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Abstract: This paper investigates the use of the Kriging response surface method to estimate failure
values in carbon-fibre-epoxy composite flow-lines under the influence of stochastic processes. A case
study of a 125 mm flow-line was investigated. The maximum stress, Tsai-Wu and Hashin failure
criteria was used to assess the burst design under combined loading with axial forces, torsion and
bending moments. An extensive set of measured values was generated using Monte Carlo simulation
and used as the base case population to which the results from the response surfaces was compared.
The response surfaces were evaluated in detail in their ability to reproduce the statistical moments,
probability and cumulative distributions and failure values at low probabilities of failure. In addition,
the optimisation of the response surface calculation was investigated in terms of reducing the number
of input parameters and size of the response surface. Finally, a decision chart that can be used to
build a response surface to calculate failures in a carbon fibre-epoxy-composite (CFEC) flow-line
was proposed based on the findings obtained. The results show that the response surface method is
suitable and can calculate failure values close to that calculated using a large set of measured values.
The results from this paper provide an analytical framework for identifying the principal design
parameters, response surface generation, and failure prediction for CFEC flow-lines.

Keywords: composite material; kriging; response surface; optimisation; failure analysis

1. Introduction

Subsea flow-lines play a vital role in the subsea system. They transport produc-
tion/injection fluids from subsea wells to subsea manifolds, and vice versa. A higher
number of deep-water oil and gas reservoirs are exploited in recent developments expe-
rienced in the oil and gas industry. This increased the average depth of oil wells drilled
from 1108 m in 1949, and to 1818 m in 2008 [1]. At the same time, the oil and gas trunk
pipeline’s total length was expected to increase from 1.9 million km to 2.2 million km
between 2019 and 2023 [2]. This increase in distance and water depth would lead to higher
associated capital and operating costs. The average pipeline cost increased from $94,000 per
inch-mile in 2011 to $155,000 per inch-mile in 2002, according to ICF International [3]. One
cost-effective solution gaining popularity in the subsea industry is to utilise composite
materials instead of the traditionally used steel material for the subsea flow-line. Several
projects that have utilised composite flow-lines are Alder, Åsgard, and West Lutong fields.
Composite material has long been utilised in the aerospace and automotive industries for
various applications. Some applications include using it for components such as the aircraft
tail, wings and propellers, boat and scull hulls, storage tanks. They are sought after for the
high strength-to-weight ratio and the customizable material directional strength properties,
which can be adjusted by designing the laminate layout according to the intended appli-
cation. Composite materials are not new in the subsea industry. They have been utilised
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to make subsea protection covers and ROV buckets. Their corrosion resistance properties,
in addition to their strength properties, make them particularly attractive in the offshore
and subsea oil and gas industry. These properties make composite materials an attractive
choice in high-performance subsea flow-line applications where long reaches, deep waters,
high loads and high temperatures are encountered.

Carbon-fibre epoxy composite (CFEC), which consists of an epoxy matrix with carbon
fibres, is a commonly used composite material when a high strength to weight ratio is
desired. The epoxy matrix protects the fibres from the external environment and transfers
the load between the fibres, while the fibres provide strength and stiffness to the component.
As presented in Table 1, CFEC is nearly five times lighter and two times stronger than steel.
This allows CFEC structures to carry larger loads than metal structures of the same weight.
Moreover, as with all composite materials, the excellent corrosion properties make CFEC
suitable for use in harsh environments such as subsea oil and gas applications. The epoxy
carbon UD in Table 1 has a fibre volume fraction (FVF) of 60%.

Table 1. Comparison of epoxy carbon UD (230GPa) and steel AISI 4130.

Yield Strength (GPa) Ultimate Tensile Strength (GPa) Density (g/cm3) Strength to Weight Ratio

Epoxy carbon UD - 2.231 1.49 1.497
Steel, AISI 4130 0.95 1.11 7.85 0.141

The anisotropic nature of CFEC materials demands very comprehensive and robust
stress analyses. Various authors have published several pipeline stress analysis studies.
Some examples include Yang [4], who analysed the stresses at composite pipe joints under
tensile loading, and Jha et al. [5], who investigated the stresses in composite flexibles for
deep-water applications. Due to the complex subsea terrain, current and other factors,
the subsea CEFC flow-line experiences complex combined loading. In addition, the joint
action of random parameters from loads, materials, and geometry means that it may be
necessary to apply stochastic models in engineering design. Some authors have previously
presented stochastic processes used in pipeline engineering problems. These include Bazan
et al. [6], who studied stochastic processes to predict corrosion growth in pipelines, and
Oliveira et al. [7], who used the probabilistic analysis method to investigate the collapse
pressure of corroded pipelines. However, applying stochastic considerations in engineering
design problems is typically not widely adopted. This is mainly because it requires a large
sample size, i.e., a large set of realisation values. This involves time resources which can be
valuable in engineering projects.

The response surface methodology is an approach that calculates an approximate
result based on a response surface. The response surface is modelled by sample results
calculated from simulations or measured in real life. This method requires fewer samples
than the traditional approach when applied in stochastic structural analysis. Some exam-
ples of response surface methods used in engineering problems are presented here. Jia
et al. [8] studied the Kriging-base response surface application in structure reliability. Simp-
son et al. [9] performed a comparison of the response surface and Kriging models when
utilised in multidisciplinary design optimisation. Gupta et al. [10] suggested a response
surface method that was improved using failure probability determination. These studies
showed that the response surface is a convenient engineering analysis and optimisation
tool. However, the utilisation of the response surface does require careful consideration
since the response results are approximate. Many factors affect accuracy. These include the
response surface type, chosen parameters, refinement method, etc.

To the authors’ knowledge, there have been no prior studies using response surfaces as
a tool to calculate failure values for CEFC flow-lines in a more efficient manner. This paper
studies the influence of stochastic processes on the Kriging response surface method to
predict failure rates in a CFEC flow-line subjected to combined loading. The Tsai-Wu [11],
maximum stress and Hashin [12] failure criteria were used to quantify failure of the
composite material. An extensive set of measured values was generated using Monte Carlo
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simulation and used as the base case population to which the results from the response
surfaces were compared. The response surfaces were evaluated in detail in their ability to
reproduce the statistical moments, probability and cumulative distributions and failure
values at low probabilities of failure. In addition, the optimisation of the response surface
calculation was investigated in terms of reducing the number of input parameters and size
of the response surface. Finally, a decision chart that can be used to build a response surface
to calculate failures in a CFEC flow-line was proposed based on the findings obtained. The
modelling and the design optimisation were performed using ANSYS Composite Pre/Post,
Mechanical and DesignXplorer [13].

2. Preliminaries
2.1. Failure Criteria

Failure criteria are used in engineering to evaluate structural integrity. Generally,
failure criteria compare the stresses experienced by structure to their allowable stress
values. When the ratio between the two stresses is larger than 1, the component is usually
considered to fail. Composite materials’ failure criteria can be grouped into two categories:
(i) non-interactive failure criteria and (ii) interactive failure criteria. Non-interactive failure
criteria, as the name suggests, assumes no interaction between stress or strain tensor
components, i.e., the tensor components are evaluated individually.

One example is the maximum stress criterion. In contrast, Tsai-Wu [11] and Hashin [12]
are two examples of interactive failure criteria. Interactive failure criteria describe the failure
value as a combined function of the stress or strain tensor components. The three failure
criteria mentioned above were chosen to study the burst design of the CFEC flow-line in
this paper. It is noted that since the classical laminate theory is used, the stresses component
in the z-direction was neglected, i.e., σ3 = τ23 = τ13 = 0 in the following sections.

2.1.1. Maximum Stress Failure Criterion

The maximum stress failure criterion is a conservative and commonly used criterion
for composite materials [14]. The failure occurs when the stresses in any principle direc-
tion exceed the material strength in that direction. The failure value is calculated using
Equation (1).

f = max
(∣∣∣σ1

X

∣∣∣, ∣∣∣σ2

Y

∣∣∣, ∣∣∣σ3

Z

∣∣∣, ∣∣∣τ12

S

∣∣∣, ∣∣∣τ13

R

∣∣∣, ∣∣∣∣τ23

Q

∣∣∣∣) (1)

where:

X =

{
σuc1, σ1 < 0
σut1, σ1 ≥ 0

, S = τu12

Y =

{
σuc2, σ2 < 0
σut2, σ2 ≥ 0

, R = τu13

Z =

{
σuc3, σ3 < 0
σut3, σ3 ≥ 0

, Q = τu23

(2)

2.1.2. Tsai-Wu Failure Criterion

The Tsai-Wu failure criterion [11] is based on the work of Gol’denblat and Koponov [15].
The criterion assumes the existence of a failure surface and distinguishes between the com-
pressive and tensile strength in the ply failure prediction. The failure criterion uses the
following quadratic formulation presented in Equation (3).

f =
σ2

1
σut1σuc1

+
σ2

2
σut2σuc2

+
τ2

12
τu12

2 + σ1

(
1

σut1
− 1

σuc1

)
+ σ2

(
1

σut2
− 1

σuc2

)
+ 2F12σ1σ2 (3)
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F12 is a user-specified parameter and is only associated with principle stresses σ1 and
σ2. One commonly used form of F12 is presented in Equation (4).

F12 = −1
2

√(
1

σut1
− 1

σuc1

)(
1

σut2
− 1

σuc2

)
(4)

F12 is also commonly obtained using bi-axial tests. Some examples can be found in
Clouston et al. [16] and Li et al. [17].

2.1.3. Hashin Failure Criterion

The Hashin failure criterion [12] was initially developed for unidirectional polymeric
composites. The failure criterion distinguishes between three different failure modes: fibre
failure, matrix failure, and interlaminate failure, respectively. These failure modes are
illustrated in Figure 1.
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The criterion for tensile fibre failure is presented in Equation (5).

f =

(
σ1

σut1

)2
+

(
τ12

τu12

)2
, σ1 ≥ 0 (5)
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The criterion for compressive fibre failure is presented in Equation (6).

f = − σ1

σut1
, σ1 < 0 (6)

The criterion for tensile matrix failure is presented in Equation (7).

f =

(
σ2

σut2

)2
+

(
τ23

τu23

)2
+

(
τ12

τu12

)2
+

(
τ13

τu13

)2
(7)

The criterion for compressive matrix failure is presented in Equation (8).

f =

(
σ2

2τu23

)2
+

(
τ23

τu23

)2
+

(
τ12

τu12

)2
+

[(
σuc2

2τu23

)2
− 1

]
σ2

σuc2
(8)

The criterion for tensile interlaminate failure is presented in Equation (9).

f =

(
σ3

σuc3

)2
+

(
τ13

τu13

)2
+

(
τ23

τu23

)2
, σ3 < 0 (9)

The criterion for compressive interlaminate failure is presented in Equation (10).

f =

(
σ3

σut3

)2
+

(
τ13

τu13

)2
+

(
τ23

τu23

)2
, σ3 ≥ 0 (10)

2.1.4. Calculation of Failure Values

The failure values were calculated using ANSYS Composite Pre/Post. The ACP solu-
tion then showed the failure results and the failure modes. As presented in
Sections 2.1.1–2.1.3, three failure criteria have different failure modes. For the maximum
stress, the failure modes are associated with σ1, σ2 and σ3, while the Tsai-Wu failure criteria
do not distinguish between the failure modes. Hashin failure criteria are matrix failure,
fibre failure and interlaminate failure. The failure values were calculated at the middle of
the flow-line.

2.2. Parameter Correlation

In this paper, the Spearman [18] correlation method was applied to identify the
most critical parameters to be included in the response surfaces; the response surface
methodology is presented in Section 2.3. The Spearman correlation method is a rank-
order method that calculates the monotonic relationship between two ranked variables as
presented in Equation (11).

ρrgX,rgY =
cov(gX , rgY)

SDrgX SDrgY

(11)

The calculated correlation coefficient varies from −1.0 to 1.0 and measures the statisti-
cal coupling between two parameters, x and y. The values of the computed coefficient can
be interpreted as follows:

• 0.0 to 0.2—Slightly correlated, the relationship is almost negligible.
• 0.2 to 0.4—Lowly correlated, but the relationship is definite.
• 0.4 to 0.6—Moderately correlated, the relationship is substantial.
• 0.6 to 0.8—Highly correlated, the relationship is marked
• 0.8 to 1.0—Very highly correlated, the relationship is very dependable

A positive coefficient means that the output parameter increases when the input
parameter increases, and vice versa. The correlation matrix is an n × n matrix that consists
of n2 correlation coefficients describing the correlation among n design parameters. The
matrix provides an overview of which parameters influence the output variables more. The
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top 20 parameters with the highest coefficient values were included in the set of parameters
used to generate the response surface model.

2.3. Response Surface Methodology

Box and Wilson [19] were the first to propose the response surface methodology in 1951.
They used mathematical modelling to approximate the relationship between one or more
input parameters and one or more output variables. This means (Output1, Output2, . . . ) =
F (Input1, Input2, . . . ) where F is the response surface. The response surface methodology
is advantageous to describe model responses when the detailed function describing the
input parameters to the output variables is complex and usually unknown. This is because
the response surface methodology approximates the function without knowing the details.

This paper’s applied response surface method is the Kriging response surface method
reference [20]. It is an interpolation method that interpolates the values generated by the
Gaussian process, which is governed by prior covariances. It is similar to the inverse
distance weighting method, i.e., it weighs the surrounding measured values to calculate
a predicted result at an unknown location. The general formula for the Kriging response
surface method is presented in Equation (12).

Ẑ(s0) =
n

∑
i=1

λiẐ(si) (12)

where Z(si) is the measured value at the ith location, λi is an unknown weight for the
measured value at the ith location, s0 is the predicted location, and n is the number of
measured values.

The response surface tool in ANSYS uses the most-correlated parameters identified
from the correlation matrix to generate a required size of measured values. This process is
called the design of experiment. An example of a design of experiment applied to foreign
object damage on 7075-T6 can be found in Arcieri et al. [21]. The central composite design
method [19] was used in this paper. A larger response surface requires a larger design of
experiment exercise, i.e., a more significant number of measured values. Verification points
were calculated after the response surface was generated. The values from the verification
points are checked against the measured values using predicted relative error values as
defined in Equation (13).

Predicted relative error =
Predicted error

Maximum known value−Minimum known value
× 100% (13)

where:

Predicted error =
Predicted value−Measured value

Measured value
(14)

As observed in Equation (13), the predicted relative error is a value that is normalised
by the known maximum variation of the output parameter. This allows for easy comparison
across all output parameters in the design space. A predicted relative error of 5% was
used in this paper. The response surface is refined iteratively with more measured values
from the experiments until the predicted relative error of all output parameters falls below
the threshold.

3. Case Study of the Burst Design of a Subsea CFEC Flowline
3.1. General Properties

The flow line studied in this paper had an outer diameter, OD = 125 mm, and a wall
thickness, t = 6 mm. There were 30 plies, each with a ply thickness, tply = 0.2 mm. The
fibre orientation was +/−45◦. The material properties of the ply were taken from the
Ansys material library and are presented in Table 2. The stacking sequence is illustrated
in Figure 2.
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Table 2. Material data—Ply (Prepreg Epoxy Carbon UD 230 GPa).

Material Property Symbol Value Unit

Elastic Modulus E1, E2, E3 121,000, 8600, 8600 MPa
Shear Modulus G12, G23, G13 4700, 3100, 4700 MPa
Poisson’s Ratio ν12, ν23, ν13 0.27, 0.4, 0.27 -
Tensile Strength σut1, σut2, σut3 2231, 29, 29 MPa

Compressive Strength σuc1, σuc2, σuc3 −1082, −100, −100 MPa
Shear Strength τu12, τu23, τu13 60, 32, 60 MPa

Tsai-Wu Constants F12, F23, F13 −1, −1, −1 -
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3.2. Nominal Load Values

The nominal load values applied were an internal pressure of 6.9 MPa, an axial force of
20 kN, a torsion moment of 2 kN·m, and a bending moment of 2 kN·m. An internal pressure
of 6.9 MPa or 69 bars was indicative of a flow-line under normal operating conditions. The
failure criteria values corresponding to the nominal loads are shown in Table 3. The finite
element model used is described in Section 3.3.

Table 3. Failure values corresponding to nominal loads.

Maximum Stress Tsai-Wu Hashin

Failure Criterion Value 0.516 0.613 0.563
Failure Mode σ2 exceeded - Matrix failure

3.3. Finite Element Model

A long section of the flow-line measuring 2000 mm was simulated. This was consid-
ered long enough not to have any consequence from the end effects from the applied loads
and boundary conditions. The results at the midpoint of the flow-line were assessed, i.e.,
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the failure values at this location were used in the study. The finite element simulations
were performed using ANSYS R17.0 [13].

3.3.1. Loads and Boundary Conditions

Figure 3 presents the loads and boundary conditions applied. Load A is the internal
pressure. Load B is the fixed support applied on the right edge of the flow-line. Load E is
the end cap force (Load E) applied on the flow-line’s left edge. Load C, Load D, and Load F
are axial force, torsion, and bending. They were applied to the left edge.
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3.3.2. Mesh Refinement Study

The results for the mesh refinement study are presented in Table 4 and Figure 4. The
nominal load values given in Section 3.2 were used in the mesh refinement study. The
4-node SHELL181 element [13] is used. The element size used in this paper was 10 mm; the
mesh details are presented in Figure 5. It is observed from Table 4 that an element size of
30 mm was sufficiently fine to produce converged failure values for all three failure criteria:
maximum stress, Tsai-Wu and Hashin.

Table 4. Cases studied for mesh refinement study.

Element Size (mm) No. of Elements No. of Nodes

30 900 912
25 1040 1053
20 1536 1552
15 2803 2821
10 6430 6432
5 25,344 25,408
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3.4. Generation of Measured Values

The material parameters of Prepreg epoxy carbon UD 230 GPa were taken from the
Ansys material library and used as the mean values. The standard deviation was assumed
to be 3% of the mean values, i.e., the coefficient of variation was 0.03. This set of parameters
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was named the base case in this paper and are presented in Table 5. The input parameters
are normally distributed.

Table 5. Mean and standard deviation of input parameters used in base case.

Parameter Symbol Unit Mean Standard Deviation

Elastic Modulus
E1 MPa 121,000 3630

E2, E3 MPa 8600 258

Poisson’s Ratio
ν12, ν13 - 0.27 0.0081

ν23 - 0.4 0.012

Shear Modulus
G13 MPa 4700 141
G23 MPa 3100 93

Tensile Strength σut1 MPa 2231 66.93
σut2, σut3 MPa 29 0.87

Compressive Strength σuc1 MPa −1082 −32.46
σuc2, σuc3 MPa −100 −3

Shear Strength τu12, τu13 MPa 60 1.8
τu23 MPa 32 0.96

Internal pressure P MPa −6.9 −0.207
Axial Force A N 20,000 600

Bending B N·m 2000 60
Torsion T N·m 2000 60

Tsai-Wu Constants F12, F23, F13 0 0.3
Diameter D mm 125 8.75
Thickness t mm 0.2 0.01

Using the values in Table 5, the base case population of measured values was gener-
ated using Monte Carlo simulation. Examples of the cumulative probability distributions
are plotted in Figures 6–8 for the elastic modulus E1, diameter D and internal pressure P, re-
spectively. The population size was 500, chosen based on a convergence study presented in
Section 3.4.1. The population size was sufficiently large that converged statistical moments
were achieved.
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3.4.1. Convergence Study on Population Size

A convergence study was performed to select a large enough population size to obtain
converged statistical moments. Figure 9 presents the mean, standard deviation, skewness
and kurtosis values versus the sample size. Figure 10 presents the percentage difference for
the same statistical moments compared to when the population size is 500. The percentage
difference is calculated using the formula given in Equation (15).

% Difference =
Current value−Value @ N = 500

Value @ N = 500
× 100% (15)
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The results presented in Figures 9 and 10 show that converged statistical moments
are obtained for a population size larger than 200. A population size of 500 is used in
this paper.
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3.4.2. Fitting Statistical Models to Measured Values

Statistical models fitted to the results were used to calculate the exceedance proba-
bilities, i.e., failure rates. This section presents the various statistical models used in the
fitting. The Matlab distribution fitting tool was used. Four types of distributions, namely
Exponential, Weibull, Normal and Lognormal, were fitted and compared with the mea-
sured values, as shown in Figures 11 and 12. The corresponding R2 values are presented in
Table 6. As previously mentioned, the population size, i.e., the size of the set of measured
values, was 500.
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The results show that the Lognormal and Normal distributions fit the measured values
better. In contrast, the Weibull and Exponential distributions did not fit well. Upon closer
inspection of the upper tail region, as presented in Figure 12, and the R2 value, considering
the tail region shown in Table 6, it is observed that the Lognormal distribution was a better
fit than the Normal distribution at the upper tail region. The upper tail region is crucial for
the calculation of failure rates. Therefore, the Lognormal distribution was chosen as the
statistical model to be fitted to the measured values.

Table 6. R2 values.

Statistical Model Exponential Lognormal Normal Weibull

R2 Value 0.960 0.999 0.998 0.987
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3.5. Calculating the Response Surface
3.5.1. Parametric Correlation to Identify Most Influential Input Parameters

The parametric correlation matrix was calculated using the Spearman correlation
method as described in Section 2.2 to identify the most influential input parameters. A
sample size of 100 was used in the calculation. The sample size was large enough, based
on previous studies by the authors on parametric correlation matrices associated with
CFEC flow-lines [22]. The parametric correlation matrix is presented in Figure 13. The
twenty most influential input parameters identified from the parametric correlation matrix
are shown in Table 7. These twenty parameters were the ones with the most significant
coefficients of correlation. These input parameters were used in the generation of the
response surface.

Table 7. Most influential input parameters.

Parameter Group Parameters Level of Correlation

Loads P, T Moderate
Geometry t Moderate

Material properties E2, ν12, ν23, ν13, G23, G13, σut1, σut3, τu23, D, F12, F13, A, B Slight
E1, σut2, τu12 Low
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3.5.2. Range of Input Parameters

The range of input parameters used in the generation of the response surface is
presented in Table 8. As previously discussed, the input parameters used in the response
surface were the top twenty most influential input parameters found from the parametric
correlation study presented in Section 3.5.1.
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Table 8. Range of input parameters used in response surface.

Parameters Symbol Unit Lower Limit Upper Limit

Elastic Modulus
E1 MPa 108,900 133,100
E2 MPa 7740 9460

Poisson’s Ratio
ν12, ν13 0.243 0.297

ν23 0.36 0.44

Shear Modulus
G13 MPa 4230 5170
G23 MPa 2790 3410

Tensile Strength σut1 MPa 2007.9 2454.1
σut2, σut3 MPa 26.1 31.9

Shear Strength τu12 MPa 54 66
τu23 MPa 28.8 35.2

Internal pressure P MPa 6.21 7.59
Axial Force A N 18,000 22,000

Bending B Nm 1800 2200
Torsion T Nm 1800 2200

Tsai-Wu Constants F12, F13 −1 1
Diameter D mm 100 150
Thickness t mm 0.18 0.22

4. Using Response Surfaces for Prediction of Failure Rates

In this section, the use of response surfaces for the prediction of failure rates is dis-
cussed. The failure rate is the probability of a component having a failure value exceed-
ing 1.0. The failure rate is typically decided in combination with a risk assessment. In
general, a 106 failure probability is low, while a 104 failure probability is high. A higher
failure probability can be accepted if the failure consequence is low. The benefit of using
response surfaces is that new sampling points are calculated almost instantly after they
are generated. This provides time savings in the engineering evaluation of the design and,
the case in this paper, the calculation of failure rates. The investigation was carried out as
follows in this section. First, the statistical moments were compared between the samples
generated from the measured values, the response surfaces, and their corresponding fitted
Lognormal distributions. Second, the probability and cumulative distribution plots were
compared. Last, the failure rates calculated from the response surface were compared
against the base case. The workflow process used is presented in Figure 14.
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4.1. Comparison of Statistical Moments

The comparison of the statistical moments is presented in Table 9. An explanation of
”Source” in Table 9 is given in the following:

• Measured values, 500 samples. These were 500 sample points calculated directly from
the finite element model. These 500 samples were considered the base case population.
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• Lognormal distribution fitted to measured values: a Lognormal distribution fitted to
‘Measured values, 500 samples’.

• Response surface, 500 samples. These were 500 sample points calculated directly from
the response surface.

• Lognormal distribution fitted to response surface values: a Lognormal distribution
fitted to ‘Response surface, 500 samples’.

• The % differences were calculated with respect to ‘Measured values, 500 samples’
using Equation (16)

% Difference =
Current value− alue @′Measured values, 500 samples′

Value @′Measured values, 500 samples′ × 100% (16)

Table 9. Comparison of statistical moments.

Source Mean Standard Deviation Skewness Kurtosis

Measured values, 500 samples 0.591 0.039 0.232 3.027

Lognormal distribution fitted to measured values 0.591
(0.0%)

0.039
(0.1%)

0.199
(−14.1%)

3.071
(1.4%)

Response surface, 500 samples 0.592
(0.3%)

0.036
(−8.5%)

0.209
(−9.8%)

2.980
(−1.6%)

Lognormal distribution fitted to response surface values 0.592
(0.3%)

0.036
(−8.6%)

0.182
(−21.7%)

3.059
(1.0%)

The following observations are made from the results presented in Table 9

• There are negligible differences in the mean values.
• The values obtained from the response surface, when fitted to the Lognormal distri-

bution, have smaller standard deviation values, which are about 9% smaller than the
measured values.

• There are large differences in the skewness values. The response surface skewness
values are about 10% smaller than the measured values. Fitting the response surface
values to a Lognormal distribution makes the skewness values even smaller, i.e., about
22% smaller than the measured values. In addition, fitting the measured values to a
Lognormal distribution gives smaller skewness values of about 14% smaller than the
measured values.

• There are only slight differences of below 2% in the kurtosis values.

4.2. Comparison of Probability and Cumulative Distribution Plots

The comparisons of the probability density and cumulative distribution plots are
presented in Figures 15 and 16, respectively.

The following observations are made:

• The fitted distribution curves overlap the raw data, i.e., the measured and response
surface sampled values.

• The response surface has a higher probability density at the most probable value; see
area A in Figure 15.

• There are some differences in the tail regions in the cumulative probability distribution
functions; see Figure 16. However, these differences are insignificant and lead to only
negligible differences in the failure values calculated based on the upper tail region, as
presented in Section 4.3.
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4.3. Comparison of Failure Values

The comparison of failure values at three different failure rates are presented in
Table 10.

Table 10. Comparison of failure values.

Source Failure Criterion Failure Rate = 1 in 104 Failure Rate = 1 in 105 Failure Rate = 1 in 106

Lognormal distribution fitted to
measured values

Maximum Stress 0.64 0.67 0.69
Tsai-Wu 0.75 0.78 0.81
Hashin 0.76 0.79 0.81

Lognormal distribution fitted to
response surface values

Maximum Stress 0.64 0.66 0.68
Tsai-Wu 0.74 0.77 0.79
Hashin 0.75 0.78 0.80

Some notes on the large difference in the skewness values in Table 9 are made here.
In general, it was harder for the skewness and kurtosis to be fitted well using an assumed
probability distribution function, which in this case was the lognormal function. This
is because both skewness and kurtosis are parameters that measure the shape of the
probability density function. The assumed probability distribution (lognormal in this case)
already has an assumed shape; therefore, it did not fit so well to the measured values at
the peak region (see Figure 15). However, the failure values at different failure probability
values, which are the parameters one would be concerned about within a design, are still
reasonably close. This highlights that the more considerable differences in skewness did not
significantly affect the results. Table 10 shows that the response surface model produced
failure values that were very close to those resulting from the measured values. Therefore,
it is a reliable tool for failure prediction of CEFC flow-lines under combined loading.

5. Optimising Response Surface Generation
5.1. Number of Input Parameters

This section investigates the number of input parameters used to generate the response
surfaces. Twenty input parameters were used in the response surface presented in Section 4.
Using a smaller number of input parameters requires a smaller design of experiment,
as presented in Table 11. Choosing 10 input parameters instead of 20 input parameters
results in a design of experiment that is less than one-third the size, leading to significant
computational savings in the generation of the response surface. In this case, the 10 most
influential input parameters out of the 20 were chosen. These were the parameters with the
largest coefficients of correlation.

Table 11. Size of design of experiment for different numbers of input parameters.

Number of Input Parameters 5 10 15 20

Size of Design of Experiment, Number of Samples 27 149 287 551
Minimum Parametric Correlation Value 0.271 0.131 0.079 0.046

The effect on statistical moments, probability distributions, and predicted failure
values are presented and discussed in Sections 5.1.1–5.1.3, The results show that using
ten input parameters does not lead to any noticeable accuracy reduction in the calculated
results. This is obvious in the case where five input parameters are used. The somewhat
correlated parameters (having correlation coefficients between 0.131 to 0.271) to the failure
value were excluded from generating the response surfaces.

5.1.1. Number of Parameters—Effect on Statistical Moments

The statistical moments are presented in Figure 17 for the response surfaces generated
with different numbers of input parameters, together with the measured values (fitted and
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raw values). The corresponding percentage differences versus the measured values are
presented in Figure 18. The following observations are made:

• The mean values were not significantly affected when more than 10 input parameters
are used where the differences were within 1%.

• The standard deviations were affected by the number of input parameters used.
However, using the response surface would already result in a difference in the
standard deviation of about 9%, as presented in Section 4.1. Using a smaller number
of input parameters would increase this difference to about 20%.

• The skewness values were significantly affected by the number of input parameters
used. However, using the response surface would already result in a difference in the
standard deviation of about 14%, as presented in Section 4.1. Using a smaller number
of input parameters would increase this difference to about 250%.

• The kurtosis values were not significantly affected when enough input parameters
were used. However, the difference became as large as 60% when too few input
parameters were used.
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5.1.2. Number of Parameters—Effect on Fitted Probability Distributions

The probability distributions (probability density and cumulative probability) fitted to
response surface values with different numbers of input parameters were plotted together
with the measured values and are presented in Figures 19–21.
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The following observations are made:

• In general, the probability distribution functions are highly inaccurate when a small
number of input parameters, i.e., 5, is used.

• As presented in Figure 19, the probability density functions fitted from the response
surfaces do not generally fit well with the measured values. A similar observation was
also previously reported in Figure 15 and in Section 4.2.

• As presented in Figures 20 and 21, there are some differences in the cumulative
probability distribution functions. These differences increase with decreasing number
of input parameters. However, these do not significantly affect the upper tail regions
and do not lead to large differences in the failure values calculated as presented in
Section 5.1.3. Similar observations were also previously reported in Section 4.2.

5.1.3. Number of Parameters—Effect on Predicted Failure Values

Table 12 compares the predicted failure rates calculated from the Lognormal distribu-
tions fitted to response surfaces when a different number of input parameters was used.
It is observed from the results that reducing the number of input parameters to ten, in
general, do not lead to poor accuracy in the failure values predicted. The accuracy of the
predicted failure values suffered when the number of input parameters was small. This can
be expected because the failure values are calculated from distributions fitted to sampled
values. As previously discussed in Section 5.1.2, the number of input parameters do not
affect the fitted probability distributions, unless the number of input parameters is small,
i.e., 5.
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Table 12. Number of parameters—effect on predicted failure values.

Source Failure
Criterion

Failure Rate = 1
in 104

Failure Rate = 1
in 105

Failure Rate = 1
in 106

% Diff,
Failure Rate = 1

in 104

% Diff,
Failure Rate = 1

in 105

% Diff,
Failure Rate = 1

in 106

Lognormal distribution fitted
to measured values

Maximum
Stress 0.64 0.67 0.69 - - -

Tsai-Wu 0.75 0.78 0.81 - - -
Hashin 0.76 0.79 0.81 - - -

Lognormal distribution fitted
to response surface values

(20 input parameters)

Maximum
Stress 0.64 0.66 0.68 0.0 −1.5 −1.4

Tsai-Wu 0.74 0.77 0.79 −1.3 −1.3 −2.5
Hashin 0.75 0.78 0.80 −1.3 −1.3 −1.2

Lognormal distribution fitted
to response surface values

(15 input parameters)

Maximum
Stress 0.64 0.67 0.69 −1.6 −3.0 −1.4

Tsai-Wu 0.75 0.78 0.81 −2.7 −2.6 −3.7
Hashin 0.76 0.79 0.81 −2.6 −2.5 −2.5

Lognormal distribution fitted
to response surface values

(10 input parameters)

Maximum
Stress 0.64 0.66 0.68 0.0 −1.5 −1.4

Tsai-Wu 0.74 0.77 0.79 −4.0 −5.1 −6.2
Hashin 0.75 0.78 0.8 −1.3 −1.3 −1.2

Lognormal distribution fitted
to response surface values

(5 input parameters)

Maximum
Stress 0.63 0.65 0.68 15.6 14.9 15.9

Tsai-Wu 0.73 0.76 0.78 5.3 5.1 3.7
Hashin 0.74 0.77 0.79 2.6 2.5 2.5

5.2. Size of Response Surface

In this section, the effects of response surfaces sizes are studied. Two larger response
surfaces were compared against the original surface size used in Sections 3, 4 and 5.1. These
larger response surfaces were named ‘larger size’ and ‘extremely large size’. The number
of input parameters used to generate the response surfaces was the same, i.e., 20, while
the range of diameter and ply thickness is varied. The diameters and ply thicknesseses
considered are presented in Table 13.

Table 13. Range of diameters and ply thicknesses studied.

Diameter (mm) Thickness (mm)

Base Case 100–150 0.18–0.22
Larger Size 75–175 0.14–0.26

Extremely Larger Size 50–200 0.10–0.30

The effect on statistical moments, probability distributions, and predicted failure val-
ues are presented and discussed in Sections 5.2.1–5.2.3 The results show that the huge
response surface leads to inaccurate skewness values and probability distribution func-
tions. However, the size of the response surface does not significantly affect the upper
tail regions of the probability distributions and consequently leads to only minor differ-
ences in predicted failure rates if it is not too large, as demonstrated in the ‘larger size’
response surface.

5.2.1. Size of Response Surface—Effect on Statistical Moments

The statistical moments are presented in Figure 22 for the response surfaces generated
with different diameter ranges and ply thickness and the measured values (fitted and
raw values). The corresponding percentage differences versus the measured values are
presented in Figure 23. The following observations are made:

1. In general, the differences in statistical moments calculated increased with the size of
the response surface used.

2. The differences in the mean values increase with the size of the response surface used
but were within 10% for ‘extremely large size’.

3. The response surface size has limited or no influence on the standard deviation values.
The differences in the standard deviation are within approximately 10%, which were
like that of the ‘base case’, which had 8.5%.
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4. The skewness is strongly affected by the response surface size. For the ‘larger size’
and ‘extremely large size’, the differences were as much as 40%.

5. The differences in the kurtosis values increased with the size of the response surface
used but were within 10% for ‘extremely large size’.
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5.2.2. Size of Response Surface—Effect on Fitted Probability Distributions

The probability distributions (probability density and cumulative probability) fitted to
response surface values with different response surface sizes are plotted together with the
measured values (fitted and raw values) and presented in Figures 24–26.

The following observations are made:

• In general, using ‘extremely large size’ results in significant differences in the probabil-
ity distributions.

• As presented in Figure 24, the probability density functions fitted from the response
surfaces do not generally fit well with the measured values. The ‘extremely large size’
probability distribution function is especially far away from that of the
measured values.

• As shown in Figure 25, the cumulative probability distributions of ‘base case’ and
‘larger size’ were close to those of the measured values. Furthermore, as presented in
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Figure 26, these differences became more minor at the upper tail regions. As observed
in the probability density functions, the ‘extremely large size’ cumulative probability
function is especially far away from that of the measured values.
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5.2.3. Size of Response Surface—Effect on Predicted Failure Values

Table 14 compares the predicted failure rates calculated from the Lognormal distri-
butions fitted to response surfaces with different ranges of diameter and ply thickness. It
is observed that the size of the response surfaces did not significantly affect the predicted
failure values. A larger response surface, in general, would lead to more considerable
differences in the predicted failure values. Most of the differences were below 5% except
for the Tsai-Wu failure value for the ‘extremely large size’ response surface.

Table 14. Number of parameters—effect on predicted failure values.

Source Failure
Criterion

Failure Rate = 1
in 104

Failure Rate = 1
in 105

Failure Rate = 1
in 106

% Diff,
Failure Rate = 1

in 104

% Diff,
Failure Rate = 1

in 105

% Diff,
Failure Rate = 1

in 106

Lognormal distribution fitted
to measured values

Maximum
Stress 0.64 0.67 0.69 - - -

Tsai-Wu 0.75 0.78 0.81 - - -
Hashin 0.76 0.79 0.81 - - -

Lognormal distribution fitted
to base case response

surface values

Maximum
Stress 0.64 0.66 0.68 0.0 −1.5 −1.4

Tsai-Wu 0.74 0.77 0.79 −1.3 −1.3 −2.5
Hashin 0.75 0.78 0.80 −1.3 −1.3 −1.2

Lognormal distribution fitted
to larger size response

surface values

Maximum
Stress 0.63 0.65 0.67 −1.8 −1.9 −2.1

Tsai-Wu 0.75 0.78 0.81 −0.1 −0.1 −0.3
Hashin 0.75 0.77 0.80 −1.2 −1.4 −1.5

Lognormal distribution fitted
to extremely large response

surface values

Maximum
Stress 0.63 0.66 0.67 −1.4 −1.8 −2.1

Tsai-Wu 0.80 0.83 0.85 5.7 5.6 5.6
Hashin 0.76 0.79 0.81 0.6 0.4 0.2

5.3. Recommendations for Optimisation of Response Surface

Based on the findings obtained in Sections 5.1 and 5.2, the following recommendations
are made for the optimisation of the response surface:

• Reduce the input parameters selected to generate the response surface by only selecting
the parameters with parametric correlation coefficients greater than +/−0.15.
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• Consider using a larger response surface to maximise flexibility if the accuracy in the
predicted failure values is not extremely important. A larger response surface would
lead to some decreased accuracy in the results.

6. Conclusions

In this paper, the use of the Kriging response surface method for the estimation of
failure values in carbon-fibre-epoxy composite flow-lines under the influence of stochastic
processes was investigated. The following conclusions are made:

• In general, the response surface method produced predicted failure results close to
those of the measured values. Most errors were minor unless too few input parameters
are selected to generate the response surface and/or the size of the response surface
was too large.

• The response surfaces do not accurately represent the skewness values in general;
there was at least a 9% difference in the results. However, this is not of practical
significance as it did not affect the prediction of failure values.

• In general, using more input parameters increases the accuracy of the response surface.
However, it also increases the time required to generate the response surface, as the
design of experiment will increase in size.

• It is recommended to select input parameters with correlation coefficients greater than
+/−0.15, i.e., input parameters that are slightly correlated. In this present study, this
results in about 10 input parameters.

• In general, a more extensive response surface leads to reduced accuracy. However,
this enables greater flexibility in its utilisation as a more comprehensive range of input
parameters is covered.

• The response surface enables more rapid design optimisation process than using a
brute force method; the computation of the failure values is instantaneous.
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Nomenclature

σh Hoop stress
σl Longitudinal stress
σ1 Principle stress in x-direction
σ2 Principle stress in y-direction
σ3 Principle stress in z-direction
τ12 Shear stress in xy-plane
τ23 Shear stress in yz-plane
τ13 Shear stress in xz-plane
σuc1 Compressive strength limit in x-direction
σuc2 Compressive strength limit in y-direction
σuc3 Compressive strength limit in z-direction
σut1 Tensile strength limit in x-direction
σut2 Tensile strength limit in y-direction
σut3 Tensile strength limit in z-direction
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τu12 Shear strength limit in xy-plane
τu23 Shear strength limit in yz-plane
τu13 Shear strength limit in xz-plane
ρrgX,rgY Spearman correlation coefficient

cov
(

rgX , rgY

)
Covariance of the rank variable

SDrgX Standard deviation of the rank variable gX
SDrgY Standard deviation of the rank variable gY
D Flow-line Diameter
t Flowline wall thickness
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