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High-order perturbative calculations for thermodynamic quantities in QCD are complicated by the
physics of dynamical screening that affects the soft, long-wavelength modes of the system. Here, we
provide details for the evaluation of this soft contribution to the next-to-next-to-next-to-leading order
(N3LO) pressure of high-density, zero-temperature quark matter (QM), complementing our accompanying
Letter [T. Gorda et al., Phys. Rev. Lett. 127, 162003 (2021)]. Our calculation requires the determination of
the pressure of the hard-thermal-loop effective theory to full two-loop order at zero temperature, which we
go through in considerable detail. In addition to this, we comprehensively discuss the structure of the weak-
coupling expansion of the QM pressure, and lay out a roadmap towards the evaluation of the contributions
missing from a full N3LO result for this quantity.
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I. INTRODUCTION

Determining the equation of state (EOS) of quantum-
chromodynamic matter in extreme conditions using per-
turbation theory is a longstanding challenge almost as
old as quantum chromodynamics (QCD) itself (see e.g., [1]
for a review). In the case of high-temperature quark-gluon
plasma (QGP), the calculation has reached a partial next-
to-next-to-next-to-leading order (N3LO) level [2–4]. At
such high orders, a complication in perturbative calcula-
tions arises from the emergence of collective phenomena
at long wavelengths, most importantly the physics of
dynamical in-medium screening. To address this, all-
loop-order resummations must be performed in order to
reach a fixed order in the strong coupling constant αs.
At high temperatures T, reaching the partial N3LO

accuracy was made possible on one hand by technical
advances in the evaluation of multiloop sum-integrals
[5,6] and on the other hand by the seminal works of
Kajantie et al. [2–4,7,8], where a resummation of soft
screened modes of momentum scales α1=2s T and αsT was
performedusing the dimensionally reduced effective theories
electrostatic QCD (EQCD) and magnetostatic QCD

(MQCD) [9–11]. These calculations left only the con-
tribution of the hard momentum scale πT missing
from the full N3LO EOS of hot QGP, which constitutes
a conceptually simple but technically very demanding
challenge.
Screening phenomena closely analogous to those

encountered at high temperatures appear also in the
context of dense and cold quark matter (QM) [12,13],
where phenomenological motivation stems from model-
independent studies of the neutron-star matter EOS [14,15].
Here, the last fully completed order in perturbation theory
dates back to the seminal papers of Freedman and
McLerran [16,17], who determined the EOS to N2LO
accuracy. At this level, the calculation becomes sensitive to
the physics of screening, which these authors addressed
through an all-loop-order diagrammatic resummation. The
framework of dimensional reduction is unavailable at low
temperatures, and challenges related to extending this
resummation to higher orders have so far prevented bring-
ing the EOS of cold QM to the same level of perturbative
accuracy as its nonzero-T counterpart, although some
progress in this direction has recently been achieved in
[18,19]. In the present paper, complementing an accom-
panying Letter [20], we finally perform this resummation
using the hard-thermal-loop (HTL) effective theory, deter-
mining the soft contributions to the EOS up to and
including the N3LO order. While Ref. [20] concentrates
on an in-depth analysis of the result, here we provide
extensive details of the technical aspects of the calcu-
lation, and in addition discuss the computations needed to
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determine the last contributions missing from a full N3LO
result for the EOS of cold QM.
The physical picture behind perturbative calculations at

high densities is as follows. In a medium characterized by a
large quark chemical potential μq and zero temperature,
cold QM contains a filled Fermi sea of quarks from zero
momentum up to the scale μq.

1 The free Fermi pressure of
this system of quarks forms the leading-order (LO)
description of the pressure p of cold QM and scales as
μ4q in the case of massless quarks.2 While there are no on-
shell gluons in the medium, off-shell gluons are present
because the quarks are color charged. Interactions between
the quarks and gluons in QCD lead to corrections to this LO
pressure as a function of the strong coupling constant αs.
Because of this Fermi sea of quarks, the propagation of

both quarks and gluons through cold QM becomes modi-
fied. Low-momentum quarks are Pauli blocked and cannot
propagate, as those states are filled by the medium. Thus,
these low-momentum quarks do not contribute to higher-
order loop corrections to p, leaving the scale μq (dubbed
“hard”) as the only relevant scale for quarks. For gluons, the
picture is more complicated and involves two different
approximations that can be used in different regions of
momentum space: the naive loop expansion and the HTL
expansion (see Fig. 1). Hard, short-wavelength modes can
be treated similarly to the quarks in a naive loop expansion,
while the soft, long-wavelength gluons become qualita-
tively modified by the medium and require resummations
of arbitrary numbers of one-quark-loop insertions within
calculations. These modifications lead to, e.g., nonanaly-
ticities ln αs in the weak-coupling expansion in the pressure
of cold QM.
The rest of this Introduction is organized as follows. In

Sec. I A, we introduce the naive loop expansion and the
HTL expansion and motivate their respective regions of
validity. After this, in Sec. I B we explain how to power

count the contributions of the resummed soft gluons. In
Sec. I C, we then discuss the analytic structure of the
different contributions to the pressure of cold QM, pro-
ceeding from LO to N3LO. Finally, in Sec. I D we explain
what precisely is computed in the present article, and walk
the reader through the overall structure of the paper.

A. Two expansions for gluons in cold quark matter

Whether gluonic propagation is qualitatively modified
by scattering from hard quarks in loop corrections depends
on the magnitude of the propagating gluonic momentum
[22]. This can be seen most clearly from the dispersion
relation of the gluonic modes with momenta P, which is
schematically of the form

P2 þ ΠðPÞ ¼ 0: ð1Þ

Here we will work consistently in a Euclidean framework,
and ΠðPÞ is a generic component of the Euclidean gluon
polarization tensor. This tensor is parametrically of the
order of the square of the in-medium effective mass scale
mE, related to the one-loop Debye mass. For a single
massless quark in d ¼ 3 spatial dimensions it has the value
m2

E ¼ ð2=πÞαsμ2q.3 If the free part of Eq. (1) parametrically
exceeds the interaction part, the interactions can be treated
as perturbations to the free propagation of gluons and be
dealt with using a naive perturbative (loop) expansion. We
can see that this occurs for jPj ≫ mE.
If, on the other hand, the gluon has momentum jPj≲mE

(dubbed “soft”), then its propagation is qualitatively modi-
fied. In particular, generic low-momentum gluonic excita-
tions require a nonzero excitation energy proportional to
mE.

4 This behavior arises because the gluonic self-energy
ΠμνðPÞ has a nonzero jPj → 0 limit

lim
jPj→0

ΠμνðPÞ≡ Πμν
HTLðP̂Þ ≠ 0 ð2Þ

where we have suppressed the color indices and defined a
unit four-vector P̂ ¼ P=jPj in the direction of P, a notation
we shall use prominently in this work. Here, we have also
identified the HTL self-energy, which is the low-momen-
tum limit of the full self-energy. It is important to note that
in cold QM, only the quark loops contribute to this HTL
self-energy: hard gluon and ghost loops are not directly
populated by the medium (i.e., there are no on-shell gluons

FIG. 1. Illustration of the ranges of gluonic momenta P where
different approximations can be made.

1In this section, we shall describe the situation for a single
quark flavor, for simplicity.

2Note that at high density, quarks on the Fermi surface undergo
pairing through attractive channels of gluonic interactions,
leading to a different ground state [21]. However, these effects
do not enter at any finite order in the weak-coupling expansion.
At sufficiently high densities, the pairing gap Δ, which only
depends on μ in a mild way, becomes small in comparison to the
chemical potentials, and the pairing contributions to the pressure
become suppressed by a factor Δ2=μ2.

3This effective mass scale is related to the asymptotic
HTL mass [23] m∞ by m2

E ¼ 2m2
∞. In the case of multiple

quark flavors f, this effective mass scale becomes m2
E ¼

ð2αs=πÞ
P

f μ
2
f.

4Note that for some special directions of the Euclidean four-
vector P, these excitations may still be massless. At high
temperature, unscreened magnetic gluons lead to the generation
of a further ultrasoft mass scale, but this is not the case in cold
QM, as soft gluons are not Bose enhanced (see below).
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present) and thus do not differ from their vacuum values
(i.e., depend on μq) at LO. It then follows that only the
single quark loops must be resummed into the gluonic
propagators, as all other corrections can be naively
expanded around that limit. This resummation is depicted
in Fig. 2.
The full kinematics of the one-loop quark contribution to

the gluon polarization tensor results in a ΠμνðPÞ that
depends not only on P̂, but also on the magnitude of the
gluonic momentum P. However, if this magnitude is
parametrically less than the hard scale, jPj ≪ μq, one
may systematically expand the polarization tensor in
powers of the ratio of the external gluon momentum and
the internal quark loop momentum, jPj=jQj, which con-
stitutes part of the HTL framework as described by Braaten
and Pisarski [24]. In addition to this modified propagation,
the interaction between soft gluons also becomes modified
in cold QM, as n soft gluons interacting through a quark
loop with momentum jQj≳ μq enters at the same order as
the bare coupling between n soft gluons (if it exists). For
example, for soft gluons the interaction shown in the right
panel of Fig. 2 enters at the same order as the bare three-
gluon coupling. However, both quark and ghost fields
remain unresummed in Euclidean space—the quark propa-
gators are protected in the infrared by the nonzero chemical
potential, while the ghosts are known not to develop a
thermal mass [25].
In summary, there are two different approximations that

can be made for gluons in cold QM, depending on the
magnitude of their momenta P: if jPj ≪ μq, the HTL
expansion becomes valid, and if jPj ≫ mE, the naive loop
expansion becomes valid. This is shown pictorially in
Fig. 1. As demonstrated in Ref. [19], the integration region

mE ≪ jPj ≪ μq, where both approximations are valid
(dubbed “semisoft” in Ref. [19]) leads to a logarithm of
the coupling:Z

μq

mE

d4P
P2 þ ΠðPÞ →

Z
μq

mE

ΠHTLðP̂Þ
d4P
ðP2Þ2

∼ hΠHTLðP̂ÞiP̂ ln
�
mE

μq

�
∼m2

E ln αs: ð3Þ

Here, the notation h·iP̂ indicates an average over all four-
dimensional Euclidean angles. Since such a logarithm can
arise from any integral over a resummed gluonic momen-
tum, at higher orders, where multiple resummed gluons
may contribute, we should expect to find contributions to
the pressure containing factors of lnn αs, where n is the
number of resummed gluonic momenta in a given
resummed diagram. At N3LO, this leading logarithm
was computed already in Ref. [19].
We now address the question of how one should power

count such resummed, soft gluons, to see where they first
contribute.

B. Power counting the soft contributions

As per the discussion in Ref. [19], the soft gluons
occurring in loop corrections and that require resummation
are phase-space suppressed by the integration measureZ

mE

d4P → m4
E ∼ α2sμ

4
q: ð4Þ

Thus, these contributions do not enter the weak-coupling
expansion of the pressure until N2LO. Moreover, unlike the
case at high temperatures [1], gluons occurring in loop
corrections are not populated by the medium, and thus their
occupation numbers are not Bose enhanced. This has the
important implication that interactions between multiple
soft gluons are perturbative in a loop expansion within the
long-wavelength HTL theory. To see this, consider adding a
soft gluon with loop momentum P to a soft gluon line of
momentumK. Doing this through three-point vertices leads
to (defining R≡ P − K as the other internal loop
momentum)

ð5Þ

where the two effective vertices are represented by
ΓðK;P; RÞ2 in the numerator. For soft momenta, these
vertices scale in the same way as the bare vertices, leading
to ΓðK;P; RÞ2 ∼m2

E. Similarly, for soft P, K, R, the

denominator scales as m4
E, leading to the final power

counting shown above. We thus see that this is a perturba-
tive correction to the self-energy ΠðKÞ ∼m2

E. The case of
adding a gluon through a four-point vertex is identical, as

FIG. 2. Two contributions that enter at the same order as the
corresponding bare terms for soft gluonic momenta.
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for the purposes of power counting a single 4g HTL vertex
behaves similarly to two 3g HTL vertices. We therefore see
that these soft corrections are indeed perturbative. A full
account of the form of these effective vertices, and our
notation for the double lines and blob vertices for the HTL
diagrams are introduced in detail in Appendix B.
The fact that interactions between soft gluons are pertur-

bative means that we can systematically improve the soft
sector using a loop expansion within the HTL theory. This
situation is qualitatively different from that encountered in
high-temperature QGP, where the presence of “ultrasoft”
gluonic momenta of order αsT famously leads to the Linde
problem and the emergence of fundamentally nonperturba-
tive contributions to the pressure atOðα3sÞ (see e.g., Ref. [1]
for a discussion of this subtle topic).
Let us now make one brief remark about regularization.

The cutoff description implicitly used so far in these
discussions (and in Ref. [19]) is very convenient for
identifying the physical sources of the logarithms.
However, in detailed computations (especially at higher
orders) such an approach has drawbacks. In particular, once
there are multiple soft gluons, performing the entire
computation with a cutoff is very cumbersome. Thus, at
this point we make the choice to use dimensional regu-
larization to regulate not only the hard UV divergences
arising in the full theory but also the intermediate ones
arising from different kinematic regions (which we will
introduce momentarily), once those regions are separated.
This will provide a much more streamlined framework for
self-consistently determining all the different contributions
to the pressure at higher orders.

C. Computing the pressure of cold quark matter

Following the logic from above, we deduce the following
structure for the pressure of cold QM, valid up to and
including the N3LO terms:

p ¼ pFD þ αsph
1 þ α2sph

2 þ α3sph
3

þ α2sps
2 þ α3sps

3

þ α3spm
3 : ð6Þ

Here, pFD is the pressure of a free Fermi gas of quarks, while
the other terms arise from interaction corrections among or
acrossmodes of different types. Terms on first line arise from
hard modes and can be computed through a naive loop
expansion in full QCD. Terms on the second line arise from
soft modes and their interactions, and can be determined
within the HTL theory. Finally, the remaining term on the
third line arises from interactions between the soft and hard
modes and requires a partial HTL resummation.
Due to the ambiguous semisoft momentum range

mE ≪ P ≪ μq, the splitting between the different kin-
ematic regions is not unique. This ambiguity leads to
ultraviolet (UV) divergences within the ps

i that cancel

against corresponding infrared (IR) divergences within the
ph
i (and mixed UV-IR divergences in pm

3 at N3LO). This
cancellation will be further remarked on briefly below. The
ambiguity also makes these coefficients dependent on a
factorization scale Λh, which arises from the dimensionally
regularized integration measure in our case, and which will
be canceled when summing over the different kinematic
contributions at a given order. In terms of the factorization
scale, the divergences also lead to expressions of the form
lnðΛh=mEÞ and lnðμq=ΛhÞ from the UV limit of the soft
sector and the IR limit of the hard sector, respectively. As
the Λh dependence cancels in the sum over all kinematic
contributions, these logarithms will generate precisely the
lnðμq=mEÞ ∼ ln αs terms discussed in Sec. I A. It is impor-
tant to note here that the factorization scale Λh is not a
momentum cutoff between the soft and hard sectors of the
theory, and thus need not lie between the scales mE and μq.
This becomes relevant when analyzing the behavior of the
result, and is further discussed in Ref. [20].
To discuss the structure of the terms in Eq. (6) in more

detail, we find it useful to further classify the diagrams
contributing to the different coefficients pn

i . This further
classification is based on the HTL limits of the different
diagrams which are obtained by taking soft kinematics of
all of the gluon lines. Diagrammatically this is reached by
(i) resumming all gluon lines and (ii) contracting all quark
loops into points and absorbing them into propagators and
HTL vertices (see a sample illustration of this process of
“HTL resummation” in Fig. 3). Concretely, we classify the
contributions by the loop order of the resulting HTL
diagram after taking fully soft kinematics.5 In general,
for 0 < j < i, an (iþ 1)-loop hard diagram is classified as a
part of ph

i;j if its fully soft limit is a j-loop HTL diagram.
The remaining (iþ 1)-loop hard diagrams, which lead to
i-loop HTL diagrams, are classified as ph

i;0.
This leads to the decomposition of the N2LO and N3LO

terms

FIG. 3. Example of progressively HTL resumming a diagram,
leading to a mixed intermediate diagram and then finally to a fully
soft two-loop HTL diagram. The second index on the pn

i;k denotes
the number of remaining hard gluonic (or ghost) loop momenta in
a diagram.

5Note that this classification is well defined at zero temper-
ature, where HTL corrections arise purely from quarks. At high
T, this classification is not unique because gluons can also be
absorbed into propagators and vertices.
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ph
2 ¼ ph

2;1 þ ph
2;0;

ps
2 ¼ ps

2;0; ð7Þ
and

ph
3 ¼ ph

3;2 þ ph
3;1 þ ph

3;0;

pm
3 ¼ pm

3;1 þ pm
3;0;

ps
3 ¼ ps

3;0; ð8Þ

where the second subscript denotes the number of hard
gluon (or ghost) loop momenta, except for the above-
mentioned exceptional ph

i;0 terms. We show the relation
between these contributions and the fully resummed HTL
diagrams in Fig. 4. Organizing the terms in this fashion
guarantees that the sum of all contributions in a given
column is independent of the factorization scale as well as
associated divergences.6

Next, we discuss in detail each of the terms appearing in
Eqs. (6)–(8).

1. Classification of diagrams up to N2LO

Up to NLO, the contributions to the pressure of cold QM
are simple and do not require resummations:

(i) LO: This is simply the free Fermi pressure, arising
from a single diagram with full quark kinematics;

ð9Þ

(ii) NLO: In this contribution, only a hard gluon
contributes, since a soft gluon is phase-space sup-
pressed. The quark loop requires the full kinematics.

ð10Þ

At N2LO, there are contributions from both hard and soft
gluons, corresponding to the coefficients ph

2 and ps
2 in

Eq. (6), respectively. As the diagrams in ps
2 are fully

resummed, the diagrams are IR safe and there is only one
subclass of diagrams contributing to

ð11Þ

On the other hand, ph
2 can be further subdivided into two

subclasses

ð12Þ

and

ð13Þ

grouped by their IR properties. Here, the hard ph
2;1 and soft

ps
2;0 become by construction identical for semisoft gluon

kinematics, and the diagram in ps
2;0 can in fact be generated

from that in ph
2;1 by HTL resumming the gluon loop in the

hard diagram. One might worry that this leads to a double
counting of contributions, but this is not the case since at
T ¼ 0 the semisoft region of ph

2;1 or p
s
2;0 gives rise to scale-

free integrals that vanish in dimensional regularization: in

the first case, the quark loops can be replaced with HTL
self-energy insertions, in the second, the resummed gluon
propagator is re-expanded; in both cases, the integration
over the gluonic loop momentum is then scale-free in the
semisoft region.7 The ph

2;0 contribution is on the other hand
IR safe and diagrammatically distinct. This is precisely the
structure illustrated in the left panel of Fig. 4.

FIG. 4. The periodic table of diagrams, showing the relation
between the different subclasses of contributions at N2LO (left)
and N3LO (right). Moving downward within a single column
corresponds to HTL resumming the harder contributions; this
procedure also decreases the number of hard gluon (or ghost)
loop momenta by one at each step, rendering the last term in each
column IR safe.

6We show how this works for the two-loop HTL column (with
soft, mixed, and hard contributions) via a simple worked example
in Appendix E.

7The situation is qualitatively different at nonzero T, where
one indeed needs to subtract a naive, expanded HTL contribution
from the corresponding graphs (see e.g., Refs. [18,26]). Working
at T ¼ 0 similarly simplifies this issue at the N3LO level, helping
us avoid the double counting of contributions at that order.
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The N2LO contributions to the pressure of cold QM
were first determined by Freedman and McLerran in
Refs. [16,17] without the use of the HTL theory. In the
modern language of dimensional regularization, the

logarithmic contributions to the pressure arise solely from
the subclasses ps

2;0 and ph
2;1 above, through the ð1=εÞ × ε

terms therein, with ε≡ ð4 −DÞ=2 and D standing for the
spacetime dimensionality. Additionally, one finds 1=ε
terms canceling between these ps

2;0 and ph
2;1 subclasses.

In the case of ps
2;0, such a term arises from a UV

divergence, while in ph
2;1, it arises from an IR divergence.

2. Classification of diagrams at N3LO

The organization of the N3LO contributions was dis-
played already in Eq. (8) and the right panel of Fig. 4 and is
further visually summarized in Fig. 5.
Similar to the N2LO calculation, at N3LO there are

multiple classes of contributions, i.e., thosewhich arise from
either two, one, or zero soft gluons, corresponding to the
coefficients ps

3, p
m
3 , and ph

3 in Eq. (6), respectively. In this
section, we give a more detailed account of all the subclasses
making up these contributions, proceeding according to the
HTL diagrams they are related to (i.e., the colored columns
in Fig. 4).
The soft contribution is again fully resummed and IR

safe and therefore forms only one subclass, namely

ð14Þ

These diagrams are intimately related to those in the mixed
contribution8

ð15Þ

The diagrams in pm
3;1 become identical to those in ps

3;0 in the semisoft region, while the diagrams of ps
3;0 can be generated

from those in pm
3;1 by HTL resumming the one unresummed gluon line. Furthermore, the kinematics of the resummed gluon

line in this mixed contribution is soft, and hence one may expand in the small gluonic momentum. In this sense, these hard
corrections within the mixed pm

3;1 contributions can be thought of as corrections to the HTL self-energy.
Similarly, the diagrams in

ð16Þ

are intimately related to those in pm
3;1 above. Upon HTL resumming one of the gluon lines, one obtains the diagrams of pm

3;1.

FIG. 5. A visual summary of the six subclasses of N3LO
contributions, classified in terms of the number of resummed
lines in each class. The class used to show a representative
diagram is written in boldface, and color coding of the con-
tributions shows the correspondence with Fig. 4.

8Here and in the following diagrams, we assume an implied summation over the fermion and ghost directions in each loop, to reduce
the number of diagrams shown. One can find the full list of contributions, with the correct symmetry factors, in Ref. [27].
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Now we turn to the second column in the right panel of
Fig. 4 related to the one-loop HTL diagrams. The one-loop
diagram contributes at N2LO (namely, in ps

2;0), so to
contribute at N3LO it has to be dressed with a hard quark
line.9 This comes about naturally when one of the momenta
running in the HTL self-energies becomes hard, giving rise
to the diagram

ð17Þ

where we can again expand in the soft gluon momen-
tum. However, since the leading-order term in the
small-momentum expansion gives back the lower-order

one-loop HTL result, we must instead use the NLO soft
kinematics [28–30] to obtain the N3LO contribution.
The diagram in pm

3;0 is on the other hand related to the
graph10

ð18Þ

For semisoft kinematics, the diagram in pm
3;0 becomes

identical to the one in ph
3;1.

Finally, there remains one further subclass where no
resummations are necessary, namely ph

3;0 which contains
the remaining IR-safe four-loop diagrams containing a single
quark loop, here with the full quark kinematics. It reads

ð19Þ

10It is worth noting that this diagram represents the leading large-Nf behavior of the pressure, which has been determined in Ref. [31]
in the high-T limit.

9The hard gluon or ghost contributions already appear in pm
3;1, and are related instead to the two-loop HTL diagrams.
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The set of all four-loop vacuum diagrams in QCD has
previously been written down using a different organization
in e.g., Ref. [27]. Comparing the two, we see that each
diagram is correctly reproduced in our organization, and we
have checked agreement with the symmetry factors as well.
Out of the different contributions to the N3LO pressure,

all carry dependence on the factorization scale Λh, while all
but the soft contributions, determined in this work, depend
additionally on the renormalization scale Λ̄. The latter of
these scales is related to regulating UV divergences in the
hard sector, and leads to the true scale dependence of the
physical pressure. The dependence on Λh, related to UV
divergences in the soft contributions and IR divergences in
the hard and mixed contributions, will on the other hand
cancel upon summing all the different parts of the pressure
together. For technical reasons, similar calculations carried
out for the high-temperature pressure using the dimension-
ally reduced effective theory EQCD often set the scale
parameters of the full and effective theories equal, but this
is by no means mandatory, as it is equally possible to keep
two scale parameters in the calculation, letting one regulate
IR and the other UV divergences.

D. What we compute in this work

In this paper, we determine the contribution ps
3 to the

cold-QM pressure, defined in Eq. (6), which is equal to the
fully soft subclass ps

3;0 at N3LO. While it does not
constitute a complete new order in the weak-coupling
expansion of the pressure, it amounts to a complete
kinematic contribution that has furthermore been specu-
lated to play a crucial role in the slow convergence of the
quantity [32]. In addition, as we will show below, we can
recover the knownOðα3s ln2 αsÞ contribution to the pressure
from this region alone.
In the computation, we use dimensional regularization

and work in the limit of vanishing quark masses, which
amounts to evaluating the full two-loop HTL pressure at
zero temperature, without expanding in the in-medium
effective mass scale. We note that there has been previous
research on higher-order HTL thermodynamics [32–36].
However, these works all expand the HTL diagrams in
powers of the effective mass, and so do not perform the full
resummation that we need.
The general structure of the paper is as follows. In

Sec. II, we introduce the setup, conventions, and machinery
used in the calculation of ps

3. We explain the power
counting of all the contributions in detail and present
notations that allow us to easily extract the UV-sensitive
integral contributions. In Sec. III, we then explain our steps
for evaluating these integral expressions, and display
results for the different contributions along with many
details, especially for the UV-sensitive terms. Finally, in
Sec. IV, we present our final result for the pressure in the
soft region.

We also discuss cross-checks of our computation, remark
upon the sizes of different contributions, and provide a
small outlook for the remainder of the full N3LO pressure.
Following the main text is a large collection of appendixes
summarizing the Euclidean-space HTL framework used
throughout this work, as well as the additional machinery
that we have developed to tackle the computation. We have
collected all of this into the appendixes to aid future
researchers who wish to use the Euclidean-space HTL
framework in their work.

II. ORGANIZING THE COMPUTATION

A. Starting expression and convention

The expression corresponding to the fully soft contri-
bution to the cold-QM pressure that we will evaluate in this
paper is [cf. Eq. (6)]

α3sps
3 ¼ g2NcdA½I3g þ I4g þ Igh�; ð20Þ

with I3g, I4g, Igh labeling the diagrams repeated in Fig. 6.
Here, g ¼ ffiffiffiffiffiffiffiffiffiffi

4παs
p

is the QCD gauge coupling, Nc is the
number of quark colors, and dA ¼ N2

c − 1 is the dimen-
sionality of the adjoint representation of the SU(Nc) gauge
group, or the number of gluons. We will perform this
computation in dimensional regularization in D ¼ dþ 1
spacetime dimensions.
Equation (20) is the expression for the two-loop HTL

pressure examined also in Ref. [37], but in the zero
temperature limit and at nonzero density. To evaluate this
expression, we find it easier manipulate it using techniques
that will be discussed below, rather than using the expres-
sions in Ref. [37] as a starting point.
First, we write down explicit expressions for the resum-

med two-loop graphs under study. Using the Feynman rules
of Appendix A, we readily obtain

I3g ¼
1

12

Z
KPR

ΓμνρðK;P; RÞΓμ0ν0ρ0 ðK;P; RÞ

×Dμμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ; ð21Þ

I4g ¼ −
1

8

Z
KP

ΓμνρσðK;P;−K;−PÞDμρðKÞDνσðPÞ; ð22Þ

Igh ¼
1

2

Z
KPR

KμPν

K2P2
DμνðRÞ: ð23Þ

FIG. 6. The three different two-loop HTL diagrams contribut-
ing to the pressure at N3LO, constituting the ps

3 contribution.
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These expressions form the starting point of our diagram-
matic analysis. We have here introduced the following
notations, which are discussed in more detail in the
appendixes:

1. Metric and vector conventions

We work in Euclidean space with metric δμν. We write
the components of our four-vectors as Kμ ¼ ðK0; kiÞ,
where K0 ¼ K0, ki ¼ ki for i ¼ 1, 2, 3. The scalar product
between two Euclidean four-vectors K and P is given by
K · P ¼ K0P0 þ k · p, and we use the notation jkj2 ¼ k ·
k for the magnitudes of the spatial part of the momentum.
We will also repeatedly use the notation

K̂ ¼ K
jKj ; k̂ ¼ k

jkj ; ð24Þ

for the unit vectors in the direction ofK and k, respectively,
the former already defined around Eq. (2).

2. Integration measures

The integration measures are defined in D ¼ dþ 1

space-time dimensions. The symmetric integral
R
KPR we

use frequently is defined asZ
KPR

≡
�
eγEΛ2

h

4π

�
4−D Z

dDK
ð2πÞD

Z
dDP
ð2πÞD

×
Z

dDR
ð2πÞD ð2πÞDδðDÞðK þ Pþ RÞ; ð25Þ

where Λh is a factorization scale and the factor
ðeγE=4πÞð4−DÞ, with γE the Euler-Mascheroni constant, is
introduced so that one absorbs the UV-divergent part with a
universal constant. The integral

R
KP in Eq. (22) follows

from
R
KPR upon doing the trivial integration over R.

3. Propagator

The HTL-resummed gluon propagator Dμν is defined in
the covariant gauge as

DμνðKÞ≡ Pμν
T ðK̂ÞGTðKÞ þ Pμν

L ðK̂ÞGLðKÞ þ ξ
KμKν

ðK2Þ2 ;

ð26Þ

where the parameter ξ fixes the gauge and

GIðKÞ≡ 1

K2 þ ΠIðKÞ
; I ∈ fT;Lg: ð27Þ

In this equation, and from this point on, we drop the HTL
label on the HTL self-energies, for brevity. It turns out that
the computation is most efficient to perform in the ξ ¼ 1
gauge, which we shall use throughout the rest of the text. In

the class of covariant Rξ gauges, the gauge parameter ξ only
appears in the propagator, and we have explicitly checked
that the expression in Eq. (20) is gauge independent in the
sense of being independent of the ξ parameter, with the
conclusion being supported by Ref. [37].
The standard projectors PT

μνðK̂Þ and PL
μνðK̂Þ used in

Eq. (26) are defined in Sec. B, and the reader is advised to
consult the appendix when necessary. We do repeat here the
definition of the symmetric and transverse HTL self-energy
tensor

ΠμνðKÞ ¼ Pμν
T ðK̂ÞΠTðKÞ þ Pμν

L ðK̂ÞΠLðKÞ ð28Þ

where the coefficient functions are given by

ΠμμðKÞ ¼ ðd − 1ÞΠTðKÞ þ ΠLðKÞ;

Π00ðKÞ ¼ jkj2
K2

ΠLðKÞ: ð29Þ

The trace of the one-loop HTL self-energy is defined to be
m2

E, so thatm
2
E ≡ ΠμμðKÞ. An alternative explicit definition

of ΠμνðKÞ is given in the aforementioned appendix.

4. Vertices

The effective three- (3g) and four-gluon (4g) vertices are
obtained by adding the HTL loop to the bare vertex. We
write these quantities as

ΓμνρðP;Q; RÞ≡ Γμνρ
0 ðP;Q;RÞ þ δΓμνρðP;Q; RÞ;

ΓμνρσðP;Q; R; SÞ≡ Γμνρσ
0 ðP;Q;R; SÞ þ δΓμνρσðP;Q;R; SÞ;

ð30Þ

where the subscript “0” is always understood as referring to
the bare quantity. The HTL vertices δΓ are only defined
when the sum of all of their arguments is zero, and they
have the property that they are totally symmetric in their
indices and traceless in any pair of indices. Furthermore,
the 3g HTL vertex is even (odd) under even (odd)
permutations of the momenta P, Q, and R, while the 4g
HTL vertex is even under all permutations of the momenta
P, Q, R, and S. We note here that like the HTL self-
energies, the HTL vertices are proportional to m2

E, and
satisfy the generalized Ward identities

PμδΓμνρðP;Q;RÞ ¼ ΠνρðRÞ − ΠνρðQÞ;
PμδΓμνρσðP;Q;R; SÞ ¼ δΓνρσðQ;R; Sþ PÞ

− δΓνρσðQþ P; R; SÞ: ð31Þ

We also note that the HTL vertices are independent of the
gauge parameter ξ, even without fixing the gauge. The
explicit integral expressions for the d-dimensional HTL
vertices are given in Appendix B 2.
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B. Isolating the UV-sensitive terms

Due to the two-loop structure of the quantity under
consideration and the fact that the HTL self-energies are
independent of the magnitude of the gluonic momenta, we
can deduce that the general structure of our final result for
α3sps

3 will be

α3sps
3 ¼

g2NcdAm4
E

ð2πÞ6
�
mE

Λh

�
−4ε

�
p−2

ð2εÞ2 þ
p−1

2ε
þ p0

�
: ð32Þ

When this is expanded out fully in ε, our final result for the
soft contributions to the pressure of cold QM becomes

α3sps
3 ¼

g2NcdAm4
E

ð2πÞ6
�

p−2

ð2εÞ2 þ
p−1 − 2p−2 lnðmE

Λh
Þ

2ε

þ
�
p0 − 2p−1 ln

�
mE

Λh

�
þ 2p−2ln2

�
mE

Λh

���
ð33Þ

and contains both double and single-logarithmic terms of the
ratio mE=Λh. Note that, since we have resummed the soft
sector, the expression is IR safe. Thus, the terms in Eq. (32)
that enterwith negative powers of ε arise from theUV.We are

thus led to the following conclusion: in order to isolate the
p−2 and p−1 parts of the pressure, we must isolate the UV
behavior of the integrals Eqs. (21)–(23). To do this, we will
first power count to isolate the power-law divergences in the
UV (which do not contribute at all in dimensional regulari-
zation). This in turn will lead us to introduce a notation to
isolate the terms identified by the power counting.

1. Power counting

In the UV, the bare and HTL parts of the vertices and
propagators no longer enter at the same order in mE.
Therefore, by expanding the vertices and unfolding the
propagators, we will be able to isolate the UV-sensitive
terms. Let us first begin by expanding out the vertices into
their bare (0) and HTL (H) parts, and splitting I3g and I4g
into the following pieces:

I3g ¼ Ið0;0Þ3g þ 2Ið0;HÞ3g þ IðH;HÞ3g ;

I4g ¼ Ið0Þ4g þ IðHÞ4g ; ð34Þ

with

Ið0;0Þ3g ¼ 1

12

Z
KPR

Γμνρ
0 ðK;P; RÞΓμ0ν0ρ0

0 ðK;P; RÞDμμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ;

Ið0;HÞ3g ¼ 1

12

Z
KPR

Γμνρ
0 ðK;P; RÞδΓμ0ν0ρ0 ðK;P; RÞDμμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ;

IðH;HÞ3g ¼ 1

12

Z
KPR

δΓμνρðK;P; RÞδΓμ0ν0ρ0 ðK;P; RÞDμμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ; ð35Þ

and

Ið0Þ4g ¼ −
1

8

Z
KP

Γμνρσ
0 ðK;P;−K;−PÞDμρðKÞDνσðPÞ;

IðHÞ4g ¼ −
1

8

Z
KP

δΓμνρσðK;P;−K;−PÞDμρðKÞDνσðPÞ: ð36Þ

The factor of two in the second line of Eq. (34) follows by
symmetry. For the purposes of power counting, we need the
scalings for each of the vertices in the region K;P; R ∼ Λ

with Λ ≫ mE. This can be determined from the explicit
expressions in Appendices A and B 2. Since our leading
term in the ε expansion (32) is Oðε−2Þ, subleading

TABLE I. Scales of the bare and resummed vertices in different momentum regions. Note that the second column
also represents the other cases where the three momenta K, P, R are simply permuted.

Vertex K;P; R ∼mE K ∼mE;P;R ∼ Λ K;P; R ∼ Λ

Γμνρ
0 ðK;P; RÞ ∼mE ∼ΛþmE ∼Λ

δΓμνρðK;P; RÞ ∼mE ∼m2
EΛ−1 þm3

EΛ−2 þ � � � ∼m2
EΛ−1

Γμνρσ
0 ðK;P;−K;−PÞ ∼Λ0 ∼Λ0 ∼Λ0

δΓμνρσðK;P;−K;−PÞ ∼Λ0 ∼m2
EΛ−2 þm4

EΛ−4 þ � � � ∼m2
EΛ−2
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contributions will also contribute to the divergent terms.
For completeness, we include in Table I the vertex scalings
in all of the possible momentum regions.
Now, unlike the vertices, which split into a simple sum of

two terms of different orders in the UV, the propagators in
Eq. (26) expand into an infinite number of terms there,
namely,

DμνðKÞ ≃ 1

K2
δμν −

ΠðKÞμν
ðK2Þ2 þ ½ΠðKÞ2�μν

ðK2Þ3 − � � � ð37Þ

where we have used a compact notation for the power of
ΠμνðKÞ,

½ΠðKÞn�μν ¼ Πμα1ðKÞΠα1α2ðKÞ � � �Παn−1νðKÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nΠs

ð38Þ

and have used the simple form of the bare gluonic
propagator in ξ ¼ 1 gauge in the leading term, namely

Δμν
0 ðKÞ≡ 1

K2
δμν: ð39Þ

Taking a momentum K of the order of some large Λ ≫ mE,
the expansion in Eq. (37) goes as

DμνðKÞ ∼ Λ−2 þm2
EΛ−4 þm4

EΛ−6 þ � � � ; ð40Þ

which shows that we have an infinite number of contribu-
tions, with the higher terms becoming less important. On the
other hand, when the momentum flowing through the vertex
becomes soft K ∼mE, the propagator simply scales as

DμνðKÞ ∼m−2
E ; ð41Þ

so that no expansion is possible.
Let us now use these scalings to power count one piece

of Eq. (35). When K;P; R ∼ Λ, the term with two bare
vertices scales as

Ið0;0Þ3g ∼ Λ4Λ4ðΛÞðΛÞ
�

1

Λ2
þm2

E

Λ4
þm4

E

Λ6
� � �

��
1

Λ2
þm2

E

Λ4
þ � � �

��
1

Λ2
þm2

E

Λ4
þ � � �

�
∼ Λ4 þ Λ2m2

E þm4
E þ � � � ; ð42Þ

where the two leading Λ4 terms come from the integration measure,11 the next two Λ terms are from the bare vertices, and

the final three series are from the propagators. We thus see that Ið0;0Þ3g contains two power-law divergent terms in this hard-
hard UV region, which we would like to peel away. On the other hand, in the hard-soft region K ∼mE;P;R ∼ Λ, we have

Ið0;0Þ3g ∼m4
EΛ4ðΛþmEÞðΛþmEÞ

�
1

m2
E

��
1

Λ2
þm2

E

Λ4
þ � � �

��
1

Λ2
þm2

E

Λ4
þ � � �

�
∼ Λ2m2

E þ Λm3
E þm4

E þ � � � ; ð43Þ

which shows that there is also a power-law divergence here,
even though one of the propagators is still resummed.
Observe that letting one of the lines become soft shifts the
leading term in the expansion of the integral to a higher
power in mE. Note also that in this region, there are
subleading contributions from the vertices, in addition to
the propagators. Finally, there is the soft-soft region.
However, this region does not probe the UV, and so will
not lead to any divergences at all.
Inspecting the above equations, we see that these power-

law divergent terms arise from the first few leading terms in
the expansion of the propagators, which motivates us to
introduce a new notation in the following section.

2. Peeling away the bare propagators

We have called the leading term in Eq. (37) (the bare
propagator) Δμν

0 ðKÞ; let us extend this notation to label the
other terms in the expansion as well:

Δμν
n ðKÞ≡ ð−1Þn½Δ0ðKÞ ·ΠðKÞ ·Δ0ðKÞ � � �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nΠs

Δ0ðKÞ�μν; n≥ 0;

¼ð−1Þn ½ΠðKÞn�μν
ðK2Þnþ1

: ð44Þ

Here we make the identification ½ΠðKÞ0�μν ¼ δμν to match
the leading term. This allows us to write the expansion in
Eq. (37) as

DμνðKÞ ≃ Δμν
0 ðKÞ þ Δμν

1 ðKÞ þ Δμν
2 ðKÞ þ � � � : ð45Þ

We can now introduce the following notation for the
resummed propagator with the n leading terms removed:

Dμν
n ðKÞ≡DμνðKÞ −

Xn−1
k¼0

Δμν
k ðKÞ; n ≥ 1: ð46Þ

11Note that we are power counting in D ¼ 4.
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Consequently, the Dμν
n ðKÞ are still resummed expressions,

while the Δμν
n ðKÞ are not. Note that both Δμν

n ðKÞ and
Dμν

n ðKÞ are D-dimensionally transverse for every n, and
that the following relations hold for any n ≥ 1:

Dμν
n ðKÞ ¼ ð−1Þn½Δ0ðKÞ · ΠðKÞ · Δ0ðKÞ � � �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nΠs

DðKÞ�μν;

¼ ð−1Þn ½ΠðKÞn�μα
ðK2Þn DανðKÞ; ð47Þ

DμνðKÞ ¼ Δμν
0 ðKÞ þ Δμν

1 ðKÞ þ � � � þ Δμν
n−1ðKÞ þDμν

n ðKÞ;
ð48Þ

Dμν
n−1ðKÞ ¼ Δμν

n−1ðKÞ þDμν
n ðKÞ; ð49Þ

Δμν
n ðKÞ ∼m2n

E Λ−2ðnþ1Þ in UV; ð50Þ

Dμν
n ðKÞ ∼m2n

E Λ−2ðnþ1Þ in UV: ð51Þ

Notice also the full propagator at the end of both lines of
Eq. (47), and the fact that Eq. (48) is not a partial sum of an
infinite series, but is exact.

3. Applying the new notation

Using this new notation, we can make the schematic
expressions in Eqs. (42)–(43) more explicit. To this end, we

rewrite Ið0;0Þ3g into the following form:

Ið0;0Þ3g ¼ 1

12

Z
KPR

Γμνρ
0;KPRΓ

μ0ν0ρ0
0;KPR½Δ0ðKÞ þD1ðKÞ�μμ0 ½Δ0ðPÞ þD1ðPÞ�νν0 ½Δ0ðRÞ þD1ðRÞ�ρρ0

¼ 1

12

Z
KPR

Γμνρ
0;KPRΓ

μ0ν0ρ0
0;KPR½Δμμ0

0 ðKÞΔνν0
0 ðPÞΔρρ0

0 ðRÞ þ 3Δμμ0
0 ðKÞΔνν0

0 ðPÞΔρρ0
1 ðRÞ

þ 3Δμμ0
0 ðKÞΔνν0

0 ðPÞDρρ0
2 ðRÞ þ 3Dμμ0

1 ðKÞDνν0
1 ðPÞΔρρ0

0 ðRÞ
þDμμ0

1 ðKÞDνν0
1 ðPÞDρρ0

1 ðRÞ�: ð52Þ

We stress that this equation is not an expansion, but holds
exactly.12 Observe that the two terms on the second line of
the above equation contain only Δs, which have no mass
scale. Therefore, these two terms are power-law divergent
and thus vanish in dimensional regularization. These terms
correspond precisely to the two power-law divergent terms
in Eq. (42). The remaining power-law divergence in
Eq. (43) is located in one particular part of the term
containing D2 on the third line of the above equation, as
can be seen by counting the bare propagators. This
divergence will not become explicit until we insert the
explicit expression for the vertices and perform the con-
tractions.
In addition to identifying the terms that contain only

Δs and are trivially power-law divergent in the UV, this
notation also allows us to identify precisely the terms which
are logarithmically UV sensitive. We can do this as follows.
From the scaling of theΔn andDn in Eqs. (50)–(51), we see

that we can determine the scaling of a product of Δns and
Dns by simply summing the subscripts: if the sum is N then
the product goes as m2N

E Λ−2ðNþ1Þ in the UV. However, we
know that the logarithmically UV-sensitive terms [ones that
lead to theOðε−2Þ andOðε−1Þ terms in the expansion] must
scale as m4

E times a dimensionless integral in the UV, as
such a structure allows it to contribute through the whole
UV tail of the integral. This gives us a powerful prescrip-
tion for identifying the logarithmally UV-sensitive terms:
we can simply sum the subscripts on the propagator terms
(and include one m2

E per HTL vertex if necessary) and see
whether the result is m4

E.
We now carry out the above procedure for all of the terms

in Eq. (34) as well as for Igh to peel away all the power-law
UV divergences and to identify the logarithmically UV-
sensitive terms. We then find the following: for the parts
of I3g,

Ið0;0Þ3g ¼ 1

12

Z
KPR

Γμνρ
0;KPRΓ

μ0ν0ρ0
0;KPR½3Δμμ0

0 ðKÞΔνν0
0 ðPÞDρρ0

2 ðRÞ þ 3Dμμ0
1 ðKÞDνν0

1 ðPÞΔρρ0
0 ðRÞ�

þ 1

12

Z
KPR

Γμνρ
0;KPRΓ

μ0ν0ρ0
0;KPR½Dμμ0

1 ðKÞDνν0
1 ðPÞDρρ0

1 ðRÞ�

≡ ½Ið0;0Þ3g �UV002 þ ½Ið0;0Þ3g �UV110 þ ½Ið0;0Þ3g �111; ð53Þ

12Note that, from now on, we will use this more compact expression for the vertices.
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Ið0;HÞ3g ¼ 1

12

Z
KPR

δΓμ0ν0ρ0
KPR Γ

μνρ
0;KPR½3Δμμ0

0 ðKÞΔνν0
0 ðPÞDρρ0

1 ðRÞ�

þ 1

12

Z
KPR

δΓμ0ν0ρ0
KPR Γ

μνρ
0;KPR½3Dμμ0

1 ðKÞDνν0
1 ðPÞΔρρ0

0 ðRÞ þDμμ0
1 ðKÞDνν0

1 ðPÞDρρ0
1 ðRÞ�

≡ ½Ið0;HÞ3g �UV001 þ ½Ið0;HÞ3g �110 þ ½Ið0;HÞ3g �111; ð54Þ

IðH;HÞ3g ¼ 1

12

Z
KPR

δΓμνρ
KPRδΓ

μ0ν0ρ0
KPR ½Dμμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ�

≡ ½IðH;HÞ3g �UV; ð55Þ

for the parts of I4g,

Ið0Þ4g ¼ −
1

8

Z
KP

Γμνρσ
0 Dμρ

1 ðKÞDνσ
1 ðPÞ

≡ ½Ið0Þ4g �UV11 ; ð56Þ

IðHÞ4g ¼ −
1

8

Z
KP

δΓμνρσDμρ
1 ðKÞDνσ

1 ðPÞ

≡ ½IðHÞ4g �11; ð57Þ

and for Igh,

Igh ¼
1

2

Z
KPR

KμPν

K2P2
Dμν

2 ðRÞ

≡ ½Igh�UV2 : ð58Þ
Here, we have introduced the notation ½I�ijk to mean the
integral I with the propagators replaced by DðKÞ ↦
DiðKÞ, DðPÞ ↦ DjðPÞ, and DðRÞ ↦ DkðRÞ if i, j,
k > 0. In the case of i, j, k ¼ 0, the replacement is instead
DðKÞ ↦ Δ0ðKÞ, DðPÞ ↦ Δ0ðPÞ, or DðRÞ ↦ Δ0ðRÞ. (In
the case of fewer subscripts, the notation is the same, but
replacing only those propagators appearing in I.) We have
additionally added a superscript “UV” to those terms which
are logarithmically UV sensitive, and hence contribute to
the Oðε−2Þ or Oðε−1Þ terms of the final answer. From this
point on, we shall simply refer to them as the “UV terms.”

Consequently, those terms which do not have the UV
labeling are UV finite and thus can be computed in d ¼ 3
spatial dimensions. Most of these non-UV-sensitive terms
cannot be analytically simplified much more, and so for the
rest of this organizational section we shall not manipulate
them. Their contributions are listed in Sec. III C.

4. Performing the contractions

In most of the UV terms, the Lorentz contractions are
relatively straightforward and lead to some simplifications.
The general procedure for evaluating all of them, except

those in ½IðH;HÞ3g �UV, which we will separately consider in
Sec. III B, is as follows:
(1) Substitute in the form of the bare propagator Δ0 in

Eq. (39) to the expressions, which contracts some of
the indices of the vertices together.

(2) Use both (i) the expression for the bare vertex and
(ii) thegeneralizedWard identities inEq. (31) to elimi-
nate all vertices from the expressions. This allows us
to avoid the explicit expressions for the HTL vertices.

(3) Use the symmetry of the integration measure
R
KPR to

permute K, P, R as necessary to further simplify the
expressions.

Let us quickly illustrate this procedure in two cases, one

with only bare vertices ½Ið0;0Þ3g �UV002, and one with a 3g HTL

vertex ½Ið0;HÞ3g �UV001. In the first case, we have

½Ið0;0Þ3g �UV002 ¼
1

4

Z
KPR

Γμνρ
0;KPRΓ

μ0ν0ρ0
0;KPRΔ

μμ0
0 ðKÞΔνν0

0 ðPÞDρρ0
2 ðRÞ

¼ 1

4

Z
KPR

1

K2P2
Γμνρ
0;KPRΓ

μνρ0
0;KPRD

ρρ0
2 ðRÞ

¼ 1

4

Z
KPR

1

K2P2
fð4d − 2Þ½K ·D2ðRÞ · K� þ ð4R2 þ P2 þ K2ÞTr½D2ðRÞ�g

¼ 1

4

Z
KPR

1

P2R2
fð4d − 2Þ½P ·D2ðKÞ · P� þ ð4K2 þ 2P2ÞTr½D2ðKÞ�g

¼
Z
KPR

ð4d − 2Þ
4P2R2

½P ·D2ðKÞ · P� þ
Z
KPR

K2

P2R2
Tr½D2ðKÞ� þ ½UV pow:div:�; ð59Þ
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where from the first to the second line, we used step (1) above; from the second to the third line, we used
step (2); and from the third to the fourth line, we used step (3) of our procedure. Finally, in the last line, we separated
out a UV power divergence, which vanishes in dimensional regularization. This is precisely the power-divergent term
identified in Eq. (43). Here, we have introduced a Lorentz-index-free notation, where we represent contractions as dots or
traces depending on the structure:

P ·D2ðKÞ · P ¼ PμPνDμν
2 ðKÞ;

Tr½D2ðKÞ� ¼ Dμμ
2 ðKÞ: ð60Þ

We will use this notation extensively through the rest of the work.
In the second case, we have

½Ið0;HÞ3g �UV001 ¼
1

4

Z
KPR

δΓμ0ν0ρ0
KPR Γ

μνρ
0;KPRΔ

μμ0
0 ðKÞΔνν0

0 ðPÞDρρ0
1 ðRÞ

¼ 1

4

Z
KPR

1

K2P2
δΓμνρ0

KPRΓ
μνρ
0;KPRD

ρρ0
1 ðRÞ;

¼ 1

4

Z
KPR

1

K2P2
Dρρ0

1 ðRÞ½Πρρ0 ðKÞ þ Πρρ0 ðPÞ − 2Πρρ0 ðRÞ�

¼ 1

2

Z
KPR

1

K2P2
fTr½D1ðRÞΠðKÞ� − Tr½D1ðRÞΠðRÞ�g

¼ 1

2

Z
KPR

1

P2R2
fTr½D1ðKÞΠðPÞ� − Tr½D1ðKÞΠðKÞ�g; ð61Þ

where we used the same steps in the same order. Here, the generalized Ward identity was applied in the contraction of the
bare 3g vertex and the 3g HTL vertex. Additionally, we also made use of the symmetries of the 3g HTL vertex discussed in
Appendix B 2.
Now let us further massage the above expression by using (i) the fact that

½Dn−1ðKÞ · ΠðKÞ�μν ¼ −K2Dμν
n ðKÞ; ð62Þ

for any n [this follows from Eq. (47)], and (ii) the fact that, since P2Δμν
0 ðPÞ ¼ δμν,

½D1ðKÞ · ΠðPÞ�μν ¼ ½D1ðKÞ · ΠðPÞ · P2Δ0ðPÞ�μν
¼ P2fD1ðKÞΠðPÞ½DðPÞ −D1ðPÞ�gμν
¼ −ðP2Þ2fD1ðKÞ½D1ðPÞ −D2ðPÞ�gμν; ð63Þ

where in the last line we used the recursion relation in Eq. (62) immediately above. Thus, plugging in the above and
rearranging, we find

½Ið0;HÞ3g �UV001 ¼
1

2

Z
KPR

�
−
P2

R2
Tr½D1ðKÞD1ðPÞ� þ

K2

P2R2
Tr½D2ðKÞ� þ P2

R2
Tr½D1ðKÞD2ðPÞ�

�
: ð64Þ

Note that the last term in this expression goes as m6
E in the UV, and so can only contribute to the constant term.

Our final results for all the UV terms after the above procedure are as follows: for the parts of I3g,

½Ið0;0Þ3g �UV002 ¼
Z
KPR

ð4d − 2Þ
4P2R2

½P ·D2ðKÞ · P� þ
Z
KPR

K2

P2R2
Tr½D2ðKÞ�; ð65Þ

½Ið0;0Þ3g �UV110 ¼
Z
KPR

��
K2

R2
−
1

4

�
Tr½D1ðKÞD1ðPÞ� þ

2

R2
½P ·D1ðKÞ · P�Tr½D1ðPÞ�

�
; ð66Þ
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½Ið0;HÞ3g �UV001 ¼
1

2

Z
KPR

�
−
P2

R2
Tr½D1ðKÞD1ðPÞ� þ

K2

P2R2
Tr½D2ðKÞ� þ P2

R2
Tr½D1ðKÞD2ðPÞ�

�
; ð67Þ

½IðH;HÞ3g �UV ¼ 1

12

Z
KPR

δΓμνρ
KPRδΓ

μ0ν0ρ0
KPR ½Dμμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ�; ð68Þ

for the parts of I4g,

½Ið0Þ4g �UV11 ¼ −
1

4

Z
KP

fTr½D1ðKÞ�Tr½D1ðPÞ� − Tr½D1ðKÞD1ðPÞ�g; ð69Þ

and for Igh,

½Igh�UV2 ¼ −
1

2

Z
KPR

1

P2R2
½P ·D2ðKÞ · P�: ð70Þ

The sum of the above terms is quite compact, as there are a few cancellations. The total reads:

½Itot�UV ¼
Z
KPR

�
2P2

R2
½P̂ ·D1ðKÞ · P̂�Tr½D1ðPÞ� −

1

4
Tr½D1ðKÞ�Tr½D1ðPÞ�

þ 2K2

P2R2
Tr½D2ðKÞ� þ d − 1

R2
½P̂ ·D2ðKÞ · P̂� þ

P2

R2
Tr½D1ðKÞD2ðPÞ�

þ 1

12
δΓμνρ

KPRδΓ
μ0ν0ρ0
KPR D

μμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ
�
: ð71Þ

Here, we have factored out all magnitudes from the dot
products, using our unit-vector notation introduced in
Eq. (24). Note the very important point that the HTL
self-energy ΠμνðKÞ inside of the propagators depends only
on K̂, and not on the magnitude jKj. In light of this, we will
from now on write ΠμνðK̂Þ to make this clear.
At this point, we are ready to tackle performing

the integrations of all the terms isolated and scalar-
ized above.

III. THE COMPUTATION

After the manipulations performed in the previous
section, evaluating ps

3 has been reduced to computing
½Itot�UV in Eq. (71) and the sum of the non-UV terms in
Eqs. (53)–(58). Our general procedure for evaluating these
integrals can be summarized as follows:
(1) Rescale all the magnitudes of momentum variables

by jKj ↦ mEjKj etc. to pull out the mE dependence
and make the integrands dimensionless.

(2) Perform the trivial R integral to set R ↦ −ðK þ PÞ,
and change variables in the remaining K and P
integrals to write them as integrals over the magni-
tude of the four-vectors jKj and jPj, and the
remaining angles.

(3) Further transform from the magnitudes of the
momenta ðjKj; jPjÞ to Euclidean polar ðX; χÞ coor-
dinates, given by

jKj ¼ X sin χ ≡ Xsχ ; jPj ¼ X cos χ ≡ Xcχ ;

with χ ∈ ½0; π=2�; X ∈ ½0;∞�: ð72Þ

We introduce a shorthand notation sχ , cχ , as these
particular functions will appear many times in our
computation. In all cases, the radial X integral can be
performed analytically (in general d, if necessary).

Let us now discuss the details of these operations.
Details of step (1).—As part of this step, we will define
dimensionless versions of all of the functions, denoted
with tildes. For instance:

ΠμνðK̂Þ ↦ m2
EΠ̃μνðK̂Þ; ð73Þ

DnðKÞ ↦ m−2
E D̃nðKÞ; ð74Þ

GXðKÞ ↦ m−2
E G̃XðKÞ; X ∈ fT;Lg ð75Þ

where D̃nðKÞ and G̃XðKÞ contain Π̃μνðK̂Þ in place of
ΠμνðK̂Þ. This rescaling also introduces a change in the
integration measures; for example dDK ↦ mD

E d
DK.

Thus, the integrals change as
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Z
KPR

↦ m2D
E

Z
KPR

≡m8
E

Z
gKPR

¼ m8
E

�
eγEΛ2

h

4πm2
E

�
4−D Z

dDK
ð2πÞD

Z
dDP
ð2πÞD

×
Z

dDR
ð2πÞD ð2πÞDδðDÞðK þ Pþ RÞ; ð76Þ

where we have defined a new integral (again,
R eKP can

be defined by performing the trivial integral over R)
by adding m2

E to the denominator of the factor out
front. Thus, by factoring out m8

E, and by simply
“placing tildes on everything else,” we can implement
the desired rescaling of variables. In what follows, we
shall assume that we have already done this procedure
everywhere, and hence drop the explicit tildes for
convenience.

Details of step (2).—After performing the trivial integral
over R, which sets R ↦ −ðK þ PÞ, we wish to change
variables to radial and angular parts. To this end, we
introduce the following notations. We first define the
Euclidean spherical variables ðjKj;ΦKÞ, where ΦK ∈
½0; π� is the D-dimensional polar angle defined by

tanΦK ¼ jkj
K0

; ðK0; jkjÞ↦ ðjKj cosΦK; jKj sinΦKÞ:

ð77Þ

The dot product between the Euclidean four-vectors
K and P can be written as

K · P ¼ jKjjPjðcosΦK cosΦP þ sinΦK sinΦP cos θÞ
≡ jKjjPjw; ð78Þ

where the magnitudes jKj and jPj factorize from the
angular part w≡ wðΦK;ΦP; θÞ with cos θ≡ k̂ · p̂.
Note that this equation implies that K̂ · P̂ ¼ w, which
will be used extensively in the computation below.
Now, in these new coordinates, the integration

measure
R
KP can be writtenZ

KP
¼ CðdÞ

Z
Ω

Z
∞

0

djKjjKjd
Z

∞

0

djPjjPjd; ð79Þ

where the angular part of the integration measure isZ
Ω
≡

Z
π

0

dΦK sind−1 ΦK

Z
π

0

dΦP sind−1ΦP

×
Z

π

0

dθ sind−2 θ; ð80Þ

and we have introduced a compact notation for the
dimensionless prefactor

CðdÞ≡
�
eγEΛ2

h

4πm2
E

�
3−d 4πd−

1
2

ð2πÞ2dþ2

1

Γðd
2
ÞΓðd−1

2
Þ : ð81Þ

The integrals over the azimuthal angles have been
performed and included in CðdÞ, as all of our
integrands are independent of those angles. For
reference, we note here that Cð3Þ ¼ 2=ð2πÞ6, and
that in d ¼ 3, the integral

R
Ω ¼ π2=2.

Details of step (3).—Here, we stress that by moving to
the ðX; χÞ coordinates, we only change the magnitudes
jKj; jPj, and so K̂; P̂ remain unchanged. This change
of variables gives rise to a nontrivial Jacobian, which
leads toZ

KP
¼ CðdÞ

Z
Ω

Z
π=2

0

dχsdχcdχ

Z
∞

0

dXX2dþ1: ð82Þ

Finally, note that since we only integrate over the first
quadrant in ðX; χÞ space, we have sχ ; cχ ≥ 0 every-
where in our integrals.
We are now in a position to evaluate our terms. We

begin by identifying the independent integrals in
½Itot�UV:

IA ≡m4
E

Z
KPR

P2

R2
½P̂ ·D1ðKÞ · P̂�Tr½D1ðPÞ�; ð83Þ

IB ≡m4
E

Z
KPR

Tr½D1ðKÞ�Tr½D1ðPÞ�; ð84Þ

IC ≡m4
E

Z
KPR

K2

P2R2
Tr½D2ðKÞ�; ð85Þ

ID ≡m4
E

Z
KPR

d − 1

R2
½P̂ ·D2ðKÞ · P̂�; ð86Þ

IE ≡m4
E

Z
KPR

P2

R2
Tr½D1ðKÞD2ðPÞ�; ð87Þ

IF ≡m4
E

Z
KPR

δΓμνρ
KPRδΓ

μ0ν0ρ0
KPR D

μμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ;

ð88Þ

which combine as follows

½Itot�UV ≡ 2IA −
1

4
IB þ 2IC þ ID þ IE þ

1

12
IF: ð89Þ

Note that we have kept the (d − 1) inside ID, since we
want to be able to do the ε expansion for each of these
integrals separately. Additionally, IE is not UV sensi-
tive, as can be seen by counting the propagator
subscripts as before. Therefore, we will now proceed
as follows. First, as the forms of IA–ID are so similar,
and since they are all UV sensitive, we shall treat all of
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them together in Sec. III A below, and define IABCD to
be the corresponding part of Eq. (89):

IABCD ≡ 2IA −
1

4
IB þ 2IC þ ID; ð90Þ

so that

½Itot�UV ¼ IABCD þ IE þ
1

12
IF: ð91Þ

Second, as the structure in the remaining UV-sensitive
term IF is so different from the others (in particular, the
3g HTL vertices cannot be removed completely by

using the generalizedWard identities), we will evaluate
it separately in Sec. III B. Finally, as all the remaining
finite terms, including IE, can be numerically evaluated
in d ¼ 3, we treat them all in Sec. III C.

A. Integrals IA − ID
After performing the steps (1)–(3) described in the

previous section, we are left with integrals over the angles
in

R
Ω, the separate angle χ, and the radial coordinate X. As

alluded to above, the X integral can be performed analyti-
cally in general d. In IA–ID only the following two master
integrals in X appear:

Z
∞

0

dXX2d−3 ΠIðK̂Þ
X2s2χ þ ΠIðK̂Þ

ΠJðP̂Þ
X2c2χ þ ΠJðP̂Þ

¼
�
π

2
cscðdπÞ

�
s1−dχ c1−dχ ΠIðK̂ÞΠJðP̂Þ

�½ΠIðK̂Þ cot χ�d−2 − ½ΠJðP̂Þ tan χ�d−2
ΠIðK̂Þ cot χ − ΠJðP̂Þ tan χ

�
; ð92Þ

Z
∞

0

dXX2d−5 ΠIðK̂Þ2
X2s2χ þ ΠIðK̂Þ

¼
�
π

2
cscðdπÞ

�
½s4−2dχ ΠIðK̂Þd−1�: ð93Þ

Here, I; J ∈ fT;Lg label the polarization components of the HTL self-energy. We will now proceed through the integrals
one by one, mostly showing details only for IA.

1. Doing the integrals in general d

To unpack the notation in IA, we use the definitions for the propagatorsDn andD in Eqs. (47) and (26), respectively. This
leads to the following form for IA in the ðX; χÞ coordinates

IA ¼ m4
ECðdÞ

Z
Ω

X
I;J

½P̂ · PIðK̂Þ · P̂�Tr½PJðP̂Þ�
Z

π=2

0

dχ
s−2χ

ð1þ 2cχsχwÞ

× sdχcdχ

Z
∞

0

dXX2d−3 ΠIðK̂Þ
X2s2χ þ ΠIðK̂Þ

ΠJðP̂Þ
X2c2χ þ ΠJðP̂Þ

; ð94Þ

where CðdÞ was defined in Eq. (81). Using the first master integral Eq. (92), this becomes

IA ¼ m4
ECðdÞ

�
π

2
cscðdπÞ

� Z
Ω

X
I;J

½P̂ · PIðK̂Þ · P̂�Tr½PJðP̂Þ�

×
Z

π=2

0

dχ
½ΠIðK̂Þ cot χ�ΠJðP̂Þ

1þ 2sχcχw

�½ΠIðK̂Þ cot χ�d−2 − ½ΠJðP̂Þ tan χ�d−2
ΠIðK̂Þ cot χ − ΠJðP̂Þ tan χ

�
: ð95Þ

The integral over χ here can be performed analytically, but it is unwieldy, and so we choose the following approach instead.
This integral contains a divergence in d ¼ 3, from the region near χ ¼ 0. Near χ ¼ 0, the χ integrand is approximately

½ΠIðK̂Þ cot χ�ΠJðP̂Þ
1þ 2sχcχw

�½ΠIðK̂Þ cot χ�d−2 − ½ΠJðP̂Þ tan χ�d−2
ΠIðK̂Þ cot χ − ΠJðP̂Þ tan χ

�
≃

ΠJðP̂Þ
1þ 2sχcχw

½ΠIðK̂Þ cot χ�d−2: ð96Þ
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This means that we can isolate the Oðε−2Þ part of IA by evaluating

IAjχ≈0 ¼ m4
ECðdÞ

�
π

2
cscðdπÞ

� Z
Ω
½P̂ · ΠðK̂Þd−2 · P̂�

Z
π=2

0

dχ
cotd−2χ

1þ 2sχcχw
; ð97Þ

where in going to the second line, we used Tr½Π� ¼ 1, which is true because we have factored out the mass scale mE, and
have dropped the tildes on all expressions. We have also introduced the notation

½ΠðK̂Þd−2�μν ¼
X

I∈fT;Lg
ΠIðK̂Þd−2PIðK̂Þμν: ð98Þ

We will return to this χ ≈ 0 term in a bit.
The remaining integral over χ, which we define to be

ΔIA ≡ IA − IAjχ≈0 ð99Þ

in the following, will then be finite:

ΔIA ¼ m4
ECðdÞ

�
π

2
cscðdπÞ

� Z
Ω

X
I;J

½P̂ · PIðK̂Þ · P̂�Tr½PJðP̂Þ�

×
Z

π=2

0

dχ
½ΠIðK̂Þ cot χ�ΠJðP̂Þ

1þ 2sχcχw

�½ΠIðK̂Þ cot χ�d−2 − ½ΠJðP̂Þ tan χ�d−2
ΠIðK̂Þ cot χ − ΠJðP̂Þ tan χ

− ½ΠIðK̂Þ cot χ�d−3
�
: ð100Þ

Note that this χ integral vanishes in d ¼ 3, as the expression in braces equals 0. Thus, we only need the OðεÞ piece of the χ
integral, and the Oð1=εÞ piece of the divergent coefficient

m4
ECðdÞ

�
π

2
cscðdπÞ

�
≃m4

ECð3Þ
1

4ε
þOðε0Þ

¼ m4
E

ð2πÞ6
1

2ε
þOðε0Þ: ð101Þ

The full expression up to Oðε0Þ is then the surprisingly simple

ΔIA ≃
m4

E

ð2πÞ6
Z
Ω

X
I;J

½P̂ · PIðK̂Þ · P̂�Tr½PJðP̂Þ�

×
Z

π=2

0

dχ
ΠIðK̂ÞΠJðP̂Þ2
1þ 2sχcχw

�
ln½ΠJðP̂Þ tan χ� − ln½ΠIðK̂Þ cot χ�

ΠIðK̂Þ cot χ − ΠJðP̂Þ tan χ

�
; ð102Þ

where a cotangent and tangent canceled in the ΠIðK̂ÞΠJðP̂Þ2 term. Here, one can analytically compute the χ integral in
d ¼ 3
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ΔIA ≃
m4

E

ð2πÞ6
Z
Ω

X
I;J

½ΠIðK̂Þ þ ΠJðP̂Þ�½P̂ · PIðK̂Þ · P̂�Tr½PJðP̂Þ�
½ΠIðK̂Þ þ ΠJðP̂Þ�2 þ 4ΠIðK̂ÞΠJðP̂Þw2

×

�
arccos2ðwÞ − 1

4
ln2

�
ΠIðK̂Þ
ΠJðP̂Þ

�
−
π2

2

�
1 − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΠIðK̂ÞΠJðP̂Þ

q
ΠIðK̂Þ þ ΠJðP̂Þ

w

�
þ
�
ΠIðK̂Þ − ΠJðP̂Þ
ΠIðK̂Þ þ ΠJðP̂Þ

�
w arccosðwÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − w2
p ln

�
ΠIðK̂Þ
ΠJðP̂Þ

��
; ð103Þ

which only leaves the integrals in
R
Ω to be computed numerically.

Let us now return to the χ ≈ 0 term in Eq. (97). We want to use tensor reduction to write the P̂ integral inside of Ω in a
simpler way. As written, the P̂ integral in Eq. (97) depends on w ¼ K̂ · P̂, so we cannot use full d-dimensional symmetry,
but only a restricted (d − 1)-dimensional symmetry, as detailed in Ref. [38]. However, we opt for another approach, which
will yield a much simpler final expression.
Let us consider the P̂ integral first in Eq. (97), so that we focus on

½ΠðK̂Þd−2�μν
Z

π=2

0

dχ cotd−2 χ
Z
P̂

P̂μP̂ν

1þ 2sχcχw
: ð104Þ

Now expand out the denominator in a geometric series (here, we omit the ½ΠðK̂Þd−2�μν for space), resulting inZ
π=2

0

dχ cotd−2 χ
Z
P̂

P̂μP̂ν

1þ 2sχcχw
¼

Z
π=2

0

dχ cotd−2 χ
X∞
m¼0

Z
P̂
P̂μP̂νð−2sχcχwÞm

¼
Z

π=2

0

dχ cotd−2 χ
X∞
m¼0

Z
P̂
P̂μP̂νð4s2χc2χÞmðK̂ · P̂Þ2m

¼
X∞
m¼0

4m
Z

π=2

0

dχs2mþð2−dÞ
χ c2mþðd−2Þ

χ

Z
P̂
P̂μP̂νðK̂ · P̂Þ2m: ð105Þ

Here, in going to from the first to second line, we used the symmetry of the P̂ integral to remove all the terms with an odd
number of P̂. Thus, we must evaluate a generic integral of the form

½ΠðK̂Þd−2�μν
Z
P̂
P̂μP̂νðK̂ · P̂Þ2m: ð106Þ

In Ref. [38], they provide the result13 (translated to our notation)Z
P̂
ðK̂ · P̂Þ2m ¼ ð2m − 1Þ!!

DðDþ 2Þ � � � ðDþ 2m − 2Þ
Z
P̂
; ð107Þ

along with a recurrence relation between totally symmetric tensors.14 Using the recurrence relation, and the Ward identity
for ΠðK̂Þ, we conclude

½ΠðK̂Þd−2�μν
Z
P̂
P̂μP̂νðK̂ · P̂Þ2m ¼ Tr½ΠðK̂Þd−2� ð2m − 1Þ!!

DðDþ 2Þ � � � ðDþ 2mÞ
Z
P̂
: ð108Þ

Additionally using Z
π=2

0

dχsaχcbχ ¼
1

2
B

�
1þ a
2

;
1þ b
2

�
; ð109Þ

13See Eq. (30) in Ref. [38].
14See Eq. (21) in Ref. [38].
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where B is the Euler Beta function, we find in our case

½ΠðK̂Þd−2�μν
Z

π=2

0

dχ cotd−2 χ
Z
P̂

P̂μP̂ν

1þ 2sχcχw

¼ Tr½ΠðK̂Þd−2�
2

X∞
m¼0

4mB

�
2mþ ð2 − dÞ þ 1

2
;
2mþ ðd − 2Þ þ 1

2

�
×

ð2m − 1Þ!!
DðDþ 2Þ � � � ðDþ 2mÞ

Z
P̂

¼ −Tr½ΠðK̂Þd−2� π
3=2

2dþ1

Γðdþ1
2
Þ

Γðd
2
Þ sec

�
πd
2

�Z
P̂
: ð110Þ

Therefore, Eq. (97) can be reduced to

IAjχ≈0 ¼ −m4
ECðdÞ

cscðπd
2
Þ

2dþ1

Γð1
2
ÞΓðdþ1

2
Þ

Γðd
2
Þ

�
π

2
sec

�
πd
2

��
2
Z
Ω
Tr½ΠðK̂Þd−2�; ð111Þ

so that we have reduced IA to the sum of the two integrals Eqs. (111) and (102), the latter of which can be performed
numerically in d ¼ 3.
The remaining integrals IB–ID can be performed similarly, and in fact, all of the remaining χ integrals that arise result in

relatively simple analytical results in general d. Using the two master integrals in Eqs. (92)–(93), the angular averages in
Eqs. (107)–(108) and the Euler-Beta-function expression in Eq. (109), we find the following results:

IB ¼ m4
ECðdÞ

�
π

2
sec

�
πd
2

��
2
Z
Ω
Tr½ΠðK̂Þd−12 �Tr½ΠðP̂Þd−12 �; ð112Þ

IC ¼ −4m4
ECðdÞ

cscðπd
2
Þ

2dþ1

Γð1
2
ÞΓðdþ1

2
Þ

Γðd
2
Þ

�
π

2
sec

�
πd
2

��
2
Z
Ω
Tr½ΠðK̂Þd−1�; ð113Þ

and

ID ¼ ðd − 1Þm4
ECðdÞ

�
π

2
cscðdπÞ

�
2 sinðπd

2
Þ

2d
Γð1

2
ÞΓðdþ1

2
Þ

Γð1þ d
2
Þ
Z
Ω
Tr½ΠðK̂Þd−1�: ð114Þ

Combining all of these results as in Eq. (90), we define

½IABCDðdÞ�UV ≡ −m4
ECðdÞ

�
π

2
sec

�
πd
2

��
2
Z
Ω

�
1

4
Tr½ΠðK̂Þd−12 �Tr½ΠðP̂Þd−12 �

þ π cscðπd
2
Þ

4d
ΓðdÞ
Γðd

2
Þ2
�
2Tr½ΠðK̂Þd−2� þ

�
1

d
þ 7

�
Tr½ΠðK̂Þd−1�

��
; ð115Þ

so that the total contribution from IA–ID, valid up to Oðε0Þ, reads

IABCD ≃ ½IABCDðdÞ�UV þ 2ΔIA; ð116Þ

with ΔIA as in Eq. (103).

2. Extracting the coefficients of the ε expansion

We now turn to performing the ε expansions of ½IABCDðdÞ�UV above to calculate the terms in the expansion of the pressure
in Eq. (32). The only divergence is contained in the overall trigonometric coefficient, which has the expansion
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�
π

2
sec

�
πd
2

��
2

¼ 1

ð2εÞ2 þ
π2

12
þOðε2Þ; ð117Þ

and so we see that Eq. (115) above contributes to p−2 in the
expansion of the pressure. Moreover, from the ε expansion
of the remainder of the integrand, this term likewise
contributes to the remaining p−1 and p0 terms as well.
Recall that the Πs appearing in this expression are d-
dimensional self-energies, and thus to calculate the sub-
leading contributions, we must expand not only the explicit
d ¼ 3 − 2ε appearing in the expression and the measure,
but we also must expand the d-dimensional HTL self-
energies in a series

ΠIðK̂Þ ¼ ΠI;0ðK̂Þ þ εΠI;1ðK̂Þ þ ε2ΠI;2ðK̂Þ þOðε3Þ;
I ∈ fT;Lg: ð118Þ

The explicit details are shown in Appendix B 1. Notice that
the ε−2 divergence in Eq. (117) means that we will need the
expansion up to ΠI;2 in the calculation.
However, it turns out that we can avoid the explicit

appearance of ΠI;2 in our expressions, using the following
approach. We write down a simpler integral ½I−2ðdÞ�UV that
will (i) contain the full Oðε−2Þ behavior of ½IABCDðdÞ�UV,
but (ii) is simple enough to be computed analytically in
general d. This will mean that the difference ½IABCDðdÞ�UV −
½I−2ðdÞ�UV only starts atOðε−1Þ, and sowewill only need the
terms up to ΠI;1 to calculate it.
To construct this simpler integral, we examine Eq. (115).

Since Eq. (117) contains the explicit ε−2, the coefficient
p−2 arises from setting d ¼ 3 everywhere else. If we do
this, we see that the first two terms of Eq. (115) will cancel
(since Tr½Π� ¼ 1), and only the term involving

Tr½ΠðK̂Þd−1�!
d¼3

Tr½ΠðK̂Þ2� ð119Þ

remains. Using this as motivation, we define

½I−2ðdÞ�UV ≡ −m4
ECðdÞ

�
π

2
sec

�
πd
2

��
2 π cscðπd

2
Þ

4d
ΓðdÞ
Γðd

2
Þ2

×

�
1

d
þ 7

�Z
Ω
Tr½ΠðK̂Þ2�: ð120Þ

As shown in Appendix D, this integral can be performed
analytically, yielding

½I−2ðdÞ�UV ¼ −m4
ECðdÞ

�
π

2
sec

�
πd
2

��
2
�
π2 cscðπd

2
Þ

ðd − 1Þ2d
�

×

�
1

d
þ 7

��
1 − ψðdÞ þ ψ

�
1þ d
2

��
;

ð121Þ

where ψ is the digamma function

ψðxÞ≡ Γ0ðxÞ
ΓðxÞ : ð122Þ

With these new definitions, we can thus split IABCD into
three pieces, which contribute to Eq. (32) in the following
manner:
(1) ½I−2ðdÞ�UV contributes to all coefficients p−2, p−1,

and p0,
(ii) ½IABCDðdÞ�UV − ½I−2ðdÞ�UV contributes to the coef-

ficients p−1, and p0,
(iii) ΔIA contributes only to the coefficient p0, which

enters with a symmetry factor of 2 from Eq. (71).
Performing the ε expansion in the three terms identified in
this list, we arrive at a set of angular integrals to perform,
only some of which can be performed analytically. A full
list of these contributing integrals is given in Appendix D.
In Table II, we summarize the computed contributions to
the coefficients p−2, p−1, and p0. As most of the one-
dimensional integrals contributing to p0 must be performed
numerically, we mainly list numerical values for that row of
the table. We note here that these numerical integrals can be
easily calculated to high precision, and we show them all in
Appendix D 2. The full contribution from IABCD is thus the
sum across the columns of this table. We have verified that
we obtain the same total results if we do not introduce
½I−2ðdÞ�UV, but rather use the expansion of ΠI in Eq. (118)
up to second order.

B. The IF term

We now turn to the integral IF, given in Eq. (88), which
we reproduce here:

TABLE II. Contributions from IABCD to the pressure after performing the necessary integrals. Here, ζ is the
Riemann zeta function.

½I−2ðdÞ�UV ½IABCDðdÞ�UV − ½I−2ðdÞ�UV ΔIA
p−2 11π2

24
0 0

p−1 π2

2
½1þ11π2

72
�

R
Ωð14 − 11

6
TrfΠ0ðK̂Þ2 ln½Π0ðK̂Þ�gÞ ≈ 3.74046 0

p0
11π2

16
½ζð3Þ − 1778−299π2

1188
� ≈10.84411 ≈ − 3.71084
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IF ≡m4
E

Z
KPR

δΓμνρ
KPRδΓ

μ0ν0ρ0
KPR D

μμ0 ðKÞDνν0 ðPÞDρρ0 ðRÞ: ð123Þ

The evaluation of this integral proceeds in much the same
way as the previous ones. However, we must first perform
the contractions, which are more complicated in this case:
as remarked above, the two 3g HTL vertices cannot be fully
removed by the generalized Ward identities, since they are
only contracted with resummed propagators.
Let us start by isolating the UV sensitivity in IF. It is

straightforward to verify from the power countings in
Table I and Eqs. (40) and (41) that IF has a UV logarithmic
sensitivity only when all three momenta are hard. This
leads to the following two conclusions for the UV sensitive
part: Firstly, since the momenta K, P (and R) cannot be
scale-separated when they are all hard, there is really only a
single independent integration momentum (the variable X),
and thus we expect only a single Oðε−1Þ divergence.
Secondly, when all the momenta are hard, the resummed
propagators approach their bare versions [see Eq. (39)],
which leads to approximately direct contractions between
the two 3g HTL vertices in this Oðε−1Þ term. This second
point in particular motivates us to isolate the “Kronecker-δ-
like part” of the resummed propagators. We do this by
unpacking the δ parts from the projection operators defined
in Eqs. (B4)–(B5) and rearranging the terms to arrive at

Dμμ0 ðKÞ ¼
X
I

δμμ
0

I GIðKÞ − K̂μ
TK̂

μ0
TGTLðKÞ

þ K̂μK̂μ0
�

1

K2
−GLðKÞ

�
; ð124Þ

where I ∈ fT;Lg and GTLðKÞ≡GTðKÞ −GLðKÞ. Here,
we have also introduced the following notation:

K̂μ
TK̂

μ0
T ≡ δμiδμ

0jk̂ik̂j;

δμμ
0

T þ δμμ
0

L ≡ δμμ
0
; ð125Þ

with δμμ
0

T ≡ δμiδμ
0jδij and δμμ

0
L ≡ δμ0δμ

00. Hence, δT picks
out spatial indices and δL picks out the temporal index. The
UV sensitivity will now arise from only taking the first term
in Eq. (124) from each propagator. The two remaining
terms are seen to be more suppressed in the UV, and so lead
to finite contributions.
Using the symmetry properties of the integrand

R
KPR, we

can now write IF in the form

IF ¼ ½IF�UV þ
X3
i¼1

ΔIðiÞF ; ð126Þ

where the UV part ½IF�UV is given by

½IF�UV ¼ m4
E

Z
KPR

δΓμνρ
KPRδΓ

μ0ν0ρ0
KPR

X
I;J;W

½δμμ0I GIðKÞδνν0J GJðPÞδρρ
0

W GWðRÞ�: ð127Þ

The remaining finite parts ΔIðiÞF are given by the following expressions:

ΔIð1ÞF ¼ m4
E

Z
KPR

δΓμνρ
KPRδΓ

μ0ν0ρ0
KPR

�
− 3

X
J;W

½δνν0J GJðPÞδρρ
0

W GWðRÞ�K̂μ
TK̂

μ0
TGTLðKÞ

þ 3

�X
W

δρρ
0

W GWðRÞ
�
K̂μ

TK̂
μ0
T P̂

ν
TP̂

ν0
TGTLðKÞGTLðPÞ

− K̂μ
TK̂

μ0
T P̂

ν
TP̂

ν0
T R̂

ρ
TR̂

ρ0
TGTLðKÞGTLðPÞGTLðRÞ

�
; ð128Þ

ΔIð2ÞF ¼ 6m4
E

Z
KPR

�X
I

δμμ
0

I GIðKÞ − K̂μ
TK̂

μ0
TGTLðKÞ

��X
J

δνν
0

J GJðPÞ − P̂ν
TP̂

ν0
TGTLðPÞ

�
× ΠμνðK̂Þ½Πμ0ν0 ðK̂Þ − Πμ0ν0 ðP̂Þ� ΠLðR̂Þ

R4½R2 þ ΠLðR̂Þ�
; ð129Þ

and

ΔIð3ÞF ¼ 3m4
E

Z
KPR

�X
I

δμμ
0

I GIðKÞ − K̂μ
TK̂

μ0
TGTLðKÞ

�
× PνPν0 ½ΠμνðK̂ÞΠμ0ν0 ðK̂Þ� ΠLðP̂Þ

P4½P2 þ ΠLðP̂Þ�
ΠLðR̂Þ

R4½R2 þ ΠLðR̂Þ�
: ð130Þ
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To obtain Eqs. (129) and (130), we first eliminated the
3g HTL vertices by using the generalized Ward
identities and then plugged in the definition of GL
from Eq. (27), where it occurs explicitly in Eq. (124).
Note also that the term proportional to δΓμνρ

KPRK
μPνRρ

has dropped out since it vanishes due to the Ward
identity.
Before proceeding, we note the following fact, which we

will use in evaluating these expressions. Namely, upon
switching to the ðX; χÞ coordinates, the 3g HTL vertices
scale as

δΓμνρ
KPR ≡ 1

X
δΓ̂μνρ

KPRðχ;ΩÞ; ð131Þ

where the δΓ̂μνρ
KPRðχ;ΩÞ defined here depends only on the

angles. This fact can be seen from the explicit integral repre-
sentation of the 3g HTL vertex function in Appendix B 2.
We now proceed to the computation. As we did in the

previous section, we shall only evaluate the UV-sensitive
term ½IF�UV in this section, and we defer the evaluation of

the finite terms ΔIðiÞF to Sec. III C below.

1. The X integral in d dimensions

We proceed to evaluate ½IF�UV using the steps introduced
at the beginning of this section. After changing to the ðX; χÞ
coordinates and using the scaling Eq. (131), we see that we
have only one master integral in X to evaluate, namely

Z
∞

0

dXX2d−1

½X2 þ Π̂IðK̂Þ�½X2 þ Π̂JðP̂Þ�½X2 þ Π̂WðR̂Þ�

¼ ½π cscðπdÞ� Hdðχ;ΩÞ
2½Π̂IðK̂Þ − Π̂JðP̂Þ�½Π̂IðK̂Þ − Π̂WðR̂Þ�½Π̂JðP̂Þ − Π̂WðR̂Þ�

≡ ½π cscðπdÞ�IdðI; J;WÞ; ð132Þ
where the function Hd is given by the expression

Hdðχ;ΩÞ ¼ Π̂IðK̂Þd−1½Π̂JðP̂Þ − Π̂WðR̂Þ�
þ Π̂JðP̂Þd−1½Π̂WðR̂Þ − Π̂IðK̂Þ�
þ Π̂WðR̂Þd−1½Π̂IðK̂Þ − Π̂JðP̂Þ�: ð133Þ

Here we have also introduced the notations

Π̂IðK̂Þ≡ ΠIðK̂Þ
s2χ

; Π̂IðP̂Þ≡ ΠIðP̂Þ
c2χ

; Π̂IðR̂Þ≡ ΠIðR̂Þ
1þ 2sχcχw

; ð134Þ

and the D-dimensional polar angle ΦR appearing in ΠðR̂Þ is defined as

tanðΦRÞ≡ jrj
R0

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þ jpj2 þ 2k · p

ðK0 þ P0Þ2

s

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2χ sin2ΦK þ c2χ sin2ΦP þ 2sχcχ sinΦK sinΦP cos θ

s2χ cos2ΦK þ c2χ cos2ΦP þ 2sχcχ cosΦK cosΦP

s
: ð135Þ

Note that the divergence is contained in the trigonometric coefficient

π cscðπdÞ ¼ 1

2ε
þ π2

3
εþOðε2Þ; ð136Þ

Using the above master integral, we find the following expression:

½IF�UV ¼ m4
ECðdÞ½π cscðπdÞ�

Z
Ω

Z
π=2

0

dχ
sd−2χ cd−2χ

ð1þ 2sχcχwÞ
× f½δΓ̂ijk

KPRðχ;ΩÞ�2IdðT;T;TÞ þ 3½δΓ̂i00
KPRðχ;ΩÞ�2IdðT;L;LÞ

þ 3½δΓ̂ij0
KPRðχ;ΩÞ�2IdðT;T;LÞ þ ½δΓ̂000

KPRðχ;ΩÞ�2IdðL;L;LÞg: ð137Þ
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Here, we have introduced a shorthand notation for con-
tracted indices, e.g., ½δΓ̂ijk

KPRðχ;ΩÞ�2 ≡ δΓ̂ijk
KPRðχ;ΩÞ×

δΓ̂ijk
KPRðχ;ΩÞ. We note that in general d, the functions Id

also depend on the angles χ and Ω.

2. Expanding in ε and doing the angular integrals

Following the procedure used to evaluate the other UV-
sensitive contributions, we now turn to performing the ε
expansion of ½IF�UV to calculate terms in the expansion of
the pressure in Eq. (32). From the above expansion of the d-
dimensional trigonometric coefficient, we can conclude
that ½IF�UV contributes only to the p−1 and p0 terms of the
pressure. Recall that, in order to obtain the correct p0

coefficient, the HTL vertices appearing in the integrand are
kept d dimensional. Therefore, to calculate the subleading
contributions, we must expand not only the explicit d ¼
3 − 2ε appearing in the measure and the expression, but we
also must expand the d-dimensional 3g HTL vertices up to
OðεÞ; schematically:

δΓ̂μνρ
KPRðχ;ΩÞ ¼ δΓ̂μνρ

0;KPRðχ;ΩÞ þ δΓ̂μνρ
1;KPRðχ;ΩÞεþOðε2Þ:

ð138Þ

The details of the terms in this expansion are given in
Appendix B 2, and the general approach is as follows: The
3g HTL vertex is given by a d-dimensional integral
representation. We introduce a modified Feynman para-
metrization, which allows us to do these d-dimensional
integrals, at least order-by-order in ε, leaving only the
Feynman parameter left to be integrated over. Thus, we are
able to write the functions in the above ε expansion as one-
dimensional integral representations. As far as we are
aware, such an explicit evaluation of the HTL vertices
has never been performed before in the literature.
With this approach, the p−1 and p0 contributions from

½IF�UV [including the symmetry factor 1=12 from Eq. (89)]
can be written as six-dimensional integrals (over χ,ΦK ,ΦP,
θ, and two Feynman parameters). We compute these
integrals numerically using Monte Carlo integration rou-
tines provided by the CUBA library [39]. Our results are
summarized in Table III, where in the p−1 term we see the
anticipated direct contraction of the two 3g HTL vertices.

C. The remaining finite terms

Having discussed every truly UV-divergent integral, we
are left with the finite terms. These include the integrals IE
and ΔIðiÞF defined in Eqs. (87) and (128)–(130) which are

finite contributions to the potentially divergent UV term

½Itot�UV, as well as the four integrals ½Ið0;0Þ3g �111, ½Ið0;HÞ3g �110,
½Ið0;HÞ3g �111, and ½IðHÞ4g �11 defined in Eqs. (53), (54), and (57),
which were seen to be finite from the start.
These terms all involve a coupling between the two loop-

momenta to a degree that renders one unable to perform
factorizations and other simplifications akin to those seen
in Sec. III A. However, the finite nature of these terms
makes them simpler to evaluate numerically, as there is no
need to extract the divergent parts when evaluating them,
unlike in the previously considered contributions. For this
reason, we automate the evaluation of these terms, perform-
ing any remaining non-Lorentz-invariant tensor contrac-
tions by adapting the implementation discussed in Ref. [40]
(although in Euclidean space).
Various properties of the HTL vertex functions, in

particular the generalized Ward identities in Eq. (31) and
their tracelessness, are again used extensively to reduce
everything down to terms containing either no vertex
corrections or the components δΓ000

KPR or δΓ0000
K;P;−K;−P, except

in the case of ΔIð1ÞF . For this one separate term, we cannot
fully remove the spatial components of the 3g HTL vertex
function, but we reduce it as much as possible by using

K̂μ
TδΓ

μνρ
KPR ¼ 1

jkj ðK
μ − δμ0K0ÞδΓμνρ

KPR

¼ 1

jkj ðK
μδΓμνρ

KPR − K0δΓ
0νρ
KPRÞ; ð139Þ

and then applying the generalized Ward identity on the first
term. This way, we can reduce the number of spatial indices
appearing in our expressions, as the 3g HTL vertices with
more time components are easier to compute numerically.

In the end, with this ΔIð1ÞF term, we can reduce all
expressions to terms involving the four independent
expressions δΓ000

KPR, δΓi00
KPR, δΓ

ij0
KPR, and δΓijk

KPR, with their
indices contracted either with a second occurrence of one of
these terms, or with the self-energy functions Π00ðŶÞ,
Πi0ðŶÞ, and ΠijðŶÞ, with Y ∈ fK;P; Rg. More details
about these manipulations can be found in Appendix C1 c.
The 4g HTL vertex function appears in these finite terms

for the first time; its properties are discussed in
Appendix B 2. It should also be noted that, while here
we are able to work in an integer dimension, computations
of the HTL integrals in general d are easily automated using
the method outlined in Appendix C 3, and in practice this
method was applied in our computation.

TABLE III. Contributions from ½IF�UV to the pressure after performing the necessary integrals.

p−1 p0

½IF�UV R
Ω
R π=2
0

dχsχcχ
12ð1þ2sχcχwÞ ½δΓ̂

μνρ
0;KPRðχ;ΩÞ�2 ¼ 0.4340ð15Þ 0.2483(14)
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With the integral scalarized, we simply follow the steps
outlined in the beginning of Sec. III, setting d ¼ 3 every-
where as these terms are finite. When changing to ðX; χÞ
coordinates, we define new master integrals, which we do
not show here but are easily computed. We also note here
that similarly to the 3g HTL vertex, the 4g HTL vertex
scales homogeneously as a function of X

δΓμνρσ
K;P;−K;−P ≡ 1

X2
δΓ̂μνρσ

K;P;−K;−Pðχ;ΩÞ; ð140Þ

which can be seen from the explicit integral form (Eq. (B36)
After this, the remaining nontrivial integrals (over χ, ΦK ,

ΦP, θ, and possible Feynman parameters in terms involving
irreducible vertex corrections) are computed numerically
using Monte Carlo methods [39]. The numerical results for
the finite contributions are displayed in Table IV. Note that in

½IðHÞ4g �11, the coefficient of the term ∝ δΓ000
KPR turns out to

vanish, and as such the vertex corrections contain only a
contribution ∝ δΓ0000

K;P;−K;−P. Finally, we remind the reader

that there is a symmetry factor of 2 for the Ið0;HÞ
3g terms in this

table [see Eq. (34)], and a symmetry factor of 1=12 for the

ΔIðiÞF terms.

IV. RESULTS AND CONCLUSIONS

We are now in a position to present our final results. By
adding the corresponding elements of Tables II–IV, we find
the following fully soft contributions to the pressure in
Eq. (32):

p−2 ¼
11

6

Z
Ω
Tr½Π0ðK̂Þ2� ¼ 11π2

24
; ð141Þ

p−1 ¼
Z
Ω

�
19þ 11π2

72
−
11

6
Tr½Π0ðK̂Þ2 ln½Π0ðK̂Þ��

þ
Z

π=2

0

dχ sin χ cos χ
12ð1þ 2 · w sin χ cos χÞ ½δΓ̂

μνρ
0;KPRðχ;ΩÞ�2

�
¼ 11.6840ð15Þ; ð142Þ

p0 ¼ 17.150ð7Þ: ð143Þ

Here, we note again for the reader that the angular integralR
Ω ¼ π2=2 [see Eq. (80) for a full definition of the measure],
andwe have used a shorthandw ¼ K · P=ðjKjjPjÞ. TheHTL
self-energyΠ0 and the 3g vertex correction δΓ̂0 can be found
in Appendixes B 1 and C 1 respectively; note that we have
also scaled out mE from them.
Though our final results can be written in a relatively

compact form, the intermediate steps to arrive to this result
involved many complex manipulations and techniques. To
this end, to verify that our results are correct, we conducted
many cross-checks of the intermediate steps. Firstly, all of
our numerical results were checked by multiple indepen-
dent codes, each of which used a different implementation
(e.g., full automatization versus partial simplifications by
hand), which gives us strong confidence in our results. For
the UV-sensitive terms in IABCD, we have some additional
cross-checks. As mentioned in the earlier section, we have
verified that our results are unchanged if we do not
introduce ½I−2ðdÞ�UV, but rather use the previous expres-
sions containing Π0 through Π2. We have also performed a
check of the highly nontrivial tensor reduction in
Eqs. (107)–(108): we have verified that our results remain
unchanged if we do not perform this averaging but instead
perform the ε expansion and then perform the more coupled
angular integrals that arise.
In addition to these internal cross-checks, we find that we

reproduce the known coefficient of the leading logarithmic
Oðα3s ln2 αsÞ contribution to the pressure obtained in
Ref. [19]. That work obtained this coefficient by expanding
the two-loop HTL pressure in the semisoft region and using
a cutoff prescription. Here, on the other hand, we used the
fully resummed expressions, without expansions, and used
dimensional regularization to arrive at the result. Thus, the
two techniques that yield agreement are quite independent.
Note that if we use our result here for p−2 in the expansion
in Eq. (33), we find that this result yields a coefficient for
the Oðα3s ln2 αsÞ term that is a factor of 2 larger than the
result in Ref. [19].15 However, this is only the ln2ðmE=ΛhÞ
term arising in ps

3, which does not correspond to the full

ln2 α1=2s term in the sum over all regions. As we discuss in
Appendix E using a simple example, it is natural to expect
the ln2 α1=2s coefficient to be precisely half of this
ln2ðmE=ΛhÞ coefficient. Thus, we do indeed find agreement
between our result and Ref. [19].
As a further additional check with the literature, we have

extended the formalism used in Ref. [19] to extract parts of
the subleading logarithmic contribution, corresponding to

TABLE IV. Contributions from the finite terms to the analytic
part of the pressure p0

Contribution p0

IE −2.9229ð18Þ
ΔIð1ÞF

−0.0810ð7Þ
ΔIð2ÞF

þ0.285ð6Þ
ΔIð3ÞF

þ0.0838ð5Þ
½Ið0;0Þ3g �111 −0.6772ð12Þ
½Ið0;HÞ3g �110 −1.309ð2Þ
½Ið0;HÞ3g �111 þ0.2027ð6Þ
½IðHÞ4g �11 −0.669ð2Þ

15There is also a discrepancy in the overall sign. This is due to
an error in Ref. [19], where the free energy was calculated instead
of the pressure for this term. We thank J.-L. Kneur for bringing
this issue to our attention.
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pieces of p−1. Within the cutoff regularization, there are
two very distinct contributions to p−1 from the two-loop
HTL pressure: One contribution arises from the soft-
semisoft region, obtained by expanding the two-loop
HTL pressure for only a single loop momentum, and
corresponds to the second term of Eq. (142). The other
contribution arises as a subleading correction to the semi-
soft-semisoft region [which in the ðX; χÞ coordinates has
cutoffs on the radial X integral]. This correction is regulator
dependent, as it is sensitive to the exact ratio of cutoffs that
occur in the double logarithm, rather than just the para-
metric size of the ratio. However, there is also a regulator-
independent piece, corresponding in the language of the
present paper to the last term of Eq. (142), due to the unique
scaling properties of the doubly contracted vertex correc-
tion. As with the p−2 term, these regulator-independent
pieces are found to be consistent between the two methods,
giving us further confidence in our calculation.
We now turn to remarks upon our results. The first is that

though we have rederived the same analytic value for the
coefficient of the Oðα3s ln2 αsÞ term, the integral expression
for that result was much more complicated than the
remarkably simple integral expression for p−2 above. In
particular, in Ref. [19], the integral expression did not
depend on only one momentumK, but rather bothK and P.
In fact, the integral given for p−2 above is exactly the same
angular integral that appears in the Freedman-McLerran
Oðα2s ln αsÞ result. Looking back through our analysis, we
find that the angular tensor reduction was what lead to this
vast simplification, as such a decomposition was not used
in Ref. [19]. We further note that, since this same integral
appears in p−2, the corresponding contribution to p−1
[namely, the second term of Eq. (142)], is also an integral
that appears in the α2sps

2 term.16

We also remark here upon the fact that in Ref. [19], the
authors found that the same final result would be obtained if
they setK on shell, withΠT;0 ↦ ΠT;0ðiK0 ¼ jkj;kÞ ¼ 1=2
and ΠL;0 ↦ ΠL;0ðiK0 ¼ jkj;kÞ ¼ 0. This is also seen to
work in the case of the Oðα2s ln αsÞ coefficient. (Here we
have used our convention of factoring out mE.) However,
we now see from the analysis in the present work that the
replacement working for the Oðα3s ln2 αsÞ coefficient fol-
lows directly from it working for the lower-order result,
since the integral expressions are exactly the same. It is
tempting to speculate that the leading-logarithmic result at
all orders may be related to the integral appearing in the
α2sps

2 term, and may allow for such a substitution.
As a further remark, we note that there have been many

efforts to identify which diagrams give dominant contri-
butions to an HTL calculation [42,43]. Here, we find,
interestingly, that contributions containing irreducible HTL
vertex corrections (i.e., those which cannot be removed

using the generalized Ward identities) are clearly found to
be smaller than those containing self-energies.17 We find
that these corrections, though necessary for full, correct
results, are only a few percent of the total. This observation
is gauge invariant, though not unique, since it depends on
the basis of irreducible vertex integrals chosen in the
p0 term.
Our result in Eqs. (141)–(143) constitutes the fully soft

contribution to the pressure: α3sps
3 in Eq. (6). This physical

result still has some scheme dependence arising from the
ambiguity in splitting the semisoft modes to the hard or soft
sectors, which can be seen from the residual dependence on
the factorization scale Λh in the expressions. In our
accompanying Letter [20], we further discuss this point,
as well as analyze the relative importance of this contri-
bution to the pressure and the effect of this contribution
on the convergence of the weak-coupling expansion.
Moreover, by undertaking the present calculation in dimen-
sional regularization and by having the clear roadmap set
forth in the Introduction, we believe that at least the further
α3spm

3 term can be obtained in a straightforward manner. In
particular, there is no difficulty in combining the contri-
butions from different kinematic regions, since they are all
regulated consistently in dimensional regularization. With
the α3spm

3 term in hand, one could obtain the subleading
Oðα3s ln αsÞ coefficient in the weak-coupling expansion,
which may in turn allow one to use the principle of minimal
sensitivity [44] to constrain the dependence of the pressure
on the renormalization scale Λ̄. This would potentially have
important phenomenological implications for, e.g., the
EOS of neutron-star matter [14,15]. Additionally, the entire
organizational overview presented in the Introduction may
have important consequences in itself: it may be possible to
resum these logarithmic contributions to the pressure in
some systematic way. An investigation of these points is
left to later work.
Finally, we remark that there are some possible gener-

alizations of this work which may be greatly aided by the
organization and machinery that we have developed here.
For example, including nonzero quark masses [45,46] or
generalizations to nonzero temperature [18] might be
possible using our present techniques. Such endeavors
are, however, also left for the future.
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APPENDIX A: FEYNMAN RULES

The standard group-theory factors for the SUðNcÞ gauge group, some of which appear in the text, are given by

dA ≡ δaa ¼ N2
c − 1;

CAδ
cd ≡ fabcfabd ¼ Ncδ

cd;

CFδij ≡ ðtataÞij ¼
N2

c − 1

2Nc
δij; ðA1Þ

where Nc is the number of colors and fabc is the fully antisymmetric structure constant. The generators of the fundamental
representation ðtaÞij are normalized according to Tr½tatb� ¼ δab=2.
In the following we give the bare Feynman rules of QCD necessary for the computation of the diagrams under study. The

vertices, with momentum flow towards the vertex, read:

ðA2Þ

ðA3Þ

ðA4Þ

ðA5Þ
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The corresponding propagators (with massless quarks), on the other hand, read

ðA6Þ

ðA7Þ

ðA8Þ

We also define single-argument propagators to be two-argument propagators after enforcing the momentum-space delta
function; for example ðΔ0ÞμνabðPÞ ¼ δμνδabP−2 − ð1 − ξÞPμPνδabP−4. In Sec. B below, we will write down some of the rules
improved according to the standard HTL scheme.

APPENDIX B: THE HTL FRAMEWORK

In this Appendix, we outline in detail the Euclidean HTL framework used throughout this work. To make our HTL
appendixes self-contained, we repeat here some definitions that are scattered throughout the text. We leave the detailed
evaluation of vertex functions to later appendixes. We found the discussions in Refs. [25,37,47] helpful when creating this
appendix.

1. HTL propagator and self-energy

a. Propagator

The HTL-resummed gluon propagator

ðB1Þ

is defined in the covariant gauge as

DμνðKÞ≡ Pμν
T ðK̂ÞGTðKÞ þ Pμν

L ðK̂ÞGLðKÞ þ ξ
KμKν

ðK2Þ2 ; ðB2Þ

where the parameter ξ fixes the gauge and

GIðKÞ≡ 1

K2 þ ΠIðKÞ
; I ∈ fT;Lg: ðB3Þ

The computation performed in this paper is most efficient
to carry out in the ξ ¼ 1 gauge, which we use throughout
the text. The D-dimensional transverse and longitudinal
projection operators, PT

μνðK̂Þ and PL
μνðK̂Þ, are defined as

Pμν
T ðK̂Þ≡ δμiδνjðδij − k̂ik̂jÞ;

Pμν
L ðK̂Þ≡ Pμν

D ðK̂Þ − Pμν
T ðK̂Þ; ðB4Þ

with

Pμν
D ðK̂Þ≡ δμν − K̂μK̂ν; ðB5Þ

where K̂ ¼ K=jKj, and k̂ ¼ k=jkj. These projectors are
D-dimensionally transverse to K and obey the relations

ðPTÞ2 ¼ PT; ðPLÞ2 ¼ PL; PT
μαðK̂ÞPL

ανðK̂Þ ¼ 0;

ðB6Þ

and
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Tr½PT� ¼ d − 1; Tr½PL� ¼ 1; Tr½PD� ¼ d: ðB7Þ

The ΠT and ΠL appearing in the denominators of the
HTL propagators are components of the one-loop HTL
self-energy (or polarization tensor) Πμν

ab ≡ δabΠμν of the
gluon field. These functions satisfy the general relations

ΠμνðKÞ ¼ Pμν
T ðK̂ÞΠTðKÞ þ Pμν

L ðK̂ÞΠLðKÞ; ðB8Þ

and

ΠμμðKÞ ¼ ðd − 1ÞΠTðKÞ þ ΠLðKÞ;

Π00ðKÞ ¼ jkj2
K2

ΠLðKÞ: ðB9Þ

Additionally, the self-energy satisfies the trivial Ward
identity KμΠμνðKÞ ¼ 0.

b. Machinery for manipulating the propagator

We let Δμν
0 ðKÞ denote the bare propagator with

ΠIðKÞ ¼ 0, I ∈ fT;Lg. We can extend this notation to
label the other terms in the expansion of the full propagator
in powers of the self-energy:

Δμν
n ðKÞ≡ ð−1Þn½Δ0ðKÞ ·ΠðKÞ ·Δ0ðKÞ � � �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nΠs

Δ0ðKÞ�μν; n≥ 0;

¼ ð−1Þn ½ΠðKÞ
n�μα

ðK2Þn Δαν
0 ðKÞ: ðB10Þ

Here, we use a dot to represent contraction of adjacent
indices, and we use the notation

½ΠðKÞn�μν ¼ Πμα1ðKÞΠα1α2ðKÞ � � �Παn−1νðKÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nΠs

; ðB11Þ

and make the identification ½ΠðKÞ0�μν ¼ δμν to match the
leading term. Thus,

DμνðKÞ ≃ Δμν
0 ðKÞ þ Δμν

1 ðKÞ þ Δμν
2 ðKÞ þ � � � : ðB12Þ

We can now introduce the following notation for the
resummed propagator with the n leading terms removed:

Dμν
n ðKÞ≡DμνðKÞ −

Xn−1
k¼0

Δμν
k ðKÞ; n ≥ 1: ðB13Þ

Consequently, the Dμν
n ðKÞ are still resummed expres-

sions, while the Δμν
n ðKÞ are not. Note that both Δμν

n ðKÞ and
Dμν

n ðKÞ are D-dimensionally transverse for every n, and
that the following relations hold for any n ≥ 1:

Dμν
n ðKÞ ¼ ð−1Þn½Δ0ðKÞ · ΠðKÞ · Δ0ðKÞ � � �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{nΠs

DðKÞ�μν;

¼ ð−1Þn ½ΠðKÞn�μα
ðK2Þn DανðKÞ; ðB14Þ

DμνðKÞ ¼ Δμν
0 ðKÞ þ Δμν

1 ðKÞ þ � � � þ Δμν
n−1ðKÞ þDμν

n ðKÞ;
ðB15Þ

Dμν
n−1ðKÞ ¼ Δμν

n−1ðKÞ þDμν
n ðKÞ; ðB16Þ

Dμν
n ðKÞ ∼ Δμν

n ðKÞ ∼m2n
E K−2ðnþ1Þin UV: ðB17Þ

Notice also the full propagator at the end of both lines of
Eq. (B14), and the fact that Eq. (B15) is not a partial sum of
an infinite series, but is exact. The power counting in
Eq. (B17) allows one to use this notation to extract the form
of the UV-sensitive terms in our calculations.

c. Self-energy

In the HTL approximation relevant for cold QM, the
quark part of the one-loop gluon self-energy is computed
assuming that the momentum flowing along the quark lines
is much larger than the external gluonic one. In this way,
one obtains the result

ΠμνðKÞ ¼ m2
E

Z
v̂

�
δμ0δν0 −

iK0

K · V
VμVν

�
; ðB18Þ

where we have introduced the lightlike four-vector Vμ ≡
ð−i; v̂Þ with v̂ a unit vector in Rd. The integration measure
in d dimensions is defined asZ
v̂
≡ hðdÞ

2

Z
π

0

dθvsind−2ðθvÞ

¼ hðdÞ
2

Z
1

−1
dzvð1 − z2vÞd−32 ; hðdÞ≡ Γðd

2
Þ

Γð3
2
ÞΓðd−1

2
Þ ;

ðB19Þ

where zv ≡ k̂ · v̂; note that the measure here is normalized
to integrate to unity. The d-dimensional in-medium effec-
tive mass scale mE is given by

m2
E ¼

X
f

g2μ2f

�
eγEΛ2

h

4πμ2f

�ð3−dÞ
2 4Γð1

2
Þ

ð4πÞdþ1
2 Γðd

2
Þ

¼
X
f

g2μ2f
2π2

þOðεÞ: ðB20Þ

This is the generalization of the effective mass scale to the
case of multiple fermion flavors with different chemical
potentials μf at zero temperature. Throughout our text, mE

denotes its d-dimensional value, and is never expanded in ε.
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The scalar functions ΠT and ΠL can now be computed using the constraint equations in Eq. (B9) with the results

ΠμμðKÞ ¼ m2
E

Z
v̂
δ00 ¼ m2

E;

Π00ðKÞ ¼ m2
E

�
1þ

Z
v̂

iK0

−iK0 þ jkjzv

�
¼ m2

E

�
1 − 2F1

�
1

2
; 1;

d
2
;−

jkj2
K2

0

��
; ðB21Þ

where 2F1 is the hypergeometric function, and where the final equality assumes jkj=K0 ∈ R and ReðdÞ > 1. If we now
denote

ηaðxÞ≡ ∂
∂z 2F1

�
1

2
; 1; z; x

�




z¼a

;

κaðxÞ≡ ∂2

∂2z 2F1

�
1

2
; 1; z; x

�




z¼a

; ðB22Þ

we find a very compact expression for the Π00 integral

Π00ðKÞ ¼ m2
E

�
1þ iK0LðKÞ þ η3=2

�
−
jkj2
K2

0

�
ε −

1

2
κ3=2

�
−
jkj2
K2

0

�
ε2 þOðε3Þ

�
; ðB23Þ

with the notation

LðKÞ≡ −
1

2jkj ln
�
iK0 þ jkj
iK0 − jkj

�
: ðB24Þ

Putting everything together, we find that the scalar functions ΠT and ΠL, expanded up to Oðε2Þ, can be
expressed as

ΠIðKÞ ¼ ΠI;0ðKÞ þ εΠI;1ðKÞ þ ε2ΠI;2ðKÞ þOðε3Þ; I ∈ fT;Lg ðB25Þ

where the coefficients above are given by

ΠL;0ðKÞ ¼ m2
E
K2

jkj2 ½1þ iK0LðKÞ�;

ΠL;1ðKÞ ¼ m2
E
K2

jkj2 η3=2
�
−
jkj2
K2

0

�
;

ΠL;2ðKÞ ¼ −m2
E

K2

2jkj2 κ3=2
�
−
jkj2
K2

0

�
; ðB26Þ

and

ΠT;nðKÞ ¼ 1

2

�
m2

E −
Xn
i¼0

ΠL;iðKÞ
�
: ðB27Þ

On occasion, we also denote Πn, n ¼ 0, 1, 2, for the HTL self-energy tensor truncated to the appropriate order. It turns out
to be convenient to express these results in terms of the polar angleΦK, which is defined in Eq. (77). For example, inD ¼ 4
dimensions, we obtain:

ΠTðΦKÞ ¼
m2

E

2
cotðΦKÞ

�
arctan½tanðΦKÞ�csc2ðΦKÞ − cotðΦKÞ

�
;

ΠLðΦKÞ ¼ m2
Ecsc

2ðΦKÞ
�
1 − arctan½tanðΦKÞ� cotðΦKÞ

�
: ðB28Þ
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Note that arctan½tanðΦKÞ� ¼ ΦK only for ΦK ∈ ½0; π=2�,
Since we need expressions valid for the larger interval
ΦK ∈ ½0; π�, we would need to replace arctan½tanðΦKÞ� by
ΦK − π · θðΦK − π=2Þ, where θ denotes the Heaviside step
function, if we wanted to further simplify Eq. (B28).

2. HTL effective vertices

As explained in the main text, treating the soft modes
correctly within the HTL theory requires modifying not

only the propagators, but also the n-point functions. This
Appendix contains the definitions of the three- (3g) and
four-gluon (4g) vertices appearing at zero temperature.

a. The three-gluon vertex

The effective 3g vertex is obtained by adding the HTL
loop (which, at zero temperature, originates solely from the
quark loop) to the bare vertex

ðB29Þ

with the decomposition

ΓμνρðP;Q;RÞ ¼ Γμνρ
0 ðP;Q; RÞ þ δΓμνρðP;Q; RÞ; ðB30Þ

where the bare 3g vertex Γμνρ
0 can be read off from Eq. (A2).

The 3g HTL vertex function δΓμνρ is in turn given by the
expression

δΓμνρðP;Q; RÞ ¼ m2
E

Z
v̂
VμVνVρ

�
iQ0

P · VQ · V
−

iR0

P · VR · V

�
:

ðB31Þ

The (tensor-valued) vertex function above is only defined
when the sum of all of its arguments P, Q, and R is zero,
and it is totally symmetric in its (Lorentz) indices ðμ; ν; ρÞ

and traceless in any pair of indices, i.e., δμνδΓμνρ ¼ 0 since
V2 ¼ 0. Furthermore, it is even (odd) under even (odd)
permutations of (P, Q,R).
Contracting Eq. (B31) with one of the momenta, for

example with Pμ, yields

PμδΓμνρðP;Q;RÞ ¼ m2
E

Z
v̂
VνVρ

�
iQ0

Q · V
−

iR0

R · V

�
: ðB32Þ

Comparing this to Eq. (B18), we find that the 3g HTL
vertex function obeys the generalized Ward identity given
in Eq. (31).

b. The four-gluon vertex

The effective 4g vertex is given by the decomposition

ðB33Þ

where the bare 4g vertex ðΓ0Þμνρσabcd can be found in Eq. (A3).
The general expression for the 4g HTL vertex function
δΓμνρσ

abcd is uniquely determined from the knowledge of its
symmetries, the 3gHTLvertex, aswell as theWard identities
in Eq. (31). Here, however, we limit our detailed discussion
only to the special case that we need in Eq. (22). That is, we
take R ¼ −P; S ¼ −Q and we sum over two adjacent color
indices. This gives for the 4g vertex the expression

Γμνρσ
abcbðP;Q;−P;−QÞ ¼ −g2febafebcΓμνρσðP;Q;−P;−QÞ

ðB34Þ

with the decomposition

ΓμνρσðP;Q;−P;−QÞ ¼ Γμνρσ
0 ðP;Q;−P;−QÞ

þ δΓμνρσðP;Q;−P;−QÞ: ðB35Þ
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In this special case, the 4g HTL vertex δΓμνρσ is given by the
expression

δΓμνρσðP;Q;−P;−QÞ

¼ 2m2
E

Z
v̂

VμVνVρVσ

ðPþQÞ · VðP −QÞ · V
�
iQ0

Q · V
−

iP0

P · V

�
:

ðB36Þ
Akin to the 3g vertex correction, the 4g vertex function is
totally symmetric in its four (Lorentz) indices ðμ; ν; ρ; σÞ and
traceless in any pair of indices, i.e., δμνδΓμνρσ ¼ 0 since
V2 ¼ 0. Note that this vertex is also even under all permu-
tations of the momenta (P,Q, −P, −Q). Lastly, we note that
applying the Ward identities of Eq. (31) twice to the four-
point vertex correction yields the useful identity

PμPνδΓμνρσðP;Q;−P;−QÞ
¼ −2ΠρσðQÞ þ ΠρσðPþQÞ þ ΠρσðP −QÞ: ðB37Þ

APPENDIX C: EVALUATING HTL VERTEX
FUNCTIONS

While Eqs. (B31) and (B36) suffice in principle for
computing the vertex corrections, in practice further
manipulations prove extremely helpful for numerical eval-
uations. We detail these manipulations in this Appendix.
Throughout this section, we scale out the explicit mE
factors from all vertex expressions.

1. Evaluation of the 3g HTL vertex function

We start the explicit evaluations of the HTL structures by
considering the 3g vertex function δΓμνρ

PQR. The generalized
Ward identities [see Eq. (31)] can often be used together with
the tracelessness of the vertex correction to significantly
simplify contributions containing the vertex correction.
However, even for the two-loop HTL diagrams, the full
structure of the HTL-corrected vertex is required due to the
sunset diagram with two vertex corrections, as seen in
Eq. (21). As a specific example, the contraction of two
vertices ðδΓμνρÞ2 ≡ δΓμνρδΓμνρ18 includes every term
allowed by the remnant d-dimensional rotational symmetry.
As such, we must compute the following four independent
vertex contributions δΓ000

PQR, δΓi00
PQR, δΓ

ij0
PQR, and δΓijk

PQR.
It turns out to be convenient to rewrite the expression in

Eq. (B31) in the more symmetric form

δΓμνρ
PQR¼

Z
v̂
VμVνVρ

�
iQ0

Q ·VðPþQÞ ·V−
iP0

P ·VðPþQÞ ·V
�
:

ðC1Þ

To evaluate the integral over the angles, one could try to
combine the products in the two denominators into a single
expression by using the “standard” Feynman parametriza-
tion

1

Q · VðPþQÞ · V ¼
Z

1

0

du
1

½ðuQþ ð1 − uÞðPþQÞÞ · V�2 :

ðC2Þ

However, in order to avoid the complications related to
uQ0 þ ð1 − uÞðP0 þQ0Þ or −uQ0 þ ð1 − uÞðP0 þQ0Þ
changing its sign at some value of u within the unit
interval, causing the denominator of the integrand of
Eq. (C2) to potentially vanish for some P and Q, we need
to generalize the way that Feynman parameters are intro-
duced. Let us first introduce the “symmetric” form of the
parametrization to reach the general form

1

Q ·VðPþQÞ ·V
¼ 2

Z
1

−1
du

σQ;PþQ

½ð1þ uÞQ ·V þ ð1− uÞσQ;PþQðPþQÞ ·V�2 ;

ðC3Þ

where we have defined

σX;Y ≡ sgn½ImðX · VÞImðY · VÞ� ¼ sgnðX0Y0Þ: ðC4Þ

Evidently, the definition requires nonzero imaginary parts
of Q · V and ðPþQÞ · V.19 With this assumption, the
modified parametrization can be shown to be equivalent
to the standard form not only whenever the denominator of
the latter is strictly nonvanishing, but also to yield 1=ðABÞ
when the standard form does display divergent behavior.
We show this explicitly in Appendix C 4. Similarly, for the
second term in Eq. (C1), we find

1

P ·VðPþQÞ ·V
¼ 2

Z
1

−1
du

σP;PþQ

½ð1þ uÞP ·V þ ð1− uÞσP;PþQðPþQÞ ·V�2 :

ðC5Þ

The 3g HTL vertex function now takes the form

δΓμνρ
PQR ¼ 2

Z
1

−1
du

Z
v̂
VμVνVρ

�
iQ0σQ;PþQ

ðT · VÞ2 −
iP0σP;PþQ

ðS · VÞ2
�
;

ðC6Þ

18We also use this compact square notation when some indices
are fixed, or when only spatial indices are contracted.

19However, it can be generalized to momenta with vanishing
zero components; see Appendix C 4.
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where the four-vectors T and S are defined as

T ≡ ð1þ uÞQþ ð1 − uÞσQ;PþQðPþQÞ;
S≡ ð1þ uÞPþ ð1 − uÞσP;PþQðPþQÞ: ðC7Þ

For further discussion, we will need the angular integral
computed in Eq. (C44); we list here in d ¼ 3 − 2ε
dimensions some special cases as master integrals that
will be used repeatedly in the following sectionZ

v̂
¼ 1;Z

v̂
ðS · VÞ ¼ −iS0;Z

v̂

1

ðS · VÞ2 ¼ −
1

S2
þ aðSÞ

S2
2εþOðε2Þ;Z

v̂

1

ðS · VÞ ¼ LðSÞ þ bðSÞ2εþOðε2Þ; ðC8Þ

where the master integrals are expanded to order ε and we
have introduced the compact notation

aðSÞ≡ 1þ S0iLðSÞ;
bðSÞ≡ ½lnð2Þ − 1þ ln ðjsj=SÞ�LðSÞ

þ 1

4jsj
�
Li2

�
iS0 − jsj
iS0 þ jsj

�
− Li2

�
iS0 þ jsj
iS0 − jsj

��
: ðC9Þ

Here, the function LðSÞ is defined in Eq. (B24) and Li2 is
the dilogarithm function.
In the following subsections, we describe how to further

evaluate the four independent vertex contributions δΓ000
PQR,

δΓi00
PQR, δΓij0

PQR, and δΓijk
PQR. We also compute the OðεÞ

corrections to these vertex functions, which are needed in
order to obtain the full Oðε0Þ contribution to the UV term
presented in Sec. III B.

a. The δΓ000
PQR function

Let us first concentrate on the δΓ000
PQR vertex function. By

using the general expression in Eq. (C6), we easily obtain

δΓ000
PQR ¼ −2

Z
1

−1
du

Z
v̂

�
Q0σðQ;PþQÞ
ðT · VÞ2 −

P0σðP;PþQÞ
ðS · VÞ2

�
¼ þ2

Z
1

−1
du

��
Q0σðQ;PþQÞ

T2
−
P0σðP;PþQÞ

S2

�
−
�
Q0σðQ;PþQÞ

T2
aðTÞ − P0σðP;PþQÞ

S2
aðSÞ

�
2ε

�
;

ðC10Þ
where in the second line the

R
v̂ integral is performed by

using a master integral listed in Eq. (C8). Correspondingly,
the δΓ000

PQR function squared can now be easily computed by

using the expression above with two Feynman parameters
u1 and u2,

ðδΓ000
PQRÞ2

¼ 4

Z
1

−1

Z
1

−1
du1du2

���
Q0σðQ;PþQÞ

T2
1

−
P0σðP;PþQÞ

S21

�
−
�
Q0σðQ;PþQÞ

T2
1

aðT1Þ −
P0σðP;PþQÞ

S21
aðS1Þ

�
2ε

��
×

���
Q0σðQ;PþQÞ

T2
2

−
P0σðP;PþQÞ

S22

�
−
�
Q0σðQ;PþQÞ

T2
2

aðT2Þ −
P0σðP;PþQÞ

S22
aðS2Þ

�
2ε

��
;

ðC11Þ
where the variables Ti and Si for i ¼ 1, 2 are defined as
follows:

Ti ≡ ð1þ uiÞQþ ð1 − uiÞσðQ;PþQÞðPþQÞ;
Si ≡ ð1þ uiÞPþ ð1 − uiÞσðP;PþQÞðPþQÞ: ðC12Þ

b. The δΓi00
PQR, δΓ

ij0
PQR, and δΓijk

PQR functions

We then proceed to describe the evaluation of the vertex
functions δΓi00

PQR; δΓ
ij0
PQR and δΓijk

PQR. By using the general
expression in Eq. (C6), we obtain:

δΓi00
PQR ¼ −2i

Z
1

−1
du

Z
v̂
v̂i
�
Q0σðQ;PþQÞ
ðT · VÞ2 −

P0σðP;PþQÞ
ðS · VÞ2

�
;

δΓij0
PQR ¼ 2

Z
1

−1
du

Z
v̂
v̂iv̂j

�
Q0σðQ;PþQÞ
ðT · VÞ2 −

P0σðP;PþQÞ
ðS · VÞ2

�
;

δΓijk
PQR ¼ 2i

Z
1

−1
du

Z
v̂
v̂iv̂jv̂k

�
Q0σðQ;PþQÞ
ðT · VÞ2 −

P0σðP;PþQÞ
ðS · VÞ2

�
:

ðC13Þ

The angular integrals appearing in Eq. (C13) can be dealt
with by using the d-dimensional rotational symmetry. For
instance, the rank-one integral can be written as

i
Z
v̂

v̂i

ðS · VÞ2 ¼ sif0ðS0; jsjÞ: ðC14Þ

Contracting both sides with the vector si, and noting that

s · v̂ ¼ s · v̂ þ S0V0 − S0V0 ¼ S · V þ iS0; ðC15Þ

we find for the reduction coefficient f0 the following form:

f0ðS0; jsjÞ≡ f0ðSÞ ¼
i

jsj2
Z
v̂

s · v̂
ðS · VÞ2

¼ i
jsj2

Z
v̂

1

S · V
−

S0
jsj2

Z
v̂

1

ðS · VÞ2 : ðC16Þ

COLD QUARK MATTER AT NNNLO: SOFT CONTRIBUTIONS PHYS. REV. D 104, 074015 (2021)

074015-33



After performing the remaining angular integrals in Eq. (C16) by using the master integrals listed in Eq. (C8), we find the
result

f0ðSÞ ¼
1

jsj2
�
S0
S2

þ iLðSÞ
�
−

1

jsj2
�
S0
S2

aðSÞ − ibðSÞ
�
2εþOðε2Þ: ðC17Þ

All in all, the vertex function δΓi00
PQR then takes the form

δΓi00
PQR ¼ −2

Z
1

−1
du½Q0σðQ;PþQÞtif0ðTÞ − P0σðP;PþQÞsif0ðSÞ�: ðC18Þ

To evaluate the vertex functions δΓij0
PQR and δΓijk

PQR further, we use the following tensor-integral reduction:Z
v̂

v̂iv̂j

ðS · VÞ2 ¼ δijf00ðS0; jsjÞ þ sisjf12ðS0; jsjÞ;

i
Z
v̂

v̂iv̂jv̂k

ðS · VÞ2 ¼ fδsgijkf000ðS0; jsjÞ þ sisjskf123ðS0; jsjÞ; ðC19Þ

where the notation fδsgijk ≡ δijsk þ δiksj þ δjksi has been introduced. Contracting Eq. (C19) with the Kronecker delta and
vector si, it is straightforward to show that the reduction coefficients above can be written as

f00ðSÞ ¼ −
1

jsj2 ½1þ S0iLðSÞ� −
S0
jsj2 ibðSÞ2εþOðε2Þ;

f12ðSÞ ¼ þ 1

jsj4
�
2þ S20

S2
þ 3S0iLðSÞ

�
−

1

jsj4
�
S20
S2

aðSÞ − 3S0ibðSÞ
�
2εþOðε2Þ; ðC20Þ

and

f000ðSÞ ¼
1

2jsj4 ½3S0 þ ðS2 þ 2S20ÞiLðSÞ�

þ 1

2jsj4
�
3S0
2

− S0aðSÞ þ ðS2 þ 2S20Þ
�
i
2
LðSÞ þ ibðSÞ

��
2εþOðε2Þ;

f123ðSÞ ¼ −
1

2S2jsj6 ½2S
3
0 þ 13S0S2 þ 3ðS4 þ 4S20S

2ÞiLðSÞ�

−
1

2S2jsj6
�
15S0S2

2
− S0ð6S2 þ 2S20ÞaðSÞ

þ 3ðS4 þ 4S20S
2Þ
�
i
2
LðSÞ þ ibðSÞ

��
2εþOðε2Þ: ðC21Þ

Finally, inserting these results into Eq. (C13), we obtain for the vertex function δΓij0
PQR the following expression:

δΓij0
PQR ¼ 2

Z
1

−1
du½Q0σðQ;PþQÞðδijf00ðTÞ þ titjf12ðTÞÞ − P0σðP;PþQÞðδijf00ðSÞ þ sisjf12ðSÞÞ�: ðC22Þ

Similarly, for the vertex function δΓijk
PQR, we obtain

δΓijk
PQR ¼ 2

Z
1

−1
du½Q0σðQ;PþQÞðfδtgijkf000ðTÞ þ titjtkf123ðTÞÞ − P0σðP;PþQÞðfδsgijkf000ðSÞ þ sisjskf123ðSÞÞ�: ðC23Þ

Having all these results at hand, we can now turn to computing the functions ðδΓi00
PQRÞ2, ðδΓij0

PQRÞ2, and ðδΓijk
PQRÞ2. First,

the function ðδΓi00
PQRÞ2 can be written as
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ðδΓi00
PQRÞ2 ¼ 4

Z
1

−1

Z
1

−1
du1du2½Q2

0X1 − P0Q0σðP;PþQÞσðQ;PþQÞðX2 þ X3Þ þ P2
0X4�; ðC24Þ

where the coefficients Xi are defined as

X1 ≡ ðt1 · t2Þf0ðT1Þf0ðT2Þ;
X2 ≡ ðt1 · s2Þf0ðT1Þf0ðS2Þ;
X3 ≡ ðt2 · s1Þf0ðS1Þf0ðT2Þ;
X4 ≡ ðs1 · s2Þf0ðS1Þf0ðS2Þ: ðC25Þ

Similarly, the functions ðδΓij0
PQRÞ2 and ðδΓijk

PQRÞ2 can be written as

ðδΓij0
PQRÞ2 ¼ 4

Z
1

−1

Z
1

−1
du1du2½Q2

0Y1 − P0Q0σðP;PþQÞσðQ;PþQÞðY2 þ Y3Þ þ P2
0Y4�;

ðδΓijk
PQRÞ2 ¼ 4

Z
1

−1

Z
1

−1
du1du2½Q2

0Z1 − P0Q0σðP;PþQÞσðQ;PþQÞðZ2 þ Z3Þ þ P2
0Z4�; ðC26Þ

where the coefficients Yi and Zi are defined as

Y1 ≡ ð3 − 2εÞf00ðT1Þf00ðT2Þ þ jt2j2f00ðT1Þf12ðT2Þ
þ jt1j2f00ðT2Þf12ðT1Þ þ ðt1 · t2Þ2f12ðT1Þf12ðT2Þ;

Y2 ≡ ð3 − 2εÞf00ðS1Þf00ðT2Þ þ jt2j2f00ðS1Þf12ðT2Þ
þ js1j2f00ðT2Þf12ðS1Þ þ ðt2 · s1Þ2f12ðS1Þf12ðT2Þ;

Y3 ≡ ð3 − 2εÞf00ðT1Þf00ðS2Þ þ js2j2f00ðT1Þf12ðS2Þ
þ jt1j2f00ðS2Þf12ðT1Þ þ ðt1 · s2Þ2f12ðT1Þf12ðS2Þ;

Y4 ≡ ð3 − 2εÞf00ðS1Þf00ðS2Þ þ js2j2f00ðS1Þf12ðS2Þ
þ js1j2f00ðS2Þf12ðS1Þ þ ðs1 · s2Þ2f12ðS1Þf12ðS2Þ; ðC27Þ

and

Z1 ≡ 3ð5 − 2εÞðt1 · t2Þf000ðT1Þf000ðT2Þ þ 3jt2j2ðt1 · t2Þf000ðT1Þf123ðT2Þ
þ 3jt1j2ðt1 · t2Þf000ðT2Þf123ðT1Þ þ ðt1 · t2Þ3f123ðT1Þf123ðT2Þ;

Z2 ≡ 3ð5 − 2εÞðt1 · s2Þf000ðT1Þf000ðS2Þ þ 3js2j2ðt1 · s2Þf000ðT1Þf123ðS2Þ
þ 3jt1j2ðt1 · s2Þf000ðS2Þf123ðT1Þ þ ðt1 · s2Þ3f123ðT1Þf123ðS2Þ;

Z3 ≡ 3ð5 − 2εÞðt2 · s1Þf000ðS1Þf000ðT2Þ þ 3js1j2ðt2 · s1Þf000ðT2Þf123ðS1Þ
þ 3jt2j2ðt2 · s1Þf000ðS1Þf123ðT2Þ þ ðt2 · s1Þ3f123ðS1Þf123ðT2Þ;

Z4 ≡ 3ð5 − 2εÞðs1 · s2Þf000ðS1Þf000ðS2Þ þ 3js2j2ðs1 · s2Þf000ðS1Þf123ðS2Þ
þ 3js1j2ðs1 · s2Þf000ðS2Þf123ðS1Þ þ ðs1 · s2Þ3f123ðS1Þf123ðS2Þ: ðC28Þ

c. 3g HTL vertices contracted with external momenta

In this section, we show how to evaluate the 3g HTL vertices contracted with external momenta. These techniques are
used extensively in Sec. III C. Let us first consider the case where the 3g HTL vertex δΓμνρ

PQR is contracted with Pμ
T ¼ δμipi.

For this term, we cannot fully remove the spatial components of the 3g HTL vertex, but we can reduce it as much as possible
using the identity
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Pμ
TδΓ

μνρ
PQR ¼ ðPμ − δμ0P0ÞδΓμνρ

PQR

¼ PμδΓμνρ
PQR − P0δΓ

0νρ
PQR: ðC29Þ

To reduce the number of spatial indices appearing in our
expressions above, we use the generalized Ward identity in
Eq. (31) on the first term. This gives

Pμ
TδΓ

μνρ
PQR ¼ ΠνρðRÞ − ΠνρðQÞ − P0δΓ

0νρ
PQR: ðC30Þ

This method can be easily applied to the more compli-
cated cases Pμ

TQ
ν
TδΓ

μνρ
PQR and Pμ

TQ
ν
TR

ρ
TδΓ

μνρ
PQR. By using

Eq. (C29) and Ward identities, the following relations can
be derived:

Pμ
TQ

ν
TδΓ

μνρ
PQR ¼ Q0Π0ρðQÞ þ qiΠiρðRÞ

− P0½Π0ρðPÞ − Π0ρðRÞ� þ P0Q0δΓ
00ρ
PQR;

ðC31Þ

and

Pμ
TQ

ν
TR

ρ
TδΓ

μνρ
PQR ¼ Q0rkΠ0kðQÞ − P0rkΠ0kðPÞ

− R0qiΠ0iðRÞ − P0R0Π00ðRÞ
þ P0Q0½Π00ðQÞ − Π00ðPÞ�
− P0Q0R0δΓ000

PQR: ðC32Þ

Here, the different components Π00ðYÞ, Π0iðYÞ, and ΠijðYÞ
of the self-energy ΠμνðYÞ are given by

Π00ðYÞ ¼ jyj2
Y2

ΠLðŶÞ;

Π0iðYÞ ¼ −
Y0jyj
Y2

ŷiΠLðŶÞ;

ΠijðYÞ ¼ δijΠTðŶÞ − ŷiŷj
�
ΠTðŶÞ −

Y2
0

Y2
ΠLðŶÞ

�
; ðC33Þ

where Y ∈ fP;Q;Rg. Note that the 3g HTL vertices with
more time components are easier to compute numerically.

2. Evaluation of the 4g HTL vertex function

Following the discussion on the 3g HTL vertex correc-
tion, we will next consider the 4g vertex correction.
A priori, it is considerably more complicated, and in order
to handle the vertex in its full generality, a sensible option
would be to turn to automation (see Appendix C 3).
However, for the N3LO pressure, there is only a single
resummed graph involving the 4g vertex correction, and it
includes only a single vertex. It is easy to see that applying
the symmetries and the Ward identities of the vertex
correction along the same lines as in the previous section
can only lead to a single irreducible term containing the 4g
vertex correction δΓ0000

P;Q;−P;−Q
20:

δΓ0000
P;Q;−P;−Q ¼ ð−iÞ42

Z
v̂

1

ðPþQÞ · VðP −QÞ · V
�
iQ0

Q · V
−

iP0

P · V

�
: ðC34Þ

Following the 3g computation, we will apply a Feynman parametrization to make the numerics more tractable. However,
as before, we must generalize the parametrization, following the discussion of Appendix C 4 [see also Eq. (C3)]. We
combine the two common factors in the denominators via

1

ðPþQÞ · VðP −QÞ · V ¼ 2

Z
1

−1
du1

σPþQ;P−Q

½ð1þ u1ÞðPþQÞ · V þ ð1 − u1ÞσPþQ;P−QðP −QÞ · V�2 ; ðC35Þ

and to include the third factor, we denote

U ≡ ð1þ u1ÞðPþQÞ þ ð1 − u1ÞσPþQ;P−QðP −QÞ; ðC36Þ

to obtain

1

Q · VðU · VÞ2 ¼ −
∂

∂ðU · VÞ
1

U · VQ · V

¼ −
∂

∂ðU · VÞ
Z

1

−1
du2

2σU;Q

½ð1þ u2ÞU · V þ ð1 − u2ÞσU;QQ · V�2

¼ 4

Z
1

−1
du2

ð1þ u2ÞσU;Q

½ð1þ u2ÞU · V þ ð1 − u2ÞσQ;UQ · V�3 : ðC37Þ

20Recall that we have scaled away the mass mE.
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Hence, the full generalized Feynman parametrization for three-term denominator reads

1

ðPþQÞ · VðP −QÞ · VQ · V
¼ 8

Z
1

−1
du1

Z
1

−1
du2

ð1þ u2ÞσPþQ;P−QσU;Q

½ð1þ u2ÞU · V þ ð1 − u2ÞσQ;UQ · V�3 ðC38Þ

and analogously for P · V. Given this, δΓ0000
P;Q;−P;−Q admits a representation

δΓ0000
P;Q;−P;−Q ¼ 24σPþQ;P−Q

Z
1

−1
du1

Z
1

−1
du2ð1þ u2Þ

×

�
iQ0σU;Q

Z
v̂

1

½ðð1þ u2ÞU þ ð1 − u2ÞσQ;UQÞ · V�3 − iP0σU;P

Z
v̂

1

½ðð1þ u2ÞU þ ð1 − u2ÞσP;UPÞ · V�3
�
;

ðC39Þ
where the v̂ integral can be obtained from Eq. (C44), and readsZ

v̂

1

ðP · VÞ3 ¼ −
iP0

P4
þOðεÞ: ðC40Þ

Substituting the leading-order term, we get

δΓ0000
P;Q;−P;−Q ¼ 16σPþQ;P−Q

Z
1

−1
du1

Z
1

−1
du2ð1þ u2Þ

×

�ðð1þ u2ÞU0σQ;U þ ð1 − u2ÞQ0ÞQ0

½ð1þ u2ÞU þ ð1 − u2ÞσQ;UQ�4 −
ðð1þ u2ÞU0σP;U þ ð1 − u2ÞP0ÞP0

½ð1þ u2ÞU þ ð1 − u2ÞσP;UP�4
�
þOðεÞ: ðC41Þ

For us, setting ε ¼ 0 suffices, as the 4g vertex correction
only appears in the finite term Eq. (57).

3. Evaluating higher-rank HTL integrals

In Appendices C 1 and C 2 we have discussed special
cases of calculations involving HTL vertices. However, for
example for the purposes of automation and possible
future, more complicated, computations, it is useful to
be able to discuss the integrals that arise on a more general
level. The prototypical tensor integrals arising in HTL
calculations are of the form

R
v̂ V

μ1…VμrðK · VÞ−n where r
is the tensor rank. Recalling that V0 ¼ −i is a constant, they
are equivalent to

Hi1…ir
n ðKÞ ¼

Z
v̂

v̂i1…v̂ir

ðK · VÞn : ðC42Þ

Here, we outline a more general method, useful for larger
values of r and convenient when working in arbitrary
dimensions.

To begin with, the tensor Hi1…ir
n ðKÞ is decomposed in a

basis fHi1…ir
r;b ðKÞgb∈B consisting of rank r tensors respecting

the symmetries of the system, with B some finite index set
enumerating the basis elements. With Hi1…ir

n ðKÞ purely
spatial, it retains the full SOðdÞ symmetry, and is furthermore
fully symmetric in all indices. The basis for fixed r can then
be easily constructed using the external spatial vector ki as
well as the spatial metric δij. For an example of an explicit
construction, see Ref. [38]. In order to solve the coefficients
fHr;b;nðKÞgb∈B relative to this basis, we simply solve the
following equation for each b0 ∈ B:

Hi1…ir
n ðKÞðHr;b0 Þi1…ir

ðKÞ
¼

X
b∈B

Hr;b;nðKÞHi1…ir
r;b ðKÞðHr;b0 Þi1…ir

ðKÞ: ðC43Þ

Now the tensor is given explicitly as a combination of the
basis elements and scalar integrals of the form

hlnðKÞ≡
Z
v̂

ðk · v̂Þl
ðK · VÞn ¼

Γðd
2
Þ

2
ffiffiffi
π

p jkjl
ð−ik0Þn

�
½1þ ð−1Þl� Γð

1
2
þ l

2
Þ

Γðd
2
þ l

2
Þ 3F2

�
1

2
þ n

2
;
n
2
;
1

2
þ l
2
;
1

2
;
d
2
þ l
2
;−tan2ΦK

�
− in tanΦK½1 − ð−1Þl� Γð1þ l

2
Þ

Γð1
2
þ d

2
þ l

2
Þ 3F2

�
1

2
þ n

2
; 1þ n

2
; 1þ l

2
;
3

2
;
d
2
þ 1

2
þ l
2
;−tan2ΦK

��
: ðC44Þ
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Note that this is essentially a generalization of the integrals
appearing in the self-energy in Eq. (B21).

4. Proof of the generalized Feynman parametrization

To finish the discussion of the evaluation of the HTL
vertices, we prove the generalized Feynman parametriza-
tion used in Appendixes C 1 and C 2. The standard
Feynman parametrization reads

1

AB
¼

Z
1

0

dt
1

½tBþ ð1 − tÞA�2 ; ðC45Þ

where A;B ∈ C. The representation is valid in many
commonly encountered situations, in particular when
A;B ∈ Rþ. However, when the denominator of the
right-hand side vanishes, the right-hand side is no longer
strictly convergent. This occurs when there exists a t ∈
ð0; 1Þ such that tBþ ð1 − tÞA vanishes, that is, when the
origin is contained in the shortest line segment connecting
A and B in the complex plane. We will denote this shortest
line segment by γðA;BÞ. In the present paper, we have
encountered the need to combine a factorized denominator
to obtain a Feynman-like parametrization for integrals such
as Eq. (C1). They involve arbitrary points A, B for which a
nonvanishing denominator is not guaranteed.
Here we show that a suitable generalized Feynman

parametrization is

FðA;BÞ≡
Z

1

−1
du

2σ

½ð1þ uÞAþ σð1 − uÞB�2 ; ðC46Þ

by means of a detailed proof that FðA;BÞ ¼ 1=ðABÞ for
any A;B ∈ CnR. The missing case of real A, B will be
briefly covered near the end of the section. In the following,
we denote σ ≡ sgnðImAImBÞ in analogy with the σ defined
in Appendix C 1.
First, we assume σ ¼ þ1. Then necessarily 0 ∉ γðA;BÞ,

so that we merely check that the identity holds in this
standard case. Now, replace u ↦ 1 − 2t, so that ð−1; 1Þ ↦
ð0; 1Þ with the orientation reversed, leading to

FðA;BÞ ¼ ð−1Þ22
Z

1

0

dt
2

½2ð1 − tÞAþ 2tB�2

¼
Z

1

0

dt
1

½tBþ ð1 − tÞA�2 ¼
1

AB
; ðC47Þ

where we see a posteriori that the change of variables is
permitted by assumption of 0 ∉ γðA; BÞ. Note that this
includes the special case B ¼ A.
Next, consider σ ¼ −1, this time without restrictions on

whether or not origin is contained in γðA; BÞ, but by first
assuming Aþ B ≠ 0. This case requires slightly more care.
For σ ¼ −1 to be true, A, B must lie on opposite half-
planes. As we exclude reals, barring the aforementioned
A ¼ −B we will have then covered all cases where

0 ∈ γðA; BÞ. As a consequence of the assumptions, the
denominator must always have a nonzero imaginary part
for all u ∈ ð−1; 1Þ, keeping it from vanishing on the
interval. To see this, recall first that by assumption ImA ≠
0 (and ImB ≠ 0). Should the denominator vanish for some
u� ∈ ð−1; 1Þ, we would be lead to the equality

ð1þ u�ÞImA − ð1 − u�ÞImB ¼ 0 ⇔
1þ u�
1 − u�

¼ ImB
ImA

:

ðC48Þ

The condition σ ¼ −1 sets ImB=ImA < 0, and we immedi-
ately see that there does not exist a u� ∈ ð−1; 1Þ such that
ð1þ u�Þ=ð1 − u�Þ ≤ 0, a contradiction. Therefore the inte-
grand is finite on ð−1; 1Þ, and any divergence could only
appear at the endpoints f−1; 1g. However, a direct calcu-
lation shows that the antiderivative is regular at them (in the
manipulation of what follows, recall that we assume
Aþ B ≠ 0):

FðA;BÞ ¼
Z

1

−1
du

−2
½ð1þ uÞA − ð1 − uÞB�2

¼ −
−2

ðAþ BÞ
�

1

ð1þ uÞAþ ðu − 1ÞB
�
u¼1

u¼−1

¼ 2

ðAþ BÞ
�
1

2A
þ 1

2B

�
¼ Aþ B

Aþ B
1

AB
¼ 1

AB
:

ðC49Þ

Lastly, we cover the missing case B ¼ −A: Here, we see
right away that 0 ∈ γðA;BÞ ⇒ σ ¼ −1 holds always and
the integration is trivial, even though the above steps would
no longer be valid:

FðA;BÞ ¼
Z

1

−1
du

2σ

½ð1þ uÞAþ σð1 − uÞB�2

¼ −
1

A2

Z
1

−1
du

2

½ð1þ uÞ þ ð1 − uÞ�2 ¼
1

Að−AÞ :

ðC50Þ

In summary, we have shown that FðA; BÞ ¼ 1=ðABÞ for
any A;B ∈ CnR. The result can even be shown to
extend to all nonzero complex numbers by defining σ ¼
sgn½ΘðAÞΘðBÞ� where ΘðAÞ ¼ ImA for ImA ≠ 0 and
ΘðAÞ ¼ A otherwise. We will not cover this in detail, as
it is unnecessary for us and the proof mostly consists of
reapplying the above steps together with the implications
σ ¼ −1 leads to in these special cases. Furthermore, an
extension to multiple denominators is straightforward by
differentiation and an iterative application of the two-point
formula, with an explicit example covered in Appendix C
2. In such cases, the geometric interpretation of the origin
lying in the line segment connecting the two factors of the
denominator is naturally generalised to the origin being
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within the convex hull of the points of the factorized
denominator [48]. This condition serves as a check to see
whether or not a generalized parametrization is necessary.

APPENDIX D: SUMMARY OF THE
CONTRIBUTING INTEGRALS

Many of the contributions appearing in the evaluation of
the UV-sensitive terms in Sec. III A involve nontrivial
integrals, which we will discuss here. Throughout this
Appendix, we shall use the following notation for the
angular average in d spatial dimensions of some function
fðK;PÞ

hfðK;PÞid ≡
R
Ω fðK;PÞR

Ω
; ðD1Þ

whereΩ is as in Eq. (80). We define hfðK;PÞi3 similarly in
the obvious way. Observe that if f only depends on some
proper subset of the variables integrated over, this still
corresponds to the angular average of f over the angles
upon which it depends.
We also note that in this Appendix we use the convention

where we have rescaled all momenta by mE and then
removed the tildes as in the later parts of our main text.
With the integrals that we will evaluate here, this is
equivalent to simply setting mE ¼ 1.

1. The integral in ½I − 2ðdÞ�UV
In this section, we demonstrate that

hTr½ΠðK̂Þ2�id ¼ 1 − ψðdÞ þ ψ

�
1þ d
2

�
; ðD2Þ

which was used in Eq. (121) above. To perform this
averaging, we use the definition of the self-energy given
in Eq. (B18), leading to

Tr½ΠðK̂Þ2� ¼ ΠμνðK̂ÞΠνμðK̂Þ

¼
Z
û;v̂

�
δμ0δν0 −

iK̂ · N̂

K̂ ·U
UμUν

�
×

�
δμ0δν0 −

iK̂ · N̂

K̂ · V
VμVν

�
¼

Z
û;v̂

�
1þ 2

iK̂ · N̂

K̂ ·U
−
ðK̂ · N̂Þ2ðU · VÞ2
ðK̂ ·UÞðK̂ · VÞ

�
;

ðD3Þ

where we use the lightlike four-vectors V defined in
Appendix B 1 as well as the analogously defined Uμ ≡
ð−i; ûÞ with û ∈ Rd a unit vector. Additionally, we have
defined the unit vector N̂ in the temporal direction. In going
from the second to the third line above, we have changed
variables in one term, û ↔ v̂, to combine two terms.

Now observe the identity

1þ 2
iK̂ · N̂

K̂ ·U
¼ K̂ ·U

K̂ ·U
þ 2

iK̂ · N̂

K̂ · U
¼ K̂ ·U�

K̂ ·U
; ðD4Þ

where we used the definition of U, and the fact that i only
appears in the temporal part. But then inside an angular
average over K̂, by multiplying the numerator and denom-
inator by K̂ · U�, we find�
1þ 2

iK̂ · N̂

K̂ · U

�
d
¼

�
K̂ · U�

K̂ ·U

�
d
¼ U�μU�ν

�
K̂μK̂ν

jK̂ ·Uj2
�

d

:

ðD5Þ

We note that the function we are averaging over depends
only on the components of K̂ within spanðN̂; ûÞ (and we
note that fN̂; ûg form a perpendicular basis for this sub-
space). If we split K̂ ¼ Kjj þ K⊥, with Kjj ∈ spanðN̂; ûÞ
and K⊥ · N̂ ¼ K⊥ · û ¼ 0, then

K̂μK̂ν

jK̂ ·Uj2 ¼
Kμ

jjK
ν
jj

jKjj ·Uj2 ¼
Kμ

jjK
ν
jj

ðKjj · N̂Þ2 þ ðKjj · ûÞ2
¼ K̂jjμK̂jjν;

ðD6Þ

where we have recognized the denominator simply as
jKjjj2. We therefore see that the angular average involved
above is the average of a unit vector over all of its
directions, which simply leads to a constant multiple of
the identity within its span δμνjj . However, U only depends

on vectors within that span as well, and so we see�
1þ 2

iK̂ · N̂

K̂ ·U

�
d
¼

U�μU�νδμνjj
const:

¼ 0: ðD7Þ

Note that the entire analysis of this term could be conducted
in the subspace spanðN̂; ûÞ.
Using the above results, our original average simplifies

to

hTr½ΠðK̂Þ2�id ¼ −
Z
û;v̂

hðK̂ · N̂Þ2ðU · VÞ2
ðK̂ ·UÞðK̂ · VÞ i

d

: ðD8Þ

We shall now analyze this within the three-dimensional
subspace spanðN̂; û; v̂Þ. Let us first split K̂ ¼ Kjj þ K⊥ as
above, but this time with Kjj ∈ spanðN̂; û; v̂Þ and K⊥ · N̂ ¼
K⊥ · û ¼ K⊥ · v̂ ¼ 0. Because û and v̂ are perpendicular to
N̂, we can set up a three-dimensional coordinate system as
depicted in Fig. 7 to perform the integral. Note that because
of the geometry within this subspace, only the angle
between û and v̂ is in the d-dimensional spatial subspace.
The calculation proceeds as
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hTr½ΠðK̂Þ2�id ¼ −
Z
û;v̂

�ðKjj · N̂Þ2ðU · VÞ2
ðKjj · UÞðKjj · VÞ

�
d

¼ Γðd=2Þffiffiffi
π

p
Γ½ðd − 1Þ=2�

Z
π

0

dαsind−2αð1 − cos αÞ2
Z

π

0

dθ sin θ
2

×
Z

2π

0

dϕ=ð2πÞ
½1þ i tan θ cosϕ�½1þ i tan θ cosðϕ − αÞ�

¼ Γðd=2Þffiffiffi
π

p
Γ½ðd − 1Þ=2�

Z
π

0

dαsind−2αð1 − cos αÞ2
Z

π

0

dθ sin θj cos θj
2þ ð1þ cos αÞtan2ðθÞ

¼ Γðd=2Þffiffiffi
π

p
Γ½ðd − 1Þ=2�

Z
π

0

dαsind−2α

�
1 − cos αþ 2ð1þ cos αÞ ln

�
cos

α

2

��
¼ 1 − ψðdÞ þ ψ

�
1þ d
2

�
; ðD9Þ

where, we used the fact that
R
û ¼ 1. This is the desired

result.

2. The integrals in ½IABCD�UV − ½I − 2�UV
In this subsection, we list all the one-dimensional

integrals appearing in the p0 contribution from
½IABCD�UV − ½I−2�UV. We start by deriving an analytic
angular average occurring in that term, which involves
the function Π1. Using the angular average in Eq. (D2),
expanding for small ε, and setting the OðεÞ terms equal on
each side of the equality yields

h2Tr½Π0ðK̂ÞΠ1ðK̂Þ� − ΠT;0ðK̂Þ2
− Tr½Π0ðK̂Þ2�ðln 2þ ln½sinðθÞ sinðΦPÞ sinðΦKÞ�Þi3

¼ π2 − 9

6
: ðD10Þ

All of the integrals involving only ΠX;0, X ∈ fT;Lg can be
performed analytically. In particular, if we average over the
angles (in d ¼ 3), the following identities hold:

hTr½Π0ðK̂Þ2�i3 ¼
1

2
; ðD11Þ

hln½sinðΦPÞ�i3 ¼
1

2
− ln 2; ðD12Þ

hln½sinðθÞ�i3 ¼ −1þ ln 2; ðD13Þ

hln½sinðΦKÞ�Tr½Π0ðK̂Þ2�i3 ¼ −
1

12
þ π2

12
−
7

6
ln 2; ðD14Þ

hΠT;0ðK̂Þ2i3 ¼ −
5

12
þ 2

3
ln 2: ðD15Þ

Substituting these, we can deduce the following analytic
equality:

hΠ0ðK̂ÞΠ1ðK̂Þi3 ¼
π2 − 9

6
: ðD16Þ

In addition to this analytic integral, the above contribu-
tion to p0 has many additional sources that can only be
computed numerically. After many manipulations and
angular averages, one can deduce that the p0 contribution
from ½IABCD�UV − ½I−2�UV is the sum of the terms

p0 ¼
π2

2

�
11

12
Iα þ

11

6
Iβ þ

�
−
133

36
þ 11

6
ln 2

�
Iγ

þ 11

6
Iδ −

11

6
Iε þ

1

8
Iζ −

1

4
Iη −

1

8
ðIηÞ2 þ cθ

�
; ðD17Þ

where these contributions are mainly one-dimensional
integrals, defined as

FIG. 7. Our choice of coordinates for the angular average in
Eq. (D9). The angle between û and v̂ here is a polar angle in the
d-dimensional spatial subspace.
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Iα ¼ hTr½Π0ðK̂Þ2 ln2½Π0ðK̂Þ��i3 ≈ 0.2694302213; ðD18Þ

Iβ ¼ hΠT;0ðK̂Þ2 ln½ΠT;0ðK̂Þ�i3 ≈ −0.06345103322; ðD19Þ

Iγ ¼ hTr½Π2
0ðK̂Þ ln½Π0ðK̂Þ��i3 ≈ −0.2770771704; ðD20Þ

Iδ ¼ hln½sinðΦKÞ�Tr½Π2
0ðK̂Þ ln½Π0ðK̂Þ��i3 ≈ 0.06818971068;

ðD21Þ

Iε ¼ hTr½Π0ðK̂ÞΠ1ðK̂Þ ln½Π0ðK̂Þ��i3 ≈ −0.1249403621;

ðD22Þ

Iζ ¼ hTr½Π0ðK̂Þ ln2½Π0ðK̂Þ��i3 ≈ 1.122871337; ðD23Þ

Iη ¼ hTr½Π0ðK̂Þ ln½Π0ðK̂Þ��i3 ≈ −0.8577878295; ðD24Þ

cθ ¼
15

8
−
π2

9
≈ 0.7783772888: ðD25Þ

Substituting these numerical values into Eq. (D17), one
reproduces the result of 10.84411 found in Table II. In
deriving these results, we have used the angular average
involving Π1 in Eq. (D16), some of the averages in
Eqs. (D11)–(D15), as well as the following two averages:

hln2½sinðΦPÞ�i3 ¼ −
1

2
þ π2

12
− ln 2þ ln2 2; ðD26Þ

hln2½sinðθÞ�i3 ¼ 2 −
π2

12
− 2 ln 2þ ln2 2: ðD27Þ

APPENDIX E: CANCELLATIONS OF THE
FACTORIZATION SCALE AND ASSOCIATED

DIVERGENCES AMONG THE
DIFFERENT REGIONS

In this Appendix, we work through a simple factorized,
two-dimensional integral expression to demonstrate the
following two points about the sum over the soft, hard, and
mixed regions contributing to the physical double loga-
rithms of the coupling at N3LO: First, we show how all of
the Oðε−2Þ and Oðε−1Þ terms cancel when one sums over
these three regions, explicitly illustrating the cancellations
of the divergences in the column labeled “two-loop HTL”
in the right panel of Fig. 4, using a single ε regulator in all
four regions. Second, we show how the coefficient of the
Oðε0Þ, ln2ðmE=ΛhÞ term in the soft region is exactly double
the coefficient of the final ln2 α1=2 term obtained by
summing over the three regions and cancelling spurious
double-logarithmic terms.
Let us begin by showing briefly why spurious double

logarithms arise in the soft region. To this end, we consider
the simple factorized example integral

I2 ≡
�
ðΛhÞ3−d

Z
∞

0

dPPd−2 m2
E

P2 þm2
E

�
2

; ðE1Þ

with d ¼ 3 − 2ε, as before. We think of this as the soft part
of a full calculation, which we detail further below. If we
examine what one of these integrals yields upon integra-
tion, namely

I ¼ −
π

2
m2

E

�
mE

Λh

�
d−3

sec

�
dπ
2

�
≃
m2

E

2ε
−m2

E ln

�
mE

Λh

�
þ ε

�
m2

Eln
2

�
mE

Λh

��
þOðε2Þ; ðE2Þ

we observe the following: When this term is squared, there
is both the square of the original Oðε0Þ (single) logarithm,
and the cross term between the Oðε−1Þ divergence and the
Oðε1Þ double logarithm. Only the former of these loga-
rithms contributes in the end to the ln2 α1=2s term, and the
second one is spurious. These spurious logarithms must
cancel when one sums over all three regions, since the
Oðε−2Þ and Oðε−1Þ will cancel out in this sum. We now
show this explicitly in our simple example.
To begin, let us note that if we were to resum the gluonic

lines with the full one-loop quark kinematics in the gluonic
polarization tensors (instead of just resumming with HTL-
resummed kinematics), there would be no divergences at
all. This follows from the fact that the quark contribution to
the one-loop gluonic self-energies behaves like

Π1-loop;
quark

ðKÞ ≃ #
K2

þOðK−4Þ ðE3Þ

in the UV (see Eqs. (A7) and (A9) in Ref. [46]), and thus
the matter integrals would be completely UV convergent,
and no divergences could arise at all.
Let us thus consider such a UV-convergent full expres-

sion, and examine the contributions from each kinematic
region. Let us choose

I2finite ≡
�Z

∞

0

dPP
m2

E

P2 þm2
E
expð−P=μÞ

�
2

¼ m4
E

�
1

2
½π − 2Si

�
mE

μ

�
� sin

�
mE

μ

�
− Ci

�
mE

μ

�
cos

�
mE

μ

��
2

¼ m4
Eln

2

�
mE

μ

�
þ 2γEm4

E ln

�
mE

μ

�
þ γ2Em

4
E þOðm5

EÞ;

ðE4Þ

which is a modification of our original I2. Let us split this
up into hard and soft regions, regulating them all in
dimensional regularization. If we do this to the Ifinite itself
first, we have the following:

COLD QUARK MATTER AT NNNLO: SOFT CONTRIBUTIONS PHYS. REV. D 104, 074015 (2021)

074015-41



1. Soft region

This is the same as the original example I above, as we can ignore the expð−P=μÞ term, so we again find

Ifinite;s ≃
m2

E

2ε
−m2

E ln

�
mE

Λh

�
þ ε

�
m2

Eln
2

�
mE

Λh

��
þOðε2Þ: ðE5Þ

In order to make this simpler to multiply with the hard part, let us rewrite this as

Ifinite;s ≃
m2

E

2ε
−m2

E

�
ln

�
mE

μ

�
þ ln

�
μ

Λh

��
þ ε ·m2

E

�
ln

�
mE

μ

�
þ ln

�
μ

Λh

��
2

þOðε2Þ: ðE6Þ

2. Hard region

Here, we can ignore the m2
E in the denominator:

Ifinite;h ¼ ðΛhÞ3−d
Z

∞

0

dPPd−4 expð−P=μÞ ¼ m2
E

�
μ

Λh

�
d−3

Γðd − 3Þ

≃ −
m2

E

2ε
−m2

E

�
γE − ln

�
μ

Λh

��
− ε ·m2

E

�
π2

6
þ
�
γE − ln

�
μ

Λh

��
2
�
þOðε2Þ ðE7Þ

We thus see that the full result for the regulated 1d integrand is

Ifinite ¼ Ifinite;s þ Ifinite;h ¼ −m2
E

�
γE þ ln

�
mE

μ

��
; ðE8Þ

which, when squared, agrees with Eq. (E4) above atOðm4
EÞ. Let us now inspect each of the kinematic regions, which we for

simplicity denote by ss, sh, hs, and hh according to which combinations of the soft and hard contributions are combined:

Iss þ Ish þ Ihs þ Ihh ¼ Iss þ 2Ish þ Ihh: ðE9Þ

We find

Iss ¼ Ifinite;s · Ifinite;s

≃
m4

E

4ε2
−
m4

E

ε

�
ln

�
mE

μ

�
þ ln

�
μ

Λh

��
þ 2m4

E

�
ln

�
mE

μ

�
þ ln

�
μ

Λh

��
2

þOðεÞ; ðE10Þ

2Ish ¼ 2Ifinite;s · Ifinite;h

≃ −
m4

E

2ε2
þm4

E

ε

�
−γE þ ln

�
mE

μ

�
þ 2 ln

�
μ

Λh

��
−m4

E

�
π2

6
þ
�
−γE þ ln

�
mE

μ

�
þ 2 ln

�
μ

Λh

��
2
�
þOðεÞ; ðE11Þ

and

Ihh ¼ Ifinite;h · Ifinite;h

≃
m4

E

4ε2
þm4

E

ε

�
γE − ln

�
μ

Λh

��
þm4

E

�
π2

6
þ 2

�
γE − ln

�
μ

Λh

��
2
�
þOðεÞ: ðE12Þ

One may easily verify that the sum of these terms as written here reproduces Eq. (E4), as it must. In particular, all of the
divergent terms and the terms involving the fictitious mass scale Λh cancel. From this exercise, we also see that the double-
logarithmic terms that contain the ratio mE=μ of physical scales, are distributed as
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ðIss; 2Ish; IhhÞjDL ¼
�
2m4

Eln
2

�
mE

μ

�
;−m4

Eln
2

�
mE

μ

�
; 0

�
; ðE13Þ

which indeed sum to the correct result. Importantly, we see that the coefficient of the ss contribution matches the coefficient
of the ln2ðmE=ΛhÞ there and is indeed twice the value that is obtained from summing over all four regions, as claimed.
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