSA to the marker gene
expression signature of ‘damage-associated transient
progenitors’, an intermediate cell state between AT1
and AT2 cells promoted by inflammation, characterized
by a failure of AT2 cells to differentiate to AT1 cells
(26). Thus, given that the NAPSA protein is involved in
lung surfactant production, which is dysregulated in
COVID-19 (27), the fact that the COVID-19 risk allele
is associated with decreased NAPSA expression, while
increased expression of NAPSA is a protective factor for
severe COVID-19, suggests a potential role of NAPSA in
susceptibility for severe COVID-19. These findings are
in line with a recent report in which NAPSA has been
identified as a candidate gene for COVID-19 severity
through a cross methylome omnibus test combined with
S-PrediXcan analyses in blood tissue and integrative
multiomics (28), as well as with another recent report
in which summary-based Mendelian randomization
analysis showed an inverse correlation between the
expression of NAPSA in blood and COVID-19 severity
(29).

Though we cannot prove causality of the 17q21.31
inversion polymorphism in COVID-19 disease, it is
linked to many traits potentially relevant to COVID-19
outcome. For instance, the inverted haplotype H2 was
previously associated with higher number of red blood
cells and hemoglobin levels, whereas each haplotype
correlates with different proportions of lymphocytes
and granulocytes, which could potentially modulate the
immune response during SARS-CoV-2 infection (30). In
addition, the H2 protective allele is also associated with
decreased lung function and increased risk of chronic
obstructive pulmonary disease but protects against the
development of pulmonary fibrosis (31), and is associated
with higher ventilatory response to corticosteroids in
individuals with asthma (32), showing potential trade-
offs and shared pathways that may be important in
lung health. This variant has been proposed to be under
positive selection in Europeans through its effect on
fertility (17). Our results point to a role of this polymor-
phism in immunity and virus infection defence as well.
Interestingly, inversion effects were found to be stronger
in the younger age group in both severity classes, which
could explain the weaker association in the HGI more
severe A2 phenotype due likely to a larger proportion of
older individuals (7). The inversion probably affects the
COVID-19 disease course through its large effects on gene
expression shown by us and others (7). Although the

function of many of the affected genes is not well
known, the inversion acts as an eQTL and sQTL of
several interesting candidate genes for severe COVID-
19. In particular, there are several genes potentially
associated with immune function and immune response.
For example, KANSL1, involved in histone acetylation,
is broadly expressed in many types of immune cells
in upper airways and lung tissue (Fig. 3) and has been
proposed to play a role in the macrophage transition to
an anti-inflammatory phenotype in mice (33). Here, we
have found that the expression decrease in infection-
like stimulated monocytes is partially compensated in
homozygotes for the H2 inversion haplotype. CHRH1,
which is associated to higher expression in the H2
haplotype in several tissues (Fig. 3), encodes a receptor
that binds to corticotropin-releasing hormones, which
are major regulators of the hypothalamic–pituitary–
adrenal axis, and regulates immune and inflammatory
responses (34). Finally, FMNL1, which is also located
in the inversion locus, shows high expression levels in
macrophages, dendritic cells and B and T lymphocytes
in different COVID-19-related tissues (Fig. 3) and it is
involved in cell motility and T cell trafficking (35). In
addition, many of the genes in the 17q21.31 inversion
regions show a predominant expression in brain tissues,
which could also play an important role in COVID-19.
The clearest example is MAPT, which is downregulated
in SARS-CoV-2 infected neuronal cells (Supplementary
Material, Fig. S16) and lung-related cells and tissues. The
H2 haplotype is linked to increased expression of MAPT in
the lung and its MAPT exon 3 in brain tissues (36), which
could compensate for the downregulation during viral
infection and have a protective effect against COVID-
19. However, despite the potential implication of these
and other genes, it is not possible to single out just one
as the most likely candidate. In fact, inversions are well-
known for keeping together a combination of alleles from
different genes that generate complex phenotypic traits
in different organisms (37,38).

Our hypothesis-driven analysis of associations in the
HLA, as well as COVID-19-specific PepWAS analyses,
yielded no significant results, indicating no major role
for HLA variability in mediating the severity of COVID-19
in our cohorts. These results are in line with a recent,
and so-far the largest, HLA analysis from Shachar et al.
(39). Within our analysis of Y-chromosome haplogroups,
none of the results remain significant after correction
for multiple testing, though single haplogroups showed
trends for association (Supplementary Text) and larger
study samples are necessary to obtain reliable conclu-
sions. For individual haplogroups, we observed different
frequencies between batches that may also arise from
different versions of the same genotyping platform.
In general, the analysis of Y-chromosomal disease-
relevant SNPs is mainly neglected in GWAS, hence the
curation of Y-chromosomal SNPs on genotyping arrays
is potentially also a confounding factor. Therefore, to
gain more knowledge regarding the potential role of the
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Y-chromosome haplogroups in disease in general, this
should be investigated in more depth.

In summary, our findings add to the number of
genome-wide significant hits for COVID-19—totalling
now 14 independent loci—and provide new insights
to the molecular basis of COVID-19 severity that
could potentially trigger subsequent and more targeted
experiments to develop therapies for severe COVID-19.

Materials and Methods
Study participants and recruitment
We recruited 5228 patients with mild to severe COVID-19,
which was defined as hospitalization only (mild) or with
respiratory failure (severe) with a confirmed SARS-CoV-2
viral RNA PCR test from nasopharyngeal swabs or other
relevant biologic fluids, cross sectionally, from intensive
care units and general wards at different hospitals from
Italy (4 centers, N = 1857), Spain (6 centers, N = 2795),
Norway (7 centers, N = 127) and Germany/Austria (8
German, 1 Austrian center, N = 449). For comparison,
we included 13 705 control participants from Italy (4
centers, N = 5247), Spain (3 centers, N = 4552), Norway
(1 center, N = 288) and Germany (1 center, N = 3582).
Details on the centers and origin of the control panels
are shown in Supplementary Material, Table S1a and
b. Though all patient samples that were sent to our
study center were processed, only the severe COVID-19
individuals were analysed in this study (Supplementary
Material, Table S1e). Respiratory failure was defined
in the simplest possible manner to ensure feasibility:
the use of oxygen supplementation or mechanical
ventilation, with severity graded according to the
maximum respiratory support received at any point
during hospitalization (1: supplemental oxygen therapy
only, 2: noninvasive ventilatory support, 3: invasive
ventilatory support or 4: extracorporeal membrane
oxygenation) (5).

Recruiting centers and ethics committee
approval IDs
The project protocol involved the rapid recruitment of
patient-participants and no additional project-related
procedures (we primarily used material from clinically
indicated venipunctures) and afforded anonymity, owing
to the minimal dataset collected. Differences in recruit-
ment and consent procedures among the centers arose
because some centers integrated the project into larger
COVID-19 biobanking efforts, whereas other centers did
not, and because there were differences in how local
ethics committees provided guidance on the handling
of anonymization or deidentification of data as well
as consent procedures. Written informed consent was
obtained, sometimes in a delayed fashion, from the
study patients at each center when possible. In some
instances, informed consent was provided verbally or by
the next of kin, depending on local ethics committee
regulations and special policies issued for COVID-19

research. For some severely ill patients, an exemption
from informed consent was obtained from a local ethics
committee or according to local regulations to allow the
use of completely anonymized surplus material from
diagnostic venipuncture. Centers from which samples
were obtained are listed together with their ethics
approval reference numbers from each ethic committee
in Supplementary Material, Table S1b.

Sample processing and genotype calling
DNA extraction was either performed at the Institute of
Clinical Molecular Biology (IKMB, Christian-Albrechts-
University of Kiel, Germany) or the respective study cen-
ters (Supplementary Material, Table S1a, Supplementary
Methods) from whole-blood or buffy coat samples and
for a very small subset also saliva. Genotype calling
was performed at the IKMB for all samples with the
Illumina GenomeStudio Version 2.0 software using
cluster definition files GSAMD24v2-0_20024620_A1-
762Samples-LifeBrain (GSA Version 2.0; 712 189 SNPs),
GSAMD-24v3–0-EA_200034606_A1 (GSA Version 3.0;
730 059 SNPs) and GSAMD-24v1-0-A_4349HNR_Samples
(GSA Version 1.0; 700 078 SNPs). After genotyping, a
total of 4067 German/Austrian (449 cases/3618 con-
trols), 7347 Spanish (2795 cases/4552 controls), 415
Norwegian (127 cases/288 controls) and 7114 Italian
(1857 cases/5247 controls) samples were available with
non-missing core-phenotype (COVID-19 case–control
status) information. For individuals with missing sex
information, sex was inferred from the genotypic sex if
possible.

SNP and sample QC and PCA

Based on initial genotype data, we removed samples
with <90% call rate using PLINK (40,41). We additionally
removed individuals with non-matching genotypic and
phenotypic sex. After genotype calling, a QC procedure
was carried out for the Spanish, Italian, Norwegian
and German/Austrian case–controls GWAS datasets,
respectively. Variants that had >2% missing data, an
MAF < 0.1% in disease sets or in controls, different
missing genotype rates in affected and unaffected indi-
viduals (PFisher < 10−5) or deviated from Hardy–Weinberg
equilibrium (with a false discovery rate (FDR) threshold
of 10−5 in controls) (i) across the entire collection with
at most one batch being removed or (ii) falling below
in two single batches, were excluded. Samples that had
overall increased/decreased heterozygosity rates (i.e. ±5
SD away from the sample mean) were removed. For
robust duplicate/relatedness testing (IBS/IBD estimation)
and population structure analysis, we used a linkage
disequilibrium (LD)-pruned subset of SNPs on the basis
of a set of independent (MAF ≥ 5%) SNPs excluding X-
and Y-chromosomes, SNPs in LD (leaving no pairs with
r2 > 0.2) and 11 high-LD regions as described by Price
et al. (42). Pairwise percentage IBD values were computed
using PLINK. By definition, Z0: P(IBD = 0), Z1: P(IBD = 1),
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Z2: P(IBD = 2), Z0 + Z1 + Z2 = 1 and PI_HAT: P(IBD = 2) + 0.5
∗ P(IBD = 1) (proportion IBD). One individual (the one
showing greater missingness) from each pair with
PI_HAT > 0.1875 was removed. A value of 0.1875 (pro-
portion IBD) corresponds to a theoretical relationship of
halfway between the expected IBD for third- and second-
degree relatives. To identify ancestry outliers, i.e. subjects
of non-European ancestry, we performed PCA for the
remaining QCed cases and controls including reference
samples from the 1000 Genomes Phase 3 reference
panel (43). We used the PCA method, as implemented
in FlashPCA (44) on an LD-pruned subset of SNPs (see
text above). Ancestry outliers not matching European
populations were removed (Supplementary Material,
Fig. S1A–F). After QC, PCA revealed no non-European
ancestry outliers (Supplementary Material, Fig. S1E–H)
when performing PCA.

SNP genotype imputation

The QCed Italian, Spanish, Norwegian and German
GWAS datasets comprised 1563 Italian COVID-19 cases,
4759 Italian controls, 2174 Spanish COVID-19 cases, 4406
Spanish controls, 81 Norwegian cases, 283 Norwegian
controls, 336 German COVID-19 cases and 3303 German
controls, and contained 567 131 (Italy), 564 856 (Spain),
525 836 (Norway) and 476 562 (Germany/Austria) variants
after QC and filtering of SNPs with alleles AT or
CG (the latter often leading to strand issues during
imputation). Genotype imputation was conducted for
chromosomes 1–22 and X data using the novel TOPMed
Freeze 5 on genome build GRCh38 and the Michigan
Imputation Server (45). We provided the input data in
‘vcf.gz’ format as GRCh38 build. We used the offered
population panel ‘ALL’ and applied the server-side option
to filter by an imputation R2 with threshold 0.1. The
final imputed results contained 80 794 511 variants in
the Italian dataset, 75 346 562 variants in the Spanish
dataset, 20 195 513 variants in the Norwegian dataset
and 53 164 135 variants in the German/Austrian dataset
after TOPMed imputation. For the imputation of the
X chromosome, we coded males as diploid in the
non-pseudoautosomal (non-PAR) region. After QC and
imputation using TOPMed, in total, 8 910 172 variants
were included for the Italian panel, 9 089 877 variants for
the Spanish panel, 8 841 609 variants for the Norwegian
panel and 9 019 898 variants for the German/Austrian
panel with post-imputation R2 ≥ 0.6 and MAF ≥ 1%.

Statistical analysis
Previous to the statistical analysis, we excluded qced
individuals with a mild disease phenotype (did not
receive respiratory support) or missing age information.
This left 1536 Italian COVID-19 cases, 4734 Italian
controls, 1416 Spanish COVID-19 cases, 4382 Spanish
controls, 62 Norwegian cases, 262 Norwegian controls,
241 German COVID-19 cases and 3110 German controls
for analysis (Supplementary Material, Table S1e).

GWAS and meta-analysis of our main and
subtype cohorts
Using genome-wide SNP information, we tested for phe-
notypic associations with allele dosage data separately
for the Italian, Spanish, German/Austrian and Norwegian
case–control data. Including age, biological sex, age∗age,
biological sex∗age and the first 10 PCs from PCA as covari-
ates, we performed a logistic association analysis assum-
ing additive effects with SAIGE for chromosomes 1–22
an X (12). For chromosome X association analysis, hap-
lotypic allele calls outside the pseudo-autosomal regions
(PARs) in males are converted to homozygous calls by
doubling the haplotypic allele (assuming inactivation of
large parts of 1 of the 2 female X chromosomes (46)
and sex is used as a covariate for association testing of
the non-PAR regions on chromosome X. For each of the
analyses, sample numbers are given in Supplementary
Material, Table S1e.

An inverse-variance weighted fixed-effects meta-
analysis was conducted with the meta-analysis tool
METAL (13) on the cohort of the main analysis including
3255 cases and 12 488 population controls of unknown
COVID-19 status from Italy, Spain, Norway and Ger-
many/Austria and the cohort from the subtype analysis
including 1911 critically ill cases and 12 226 population
controls (Supplementary Material, Table S1e). Only
variants that were common to at least 2 datasets with
respective post-imputation R2 ≥ 0.6 and that had an
overall MAF of ≥1% were considered in the analysis. For
each variant, we computed across-cohort heterogeneity
P-values and I2 values using METAL. We considered a
P-value of 10−3 to indicate significant heterogeneity and
used a significance threshold of P < 10−6 for joint P-values
to determine suggestive statistical significance and the
common threshold of P < 5 × 10−8 to determine genome-
wide significance.

Replication analysis of 13 release 5 COVID-19
HGI associations
To replicate 13 genome-wide significant associations
reported by the COVID-19 HGI (7), we excluded 3837
individuals overlapping between our current study and
COVID-19 HGI release 5. We subsequently carried our
logistic regression and meta-analysis as described above
in 1579 cases and 10 372 population controls for the main
analysis and 944 cases and 10 065 population controls
for the subtype analysis (Supplementary Material, Table
S1e). A threshold of 0.05 was used to define replicability
of the results. Meta-analysis with the COVID-19 HGI
release 5 summary statistics included up to 12 888
hospitalized cases (including 5582 critically ill cases;
COVID19_HGI_B2_ALL_leave_23andme_20210107.txt.gz;
COVID19_HGI_A2_ALL_leave_23andme_20210107.txt.gz)
and 1 295 966 population controls of the COVID-19 HGI.
We performed meta-analysis with METAL as described
above. To unify case definitions by our study and the
COVID-19 HGI, we performed meta-analysis of summary
statistics from our main analysis with COVID-19 release
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5 A2 summary statistics and meta-analysis of our
subtype analysis and COVID-19 release 5 B2 summary
statistics. We used the common threshold of P < 5 × 10−8

to determine genome-wide significance.

Bayesian fine-mapping analysis
Statistical fine-mapping analysis was conducted using
FINEMAP (15) Version 1.4 for each of the loci of inter-
est to calculate the posterior inclusion probability for
each lead SNP and every other SNP within 250 kb flank-
ing regions. In the case where the association signal
extended over a larger region, as in the case of 17q21.21,
the region was expanded to include this. FINEMAP deter-
mined the 95% credible set of SNPs assuming a sin-
gle causal variant using shotgun stochastic search (—n-
causal-snps 1—sss), i.e. the minimum set of variants con-
taining the causal variant with ≥95% certainty. The union
of the genotypes of the Italian, Spanish, Norwegian and
German/Austrian cohorts was used as the LD reference
population.

Meta-analysis model-based assessment
of replicability
We tested the replicability of our candidate variants
from the meta-analysis using the Meta-Analysis Model-
based Assessment of replicability (14) (MAMBA) method,
as single outlier studies can drive a false positive meta-
analysis association. MAMBA takes the genetic effects
and standard deviations from participating studies to
test each SNP for a true non-zero effect. This is achieved
by fitting a two-level mixture model to genome-wide
LD-pruned SNPs that reduces to a fixed effect meta-
analysis in absence of outliers, in which case it has
similar power. Since this is a likelihood model, the result
is a posterior probability of replicability (PPR) that the
SNP has a non-zero replicable effect. If the PPR is low,
MAMBA tests for excess in variation of effects sizes and
outputs the probability that each study is an outlier.
For each of the first and second analyses, we used the
lead variants and a genome-wide set of LD-pruned SNPs
(PLINK v1.90b6.16 64-bit, —indep-pairwise 500 kb 1 0.1)
(40,41) from each participating study for the algorithm
to estimate the null distribution. Suggestive variants and
LD-pruned background SNPs are entered as a single table
and the algorithm has no prior knowledge of which SNPs
are considered significant. MAMBA was run with default
settings and always terminated before 10 000 iterations.
We considered a PPR value >0.8 to indicate a high prob-
ability of replication.

Association analysis of candidate SNPs
We performed age- and sex-stratified on 7 candidate
SNPs from our main and subtype analysis and 13 candi-
date SNPs from the COVID-19 HGI analysis, as well as the
novel variant identified in this study (7). We additionally
analysed disease severity and comorbidities hyperten-
sion, CAD and diabetes in cases only. We carried out a
logistic regression analysis including age, biological sex,

age∗age, biological sex∗age and the first 10 PCs from PCA
as covariates dependent on the stratification level (i.e. for
sex-stratified analyses, only age and PCs were included;
for age-stratified analysis, only the biological sex and PCs
were included; detailed formulas are shown in the Sup-
plementary Methods). All analysis was done in R version
3.6.2. An inverse-variance weighted fixed-effects meta-
analysis was conducted using the R-package metafor (47)
to combine cohort-specific summary statistics, including
only statistics from cohorts with NCase and NControl > 50.
Age was analysed in groups ≤60 to >60, which were
chosen in reference to the analyses performed by the
COVID-19 HGI. We additionally performed an interaction
analysis of SNP and sex as well as SNP and binarized age
(≤60 versus >60), to determine statistical significance
of differences between the groups, respectively (Supple-
mentary Methods). For variants that showed a significant
age effect, we additionally analysed age groups 40–51,
51–60 and 61–70 for the Italian and Spanish cohorts and
performed a meta-analysis on the summary statistics
from these two cohorts only (Supplementary Material,
Fig. S10). We were interested in observing more detailed
age effects in these age intervals with sufficient data for
analysis. For the meta-analyses, P-values were adjusted
for multiple testing using the P-value correction of Ben-
jamini–Hochberg.

Imputation of the ∼0.9-Mb inversion
polymorphism at 17q21.31
In 2005, Stefansson and colleagues discovered a 900 kb
inversion polymorphism at 17q21.31, a region that
contains several genes, including those encoding cor-
ticotropin releasing hormone receptor 1 (CRHR1) and
microtubule-associated protein tau (MAPT) (17). Chro-
mosomes with the inverted segment in different orien-
tations represent two distinct lineages, H1 and H2, that
have diverged for up to 3 million years and show no
evidence of recombination (17). For the Italian, Spanish,
Norwegian and German/Austrian GWAS discovery
cohorts, we inferred the 17q21.31 inversion status (H1 or
H2) with IMPUTE v2.3.2 (18) using genotype information
and an imputation reference panel consisting of 109
individuals (from different continents [EUR, EAS, AFR])
from the 1000 Genomes Project Phase 3 (43), for which
17q21.31 inversion genotypes, obtained experimentally
by FISH (48,49) and droplet digital PCR (50), as well as
SNP genotype data are available for the region of the
inversion. Imputed inversion genotypes were determined
according to the highest posterior probability and were
further confirmed by examining consensus genotypes of
known inversion tag SNPs in perfect LD (r2 = 1) with the
inversion in the imputation reference panel. H1 and H2
alleles were coded according to an additive model as 0,1
and 2.

We additionally imputed the 17q21.31 inversion for the
COVID-19 HGI release 5 A2 and B2 analyses from the files
COVID19_HGI_A2_ALL_leave_23andme_20210107.txt.gz
and COVID19_HGI_B2_ALL_leave_23andme_20210107.-
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txt.gz. Here, the inversion P-value was imputed from
summary statistics using Fast and accurate P-value
Imputation for genome-wide association study (FAPI)
(51). The odds ratio (OR) and 95% confidence intervals
(CIs) were estimated from the SNP rs62061809, which is
in perfect LD with the inversion (r2 = 1). The inversion was
coded as 0 for the major allele H1 and 1 for the minor
allele H2. All association analyses were carried out as
described above on the minor allele H2.

Functional analysis
Phenome-wide Association study (PheWAS)
Phenotype associations with the different variants were
obtained from the NHGRI-EBI GWAS Catalog curated
collection of established genome-wide significant dis-
ease/trait associations (http://www.ebi.ac.uk/gwas/;
release 2020-12-02) (19). We queried GWAS hits in high
LD (r2 > 0.9) with the inversion as well as hits in high LD
(r2 > 0.9) with rs1405655 (19q13.33) and P-value < 10−7.
Since each GWAS study is focused on populations from
different origins, the LD patterns employed to evaluate
the association between the inversion and GWAS signals
were based on individuals with the corresponding
ancestry or the closest one available from our inversion
imputation panel (of 109 experimentally genotyped
individuals), whereas the global LD was selected if
populations from underrepresented ancestries were
studied .27 proxy variants were used for r1405655 and
2904 proxy variants were used for the inversion.

Colocalization of GWAS and tissue-specific
expression and splicing quantitative trait loci
(eQTL, sQTL)
Colocalization of GWAS and QTL (eQTL and sQTL) data
from 49 different human tissues of the GTEx Project
(GTEx Analysis Release V8) (19) was performed using the
HyPrColoc method (52) implemented in the ezQTL tool
(53). The analysis was conducted including all cis-QTL
variants falling within ±75 kb from coordinates (GRCh38)
of the two variants of interest: chr17:46142465:T:A—
lead SNP for the 17q21.31 inversion—and chr19:50379362
(rs1405655—lead SNP of the 19q13.33 locus). LD values
used in the colocalization analysis were calculated based
on the 1000 Genomes population European (2) popula-
tion only, to account for the ethnic bias of GTEx donors.
The loci of tested traits were considered to be colocalized
when a regional probability of colocalization was greater
than 0.9. Additionally, to assess the actual effect (and its
direction) of the variants on neighboring gene expression,
normalized effect score (NES) and P-values of the two
variants (inversion tagged by rs62061809) were retrieved
from the GTEx portal.

Selection and definition of candidate genes at
17q21.31 and 19q13.33
To identify candidate genes most likely to play a causa-
tive role at 17q21.31 and 19q13.33, all protein-coding

genes that are located within locus boundaries or
that are candidates based on GWAS colocalization
with eQTL (eGenes) or sQTL (sGenes)-variants were
chosen. More precisely, the boundaries for the 19q13.33
locus were defined by Bayesian fine mapping (GRCh38:
chr19:50344768–50379362), while extended boundaries
(GRCh38: chr17:45495836–46707123) (54) were used for
the 17q21.21.31 locus, since it lies within a ∼0.9 Mb
inversion region of high LD that affects expression and
splicing of numerous genes in GTEx (55). To retrieve
candidate genes that overlap the boundaries, GENCODE
v36 (56) annotations for genome build GRCh38 were used.
A complete list of candidate protein-coding genes from
both loci is provided in Supplementary Material, Table
S21.

Gene expression analysis for candidate genes
from genome-wide significant susceptibility loci
Publicly available bulk tissue and immune cell type RNA-
seq data for all available candidate genes were retrieved
from GTEx v8 (55) and from the Expression Atlas
(57) (BLUEPRINT consortium data [accession E-MTAB-
3827] (58)) portals, respectively. Gene-level expression
values (transcripts per million, TPM) by tissue or by
cell type were obtained as median-summarized in the
case of the GTEx data and as mean-summarized in
the case of the BLUEPRINT data. The summarized TPM
values were centered gene-wise and z-score scaled for
visualization using the ggplot2 R-package. The single-cell
RNA-seq (scRNA-seq) data in COVID-19 relevant tissues
from non-diseased individuals, such as lung and upper
airways (59) or brain (60), were obtained from the COVID-
19 Cell Atlas (61). The pre-processed and cell type anno-
tated scRNA-seq datasets were retrieved as AnnData
objects in.h5ad format files. Log-normalized average
expression values of available candidate genes by cell
type were visualized using the scanpy v1.4.6 package
(62). For gene expression analysis of candidate genes
in SARS-CoV-2 infected brain organoids, pre-processed
and cell-annotated scRNA-seq data were obtained upon
request from Song et al. (63). Differential gene expression
analysis of scRNA-seq data was performed using the
R package MAST (64). More precisely, hurdle models
were used to evaluate differentially expressed genes
in each brain organoid cell type (neural progenitors,
interneurons, neurons and cortical neurons) comparing
SARS-CoV-2 infected and mock (non-infected) cells.
The models were fitted using the condition, sample
identification, number of detected genes (centered) and
total counts of SARS-CoV-2 transcripts (centered) as
covariates, thus adjusting for the cellular detection rate,
batch effects and viral load. Genes with PFDR < 0.01 and
absolute value of log2 fold change >0.1 were considered
as significantly differentially expressed. Finally, the
status, log2 fold change and P-values of candidate gene
differential expression in COVID-19-infected lung cells
were obtained from pseudo-bulk differential expression
analysis performed by Delorey et al. (20)
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Analysis and fine mapping of the HLA
Detailed descriptions of this analysis can be found in
the Supplementary Methods. In brief, quality-controlled
genotypes at the HLA region (chr6:29-34 Mb) were
extracted. HLA allele, amino acid and SNP imputation
were performed using the random-forest-based HLA
genotype imputation with attribute bagging (HIBAG) and
applying specially tailored as well as publicly available
reference panels (5,65,66). The resulting data were used
as a basis for several subsequent analyses, including: (i)
basic association analysis (fine mapping) as described in
the section Statistical Analysis and the Supplementary
Methods, (ii) a peptidome-wide association study (11)
(pepWAS), to screen for disease-relevant peptides from
SARS-CoV-2, that may present a possible functional
link between severe COVID-19 and variation at classical
HLA loci, (iii) quantitative HLA analyses directed at the
number of peptides bound by an HLA allele as well as
(iv) an analysis of HLA-presentation of shared peptides
(‘molecular mimicry’).

Analysis of the Y-chromosome haplotypes
First, we produced high-quality Y-chromosome geno-
types by manually calling and visually inspecting Y-
chromosome SNPs in the male individuals from all
cohorts only. Next, we used 22 Y-chromosome SNPs
to distinguish known Y-chromosome haplogroups as
described in the Supplementary Methods at different
haplogroup resolutions. We here focused on haplogroup
R, the most prevalent Y-chromosome haplogroup across
Europe. Association analysis was carried out as described
in the Section Statistical Analysis—Association Analysis
of Candidate SNPs on Y-chromosome haplogroups coded
as absent (0) or present (1). We additionally analysed
the end-point mortality (Supplementary Methods). The
coefficient of variation (CV) across frequencies was
calculated for Y-chromosome haplogroups between
individual batches (i.e. contributing center/hospital or
different versions of the GSA). Here, only frequencies
calculated from batches including more than 100
individuals were considered.

Analysis of the ABO secretor status
ABO blood group typing was performed as described
by Ellinghaus et al. (5). Briefly, genotypes of the SNPs
rs8176747 (c.803C > T, ABO∗B), rs41302905 (c.802G > A,
ABO∗O2) and rs8176719 (c.261delG, ABO∗O1) were
extracted from the imputed data (R2 = 1 for all SNPs
and cohorts) and used to infer the A, B and O blood
types. The ABO-‘secretor’ status was inferred from the
genotypes of the rs601338 SNP (c.428G > A, FUT2∗01 N.02)
at the FUT2 gene, located at 19q13.33 and extracted
from the imputed data (R2 = 0.98–0.99 for all cohorts).
Individuals carrying genotypes GA or GG were assigned
secretor status and individuals carrying genotype AA
were assigned non-secretor status based on the genotype
dosages, ranging from 0 to 2, retrieved from the imputed
data. Individuals with allelic dosages 1.3–1.7 were called

as ‘no call’, individuals with dosages ≤1.3 were called
‘secretors’ and individuals with dosages ≥1.7 were called
‘non-secretors’. Association analysis was carried out as
described in the Section Statistical Analysis—Association
Analysis of Candidate SNPs on blood type or blood type
secretor status coded as absent (0) or present (1).

Availability of summary statistics
The GWAS summary statistics are available through
GWAS Catalog (https://www.ebi.ac.uk/gwas/), study
accession number GCST90129579.

Supplementary Material
Supplementary Material is available at HMG online.
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