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High-order perturbative calculations for thermodynamic quantities in QCD are complicated by the
physics of dynamical screening that affects the soft, long-wavelength modes of the system. Here, we
provide details for the evaluation of this soft contribution to the next-to-next-to-next-to-leading order
(N3LO) pressure of high-density, zero-temperature quark matter (QM), complementing our accompanying
Letter [T. Gorda et al., Phys. Rev. Lett. 127, 162003 (2021)]. Our calculation requires the determination of
the pressure of the hard-thermal-loop effective theory to full two-loop order at zero temperature, which we
go through in considerable detail. In addition to this, we comprehensively discuss the structure of the weak-
coupling expansion of the QM pressure, and lay out a roadmap towards the evaluation of the contributions

missing from a full N*LO result for this quantity.
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I. INTRODUCTION

Determining the equation of state (EOS) of quantum-
chromodynamic matter in extreme conditions using per-
turbation theory is a longstanding challenge almost as
old as quantum chromodynamics (QCD) itself (see e.g., [1]
for a review). In the case of high-temperature quark-gluon
plasma (QGP), the calculation has reached a partial next-
to-next-to-next-to-leading order (N3LO) level [2—4]. At
such high orders, a complication in perturbative calcula-
tions arises from the emergence of collective phenomena
at long wavelengths, most importantly the physics of
dynamical in-medium screening. To address this, all-
loop-order resummations must be performed in order to
reach a fixed order in the strong coupling constant a;.

At high temperatures 7T, reaching the partial N3LO
accuracy was made possible on one hand by technical
advances in the evaluation of multiloop sum-integrals
[5,6] and on the other hand by the seminal works of
Kajantie et al. [2-4,7,8], where a resummation of soft

screened modes of momentum scales ai/ >T and a,T was
performed using the dimensionally reduced effective theories
electrostatic QCD (EQCD) and magnetostatic QCD
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(MQCD) [9-11]. These calculations left only the con-
tribution of the hard momentum scale #7 missing
from the full N°LO EOS of hot QGP, which constitutes
a conceptually simple but technically very demanding
challenge.

Screening phenomena closely analogous to those
encountered at high temperatures appear also in the
context of dense and cold quark matter (QM) [12,13],
where phenomenological motivation stems from model-
independent studies of the neutron-star matter EOS [14,15].
Here, the last fully completed order in perturbation theory
dates back to the seminal papers of Freedman and
McLerran [16,17], who determined the EOS to N?LO
accuracy. At this level, the calculation becomes sensitive to
the physics of screening, which these authors addressed
through an all-loop-order diagrammatic resummation. The
framework of dimensional reduction is unavailable at low
temperatures, and challenges related to extending this
resummation to higher orders have so far prevented bring-
ing the EOS of cold QM to the same level of perturbative
accuracy as its nonzero-7 counterpart, although some
progress in this direction has recently been achieved in
[18,19]. In the present paper, complementing an accom-
panying Letter [20], we finally perform this resummation
using the hard-thermal-loop (HTL) effective theory, deter-
mining the soft contributions to the EOS up to and
including the N°LO order. While Ref. [20] concentrates
on an in-depth analysis of the result, here we provide
extensive details of the technical aspects of the calcu-
lation, and in addition discuss the computations needed to
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FIG. 1. Tlustration of the ranges of gluonic momenta P where
different approximations can be made.

determine the last contributions missing from a full N°LO
result for the EOS of cold QM.

The physical picture behind perturbative calculations at
high densities is as follows. In a medium characterized by a
large quark chemical potential y, and zero temperature,
cold QM contains a filled Fermi sea of quarks from zero
momentum up to the scale ﬂq.l The free Fermi pressure of
this system of quarks forms the leading-order (LO)
description of the pressure p of cold QM and scales as
,u‘,; in the case of massless quarks.” While there are no on-
shell gluons in the medium, off-shell gluons are present
because the quarks are color charged. Interactions between
the quarks and gluons in QCD lead to corrections to this LO
pressure as a function of the strong coupling constant .

Because of this Fermi sea of quarks, the propagation of
both quarks and gluons through cold QM becomes modi-
fied. Low-momentum quarks are Pauli blocked and cannot
propagate, as those states are filled by the medium. Thus,
these low-momentum quarks do not contribute to higher-
order loop corrections to p, leaving the scale p, (dubbed
“hard”) as the only relevant scale for quarks. For gluons, the
picture is more complicated and involves two different
approximations that can be used in different regions of
momentum space: the naive loop expansion and the HTL
expansion (see Fig. 1). Hard, short-wavelength modes can
be treated similarly to the quarks in a naive loop expansion,
while the soft, long-wavelength gluons become qualita-
tively modified by the medium and require resummations
of arbitrary numbers of one-quark-loop insertions within
calculations. These modifications lead to, e.g., nonanaly-
ticities In a in the weak-coupling expansion in the pressure
of cold QM.

The rest of this Introduction is organized as follows. In
Sec. I A, we introduce the naive loop expansion and the
HTL expansion and motivate their respective regions of
validity. After this, in Sec. IB we explain how to power

1n this section, we shall describe the situation for a single
qu%rk flavor, for simplicity.

Note that at high density, quarks on the Fermi surface undergo
pairing through attractive channels of gluonic interactions,
leading to a different ground state [21]. However, these effects
do not enter at any finite order in the weak-coupling expansion.
At sufficiently high densities, the pairing gap A, which only
depends on g in a mild way, becomes small in comparison to the
chemical potentials, and the pairing contributions to the pressure
become suppressed by a factor A?/u>.

count the contributions of the resummed soft gluons. In
Sec. IC, we then discuss the analytic structure of the
different contributions to the pressure of cold QM, pro-
ceeding from LO to N?LO. Finally, in Sec. I D we explain
what precisely is computed in the present article, and walk
the reader through the overall structure of the paper.

A. Two expansions for gluons in cold quark matter

Whether gluonic propagation is qualitatively modified
by scattering from hard quarks in loop corrections depends
on the magnitude of the propagating gluonic momentum
[22]. This can be seen most clearly from the dispersion
relation of the gluonic modes with momenta P, which is
schematically of the form

P2 +TI(P) = 0. (1)

Here we will work consistently in a Euclidean framework,
and TI(P) is a generic component of the Euclidean gluon
polarization tensor. This tensor is parametrically of the
order of the square of the in-medium effective mass scale
mg, related to the one-loop Debye mass. For a single
massless quark in d = 3 spatial dimensions it has the value
m = (2/m)ap2.” If the free part of Eq. (1) parametrically
exceeds the interaction part, the interactions can be treated
as perturbations to the free propagation of gluons and be
dealt with using a naive perturbative (loop) expansion. We
can see that this occurs for |P| > mg.

If, on the other hand, the gluon has momentum |P| < mg
(dubbed “soft”), then its propagation is qualitatively modi-
fied. In particular, generic low-momentum gluonic excita-
tions require a nonzero excitation energy proportional to
mg.* This behavior arises because the gluonic self-energy
[1**(P) has a nonzero |P| — 0 limit

lim [F(P) = My, (P) #0 (2)

where we have suppressed the color indices and defined a
unit four-vector P = P/|P| in the direction of P, a notation
we shall use prominently in this work. Here, we have also
identified the HTL self-energy, which is the low-momen-
tum limit of the full self-energy. It is important to note that
in cold QM, only the quark loops contribute to this HTL
self-energy: hard gluon and ghost loops are not directly
populated by the medium (i.e., there are no on-shell gluons

This effective mass scale is related to the asymptotic
HTL mass [23] my by m% =2m%. In the case of multiple

quark flavors f, this effective mass scale becomes m% =

(2a,/7) Zf //‘%

Note that for some special directions of the Euclidean four-
vector P, these excitations may still be massless. At high
temperature, unscreened magnetic gluons lead to the generation
of a further ultrasoft mass scale, but this is not the case in cold
QM, as soft gluons are not Bose enhanced (see below).
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FIG. 2. Two contributions that enter at the same order as the
corresponding bare terms for soft gluonic momenta.

present) and thus do not differ from their vacuum values
(i.e., depend on u,) at LO. It then follows that only the
single quark loops must be resummed into the gluonic
propagators, as all other corrections can be naively
expanded around that limit. This resummation is depicted
in Fig. 2.

The full kinematics of the one-loop quark contribution to
the gluon polarization tensor results in a IT**(P) that
depends not only on P, but also on the magnitude of the
gluonic momentum P. However, if this magnitude is
parametrically less than the hard scale, |P| < fq> ONE
may systematically expand the polarization tensor in
powers of the ratio of the external gluon momentum and
the internal quark loop momentum, |P|/|Q|, which con-
stitutes part of the HTL framework as described by Braaten
and Pisarski [24]. In addition to this modified propagation,
the interaction between soft gluons also becomes modified
in cold QM, as n soft gluons interacting through a quark
loop with momentum |Q| Z u, enters at the same order as
the bare coupling between n soft gluons (if it exists). For
example, for soft gluons the interaction shown in the right
panel of Fig. 2 enters at the same order as the bare three-
gluon coupling. However, both quark and ghost fields
remain unresummed in Euclidean space—the quark propa-
gators are protected in the infrared by the nonzero chemical
potential, while the ghosts are known not to develop a
thermal mass [25].

In summary, there are two different approximations that
can be made for gluons in cold QM, depending on the
magnitude of their momenta P: if |P| < y,, the HTL
expansion becomes valid, and if |P| > mg, the naive loop
expansion becomes valid. This is shown pictorially in
Fig. 1. As demonstrated in Ref. [19], the integration region

(K, P,R)*d*P

mg < |P| < u,, where both approximations are valid
(dubbed “semisoft” in Ref. [19]) leads to a logarithm of
the coupling:

u,  d4P /m, . d4P
> = o HHTL(P) Tp2N2
/nE P? +TI(P) e (P?)?

~ (T (P))p I (’/’j—) ~milng,.  (3)

Here, the notation () indicates an average over all four-
dimensional Euclidean angles. Since such a logarithm can
arise from any integral over a resummed gluonic momen-
tum, at higher orders, where multiple resummed gluons
may contribute, we should expect to find contributions to
the pressure containing factors of In” @, where n is the
number of resummed gluonic momenta in a given
resummed diagram. At N’LO, this leading logarithm
was computed already in Ref. [19].

We now address the question of how one should power
count such resummed, soft gluons, to see where they first
contribute.

B. Power counting the soft contributions

As per the discussion in Ref. [19], the soft gluons
occurring in loop corrections and that require resummation
are phase-space suppressed by the integration measure

/ YdtP > mg, ~ aspy. (4)

Thus, these contributions do not enter the weak-coupling
expansion of the pressure until N>LO. Moreover, unlike the
case at high temperatures [1], gluons occurring in loop
corrections are not populated by the medium, and thus their
occupation numbers are not Bose enhanced. This has the
important implication that interactions between multiple
soft gluons are perturbative in a loop expansion within the
long-wavelength HTL theory. To see this, consider adding a
soft gluon with loop momentum P to a soft gluon line of
momentum K. Doing this through three-point vertices leads
to (defining R=P - K as the other internal loop
momentum)

= O(O'/Sm]QE)7 (5)

|
P
~ aS
@ /|P|~mE [P

where the two effective vertices are represented by
['(K,P,R)* in the numerator. For soft momenta, these
vertices scale in the same way as the bare vertices, leading
to I'(K,P,R)> ~m%. Similarly, for soft P, K, R, the

+1I(P)][R? + II(R)]

l

denominator scales as my, leading to the final power
counting shown above. We thus see that this is a perturba-
tive correction to the self-energy I1(K) ~ m%. The case of
adding a gluon through a four-point vertex is identical, as
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for the purposes of power counting a single 4g HTL vertex
behaves similarly to two 3g HTL vertices. We therefore see
that these soft corrections are indeed perturbative. A full
account of the form of these effective vertices, and our
notation for the double lines and blob vertices for the HTL
diagrams are introduced in detail in Appendix B.

The fact that interactions between soft gluons are pertur-
bative means that we can systematically improve the soft
sector using a loop expansion within the HTL theory. This
situation is qualitatively different from that encountered in
high-temperature QGP, where the presence of ‘“ultrasoft”
gluonic momenta of order a,T famously leads to the Linde
problem and the emergence of fundamentally nonperturba-
tive contributions to the pressure at O(a}) (see e.g., Ref. [1]
for a discussion of this subtle topic).

Let us now make one brief remark about regularization.
The cutoff description implicitly used so far in these
discussions (and in Ref. [19]) is very convenient for
identifying the physical sources of the logarithms.
However, in detailed computations (especially at higher
orders) such an approach has drawbacks. In particular, once
there are multiple soft gluons, performing the entire
computation with a cutoff is very cumbersome. Thus, at
this point we make the choice to use dimensional regu-
larization to regulate not only the hard UV divergences
arising in the full theory but also the intermediate ones
arising from different kinematic regions (which we will
introduce momentarily), once those regions are separated.
This will provide a much more streamlined framework for
self-consistently determining all the different contributions
to the pressure at higher orders.

C. Computing the pressure of cold quark matter

Following the logic from above, we deduce the following
structure for the pressure of cold QM, valid up to and
including the N3LO terms:

p = prp + a;pl + aiph + ol ph

+ a;ps + alp§
+ a3 ph. (6)

Here, pgp is the pressure of a free Fermi gas of quarks, while
the other terms arise from interaction corrections among or
across modes of different types. Terms on first line arise from
hard modes and can be computed through a naive loop
expansion in full QCD. Terms on the second line arise from
soft modes and their interactions, and can be determined
within the HTL theory. Finally, the remaining term on the
third line arises from interactions between the soft and hard
modes and requires a partial HTL resummation.

Due to the ambiguous semisoft momentum range
mg < P < p,, the splitting between the different kin-
ematic regions is not unique. This ambiguity leads to
ultraviolet (UV) divergences within the p? that cancel

(p’;},g)

FIG. 3. Example of progressively HTL resumming a diagram,
leading to a mixed intermediate diagram and then finally to a fully
soft two-loop HTL diagram. The second index on the pj, denotes
the number of remaining hard gluonic (or ghost) loop momenta in
a diagram.

(pgﬁ) (pg,o)

against corresponding infrared (IR) divergences within the
p! (and mixed UV-IR divergences in p§ at N*°LO). This
cancellation will be further remarked on briefly below. The
ambiguity also makes these coefficients dependent on a
factorization scale Ay, which arises from the dimensionally
regularized integration measure in our case, and which will
be canceled when summing over the different kinematic
contributions at a given order. In terms of the factorization
scale, the divergences also lead to expressions of the form
In(An/mg) and In(u,/Ay) from the UV limit of the soft
sector and the IR limit of the hard sector, respectively. As
the Ay, dependence cancels in the sum over all kinematic
contributions, these logarithms will generate precisely the
In(u,/mg) ~ Ina, terms discussed in Sec. T A. It is impor-
tant to note here that the factorization scale A is not a
momentum cutoff between the soft and hard sectors of the
theory, and thus need not lie between the scales mg and p,,.
This becomes relevant when analyzing the behavior of the
result, and is further discussed in Ref. [20].

To discuss the structure of the terms in Eq. (6) in more
detail, we find it useful to further classify the diagrams
contributing to the different coefficients p’. This further
classification is based on the HTL limits of the different
diagrams which are obtained by taking soft kinematics of
all of the gluon lines. Diagrammatically this is reached by
(i) resumming all gluon lines and (ii) contracting all quark
loops into points and absorbing them into propagators and
HTL vertices (see a sample illustration of this process of
“HTL resummation” in Fig. 3). Concretely, we classify the
contributions by the loop order of the resulting HTL
diagram after taking fully soft kinematics.” In general,
for0 < j < i,an (i + 1)-loop hard diagram is classified as a
part of pf{ ; if its fully soft limit is a j-loop HTL diagram.
The remaining (i + 1)-loop hard diagrams, which lead to
i-loop HTL diagrams, are classified as pf{o.

This leads to the decomposition of the N?LO and N3LO
terms

*Note that this classification is well defined at zero temper-
ature, where HTL corrections arise purely from quarks. At high
T, this classification is not unique because gluons can also be
absorbed into propagators and vertices.
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FIG. 4. The periodic table of diagrams, showing the relation
between the different subclasses of contributions at N>LO (left)
and N’LO (right). Moving downward within a single column
corresponds to HTL resumming the harder contributions; this
procedure also decreases the number of hard gluon (or ghost)
loop momenta by one at each step, rendering the last term in each
column IR safe.

ph = phi + Phos
P> = Pio (7)

and

Py = Pi, + i+ Phos
P3 = P31+ P5os
P3 = Pip (8)

where the second subscript denotes the number of hard
gluon (or ghost) loop momenta, except for the above-
mentioned exceptional P?,o terms. We show the relation
between these contributions and the fully resummed HTL
diagrams in Fig. 4. Organizing the terms in this fashion
guarantees that the sum of all contributions in a given
column is independent of the factorization scale as well as
associated divergences.6

Next, we discuss in detail each of the terms appearing in
Egs. (6)—(8).
1. Classification of diagrams up to N*LO

Up to NLO, the contributions to the pressure of cold QM

are simple and do not require resummations:
(i) LO: This is simply the free Fermi pressure, arising
from a single diagram with full quark kinematics;

PFD = Q : )

(i) NLO: In this contribution, only a hard gluon
contributes, since a soft gluon is phase-space sup-
pressed. The quark loop requires the full kinematics.

auph = @ (10)

At N2LO, there are contributions from both hard and soft
gluons, corresponding to the coefficients p4 and p$ in
Eq. (6), respectively. As the diagrams in p3 are fully
resummed, the diagrams are IR safe and there is only one
subclass of diagrams contributing to

alpy = alps, = @ : (11)

On the other hand, p! can be further subdivided into two

subclasses
2 _h
QsPo1 = @ (12)

and

|
a§p§7o—@+@+ @+é{i}i'ﬁ+®+®, (13)

grouped by their IR properties. Here, the hard Pg, | and soft
P> become by construction identical for semisoft gluon
kinematics, and the diagram in p3 , can in fact be generated
from that in p’21,1 by HTL resumming the gluon loop in the
hard diagram. One might worry that this leads to a double
counting of contributions, but this is not the case since at
T = 0 the semisoft region of p | or pj ; gives rise to scale-

free integrals that vanish in dimensional regularization: in

®We show how this works for the two-loop HTL column (with
soft, mixed, and hard contributions) via a simple worked example
in Appendix E.

|

the first case, the quark loops can be replaced with HTL
self-energy insertions, in the second, the resummed gluon
propagator is re-expanded; in both cases, the integration
over the gluonic loop momentum is then scale-free in the
semisoft region.’ The P’ contribution is on the other hand
IR safe and diagrammatically distinct. This is precisely the
structure illustrated in the left panel of Fig. 4.

"The situation is qualitatively different at nonzero 7', where
one indeed needs to subtract a naive, expanded HTL contribution
from the corresponding graphs (see e.g., Refs. [18,26]). Working
at T = 0 similarly simplifies this issue at the N*LO level, helping
us avoid the double counting of contributions at that order.
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ED

m m
P30 P31

One resummed line No resummed lines

S m m
P30 P30 |P31

Two resummed lines One resummed line

>
K

FIG. 5. A visual summary of the six subclasses of N°LO
contributions, classified in terms of the number of resummed
lines in each class. The class used to show a representative
diagram is written in boldface, and color coding of the con-
tributions shows the correspondence with Fig. 4.

The N’LO contributions to the pressure of cold QM
were first determined by Freedman and McLerran in
Refs. [16,17] without the use of the HTL theory. In the
modern language of dimensional regularization, the

logarithmic contributions to the pressure arise solely from
the subclasses p3, and p’ | above, through the (1/¢) x &
terms therein, with ¢ = (4 — D)/2 and D standing for the
spacetime dimensionality. Additionally, one finds 1/&
terms canceling between these p3, and pf, subclasses.
In the case of P%,o’ such a term arises from a UV
divergence, while in p’il, it arises from an IR divergence.

2. Classification of diagrams at N°LO

The organization of the N’LO contributions was dis-
played already in Eq. (8) and the right panel of Fig. 4 and is
further visually summarized in Fig. 5.

Similar to the N2LO calculation, at N3LO there are
multiple classes of contributions, i.e., those which arise from
either two, one, or zero soft gluons, corresponding to the
coefficients p3, p§, and p% in Eq. (6), respectively. In this
section, we give a more detailed account of all the subclasses
making up these contributions, proceeding according to the
HTL diagrams they are related to (i.e., the colored columns
in Fig. 4).

The soft contribution is again fully resummed and IR
safe and therefore forms only one subclass, namely

These diagrams are intimately related to those in the mixed
contribution®

- Q-0 G- Qo
@00 C.

(15)

The diagrams in p7'; become identical to those in pj  in the semisoft region, while the diagrams of pj ; can be generated
from those in p%'; by HTL resumming the one unresummed gluon line. Furthermore, the kinematics of the resummed gluon

line in this mixed contribution is soft, and hence one may expand in the small gluonic momentum. In this sense, these hard
corrections within the mixed p¥%', contributions can be thought of as corrections to the HTL self-energy.

Similarly, the diagrams in
P

+®+®

are intimately related to those in p7';

(16)

above. Upon HTL resumming one of the gluon lines, one obtains the diagrams of p7';.

®Here and in the following diagrams, we assume an implied summation over the fermion and ghost directions in each loop, to reduce
the number of diagrams shown. One can find the full list of contributions, with the correct symmetry factors, in Ref. [27].
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Now we turn to the second column in the right panel of
Fig. 4 related to the one-loop HTL diagrams. The one-loop
diagram contributes at N2L.O (namely, in P3o)s SO to
contribute at N°LO it has to be dressed with a hard quark
line.” This comes about naturally when one of the momenta
running in the HTL self-energies becomes hard, giving rise

to the diagram
3
0Py = @ (17)

where we can again expand in the soft gluon momen-
tum. However, since the leading-order term in the
small-momentum expansion gives back the lower-order

one-loop HTL result, we must instead use the NLO soft
kinematics [28—-30] to obtain the N>LO contribution.
The diagram in p%', is on the other hand related to the

glraph10
o3l = g} | (18)

For semisoft kinematics, the diagram in p3|, becomes
identical to the one in p%,.

Finally, there remains one further subclass where no
resummations are necessary, namely Pé’,o which contains
the remaining IR-safe four-loop diagrams containing a single
quark loop, here with the full quark kinematics. It reads

(19)

The hard gluon or ghost contributions already appear in p%';, and are related instead to the two-loop HTL diagrams.
"It is worth noting that this diagram represents the leading large-N + behavior of the pressure, which has been determined in Ref. [31]

in the high-T limit.
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The set of all four-loop vacuum diagrams in QCD has
previously been written down using a different organization
in e.g., Ref. [27]. Comparing the two, we see that each
diagram is correctly reproduced in our organization, and we
have checked agreement with the symmetry factors as well.

Out of the different contributions to the N*LO pressure,
all carry dependence on the factorization scale A;,, while all
but the soft contributions, determined in this work, depend
additionally on the renormalization scale A. The latter of
these scales is related to regulating UV divergences in the
hard sector, and leads to the true scale dependence of the
physical pressure. The dependence on Ay, related to UV
divergences in the soft contributions and IR divergences in
the hard and mixed contributions, will on the other hand
cancel upon summing all the different parts of the pressure
together. For technical reasons, similar calculations carried
out for the high-temperature pressure using the dimension-
ally reduced effective theory EQCD often set the scale
parameters of the full and effective theories equal, but this
is by no means mandatory, as it is equally possible to keep
two scale parameters in the calculation, letting one regulate
IR and the other UV divergences.

D. What we compute in this work

In this paper, we determine the contribution p3 to the
cold-QM pressure, defined in Eq. (6), which is equal to the
fully soft subclass pj, at N°LO. While it does not
constitute a complete new order in the weak-coupling
expansion of the pressure, it amounts to a complete
kinematic contribution that has furthermore been specu-
lated to play a crucial role in the slow convergence of the
quantity [32]. In addition, as we will show below, we can
recover the known O(a; In? @) contribution to the pressure
from this region alone.

In the computation, we use dimensional regularization
and work in the limit of vanishing quark masses, which
amounts to evaluating the full two-loop HTL pressure at
zero temperature, without expanding in the in-medium
effective mass scale. We note that there has been previous
research on higher-order HTL thermodynamics [32-36].
However, these works all expand the HTL diagrams in
powers of the effective mass, and so do not perform the full
resummation that we need.

The general structure of the paper is as follows. In
Sec. I, we introduce the setup, conventions, and machinery
used in the calculation of p3. We explain the power
counting of all the contributions in detail and present
notations that allow us to easily extract the UV-sensitive
integral contributions. In Sec. III, we then explain our steps
for evaluating these integral expressions, and display
results for the different contributions along with many
details, especially for the UV-sensitive terms. Finally, in
Sec. IV, we present our final result for the pressure in the
soft region.

We also discuss cross-checks of our computation, remark
upon the sizes of different contributions, and provide a
small outlook for the remainder of the full N*LO pressure.
Following the main text is a large collection of appendixes
summarizing the Euclidean-space HTL framework used
throughout this work, as well as the additional machinery
that we have developed to tackle the computation. We have
collected all of this into the appendixes to aid future
researchers who wish to use the Euclidean-space HTL
framework in their work.

II. ORGANIZING THE COMPUTATION

A. Starting expression and convention

The expression corresponding to the fully soft contri-
bution to the cold-QM pressure that we will evaluate in this
paper is [cf. Eq. (6)]

aﬁpi = gchdA [13g + I4g + Igh]’ (20)

with 134, 144, I, labeling the diagrams repeated in Fig. 6.
Here, g = \/4ma, is the QCD gauge coupling, N, is the
number of quark colors, and d4 = N2 —1 is the dimen-
sionality of the adjoint representation of the SU(N,.) gauge
group, or the number of gluons. We will perform this
computation in dimensional regularization in D =d + 1
spacetime dimensions.

Equation (20) is the expression for the two-loop HTL
pressure examined also in Ref. [37], but in the zero
temperature limit and at nonzero density. To evaluate this
expression, we find it easier manipulate it using techniques
that will be discussed below, rather than using the expres-
sions in Ref. [37] as a starting point.

First, we write down explicit expressions for the resum-
med two-loop graphs under study. Using the Feynman rules
of Appendix A, we readily obtain

1 o0 A
g =-— [ TI™(K P,RI¥7 (K, PR)
12 Jkpr

x D* (K)D" (P)D*" (R), (21)

I3

1
Ly =g l{ ; e (K, P, —K,—P)D* (K)D"(P), (22)

1 KHP?
Iy, == D" (R). 23
=3 | ep D) (23)

e
(38) @) (43) @ (8h) vmmmnns
’._.<_.’

FIG. 6. The three different two-loop HTL diagrams contribut-
ing to the pressure at N°LO, constituting the pj contribution.

074015-8



COLD QUARK MATTER AT NNNLO: SOFT CONTRIBUTIONS

PHYS. REV. D 104, 074015 (2021)

These expressions form the starting point of our diagram-
matic analysis. We have here introduced the following
notations, which are discussed in more detail in the
appendixes:

1. Metric and vector conventions

We work in Euclidean space with metric . We write
the components of our four-vectors as K = (KO, ki )s
where K = K, k' = k; for i = 1, 2, 3. The scalar product
between two Euclidean four-vectors K and P is given by
K-P = KyPy+k-p, and we use the notation [k|*> =k -
k for the magnitudes of the spatial part of the momentum.
We will also repeatedly use the notation

. K .k
kK=— k=— 24
K|’ k|’ (24)

for the unit vectors in the direction of K and k, respectively,
the former already defined around Eq. (2).

2. Integration measures

The integration measures are defined in D =d+ 1
space-time dimensions. The symmetric integral [ip, we
use frequently is defined as

\[(PRE (67:7?1%)4_1)/((122)1;/(32)};

X / 53752 (2m)PsP) (K + P+ R), (25)

where A, is a factorization scale and the factor
(e’ /47)#=P) with yg the Euler-Mascheroni constant, is
introduced so that one absorbs the UV-divergent part with a
universal constant. The integral f xp in Eq. (22) follows
from [ipr upon doing the trivial integration over R.

3. Propagator
The HTL-resummed gluon propagator D** is defined in
the covariant gauge as
K*KY
(K2)*
(26)

D (K) =Py (K)Gr(K) + P{ (K)GL(K) + ¢

where the parameter £ fixes the gauge and
, I e€{T,L}. (27)

In this equation, and from this point on, we drop the HTL
label on the HTL self-energies, for brevity. It turns out that
the computation is most efficient to perform in the & =1
gauge, which we shall use throughout the rest of the text. In

the class of covariant R gauges, the gauge parameter £ only
appears in the propagator, and we have explicitly checked
that the expression in Eq. (20) is gauge independent in the
sense of being independent of the & parameter, with the
conclusion being supported by Ref. [37].

The standard projectors P#*(K) and P (K) used in
Eq. (26) are defined in Sec. B, and the reader is advised to
consult the appendix when necessary. We do repeat here the
definition of the symmetric and transverse HTL self-energy
tensor

(K) = Py (K)Te(K) + PL(K)TL(K) - (28)
where the coefficient functions are given by
(K) = (d = DIp(K) + T (K),

Bl (x0). (29)

The trace of the one-loop HTL self-energy is defined to be
mé, so that m = I1"*(K). An alternative explicit definition
of IT™*(K) is given in the aforementioned appendix.

4. Vertices

The effective three- (3g) and four-gluon (4g) vertices are
obtained by adding the HTL loop to the bare vertex. We
write these quantities as

D*7(P.Q.R) =T (P.Q.R) + 61" (P.Q.R),
(P, Q.R.S) =Ty (P. Q. R.S) + 81"/°(P, Q. R.5),
(30)

where the subscript “0” is always understood as referring to
the bare quantity. The HTL vertices oI" are only defined
when the sum of all of their arguments is zero, and they
have the property that they are totally symmetric in their
indices and traceless in any pair of indices. Furthermore,
the 3g HTL vertex is even (odd) under even (odd)
permutations of the momenta P, Q, and R, while the 4g
HTL vertex is even under all permutations of the momenta
P, O, R, and S. We note here that like the HTL self-
energies, the HTL vertices are proportional to m2, and
satisfy the generalized Ward identities

prsTP (P, Q,R) =TI?(R) — T1I?(Q),
prsTHPe (P, Q,R,S) = TP (Q,R, S + P)
-8 (Q + P,R,S). (31)
We also note that the HTL vertices are independent of the
gauge parameter &, even without fixing the gauge. The

explicit integral expressions for the d-dimensional HTL
vertices are given in Appendix B 2.
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TABLE I.  Scales of the bare and resummed vertices in different momentum regions. Note that the second column
also represents the other cases where the three momenta K, P, R are simply permuted.

Vertex K,P,R ~mg K~mg;P,R~A K,.P,R~A
F/(;D/)(K, P, R) ~Mmg ~A + mg ~A

T (K, P.R) ~my ~m2AT AT 4 ~mEA”!
(K, P,—K,—P) ~A°? ~A? ~A°
srHee(K, P,—K, —P) ~N\° ~mEAT? 4+ mEATH ~mEA~2

B. Isolating the UV-sensitive terms

Due to the two-loop structure of the quantity under
consideration and the fact that the HTL self-energies are
independent of the magnitude of the gluonic momenta, we
can deduce that the general structure of our final result for
a3 p5 will be

a3p“‘:gchdAmé mg\ ¥ [ p_y
T (2n)° (2¢)

Ay

P-1
— . 32
i) @

When this is expanded out fully in ¢, our final result for the
soft contributions to the pressure of cold QM becomes

a3ps — gchdAm% p_2 pP-1— 2p_2 ]n(%:)
s3 (2”)6 (28)2 e

+ [po —2p_In (K—E) 4 2p_,ln? (K—f)]} (33)

and contains both double and single-logarithmic terms of the
ratio mg/A,,. Note that, since we have resummed the soft
sector, the expression is IR safe. Thus, the terms in Eq. (32)
that enter with negative powers of € arise from the UV. We are

|

thus led to the following conclusion: in order to isolate the
p_, and p_; parts of the pressure, we must isolate the UV
behavior of the integrals Egs. (21)—(23). To do this, we will
first power count to isolate the power-law divergences in the
UV (which do not contribute at all in dimensional regulari-
zation). This in turn will lead us to introduce a notation to
isolate the terms identified by the power counting.

1. Power counting

In the UV, the bare and HTL parts of the vertices and
propagators no longer enter at the same order in myg.
Therefore, by expanding the vertices and unfolding the
propagators, we will be able to isolate the UV-sensitive
terms. Let us first begin by expanding out the vertices into
their bare (0) and HTL (H) parts, and splitting /3, and /4,
into the following pieces:

0,0 0.H HH
Ly = 19° 420107 + [,
0
Ly =10 + 1, (34)

with

1 N, ’ ! /
0O = [ (K. PR, (K.P.R)D™ (K)D* (P)D” (R),
w8 12 Jkpr
1 ! ! ] /
15" = 2 Jemn Iy" (K. P.R)ST"*7 (K. P.R)D" (K)D* (P)D" (R),
1 N, ! ! /
() _ o | U (K. PRSP (K. P.R)D"™ (K)D* (P)D” (R). (35)
KPR
and
1
I =—- / Iy (K, P,—K,~P)D* (K)D*(P),
8 Jkp
1
1= g | 87 (K.P.~K.~P)D"(K)D*"(P). (36)
KP

The factor of two in the second line of Eq. (34) follows by
symmetry. For the purposes of power counting, we need the
scalings for each of the vertices in the region K, P,R ~ A

|
with A > mg. This can be determined from the explicit
expressions in Appendices A and B 2. Since our leading
term in the e expansion (32) is O(e72), subleading
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contributions will also contribute to the divergent terms.
For completeness, we include in Table I the vertex scalings
in all of the possible momentum regions.

Now, unlike the vertices, which split into a simple sum of
two terms of different orders in the UV, the propagators in
Eq. (26) expand into an infinite number of terms there,
namely,

uv 2w

where we have used a compact notation for the power of
(K),

nlls

()" = T (R (K) - 1K) (38)

and have used the simple form of the bare gluonic
propagator in £ = 1 gauge in the leading term, namely
|

2 4
(0,0) 4p4 L mg  mg

~ A ANPmE A+ mE A+

Y 1
Taking a momentum K of the order of some large A > mg,
the expansion in Eq. (37) goes as

D'"(K) ~ A2+ miA™* + mfAS + -+, (40)

which shows that we have an infinite number of contribu-
tions, with the higher terms becoming less important. On the
other hand, when the momentum flowing through the vertex
becomes soft K ~ mg, the propagator simply scales as

D(K) ~ mg?, (41)

so that no expansion is possible.

Let us now use these scalings to power count one piece
of Eq. (35). When K, P,R ~ A, the term with two bare
vertices scales as

1 m% 1 m%

(42)

where the two leading A* terms come from the integration measure,'! the next two A terms are from the bare vertices, and

the final three series are from the propagators. We thus see that /

(0,0)

3¢ contains two power-law divergent terms in this hard-

hard UV region, which we would like to peel away. On the other hand, in the hard-soft region K ~ mg; P, R ~ A, we have

0,0
z_gg )

~N’mE + Amd +mf + - -

which shows that there is also a power-law divergence here,
even though one of the propagators is still resummed.
Observe that letting one of the lines become soft shifts the
leading term in the expansion of the integral to a higher
power in mg. Note also that in this region, there are
subleading contributions from the vertices, in addition to
the propagators. Finally, there is the soft-soft region.
However, this region does not probe the UV, and so will
not lead to any divergences at all.

Inspecting the above equations, we see that these power-
law divergent terms arise from the first few leading terms in
the expansion of the propagators, which motivates us to
introduce a new notation in the following section.

2. Peeling away the bare propagators

We have called the leading term in Eq. (37) (the bare
propagator) Aj"(K); let us extend this notation to label the
other terms in the expansion as well:

"Note that we are power counting in D = 4.

1
E

1 mi 1 mi
F—i_ﬁ—’_..- F—’—F—'_..

(43)

A (K) = (=1)"[Ag(K) -TI(K) - Ag(K) - - Ao (K) ], n >0,
o JIK)"

=(-1) W (44)

Here we make the identification [I1(K)°]* = " to match
the leading term. This allows us to write the expansion in
Eq. (37) as

D*(K) =~ Ay (K) + A (K) + AY(K) + -+ (45)

We can now introduce the following notation for the
resummed propagator with the n leading terms removed:

n—1

DY (K)=D*(K) =Y A (K),
k=0

n>1. (46)
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Consequently, the D’,‘l”(K ) are still resummed expressions,
while the A}*(K) are not. Note that both A%*(K) and
Dy’ (K) are D-dimensionally transverse for every n, and
that the following relations hold for any n > 1:

Dy (K) = (=1)"[Ag(K) - TI(K) - Ag(K) - - -D(K)}",

_ e K)o,
S ey

(K). (47)
D*(K) = Ay (K) + A" (K) + -+ + AW (K) + DI (K),
(48)

Dﬁb—l([() = AZD—1<K) + lelU(K)’ (49)
|

3g
1

12 KPR

ALY (K) ~ mZ'A~20+D) in UV, (50)

DY (K) ~ mZ'A=2+1) in UV, (51)

Notice also the full propagator at the end of both lines of
Eq. (47), and the fact that Eq. (48) is not a partial sum of an
infinite series, but is exact.

3. Applying the new notation

Using this new notation, we can make the schematic
expressions in Eqs. (42)—(43) more explicit. To this end, we

(0.0)
g

rewrite /5, into the following form:

1 oA
0,0 1% v / w pp’
157 =15 | Toke el oK) + D1 (K)P¥ [8o(P) + Dy (P) [Ao(R) + Dy (R)}

Torrl 0 xprl A" (K)AY (P)AY (R) + 3AF" (K)AY (P)AY (R)

+ 301 (K)AY (P)DY (R) + 3D/ (K)D% (P)AY (R)
+ D (K)DY (P)DY (R)]. (52)

We stress that this equation is not an expansion, but holds
exactly.12 Observe that the two terms on the second line of
the above equation contain only As, which have no mass
scale. Therefore, these two terms are power-law divergent
and thus vanish in dimensional regularization. These terms
correspond precisely to the two power-law divergent terms
in Eq. (42). The remaining power-law divergence in
Eq. (43) is located in one particular part of the term
containing D, on the third line of the above equation, as
can be seen by counting the bare propagators. This
divergence will not become explicit until we insert the
explicit expression for the vertices and perform the con-
tractions.

In addition to identifying the terms that contain only
As and are trivially power-law divergent in the UV, this
notation also allows us to identify precisely the terms which
are logarithmically UV sensitive. We can do this as follows.
From the scaling of the A, and D,, in Egs. (50)—(51), we see
|

|
that we can determine the scaling of a product of A,s and
D,,s by simply summing the subscripts: if the sum is N then
the product goes as mZ¥A~2N+1) in the UV. However, we
know that the logarithmically UV-sensitive terms [ones that
lead to the O(¢72) and O(&™") terms in the expansion] must
scale as mj, times a dimensionless integral in the UV, as
such a structure allows it to contribute through the whole
UV tail of the integral. This gives us a powerful prescrip-
tion for identifying the logarithmally UV-sensitive terms:
we can simply sum the subscripts on the propagator terms
(and include one m per HTL vertex if necessary) and see
whether the result is mj,.

We now carry out the above procedure for all of the terms
in Eq. (34) as well as for Iy, to peel away all the power-law
UV divergences and to identify the logarithmically UV-
sensitive terms. We then find the following: for the parts
of I3,

0.0 1 10 / , / / , /
120 =15 | TkeTheaBAY (K)ag (PYDY(R) + 301 (K)DY (P& (R)]

1

0,0 0,0 0,0
= (11505 + (V100 + 15T,

o5 | Tkl el DY ()DEY (P)DY (R

12 . . . .
Note that, from now on, we will use this more compact expression for the vertices.
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1 =5 [ OB (K8 (DY (R)
13 [, OTkrR T %p BDY (K)DY (P)AY (R) + DI (K) DY (P)DYY (R)]
= []g(;H)]go\i + []g(;H)]uo + [Ié:H)]m’ (54)
I 5 [ s o (KD (P)p ()
=" (55)

for the parts of I,

1
1y =5 [ mrprpe e

8
0
= I (56)
H ! wo vo
19 =5 [ amentr i)
KP
H
= [Iflg)]ll; (57)
and for Iy,
1 [ K'PY
Ijw== | 55DV (R
gh ZAPRszz > ( )
= [Igh]gv' (58)

Here, we have introduced the notation [/];;; to mean the
integral I with the propagators replaced by D(K) —
Di(K), D(P)+ D;(P), and D(R) > Dy(R) if i, j,
k > 0. In the case of i, j, k = 0, the replacement is instead
D(K) — Ay(K), D(P) = Ay(P), or D(R) = Ay(R). (In
the case of fewer subscripts, the notation is the same, but
replacing only those propagators appearing in /.) We have
additionally added a superscript “UV” to those terms which
are logarithmically UV sensitive, and hence contribute to
the O(e7%) or O(e™") terms of the final answer. From this
point on, we shall simply refer to them as the “UV terms.”

|
(0.0uv _ 1/
I - _
[ 3g Joo2 4 Jerr

Consequently, those terms which do not have the UV
labeling are UV finite and thus can be computed in d = 3
spatial dimensions. Most of these non-UV-sensitive terms
cannot be analytically simplified much more, and so for the
rest of this organizational section we shall not manipulate
them. Their contributions are listed in Sec. III C.

4. Performing the contractions

In most of the UV terms, the Lorentz contractions are
relatively straightforward and lead to some simplifications.
The general procedure for evaluating all of them, except

those in [Iglg’ﬂ)]UV, which we will separately consider in
Sec. III B, is as follows:

(1) Substitute in the form of the bare propagator A, in
Eq. (39) to the expressions, which contracts some of
the indices of the vertices together.

(2) Use both (i) the expression for the bare vertex and
(i1) the generalized Ward identities in Eq. (31) to elimi-
nate all vertices from the expressions. This allows us
to avoid the explicit expressions for the HTL vertices.

(3) Use the symmetry of the integration measure [, to
permute K, P, R as necessary to further simplify the
expressions.

Let us quickly illustrate this procedure in two cases, one

with only bare vertices [I'"']4%, and one with a 3g HTL

3g
(0,H)

vertex (I3, ]go;- In the first case, we have

/

Tokerlo.xrrd" (K)AY (P)DY (R)

1 1 y / /
= Z/KPR WF’(;,I?PRFS?I?PRDQP (R)

3 | e (4= 2K Da(R) - K]+ (4R + P2 K)TeD(R)])

4
- MPRIJI#{(“‘[ =2)[P- Dy(K) - P+ (4K* + 2P*)Tr[D,(K)]}
- 2
= APR (j_izRZQ_) [P-Dy(K)-P|+ APR%H[DZ(K)] + [UV pow.div.], (59)
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where from the first to the second line, we used step (1) above; from the second to the third line, we used
step (2); and from the third to the fourth line, we used step (3) of our procedure. Finally, in the last line, we separated
out a UV power divergence, which vanishes in dimensional regularization. This is precisely the power-divergent term
identified in Eq. (43). Here, we have introduced a Lorentz-index-free notation, where we represent contractions as dots or
traces depending on the structure:

P-D,(K) - P = P*P*Di(K),
Tr[D,(K)] = DY (K). (60)

We will use this notation extensively through the rest of the work.
In the second case, we have

0.H 1 'V p' uvp ! / op’
IR =5 [ OTkeR T ke (K)AY (P)DY (R)

1 1 / n op'
= 4 [{ 5F;I?/£RF/(;?II(PRD/1/ (R)»

rr K2P?
= % 1{ e #Df”' (R)[I”” (K) + TP (P) — 211”7 (R)]
= % /K - # {Tr[D (R)II(K)] — Tr[D; (R)II(R)]}
=3[ (D O = D, (OTCK) o1

where we used the same steps in the same order. Here, the generalized Ward identity was applied in the contraction of the
bare 3g vertex and the 3g HTL vertex. Additionally, we also made use of the symmetries of the 3g HTL vertex discussed in
Appendix B 2.

Now let us further massage the above expression by using (i) the fact that
(D1 (K) - TI(K) ™ = —K*D3"(K), (62)
for any n [this follows from Eq. (47)], and (ii) the fact that, since P?A}"(P) = &*,

[Dy(K) - TI(P)} = [Dy(K) - TI(P) - P*Aq(P) ]
= PX{D\(K)TI(P)[D(P) — Dy(P)]}*
= —(P?)*{D\(K)[D:(P) — Dy(P)]}. (63)

where in the last line we used the recursion relation in Eq. (62) immediately above. Thus, plugging in the above and
rearranging, we find

19 =5 [ { = TP RIDUPI] s THDAK + D1 (0P (64)

Note that the last term in this expression goes as m$ in the UV, and so can only contribute to the constant term.
Our final results for all the UV terms after the above procedure are as follows: for the parts of /3,

_ 2
o= [ G Do) Pl [ Eina ) (65)
2
50w = [ { {’;_ - ﬂ THD, (K)D, (P)] + o5 P~ Dy (K) - PITe[D, (P)] } (66)
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oy 1 P? K? P?
1% =5 [ PR{—;Tr[DAK)Dl(Pn+WTr[D2<K>}+ﬁTr[Dl<K>Dz<P>} : (67)
1 Y "Vp! / w/ op'
1Y =55 | STipedTig (D4 (K)D (P)D™ (R): (68)
KPR
for the parts of 14g,
1
QI = =5 | {TDy(KT(D) (P)] = Te{Dy (K)Dy (P (69)
and for I,
I3]VY = ! ! P-D,(K)-P 70
alyV = =5 | g lP Da(K) Pl (70)

The sum of the above terms is quite compact, as there are a few cancellations. The total reads:

2P
R2

1 = [ {5 1P D) PITeD(P)] = Ty (RO THD(P)

2K? d-1

2

[P Do(K) - P+ 25 THDy (K) D ()]

1 v, 'V o' ! / /
+ 55 Tk D (K)D™ (P)D™ (R) } (71)

Here, we have factored out all magnitudes from the dot
products, using our unit-vector notation introduced in
Eq. (24). Note the very important point that the HTL
self-energy IT"*(K) inside of the propagators depends only
on K, and not on the magnitude |K|. In light of this, we will
from now on write IT**(K) to make this clear.

At this point, we are ready to tackle performing
the integrations of all the terms isolated and scalar-
ized above.

III. THE COMPUTATION

After the manipulations performed in the previous
section, evaluating p3j has been reduced to computing
[I]VY in Eq. (71) and the sum of the non-UV terms in
Eqgs. (53)—(58). Our general procedure for evaluating these
integrals can be summarized as follows:

(1) Rescale all the magnitudes of momentum variables
by |K| — mg|K| etc. to pull out the my dependence
and make the integrands dimensionless.

(2) Perform the trivial R integral to set R > —(K + P),
and change variables in the remaining K and P
integrals to write them as integrals over the magni-
tude of the four-vectors |K| and |P|, and the
remaining angles.

(3) Further transform from the magnitudes of the
momenta (|K|, |P|) to Euclidean polar (X, y) coor-
dinates, given by

|K| = Xsiny = Xs,, |P| = Xcosy = Xc,,

with y € [0,7/2], X €0, o0]. (72)
We introduce a shorthand notation S,» C,» as these

particular functions will appear many times in our
computation. In all cases, the radial X integral can be
performed analytically (in general d, if necessary).
Let us now discuss the details of these operations.
Details of step (1).—As part of this step, we will define
dimensionless versions of all of the functions, denoted
with tildes. For instance:

1 (K) — mz1*(K), (73)

D, (K) = mg*D,(K). (74)

Gx(K) = mz?Gy(K), X e€{T,L} (75)

where D, (K) and Gy (K) contain [1**(K) in place of
I1*(K). This rescaling also introduces a change in the
integration measures; for example d’K +— m2dPK.
Thus, the integrals change as
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> miP / =m} /N
KPR KPR KPR
e’ AR\ 4-D dPK d°p
()
E <47zm123> 2rn)P | (2x)P

" d’R \Ds(D)
/(2;;)D (20)Ps0)(K + P+ R),  (76)

where we have defined a new integral (again, fﬁ can

be defined by performing the trivial integral over R)
by adding m% to the denominator of the factor out
front. Thus, by factoring out m$, and by simply
“placing tildes on everything else,” we can implement
the desired rescaling of variables. In what follows, we
shall assume that we have already done this procedure
everywhere, and hence drop the explicit tildes for
convenience.

Details of step (2).—After performing the trivial integral
over R, which sets R — —(K + P), we wish to change
variables to radial and angular parts. To this end, we
introduce the following notations. We first define the
Euclidean spherical variables (|K|, ®x), where @y €
[0, 7] is the D-dimensional polar angle defined by

k|

tan ® :|—, K,
K=K 0
0

k|) — (|K|cos D,

K|sin®y).
(77)

The dot product between the Euclidean four-vectors
K and P can be written as
K - P = |K||P|(cos @k cos Dp + sin P sin Pp cos )
= [K][P|w, (78)
where the magnitudes |K| and |P| factorize from the
angular part w = w(®g, ®p,0) with cosd =k - p.
Note that this equation implies that K - P = w, which
will be used extensively in the computation below.

Now, in these new coordinates, the integration
measure f xp can be written

AP:C(d%lmdwllm%mdww

where the angular part of the integration measure is

T T
/E/ ddy sin?! <DK/ d®p sin®! &p
o Jo 0

x / " d0sin?2 0, (80)
0

4. (19

and we have introduced a compact notation for the
dimensionless prefactor
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The integrals over the azimuthal angles have been
performed and included in C(d), as all of our
integrands are independent of those angles. For
reference, we note here that C(3) =2/(2x)%, and
that in d = 3, the integral [, = 7%/2.

Details of step (3).—Here, we stress that by moving to

the (X, y) coordinates, we only change the magnitudes
|K|,|P|, and so K, P remain unchanged. This change
of variables gives rise to a nontrivial Jacobian, which
leads to

/2 ©
/ = C(d)// d)(sj(icf/ dxx2al. (82)
KP e Jo 0

Finally, note that since we only integrate over the first
quadrant in (X, y) space, we have s,,c, > 0 every-
where in our integrals.

We are now in a position to evaluate our terms. We
begin by identifying the independent integrals in
[I tot]UV

2
=t [ lPDi(K) PITD(P). (83)

=mi [ TD(K)D(P). (84
le=mi [ SamDK) (9)
o=mi [ CEHPDAK)- Pl (50

le=ni [ LTDEDAP).  (87)

o=t [ aTEL ST D (KD (P (),
KPR
(58)

which combine as follows

TV =21, — :—‘IB +2Ic+1Ip+Ig + %IF. (89)
Note that we have kept the (d — 1) inside Ip, since we
want to be able to do the € expansion for each of these
integrals separately. Additionally, /g is not UV sensi-
tive, as can be seen by counting the propagator
subscripts as before. Therefore, we will now proceed
as follows. First, as the forms of I,—Ip, are so similar,
and since they are all UV sensitive, we shall treat all of
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them together in Sec. III A below, and define /sgcp to using the generalized Ward identities), we will evaluate
be the corresponding part of Eq. (89): it separately in Sec. III B. Finally, as all the remaining
finite terms, including /g, can be numerically evaluated
1 1 = 1
Iapep = 214 — ZIB Y2+ Ip, (90) in d = 3, we treat them all in Sec. III C.
so that A. Integrals I, — I

After performing the steps (1)-(3) described in the
(91) previous section, we are left with integrals over the angles
in fg, the separate angle y, and the radial coordinate X. As
alluded to above, the X integral can be performed analyti-
cally in general d. In I,—Ip, only the following two master
integrals in X appear:

1
[To]”Y = Iapcp + Ig + EIF
Second, as the structure in the remaining UV-sensitive
term /I is so different from the others (in particular, the
3g HTL vertices cannot be removed completely by
|

® 5 IL(K) 1, (P)
A e X252 +T0;(K) X2 +11,(P)
_ o J [T (K) coty] — [I1,(P) tan y]*~
= [2 csc(d;r)} sy el (K)H,(P){ (R coty — T, (P) tany }, (92)
o0 )2 T ~
/O dxxzd—S%: [ECSC(dﬂ)}[ 424r, (R )], (93)

Here, I,J € {T,L} label the polarization components of the HTL self-energy. We will now proceed through the integrals
one by one, mostly showing details only for 7,.

1. Doing the integrals in general d

To unpack the notation in 75, we use the definitions for the propagators D, and D in Egs. (47) and (26), respectively. This
leads to the following form for 7, in the (X,y) coordinates

-2

/ZP Py(K) - PTe[P (P)]/”zd u
—m ly ———
Ia eC Q47 i 4 (1 +2c}(sxw)
o I,(K I, (P
xs;;c;;/ dx X243 2’( ) 5 2f( ) (94)
0 X S)(‘I‘H[(K)X C)(+HJ(P)

where C(d) was defined in Eq. (81). Using the first master integral Eq. (92), this becomes

Iy = m{C(d) { csc dﬂ)]LzP Pi(K) - PITe[P,(P)]

1J

§ /ﬂ/z ” [0, (K) cot y]I1, (P) {[n,(f() cot]4-2 — [IT,(P) tan ;(]d-z}. 95)
0

1 +2s,c,w II,(K) coty — I1;(P) tan

The integral over y here can be performed analytically, but it is unwieldy, and so we choose the following approach instead.
This integral contains a divergence in d = 3, from the region near y = 0. Near y = 0, the y integrand is approximately

(11, (K) coty]11, (P) {[Hz( K) cot]*~ — 1, (P) tan)(]d_z}
1 +2s,c,w II,(K) cot y — I1,(P) tan y
~ % [T1;(K) cot y]4-2. (96)
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This means that we can isolate the O(e~?) part of I, by evaluating

Ialea = k@) [esctam)] [ p-niky=p) [ g S (97)

0 4 1 +2s,c,w

where in going to the second line, we used Tr[I[1] = 1, which is true because we have factored out the mass scale mg, and
have dropped the tildes on all expressions. We have also introduced the notation

M(R)©2pr = (R Py (K. (98)

Ie{T,L}

We will return to this y =~ 0 term in a bit.
The remaining integral over y, which we define to be

AIAEIA_IAuzO (99)

in the following, will then be finite:

Aty = k() Fesclan)| [ SIP- PRy - PP (P)

1J
o /”/2 4, [T (K) coty]T, (P) {[Hz( ) coty]** — [, (P) tan )2
0 T 2s,c,w I1;(K) cot y — I1,(P) tan y

— [, (K) cot y]4-3 } . (100)

Note that this y integral vanishes in d = 3, as the expression in braces equals 0. Thus, we only need the O(¢) piece of the
integral, and the O(1/¢) piece of the divergent coefficient

mtC(d) Bcsc(dﬂ)] o~ mC(3) = + 0(e)

4e
mf 1
- (2,562_5 O(€%). (101)

The full expression up to O(&°) is then the surprisingly simple

PITe[P,(P)]

911

/n/z I, (K)IT,(P)? (In[IT,(P) tan y] — In[IT
X dy
0 1 +2s,c,w

(K) coty] } (102)

1
II,(K) coty — I1,(P) tan

where a cotangent and tangent canceled in the I, (k I ,(13)2 term. Here, one can analytically compute the y integral in
d=3
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Al =~ / H1< f°>nﬁ Pu(K) - PITH(P, (P)

x {arccos2(w) —%mz [H’(k) r {1 - 2@4

e ) Ve e o

which only leaves the integrals in [, to be computed numerically.
Let us now return to the y ~ 0 term in Eq. (97). We want to use tensor reduction to write the P integral inside of Q in a
simpler way. As written, the P integral in Eq. (97) depends on w = K - P, so we cannot use full d-dimensional symmetry,

but only a restricted (d — 1)-dimensional symmetry, as detailed in Ref. [38]. However, we opt for another approach, which
will yield a much simpler final expression.

Let us consider the P integral first in Eq. (97), so that we focus on

[T1(R )42 / " 4y cotd2 / e (104)
0 pl+2s,cw

Now expand out the denominator in a geometric series (here, we omit the [IT(K)4~2]* for space), resulting in

n/2 pPrpY /2 < DH P
dy cotd-2 L dy cot?=2 /P”P” -2 "
A 1y co )(AI"FZSZC;(W A y co ;(Z A (=2s,c,w)
T,
:A d}(COtd 2ZZ/P”PD 4SJ(C){ (K )Zm
Z / =D 2= / PrBY(R - Py, (105)
P

Here, in going to from the first to second line, we used the symmetry of the P integral to remove all the terms with an odd
number of P. Thus, we must evaluate a generic integral of the form

[TI(R )2 / pupr(i - Py, (106)
P
In Ref. [38], they provide the result'? (translated to our notation)

N 2m —1)!!
L(K'P)z D(D+2)~~(D+2m—2)[s’ (107)

along with a recurrence relation between totally symmetric tensors." Using the recurrence relation, and the Ward identity
for TI(K), we conclude

Ry [ Pk PR = TR b +(22’)”__‘_1<g!+ o /. (108)

Additionally using

™ 1 1+a 1+5b
d =—-B ,— |, 109
[ w38 (5057 (109

PSee Eq. (30) in Ref. [38].
"See Eq. (21) in Ref. [38].
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where B is the Euler Beta function, we find in our case
. 7/2 prp
[H(K)d‘z]””/ dy cotd‘zx/ S
0 pl+2s,cw

L TR S (2m+ (2—d)+ 1 2m+ (d—2) + 1
_fzét B( 2 ’ 2 )

m=0

(2m — 1)1
XD(D+2)..-(D+2m)[s

U PRTER)
——Tr[H(K)d‘z]WFIE (2))sec<7d> / . (110)
2 P

Therefore, Eq. (97) can be reduced to

(O 1 b3 o
Inlye0 = —mbC(d) C;‘;Szl)r(z)rré)z ) [Esec <7d>r [Z Te[[1(R)4-2), (111)

so that we have reduced 7, to the sum of the two integrals Eqgs. (111) and (102), the latter of which can be performed
numerically in d = 3.

The remaining integrals /g—/I, can be performed similarly, and in fact, all of the remaining y integrals that arise result in
relatively simple analytical results in general d. Using the two master integrals in Eqs. (92)—(93), the angular averages in
Egs. (107)—(108) and the Euler-Beta-function expression in Eq. (109), we find the following results:

Iy = mC(d) [gsec<%l>r A Te[[1(R) S| Tr{I1(P)'5), (112)
te = —amic@ " T Lo ()| [ mnci, (13)

and

Ip = (d— DmC(d) Bcsc(dﬂ)} ) L Te[I1(R)41), (114)

Combining all of these results as in Eq. (90), we define

Iasco @)™ = -mic(@ | Fsee(5) | [ (G mineeys)

wese() T(d)

T

{2Tr[n(f<)d—2] + (% + 7) Tr[II(K)4"] }) , (115)

so that the total contribution from I,—Ip, valid up to O(e°), reads

Incep = [Iapen(d)]YY + 2A1,, (116)

with Al, as in Eq. (103).

2. Extracting the coefficients of the € expansion

We now turn to performing the & expansions of [/ ygcp (d)]VY above to calculate the terms in the expansion of the pressure
in Eq. (32). The only divergence is contained in the overall trigonometric coefficient, which has the expansion
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/2 nd 1 n?

{2 ec(z)] = e +12+0( e), (117)
and so we see that Eq. (115) above contributes to p_, in the
expansion of the pressure. Moreover, from the € expansion
of the remainder of the integrand, this term likewise
contributes to the remaining p_; and p, terms as well.
Recall that the IIs appearing in this expression are d-
dimensional self-energies, and thus to calculate the sub-
leading contributions, we must expand not only the explicit
d = 3 — 2¢ appearing in the expression and the measure,
but we also must expand the d-dimensional HTL self-
energies in a series

I, (K) = T1;o(K) + ell;  (K) + 2T1,,(K) + O(€?),

Ie{T,L}. (118)
The explicit details are shown in Appendix B 1. Notice that
the £72 divergence in Eq. (117) means that we will need the
expansion up to II;, in the calculation.

However, it turns out that we can avoid the explicit
appearance of I1; , in our expressions, using the following
approach. We write down a simpler integral [/_,(d)]"" that
will (i) contain the full O(e72) behavior of [Isgcp(d)]VY,
but (ii) is simple enough to be computed analytically in
general d. This will mean that the difference [/ sgcp(d)]YY —
[1_,(d)]VY only starts at O(¢™"), and so we will only need the
terms up to II; ; to calculate it.

To construct this simpler integral, we examine Eq. (115).
Since Eq. (117) contains the explicit 72, the coefficient
p_p arises from setting d = 3 everywhere else. If we do
this, we see that the first two terms of Eq. (115) will cancel
(since Tr[IT] = 1), and only the term involving

T(I(R)*] — TR (119)
remains. Using this as motivation, we define
mesc(%
@) = -mic@ 5o )| 5 i
X GH) A Tr[I1(K)?]. (120)

TABLE II.
Riemann zeta function.

As shown in Appendix D, this integral can be performed
analytically, yielding

o il )] 25

()19

(121)
where y is the digamma function
'(x)

= . 122

v =1y (122)

With these new definitions, we can thus split /sgcp into
three pieces, which contribute to Eq. (32) in the following
manner:

(1) [I_5(d)]YY contributes to all coefficients p_,, p_;,

and po,

(i) [Tapcp(d)]PY = [I_5(d)]YV contributes to the coef-

ficients p_;, and p,
(iii) Al contributes only to the coefficient p,, which
enters with a symmetry factor of 2 from Eq. (71).
Performing the ¢ expansion in the three terms identified in
this list, we arrive at a set of angular integrals to perform,
only some of which can be performed analytically. A full
list of these contributing integrals is given in Appendix D.
In Table II, we summarize the computed contributions to
the coefficients p_,, p_;, and py,. As most of the one-
dimensional integrals contributing to p, must be performed
numerically, we mainly list numerical values for that row of
the table. We note here that these numerical integrals can be
easily calculated to high precision, and we show them all in
Appendix D 2. The full contribution from 7 pcp is thus the
sum across the columns of this table. We have verified that
we obtain the same total results if we do not introduce
[1_,(d)]YY, but rather use the expansion of I1; in Eq. (118)
up to second order.

B. The Iy term

We now turn to the integral I, given in Eq. (88), which
we reproduce here:

Contributions from /,pcp to the pressure after performing the necessary integrals. Here, ¢ is the

[I_(d)]"Y [Iascn(d)]VY = [1_5(d)]%Y Al
P2 % 0 0
P z [Ltlla Jo & = 2 Tr{ITy(K)? In[TTy(K)]}) ~ 3.74046 0
Po L [£(3) — 1778-2992 ~10.84411 ~ —3.71084
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SR on DM (K)D™ (P)D¥ (R). (123)

— .4
IFsz/
KPR

The evaluation of this integral proceeds in much the same
way as the previous ones. However, we must first perform
the contractions, which are more complicated in this case:
as remarked above, the two 3g HTL vertices cannot be fully
removed by the generalized Ward identities, since they are
only contracted with resummed propagators.

Let us start by isolating the UV sensitivity in Ig. It is
straightforward to verify from the power countings in
Table I and Egs. (40) and (41) that I has a UV logarithmic
sensitivity only when all three momenta are hard. This
leads to the following two conclusions for the UV sensitive
part: Firstly, since the momenta K, P (and R) cannot be
scale-separated when they are all hard, there is really only a
single independent integration momentum (the variable X),
and thus we expect only a single O(e™') divergence.
Secondly, when all the momenta are hard, the resummed
propagators approach their bare versions [see Eq. (39)],
which leads to approximately direct contractions between
the two 3g HTL vertices in this O(e~!) term. This second

D (K) = 8" Gy(K) — KiK't Gro (K)
1

2 1
+ K'K* (ﬁ - GL(K)>, (124)
where I € {T,L} and Gy (K) = G1(K) — GL(K). Here,
we have also introduced the following notation:
RERY = iR,
(%fﬂ + 5;{/4/ — &tﬂ , (125)

with 8% = §48/is and 8" = 5950, Hence, &; picks
out spatial indices and ¢y, picks out the temporal index. The
UV sensitivity will now arise from only taking the first term
in Eq. (124) from each propagator. The two remaining
terms are seen to be more suppressed in the UV, and so lead
to finite contributions.

Using the symmetry properties of the integrand [z, We
can now write Iy in the form

3
point in particular motivates us to isolate the “Kronecker-6- Ir = [Ig]9Y + Z A [](:i{ (126)
like part” of the resummed propagators. We do this by =1
unpacking the ¢ parts from the projection operators defined
in Egs. (B4)—~(B5) and rearranging the terms to arrive at where the UV part [Ig]YV is given by
|
Y K)55 G, ()3 Gy (R)). (127)
KPR i W
The remaining finite parts Alg ) are given by the following expressions:
1 v, /IJ/ / yy A A,
sl =i [ onitriiy | 33107 0PI Oy RIS G (K)
+3 {Z(%)V GW<R):| K%Ky PRPy G (K) G (P)
W
- RERE P PR G ()G ()G (R) . (128)
A1<2>:6m4/ [ 8" G/(K) - REREG H 87 G,(P) - P4PYG }
F E o Z (K 7Kt G ( Z J(P)— Py L(P)
A AP BAPIVN H I,é
x I1(K) [ (K) — Y (P)] —— LB (129)
RY[R? + I (R)]
and
a1 =nt [ 306 (6) - RiRY G ()
KPR |7
, N I, (P I (R
x PYPY I (K)IIMY (K)) L(P) L(R) (130)
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To obtain Eqgs. (129) and (130), we first eliminated the
3g HTL vertices by using the generalized Ward
identities and then plugged in the definition of G
from Eq. (27), where it occurs explicitly in Eq. (124).
Note also that the term proportional to SI*%5, K" P*R?
has dropped out since it vanishes due to the Ward
identity.

Before proceeding, we note the following fact, which we
will use in evaluating these expressions. Namely, upon
switching to the (X, y) coordinates, the 3g HTL vertices
scale as

where the 1% 5, (v, Q) defined here depends only on the
angles. This fact can be seen from the explicit integral repre-
sentation of the 3g HTL vertex function in Appendix B 2.
We now proceed to the computation. As we did in the
previous section, we shall only evaluate the UV-sensitive
term [Iz]YV in this section, and we defer the evaluation of

the finite terms AI{ to Sec. I C below.

1. The X integral in d dimensions

We proceed to evaluate [Iz]YV using the steps introduced
at the beginning of this section. After changing to the (X, y)
coordinates and using the scaling Eq. (131), we see that we

o, = —5F” 131
KPR kin (0> ). (131) have only one master integral in X to evaluate, namely
|
0 dxx2d—1
A (X + L, (K))[X> + I, (P)][X* + [y (R)]
H;(y,Q
= [rese(nd)] —<— 71C
21 (K ) 11, (P)][11,(K) — Ty (R)] 1, (P) — Ty (R))
= [mesc(nd)|Zy(1; T, W), (132)
where the function H, is given by the expression
H,y(y, Q) = T, (K)*~'[I1,(P) - Ty (R)]
+ 11, (P) Iy (R) - T1,(K))
+ Iy (R) {1, (K) = 11, (P)]. (133)
Here we have also introduced the notations
o _IL(K) o T (P) . 1, (R)
II,(K) = , II,(P) = , R 134
() == (P ==, (R =25 (134)
and the D-dimensional polar angle ® appearing in II(R ) is defined as
k| 242k
oy = 1 [+ 2k
(Ko + Py)?
_ [sgsin® Dk 4 ¢ sin® Dp + 25,,¢, sin D sin Dp cos O (135)
N 52 cos? Dy + c2cos> Dp + 25,c, cos P cos Dp
Note that the divergence is contained in the trigonometric coefficient
esc(nd) = -+ e 4 0(2) (136)
wese(nd) = ——+ —¢ €).,
2¢ 3
Using the above master integral, we find the following expression:
§d-2,0d-2
[15]YY = miC(d) [z csc(nd)] / / 4{2sxc )
x ([0 pr (0 QP LT T5T) + 3[5F}??>R Q)PT4(T;Ls L)
+ 360 G QP T AT T L) + [60%0 (r. Q)PTa(L: L: L) ). (137)

074015-23



TYLER GORDA et al.

PHYS. REV. D 104, 074015 (2021)

Here, we have introduced a shorthand notation for con-
tracted indices, e.g., [0, (y. Q)2 = s[5 (1. Q) x
or %I;,R ,Q). We note that in general d, the functions Z,
also depend on the angles y and Q.

2. Expanding in ¢ and doing the angular integrals

Following the procedure used to evaluate the other UV-
sensitive contributions, we now turn to performing the &
expansion of [Iz]YV to calculate terms in the expansion of
the pressure in Eq. (32). From the above expansion of the d-
dimensional trigonometric coefficient, we can conclude
that [1;]YV contributes only to the p_; and p, terms of the
pressure. Recall that, in order to obtain the correct p
coefficient, the HTL vertices appearing in the integrand are
kept d dimensional. Therefore, to calculate the subleading
contributions, we must expand not only the explicit d =
3 — 2¢ appearing in the measure and the expression, but we
also must expand the d-dimensional 3g HTL vertices up to
O(¢); schematically:

5f’1?}eR (., Q) = 5f‘l(;f/1€PR (r, Q) + 5flf?l€PR ,Q)e + 0(52)-
(138)

The details of the terms in this expansion are given in
Appendix B 2, and the general approach is as follows: The
3g HTL vertex is given by a d-dimensional integral
representation. We introduce a modified Feynman para-
metrization, which allows us to do these d-dimensional
integrals, at least order-by-order in ¢, leaving only the
Feynman parameter left to be integrated over. Thus, we are
able to write the functions in the above € expansion as one-
dimensional integral representations. As far as we are
aware, such an explicit evaluation of the HTL vertices
has never been performed before in the literature.

With this approach, the p_; and p, contributions from
[Ig]VV [including the symmetry factor 1/12 from Eq. (89)]
can be written as six-dimensional integrals (over y, @, ©p,
0, and two Feynman parameters). We compute these
integrals numerically using Monte Carlo integration rou-
tines provided by the CUBA library [39]. Our results are
summarized in Table III, where in the p_; term we see the
anticipated direct contraction of the two 3g HTL vertices.

C. The remaining finite terms

Having discussed every truly UV-divergent integral, we
are left with the finite terms. These include the integrals Iy

and AIY" defined in Eqs. (87) and (128)—(130) which are

finite contributions to the potentially divergent UV term

[I]YY, as well as the four integrals [Ig(;’o)]m, [IF(;'H>]110,

1597,y and [1§), defined in Egs. (53), (54), and (57),
which were seen to be finite from the start.

These terms all involve a coupling between the two loop-
momenta to a degree that renders one unable to perform
factorizations and other simplifications akin to those seen
in Sec. III A. However, the finite nature of these terms
makes them simpler to evaluate numerically, as there is no
need to extract the divergent parts when evaluating them,
unlike in the previously considered contributions. For this
reason, we automate the evaluation of these terms, perform-
ing any remaining non-Lorentz-invariant tensor contrac-
tions by adapting the implementation discussed in Ref. [40]
(although in Euclidean space).

Various properties of the HTL vertex functions, in
particular the generalized Ward identities in Eq. (31) and
their tracelessness, are again used extensively to reduce
everything down to terms containing either no vertex

: 000 0000
corrections or the components 6l g pp or 6I'g’p’ i _p, €xcept
)

in the case of A/ E:l . For this one separate term, we cannot

fully remove the spatial components of the 3g HTL vertex

function, but we reduce it as much as possible by using
RESTIf = 1 (KY = 3K

1
=L (Kﬂér/ll(yfl’)R - K05F?(D£R)7

™ (139)

and then applying the generalized Ward identity on the first
term. This way, we can reduce the number of spatial indices
appearing in our expressions, as the 3g HTL vertices with
more time components are easier to compute numerically.

In the end, with this AI(FI) term, we can reduce all
expressions to terms involving the four independent
expressions 61%,, 6199, S5 .. and 6T, with their
indices contracted either with a second occurrence of one of
these terms, or with the self-energy functions I1°0(¥),
°(Y), and M%(Y), with ¥ € {K,P,R}. More details
about these manipulations can be found in Appendix CI c.

The 4g HTL vertex function appears in these finite terms
for the first time; its properties are discussed in
Appendix B 2. It should also be noted that, while here
we are able to work in an integer dimension, computations
of the HTL integrals in general d are easily automated using
the method outlined in Appendix C 3, and in practice this
method was applied in our computation.

TABLE III.  Contributions from [Ig]YV to the pressure after performing the necessary integrals.
P-1 Po
uv 2 dys,c, 2 _
] o S0 B 10T U Q)17 = 0.4340(15) 0.2483(14)
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TABLE IV. Contributions from the finite terms to the analytic
part of the pressure p,

Contribution Po
Ig —2.9229(18)
1 -

Alf;) 0.0810(7)
AI(z) +0.285(6)
AI(3) +0.0838(5)
I 00)]”] —0.6772(12)
[13g ]“0 —1.309(2)
[ 3g ]111 +0.2027(6)
[1 ] —0.669(2)

With the integral scalarized, we simply follow the steps
outlined in the beginning of Sec. III, setting d = 3 every-
where as these terms are finite. When changing to (X, y)
coordinates, we define new master integrals, which we do
not show here but are easily computed. We also note here
that similarly to the 3g HTL vertex, the 4g HTL vertex
scales homogeneously as a function of X

1 .
O (.9,

which can be seen from the explicit integral form (Eq. (B36)

After this, the remaining nontrivial integrals (over y, @,
®p, 6, and possible Feynman parameters in terms involving
irreducible vertex corrections) are computed numerically
using Monte Carlo methods [39]. The numerical results for
the finite contributions are displayed in Table IV. Note that in

STHN o o= (140)

[Ifg)]“, the coefficient of the term o ST%%, turns out to
vanish, and as such the vertex corrections contain only a
contribution o SI%Y p—k.—p- Finally, we remind the reader

that there is a symmetry factor of 2 for the 1 g o H) terms in this

table [see Eq. (34)], and a symmetry factor of 1/12 for the
AI<F') terms.

IV. RESULTS AND CONCLUSIONS

We are now in a position to present our final results. By
adding the corresponding elements of Tables II-1V, we find
the following fully soft contributions to the pressure in
Eq. (32):

11 o 117°
= T y(K)?] = ——

. {”ﬁ%—%T ()2 [Tl ()]

/2 dy sin y cos y R
oy
+A 12(1+2-wsin;(cosx)[ 0.KPR

(141)

ol

— 11.6840(15), (142)

po = 17.150(7). (143)
Here, we note again for the reader that the angular integral
fg = 1% /2 [see Eq. (80) for a full definition of the measure],
and we have used a shorthandw = K - P/(|K||P|). The HTL

self-energy I1, and the 3g vertex correction I o can be found
in Appendixes B 1 and C 1 respectively; note that we have
also scaled out mg from them.

Though our final results can be written in a relatively
compact form, the intermediate steps to arrive to this result
involved many complex manipulations and techniques. To
this end, to verify that our results are correct, we conducted
many cross-checks of the intermediate steps. Firstly, all of
our numerical results were checked by multiple indepen-
dent codes, each of which used a different implementation
(e.g., full automatization versus partial simplifications by
hand), which gives us strong confidence in our results. For
the UV-sensitive terms in /sgcp, we have some additional
cross-checks. As mentioned in the earlier section, we have
verified that our results are unchanged if we do not
introduce [I_,(d)]"V, but rather use the previous expres-
sions containing I, through I1,. We have also performed a
check of the highly nontrivial tensor reduction in
Egs. (107)—(108): we have verified that our results remain
unchanged if we do not perform this averaging but instead
perform the £ expansion and then perform the more coupled
angular integrals that arise.

In addition to these internal cross-checks, we find that we
reproduce the known coefficient of the leading logarithmic
O(a?In?a,) contribution to the pressure obtained in
Ref. [19]. That work obtained this coefficient by expanding
the two-loop HTL pressure in the semisoft region and using
a cutoff prescription. Here, on the other hand, we used the
fully resummed expressions, without expansions, and used
dimensional regularization to arrive at the result. Thus, the
two techniques that yield agreement are quite independent.
Note that if we use our result here for p_, in the expansion
in Eq. (33), we find that this result yields a coefficient for
the O(a} In? a;) term that is a factor of 2 larger than the
result in Ref. [19]."> However, this is only the In?(mg/A;)
term arising in p3, which does not correspond to the full

In? a)/? term in the sum over all regions. As we discuss in
Appendix E using a simple example, it is natural to expect
the In? ai/ 2 coefficient to be precisely half of this
In? (mg/ Ay) coefficient. Thus, we do indeed find agreement
between our result and Ref. [19].

As a further additional check with the literature, we have
extended the formalism used in Ref. [19] to extract parts of

the subleading logarithmic contribution, corresponding to

BThere is also a discrepancy in the overall sign. This is due to
an error in Ref. [19], where the free energy was calculated instead
of the pressure for this term. We thank J.-L. Kneur for bringing
this issue to our attention.
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pieces of p_;. Within the cutoff regularization, there are
two very distinct contributions to p_; from the two-loop
HTL pressure: One contribution arises from the soft-
semisoft region, obtained by expanding the two-loop
HTL pressure for only a single loop momentum, and
corresponds to the second term of Eq. (142). The other
contribution arises as a subleading correction to the semi-
soft-semisoft region [which in the (X,y) coordinates has
cutoffs on the radial X integral]. This correction is regulator
dependent, as it is sensitive to the exact ratio of cutoffs that
occur in the double logarithm, rather than just the para-
metric size of the ratio. However, there is also a regulator-
independent piece, corresponding in the language of the
present paper to the last term of Eq. (142), due to the unique
scaling properties of the doubly contracted vertex correc-
tion. As with the p_, term, these regulator-independent
pieces are found to be consistent between the two methods,
giving us further confidence in our calculation.

We now turn to remarks upon our results. The first is that
though we have rederived the same analytic value for the
coefficient of the O(a; In? a;) term, the integral expression
for that result was much more complicated than the
remarkably simple integral expression for p_, above. In
particular, in Ref. [19], the integral expression did not
depend on only one momentum K, but rather both K and P.
In fact, the integral given for p_, above is exactly the same
angular integral that appears in the Freedman-McLerran
O(e? In a,) result. Looking back through our analysis, we
find that the angular tensor reduction was what lead to this
vast simplification, as such a decomposition was not used
in Ref. [19]. We further note that, since this same integral
appears in p_,, the corresponding contribution to p_,
[namely, the second term of Eq. (142)], is also an integral
that appears in the a?p3 term.'

We also remark here upon the fact that in Ref. [19], the
authors found that the same final result would be obtained if
they set K on shell, with Il o +— Il o(iKy = |k|, k) = 1/2
and IIj o = IT} o(iKy = |k|, k) = 0. This is also seen to
work in the case of the O(a? Inay) coefficient. (Here we
have used our convention of factoring out my.) However,
we now see from the analysis in the present work that the
replacement working for the O(a3 In? a,) coefficient fol-
lows directly from it working for the lower-order result,
since the integral expressions are exactly the same. It is
tempting to speculate that the leading-logarithmic result at
all orders may be related to the integral appearing in the
a?p$ term, and may allow for such a substitution.

As a further remark, we note that there have been many
efforts to identify which diagrams give dominant contri-
butions to an HTL calculation [42,43]. Here, we find,
interestingly, that contributions containing irreducible HTL
vertex corrections (i.e., those which cannot be removed

"“This is the term involving the integral & defined in Ref. [41].

using the generalized Ward identities) are clearly found to
be smaller than those containing self—energies.17 We find
that these corrections, though necessary for full, correct
results, are only a few percent of the total. This observation
is gauge invariant, though not unique, since it depends on
the basis of irreducible vertex integrals chosen in the
po term.

Our result in Egs. (141)—(143) constitutes the fully soft
contribution to the pressure: o p5 in Eq. (6). This physical
result still has some scheme dependence arising from the
ambiguity in splitting the semisoft modes to the hard or soft
sectors, which can be seen from the residual dependence on
the factorization scale A; in the expressions. In our
accompanying Letter [20], we further discuss this point,
as well as analyze the relative importance of this contri-
bution to the pressure and the effect of this contribution
on the convergence of the weak-coupling expansion.
Moreover, by undertaking the present calculation in dimen-
sional regularization and by having the clear roadmap set
forth in the Introduction, we believe that at least the further
a p%' term can be obtained in a straightforward manner. In
particular, there is no difficulty in combining the contri-
butions from different kinematic regions, since they are all
regulated consistently in dimensional regularization. With
the o p5 term in hand, one could obtain the subleading
O(alInay) coefficient in the weak-coupling expansion,
which may in turn allow one to use the principle of minimal
sensitivity [44] to constrain the dependence of the pressure
on the renormalization scale A. This would potentially have
important phenomenological implications for, e.g., the
EOS of neutron-star matter [14,15]. Additionally, the entire
organizational overview presented in the Introduction may
have important consequences in itself: it may be possible to
resum these logarithmic contributions to the pressure in
some systematic way. An investigation of these points is
left to later work.

Finally, we remark that there are some possible gener-
alizations of this work which may be greatly aided by the
organization and machinery that we have developed here.
For example, including nonzero quark masses [45,46] or
generalizations to nonzero temperature [18] might be
possible using our present techniques. Such endeavors
are, however, also left for the future.
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APPENDIX A: FEYNMAN RULES
The standard group-theory factors for the SU(N,.) gauge group, some of which appear in the text, are given by
dy=6=N2?-1,
CA5Cd = fabcfabd — NC(3Cd,
war  NZ-1

where N, is the number of colors and £%¢ is the fully antisymmetric structure constant. The generators of the fundamental
representation (¢¢),; are normalized according to Tr[tt?] = 59 /2.

In the following we give the bare Feynman rules of QCD necessary for the computation of the diagrams under study. The
vertices, with momentum flow towards the vertex, read:

Q
(To)is? (P.Q.B) = P = g[8 (P QP +5(@ — R)* + 3" (R— P)], (x2)
R
P Q
(Fo)gbyclzig(P7 Qa R7 S) - = _92 |:feabfecd (5'[“)51/0 - 5#051/p)
(A3)
S R + feacfedb (5,u,aéup - 5;w5crp)
+ feadfebc (6;11150;2 - 5up50u):| )
Q
(%)Z,ij(Pv Qv R) = P - gfy'u(ta)iﬁ (A4)
R
. Q
e
(Wo)oe(P,Q, R) = P . = 19 farc Q" (A5)
’)'."
"R
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The corresponding propagators (with massless quarks), on the other hand, read

Bo(PQ) = P @ =0 (P+Q)| — 10 5| o
(S0)5(P.Q) = P —— Q = 8PP+ Q) 2, (a7
(Co)(P.Q)= P -eenon- ST Q =6ud (P +Q) 7y (A8)

We also define single-argument propagators to be two-argument propagators after enforcing the momentum-space delta
function; for example (A4} (P) = 8¥8,,P~% — (1 — £)P*P*5,,P~*. In Sec. B below, we will write down some of the rules

improved according to the standard HTL scheme.

APPENDIX B: THE HTL FRAMEWORK

In this Appendix, we outline in detail the Euclidean HTL framework used throughout this work. To make our HTL
appendixes self-contained, we repeat here some definitions that are scattered throughout the text. We leave the detailed
evaluation of vertex functions to later appendixes. We found the discussions in Refs. [25,37,47] helpful when creating this

appendix.

1. HTL propagator and self-energy

a. Propagator

The HTL-resummed gluon propagator
Dy (P.K) = K

is defined in the covariant gauge as

D*(K) =Py (K)Gr(K) + P (K)GL(K) + &5

where the parameter £ fixes the gauge and

1

G =, (k)

Ie{T.L}. (B3)

The computation performed in this paper is most efficient
to carry out in the £ = 1 gauge, which we use throughout
the text. The D-dimensional transverse and longitudinal

projection operators, P#*(K) and P, **(K), are defined as

P (K) = 86 (87 — K'I),

PL(K) = Py (K) = PY'(K). (B4)

P = 0,40P)(P+ K)D"(K) (B1)
K*KY
(K .
[
with
Py (K) =8 — K"K, (BS)

where K = K/|K|, and k = k/|k|. These projectors are
D-dimensionally transverse to K and obey the relations

(Pr)* = Pr. (PL)?=PL. P (K)PL*(K) =0,

(B6)

and
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Tr[Pr] =d -1, Tr[PL] =1, Tr[Pp] =d. (B7)

The Ilt and II; appearing in the denominators of the
HTL propagators are components of the one-loop HTL
self-energy (or polarization tensor) I, = 6,,I1* of the

gluon field. These functions satisfy the general relations

11 () = PRI () + P (R)TL(K).  (B8)
and
I9(K) = (d - T15(K) + T (K).
o) = X, i) (B)

Additionally, the self-energy satisfies the trivial Ward
identity K*T1**(K) = 0.

b. Machinery for manipulating the propagator

We let Af'(K) denote the bare propagator with
II;(K) =0, I € {T,L}. We can extend this notation to
label the other terms in the expansion of the full propagator
in powers of the self-energy:

nlls
AL (K) = (=1)"[Ag(K) -TI(K) - Ag(K) - --Ag (K)]*, n 20,
LG (( ))j A(K). (B10)

Here, we use a dot to represent contraction of adjacent
indices, and we use the notation

nlls

v — [** (K)Halaz([() .

[T(K)" ) ne-w(K),  (B11)
and make the identification [T1(K)°]*

leading term. Thus,

= & to match the

D" (K) = A (K) + AV (K) + A (K) + (B12)
We can now introduce the following notation for the

resummed propagator with the n leading terms removed:

n—

D¥(K)=D*(K) -y A(K),

0

n>1. (B13)

»
Il

Consequently, the D,’(K) are still resummed expres-
sions, while the A" (K) are not. Note that both A}*(K) and
Dy’ (K) are D-dimensionally transverse for every n, and
that the following relations hold for any n > 1:

Dy’ (K) = (=1)"[A¢(K) - TI(K) - Ag(K) - - -D(K)],
— o B b, (B14)
D"(K) = Ay (K) + AY(K) + -+ + AL (K) + Dy’ (K),
(B15)
D)~ (K) = AZ(K) + Dy’ (K), (B16)
DY (K) ~ AW(K) ~ m¥ K2 in UV. (B17)

Notice also the full propagator at the end of both lines of
Eq. (B14), and the fact that Eq. (B15) is not a partial sum of
an infinite series, but is exact. The power counting in
Eq. (B17) allows one to use this notation to extract the form
of the UV-sensitive terms in our calculations.

c. Self-energy

In the HTL approximation relevant for cold QM, the
quark part of the one-loop gluon self-energy is computed
assuming that the momentum flowing along the quark lines
is much larger than the external gluonic one. In this way,
one obtains the result

iK o
" (K) =m / (5#05”0 V"V”)
(K) = m v K-V

where we have introduced the lightlike four-vector V¥ =
(—i,¥) with ¥ a unit vector in R?. The integration measure
in d dimensions is defined as

ﬂ = @ A " 40,sin?2(0,)

h(d) (1 I I
=1 [ =

(B13)

where z, = k - ¥; note that the measure here is normalized
to integrate to unity. The d-dimensional in-medium effec-
tive mass scale mg is given by

=) i
2 2.2 eyEA}% 2 4F(§)
Py ”f<4fw% (4m 5T
Zg ﬂf

This is the generalization of the effective mass scale to the
case of multiple fermion flavors with different chemical
potentials 4, at zero temperature. Throughout our text, mg
denotes its d-dimensional value, and is never expanded in &.

(B20)
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The scalar functions Il and IT; can now be computed using the constraint equations in Eq. (B9) with the results
IV (K) = i / 5 = m2,
9
K 1 . d |k}
M°(K) = mZ |1 /’7°= B|1=2F1 (5. L= || B21
®) =1+ [ | =m 1ok (5055 (B21)

where ,F is the hypergeometric function, and where the final equality assumes |k|/K, € R and Re(d) > 1. If we now

denote
0 1
ﬂa(‘x) = 8_Z2Fl (57 I’Z;x>

’

Z=a
o 1
Ka(.x) Ea—zzzFl (5, 1,Z,x> z:a, (B22)
we find a very compact expression for the I integral
M(K) = mg |1+ L PO P G LT 3
= mg |1 +iKoL(K) + 132 ( = =Kkl =7 JEEHO(E)], (B23)
K2) 2 K2
with the notation
iKo + |k|>
LK)=--—1In <7 . (B24)
2|k| K|

Putting everything together, we find that the scalar functions Il and II;, expanded up to O(&?), can be
expressed as

H](K) = H]’O(K) + EH[J(K) + 821—[[‘2([() + 0(83), 1 e {T, L} (BZS)
where the coefficients above are given by

2

HL O(K) | |2 [1 + lKOL(K)]
K2 |k|2

I, (K) = méw’h/z (‘ 7%)

K2 |k|2
I ,(K) = —mém&/z <— 7(2) (B26)

and
Iy, (K) = ! ZH (B27)
T,n - D) L,

On occasion, we also denote I1,,, n = 0, 1, 2, for the HTL self-energy fensor truncated to the appropriate order. It turns out
to be convenient to express these results in terms of the polar angle @, which is defined in Eq. (77). For example, in D = 4
dimensions, we obtain:

m2
M (®g) = TEcot(CDK){arctan[tan(dDK)]cscz(QDK) - cot(q),()},

I (®g) = mlzacscz(d),{){l — arctan(tan(®)] cot(<I>K)}. (B28)
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Note that arctan[tan(®y)] = @k only for ®x € [0, 7/2],
Since we need expressions valid for the larger interval
@y € [0, 7], we would need to replace arctan|tan(® )] by
@y — - 0(Pg — 7/2), where 0 denotes the Heaviside step
function, if we wanted to further simplify Eq. (B28).

2. HTL effective vertices

As explained in the main text, treating the soft modes
correctly within the HTL theory requires modifying not
|

r'*?”(P,Q,R)= P

abc

with the decomposition
r“»(P,Q,R) =T3"(P,Q,R) + 6" (P,Q,R), (B30)

where the bare 3g vertex I'y” can be read off from Eq. (A2).
The 3g HTL vertex function 8I**” is in turn given by the
expression

Qg iR,

51" (P, Q,R) =m§/wv”vp{
v
(B31)

The (tensor-valued) vertex function above is only defined
when the sum of all of its arguments P, Q, and R is zero,
and it is totally symmetric in its (Lorentz) indices (u,v, p)

|

P Q@
Fchilg(P7 Qv R, S) =
S R

where the bare 4g vertex (I'y)%,”" can be found in Eq. (A3).
The general expression for the 4g HTL vertex function
ST is uniquely determined from the knowledge of its
symmetries, the 3g HTL vertex, as well as the Ward identities
in Eq. (31). Here, however, we limit our detailed discussion
only to the special case that we need in Eq. (22). That is, we
take R = —P, S = —Q and we sum over two adjacent color

indices. This gives for the 4g vertex the expression

P-VQ-V P-VR-V|

= (Fo)gbycpda(Pa Qv R, S) + 5FZZ£IU(P’ Qv R, S)r

only the propagators, but also the n-point functions. This
Appendix contains the definitions of the three- (3g) and
four-gluon (4g) vertices appearing at zero temperature.

a. The three-gluon vertex
The effective 3g vertex is obtained by adding the HTL

loop (which, at zero temperature, originates solely from the
quark loop) to the bare vertex

@

= igfabcl"MVﬂ(P’ Q7 R)a (B29)

R

[
and traceless in any pair of indices, i.e., #*6I'**” = 0 since
V2 = 0. Furthermore, it is even (odd) under even (odd)
permutations of (P, Q,R).

Contracting Eq. (B31) with one of the momenta, for
example with P#, yields
i0Qo iRy

OV R-V

PHsTHP (P, Q. R) = m3 / V”Vf’{ ] (B32)

Comparing this to Eq. (B18), we find that the 3g HTL
vertex function obeys the generalized Ward identity given
in Eq. (31).

b. The four-gluon vertex

The effective 4g vertex is given by the decomposition

(B33)

[
FZZI;Z(P’ Q’ —P, _Q) = _ngebafebcrlwpg(P’ Q’ =P, _Q)
(B34)

with the decomposition

l—vaa(P’ Q7 —P, _Q) = F/(;D/)O'(P’ Q’ —P, —Q)

+ oo (P, Q,—P,—Q). (B35)
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In this special case, the 4g HTL vertex oI #**° is given by the
expression
srwre(P, Q,—P,-Q)
vryryrye iQg iPg
MP+Q%V@—Q%VLIV_PWJ
(B36)

9,2
= 2mg

Akin to the 3g vertex correction, the 4g vertex function is
totally symmetric in its four (Lorentz) indices (u, v, p, 6) and
traceless in any pair of indices, i.e., &oI'*"° = ( since
V2 = 0. Note that this vertex is also even under all permu-
tations of the momenta (P, Q, —P, —Q). Lastly, we note that
applying the Ward identities of Eq. (31) twice to the four-
point vertex correction yields the useful identity

PHPrSTHP (P, Q,—P,—Q)

= —211""(Q) + II"°(P + Q) + II”"(P — Q). (B37)

APPENDIX C: EVALUATING HTL VERTEX
FUNCTIONS

While Egs. (B31) and (B36) suffice in principle for
computing the vertex corrections, in practice further
manipulations prove extremely helpful for numerical eval-
uations. We detail these manipulations in this Appendix.
Throughout this section, we scale out the explicit mg
factors from all vertex expressions.

1. Evaluation of the 3g HTL vertex function

We start the explicit evaluations of the HTL structures by
considering the 3g vertex function 5F’;}Z)’R. The generalized
Ward identities [see Eq. (31)] can often be used together with
the tracelessness of the vertex correction to significantly
simplify contributions containing the vertex correction.
However, even for the two-loop HTL diagrams, the full
structure of the HTL-corrected vertex is required due to the
sunset diagram with two vertex corrections, as seen in
Eq. (21). As a specific example, the contraction of two
vertices  (ST°)? = sTHrsTHP " includes every term
allowed by the remnant d-dimensional rotational symmetry.
As such, we must compute the following four independent
vertex contributions 519y, ST59 5, ST oz, and ST Hpp.

It turns out to be convenient to rewrite the expression in
Eq. (B31) in the more symmetric form

yvp v lQO _ lPO
5FPQRAWV v {Q~V(P+Q)-V P-V(P+Q)-V]'
(C1)

18 . . -
We also use this compact square notation when some indices
are fixed, or when only spatial indices are contracted.

To evaluate the integral over the angles, one could try to
combine the products in the two denominators into a single
expression by using the “standard” Feynman parametriza-
tion

1 —/ld 1
0vP+0)-V_ Jo wo+(T-u)(P+0)- VP
(C2)

However, in order to avoid the complications related to
uQo + (1 —u)(Po+ Qo) or —uQy+ (1 —u)(Py+ Q)
changing its sign at some value of u within the unit
interval, causing the denominator of the integrand of
Eq. (C2) to potentially vanish for some P and Q, we need
to generalize the way that Feynman parameters are intro-
duced. Let us first introduce the “symmetric” form of the
parametrization to reach the general form

1
Q-V(P+0Q)-V
=2 / du oo 5
—1 [(1+M)QV+(1—M)6Q.p+Q(P+Q)V]
(C3)
where we have defined
oxy =sgn[Im(X - V)Im(Y - V)] = sgn(X,Y,). (C4)

Evidently, the definition requires nonzero imaginary parts
of 0-V and (P+ Q)-V."” With this assumption, the
modified parametrization can be shown to be equivalent
to the standard form not only whenever the denominator of
the latter is strictly nonvanishing, but also to yield 1/(AB)
when the standard form does display divergent behavior.
We show this explicitly in Appendix C 4. Similarly, for the
second term in Eq. (C1), we find

1
P-V(P+Q)-V
L 1! Op p+Q
_2/_1 d" [(1+u)P-V+(1=u)oppio(P+0Q)- V>
(C5)

The 3g HTL vertex function now takes the form

Sp 2/1 du/ VAP iQ00g.p+o  Po0prig
POR . . (T i V)Z (S i V)2 ’

(Co)

"However, it can be generalized to momenta with vanishing
zero components; see Appendix C 4.
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where the four-vectors 7 and S are defined as

T=(1+u)Q+ (1 -u)ogpio(P+0)

S=(+uwP+ (1= woppg(P+0).  (C7)

For further discussion, we will need the angular integral
computed in Eq. (C44); we list here in d =3-2¢
dimensions some special cases as master integrals that
will be used repeatedly in the following section

[
£(S-V) = —iS,.

1 1 S
/(S 7 Sﬁ%z +0(e2),

fwwe

where the master integrals are expanded to order ¢ and we
have introduced the compact notation

L(S) + b(S)2e + O(?), (C8)

+ SoiL(S).
b(S)=[In(2) — 1 +In(|s|/S)]L(S)
1 . iS0—|s|) . <iSO+|s|)]
4+ —|Li | ——— ) = Liy | - . (C9
PG (e si))
Here, the function L(S) is defined in Eq. (B24) and Li, is
the dilogarithm function.

In the following subsections, we describe how to further
evaluate the four independent vertex contributions 63,
ST90 ks T Hpp, and SIS, We also compute the O(e)
corrections to these vertex functions, which are needed in

order to obtain the full O(&°) contribution to the UV term
presented in Sec. III B.

a. The 6Ly, function

Let us first concentrate on the 6I" (}%)R vertex function. By
using the general expression in Eq. (C6), we easily obtain

Qooo.r+0) Pooiprio)
000 _ ,
e o s P

Qoo(o.r+0) _Pooirrio)
=42 [ du :
=+ /_1 |:< T2 S2

Q00(0.r+0)
_ 2

a(T) - P""(;j’*@ a(S)> 28} ,
(C10)

where in the second line the [, integral is performed by
using a master integral listed in Eq. (C8). Correspondingly,

the ST}, function squared can now be easily computed by

using the expression above with two Feynman parameters
up and us,

(6T 50r)*
QOO' P POG P.P
_4/ / dulduz{[( Ql +0) (S% +0)
Qoo (o.p Poopp
- (B0 o) - PO, )
1

% Q00 (0.r+0) _ Poo(p pig)
T3 83

c Pyo
(2o (Q2,P+Q)a<T2)_ 0 (PiP+Q)a(SZ) 26| L.
12 s

2
(C11)

where the variables 7'; and S; for i = 1, 2 are defined as
follows:

Ti=(1+u)0+(1
S,=(+u)P+ (1

— u;)0(g.p+0) (P + Q),

—u;)o(p pio)(P+ Q). (C12)

b. The 615y, 6I"Z"QR, and 5I‘%R functions
We then proceed to describe the evaluation of the vertex
functions 8T50 ., 8T Jpr and 6T 5. By using the general
expression in Eq. (C6), we obtain:
Pyoppig)]

i ! AP _QOO-(Q,P+Q)
5r}93R=_zl/_1du£y R

. 1 0w oo .
5F%R:2/ du/@lﬁf QO (Q,P+Q)_ 00 (P.P+0)

LTV (s V)P
P -
ukR _21/ du/ i pk QOU(Q,P+2Q) _ OG(P’P+2Q) ‘
L (T-V) (S-V)
(C13)

The angular integrals appearing in Eq. (C13) can be dealt
with by using the d-dimensional rotational symmetry. For
instance, the rank-one integral can be written as

ié(s'viwz:sifo(&), s|).

Contracting both sides with the vector s', and noting that

(C14)

A

S-v=S €’+SOVO S()VO S - V+1S0, (CIS)

we find for the reduction coefficient f the following form:

fO(SO’ S‘) EfO(S) | l|2/ (SS “;l)

i/ 1 SO/ 1
T sPLS VI SPLGS V)

(C16)
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After performing the remaining angular integrals in Eq. (C16) by using the master integrals listed in Eq. (C8), we find the
result

1|8 1 (S )
flS) =15 [S‘; + zL(S)] N {S_g a(S) - zb(S)} 2 + 0(2). (C17)
All in all, the vertex function 655, then takes the form
. 1 . .
TR = —2/1 du[Qoo(0.p+0)t' fo(T) = Poo(p.p+0)s'fo(S)]- (C18)

To evaluate the vertex functions oI [{Q r and 5FPQR further, we use the following tensor-integral reduction:

Dips . .
/(SV)2 = 6" foo(So. [s]) + 557 f12(So. Is|).

[ dipk ’ »
l/(SV)z = {85} fooo(So. [s]) + 775" f123(So, [s]). (C19)

where the notation {5s}/* = §'/s* + §'ks/ 4 5/¥s' has been introduced. Contracting Eq. (C19) with the Kronecker delta and
vector s', it is straightforward to show that the reduction coefficients above can be written as

foo(S) = s 12 [1+ SyiL(S)] — |S|2 ib(S)2e + O(&?),
F1a(S) = |sl| [2 + iz + 3S0iL(S)} | 1|4 [ii (8) - 3S0ib(S)} 26+ 0(2), (C20)
and
FonolS) = 2|1 5350+ (8 + 289)iL (5)
ﬁ [% — Sea($) + (8 + 28 )( L(S) + ib(S))}Ze + o),
f13(8) = 2s2l| B 283 + 13508 + 3(S* + 4S352)iL(S)]
- 252;|S|6 [”STOSZ — 50(652 + 252)a(S)
+3(8* 4 4535?) GL(S) - ib(S))}Ze + O(&?). (C21)

Finally, inserting these results into Eq. (C13), we obtain for the vertex function (SFPQR the following expression:
5FZI£2)R = 2/1 dul[Qo0(0 p+0)(8 foo(T) + 't f12(T)) = Poop p10) (87 foo(S) + s's/ f12(S))]. (C22)
Similarly, for the vertex function 5Fgg > W€ obtain

5F%R = 2/1 d”[QOG(Q,P+Q)({5t}ukf000<T) + 11 f105(T)) — POG(P,P+Q)<{55}”kf000(5) + 5’575k f123(8))].  (C23)

Having all these results at hand, we can now turn to computing the functions (ST %)%, (ST pr)? and (8THpp)>. First,
the function (ST'%g,)* can be written as
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, 1 /1
(OTpor)* = 4/1 /1 duy dus [Q5X | = PoQoo(p.p10)0(0.p+0) (X2 + X3) + P§Xy], (C24)

where the coefficients X; are defined as

s1-82)f0(S1)f0(S2). (C25)

Similarly, the functions (ST3),)* and (8T'}gz)? can be written as

3 11
(6F;—‘{OQR)2 =4 /1 /1 duyduy [Q5Y | = PoQoo(p.p+0)0(0.p+0)(Y2 + Y3) + PiYal,

3 11
((T%R)z =4 /1 /1 duydup[QFZ1 = PoQoo(p.p+0)0(0.p+0)(Z2 + Z3) + P§Zy), (C26)

where the coefficients Y; and Z; are defined as

Y = (3=2¢)foo(T1)foo(T2) + |ta]*foo(T1)f12(T2)
4P foo(T) f1a(Ty) + (8 - t2)* F1o(T1) F12(T),
Yy = (3=2¢)foo(S1)foo(T2) + [t2*foo(S1) f12(T2)
+ [81 2 fo0(T2) f12(S1) + (2 - 81)°F12(S1) f12(T2),
Y3 = (3—2¢)foo(T1)foo(S2) + [s2 foo(T1)f12(S2)
+ 61 fo0(S2)f12(T1) + (t1 - 82)* f12(T1) f12(S2),
Yy =(3-2¢)fo0(S1)fo0(S2) + I8 foo(S1)f12(S2)
+ [812£00(S2)./12(81) + (51 82)* f12(S1) f12(S2), (C27)

and

Z1 =3(5=2¢)(t; - t2) fooo(T1).fooo(T2) + 3|t2|*(t1 - t2) fooo(T1) f123(T2)
+ 31t Pt - t2) fooo (T2)f123(Th) + (b1 - £2)° Fro3(T1) f123(T2),
Zy =3(5-2¢)(t; - 85)fo00(T1)fo00(S2) + 3Is2*(t1 - 82) fooo (T1)f 123(S2)
+ 3]t (ty - 82) fo00(S2).f123(T1) + (61 -82)° F123(T1) f123(S2),
Z3 =3(5-2¢)(t2 - 81)fo00(S1) fooo(T2) + 381 [*(t2 - 81) fooo (T2)f 123(S)
+ 3]t (t2 - 81) fo00(S1)F123(T2) + (t2 - 81)* F123(81) f123(T2)
Zy=3(5-2¢)(s1 -52)fo00(S1).fo00(S2) + 3[82]* (81 - $2) fooo(S1)f 123(S2)
+3[s1[7(s1 - 82) fo00(S2)f123(S1) + (81 - 82)* F123(S1) F123(S2)- (C28)

¢. 3g HTL vertices contracted with external momenta

In this section, we show how to evaluate the 3g HTL vertices contracted with external momenta. These techniques are
used extensively in Sec. III C. Let us first consider the case where the 3g HTL vertex 65/ is contracted with Py = ipl.
For this term, we cannot fully remove the spatial components of the 3g HTL vertex, but we can reduce it as much as possible
using the identity
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P4oTb, = (P* — 8OPy) 8Ty

= PHSTYbn — PodTpog. (C29)

To reduce the number of spatial indices appearing in our
expressions above, we use the generalized Ward identity in
Eq. (31) on the first term. This gives

PhoTpb, = TP (R) = T (Q) — Podlphp.  (C30)

This method can be easily applied to the more compli-
cated cases PrQ40lphp and PrOYRLSIpSe. By using
Eq. (C29) and Ward identities, the following relations can
be derived:

PLO46Thr = Qo1 (Q) + ¢'TI7(R)
— Po[l1%(P) — 1% (R)] + Py QodT po.

Here, the different components T1°°(Y), I1%(Y), and [T/ (Y)
of the self-energy I1#(Y) are given by

n(y) wH (¥)
= TL(P).
i Y0|y| ol U
n%(y) 72 .(Y),
N N Y2
V(Y) = 6" (Y) — 9§/ HT<Y)_Y_(2)HL(Y) . (C33)

where Y € {P, O, R}. Note that the 3g HTL vertices with
more time components are easier to compute numerically.

2. Evaluation of the 4g¢ HTL vertex function

Following the discussion on the 3g HTL vertex correc-
tion, we will next consider the 4g vertex correction.
A priori, it is considerably more complicated, and in order
to handle the vertex in its full generality, a sensible option
would be to turn to automation (see Appendix C 3).
However, for the NLO pressure, there is only a single
resummed graph involving the 4g vertex correction, and it
includes only a single vertex. It is easy to see that applying
the symmetries and the Ward identities of the vertex
correction along the same lines as in the previous section
can only lead to a single irreducible term containing the 4g

: 0000 20,
vertex correction 8I'p’g _p "

iQy Py

(C31)
and
P’{Q%R’}éF’;,’b”R = QorkHOk(Q) - PorkHOk(P)
- RoquOi (R) - POROHOO(R)
+ PyQo[1"(Q) —1(P)]
— PyQoRyST Yy (C32)
|
510000 — (—7 42/
ro-r-0 = -2 [ gy

e o v ) 9

Following the 3g computation, we will apply a Feynman parametrization to make the numerics more tractable. However,
as before, we must generalize the parametrization, following the discussion of Appendix C4 [see also Eq. (C3)]. We

combine the two common factors in the denominators via

1 ! OP+0.P-Q
=2 d , C35
Frovr—o T L M e v e
and to include the third factor, we denote
U=+u)(P+Q)+ (1 —u)opigpolP-0), (C36)
to obtain
1 9 1
Q-V(U-V?  9U-V)U-VQ-V
_ 3 /1 d 26U.Q
oW -V) ). "+ w)U -V (1-u)ougQ VP
1 (1 + MQ)O'U 0
—4 * .
L e v (o e v (&0

Recall that we have scaled away the mass mg.
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Hence, the full generalized Feynman parametrization for three-term denominator reads

1 1 1 1 _
8/ dul/ du, (14 u2)opi0.p-00u0
-1 o [T +u

(P+Q) V(P=Q)-VQ-V

0000

DU-V+(1—u)ogyQ- VP (C38)

and analogously for P - V. Given this, 6I'p5"_p _, admits a representation

1 1
5F(f))(,)g(?—P,—Q = 246P+Q,P—Q /l dbt] /l dM2(1 + M2)

1

. ] 1
: {’Q""U*% (T w)U+ (1 —u)oge0) - VF o | (14 1)U+ (T = w)op yP) VP}’

(C39)

where the ¥ integral can be obtained from Eq. (C44), and reads

Substituting the leading-order term, we get

1 1
5F0P(,)OQ(?—P,—Q = 166P+Q.P—Q /1 dl/tl /1 dl/lz(l + I/lz)

T + O(e).

iPo (C40)

(1 +ux)Ugopy + (1 = up)Py) Py

{((1 +ux)Ugopu + (1 = 13)00) QO
(14 u)U + (1 = uy)00,40]*

For us, setting ¢ = 0 suffices, as the 4g vertex correction
only appears in the finite term Eq. (57).

3. Evaluating higher-rank HTL integrals

In Appendices C 1 and C2 we have discussed special
cases of calculations involving HTL vertices. However, for
example for the purposes of automation and possible
future, more complicated, computations, it is useful to
be able to discuss the integrals that arise on a more general
level. The prototypical tensor integrals arising in HTL
calculations are of the form [, V#1...V# (K - V)™ where r
is the tensor rank. Recalling that V0 = —i is a constant, they
are equivalent to

ViV

itlmir(K) - . (K . V)n :

(C42)

Here, we outline a more general method, useful for larger
values of r and convenient when working in arbitrary
dimensions.

T w0+ (1= w)op g PP }+0(8)' (C41)

To begin with, the tensor H f}'"i’(K ) is decomposed in a
basis {Hi‘j,""’ (K)}pe consisting of rank r tensors respecting
the symmetries of the system, with 3 some finite index set
enumerating the basis elements. With H} '“’"(K ) purely
spatial, it retains the full SO(d) symmetry, and is furthermore
fully symmetric in all indices. The basis for fixed r can then
be easily constructed using the external spatial vector k' as
well as the spatial metric 6. For an example of an explicit
construction, see Ref. [38]. In order to solve the coefficients
{H,.,(K)},ep relative to this basis, we simply solve the
following equation for each b’ € B:

2 (K) (Hy);, i (K)
= ZHr,bn(K)H;],hl'(K) (Hr,b’)il ooy (K)

beB

(C43)

Now the tensor is given explicitly as a combination of the
basis elements and scalar integrals of the form

(k-9)! T |k rd+5 1 nnl [11d 1
n(K) ﬂ(K-V)" 27 (—ike)" [1+( )]r(gﬁ)3 2\gtgpp Tty Ty ek
(1414 1 n 13d 1 1
—intan @[l — (=) | ———2— . F,( = l4+=,14+-;=,—+-+—; —tan’® C44
intan K[ ( )]r<%+%+%)3 2<2+ +2 +222+2+2 an K)} ( )
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Note that this is essentially a generalization of the integrals
appearing in the self-energy in Eq. (B21).

4. Proof of the generalized Feynman parametrization

To finish the discussion of the evaluation of the HTL
vertices, we prove the generalized Feynman parametriza-
tion used in Appendixes C1 and C2. The standard
Feynman parametrization reads

1 1 1
AB :/0 VBT (= naP (C45)

where A,B € C. The representation is valid in many
commonly encountered situations, in particular when
A,B €R,. However, when the denominator of the
right-hand side vanishes, the right-hand side is no longer
strictly convergent. This occurs when there exists a t €
(0, 1) such that B + (1 —7)A vanishes, that is, when the
origin is contained in the shortest line segment connecting
A and B in the complex plane. We will denote this shortest
line segment by y(A, B). In the present paper, we have
encountered the need to combine a factorized denominator
to obtain a Feynman-like parametrization for integrals such
as Eq. (C1). They involve arbitrary points A, B for which a
nonvanishing denominator is not guaranteed.

Here we show that a suitable generalized Feynman
parametrization is

F(A,B) = / 'du 20 (C46)

1 [+ u)A+6(1 —u)B)*’

by means of a detailed proof that F(A, B) = 1/(AB) for
any A, B € C\R. The missing case of real A, B will be
briefly covered near the end of the section. In the following,
we denote ¢ = sgn(ImAImB) in analogy with the o defined
in Appendix C 1.

First, we assume ¢ = +1. Then necessarily 0 & y(A, B),
so that we merely check that the identity holds in this
standard case. Now, replace u > 1 — 2¢, so that (=1, 1) —
(0, 1) with the orientation reversed, leading to

2
[2(1 —1)A + 21B)?
1 1 1
_/0 VBT (1=DAP 4B’

F(A,B) = (—1)22/1dt

(C47)

where we see a posteriori that the change of variables is
permitted by assumption of 0 & y(A, B). Note that this
includes the special case B = A.

Next, consider 6 = —1, this time without restrictions on
whether or not origin is contained in y(A, B), but by first
assuming A 4+ B # 0. This case requires slightly more care.
For 6 = —1 to be true, A, B must lie on opposite half-
planes. As we exclude reals, barring the aforementioned
A =—-B we will have then covered all cases where

0 € y(A,B). As a consequence of the assumptions, the
denominator must always have a nonzero imaginary part
for all u e (—1,1), keeping it from vanishing on the
interval. To see this, recall first that by assumption ImA #
0 (and ImB # 0). Should the denominator vanish for some
u, € (—1,1), we would be lead to the equality

1+u, ImB
1 ImA - (1 —u,)ImB =0 =—.
(1+u.) (I—w)imB =0e 3 =1
(C48)
The condition 6 = —1 sets ImB/ImA < 0, and we immedi-

ately see that there does not exist a u, € (—1, 1) such that
(1 +u,)/(1 —u,) <0, a contradiction. Therefore the inte-
grand is finite on (—1, 1), and any divergence could only
appear at the endpoints {—1, 1}. However, a direct calcu-
lation shows that the antiderivative is regular at them (in the
manipulation of what follows, recall that we assume
A+ B#0):

I )
”AB>‘/¥”K1+MA—U—MWP

-2 1 u=1

" (A+B) [(1 +u)A + (u - 1)3} —

2 1 1] A+B1 1

b*ﬂ‘zmﬁ‘m-
(C49)

(A+ B)

Lastly, we cover the missing case B = —A: Here, we see
right away that 0 € y(A, B) = ¢ = —1 holds always and
the integration is trivial, even though the above steps would
no longer be valid:

1 20
Fa.B) = /_1 du [(1+ u)A+ o(1 — u)BJ?

1 1
- _P/_l ST+ (=P~ A(=A)"
(C50)

In summary, we have shown that F(A, B) = 1/(AB) for
any A,B e C\IR. The result can even be shown to
extend to all nonzero complex numbers by defining ¢ =
sgn[®(A)O(B)] where ©(A) =ImA for ImA #0 and
O(A) = A otherwise. We will not cover this in detail, as
it is unnecessary for us and the proof mostly consists of
reapplying the above steps together with the implications
o = —1 leads to in these special cases. Furthermore, an
extension to multiple denominators is straightforward by
differentiation and an iterative application of the two-point
formula, with an explicit example covered in Appendix C
2. In such cases, the geometric interpretation of the origin
lying in the line segment connecting the two factors of the
denominator is naturally generalised to the origin being
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within the convex hull of the points of the factorized
denominator [48]. This condition serves as a check to see
whether or not a generalized parametrization is necessary.

APPENDIX D: SUMMARY OF THE
CONTRIBUTING INTEGRALS

Many of the contributions appearing in the evaluation of
the UV-sensitive terms in Sec. III A involve nontrivial
integrals, which we will discuss here. Throughout this
Appendix, we shall use the following notation for the
angular average in d spatial dimensions of some function

f(K.P)

(f(K,P))q A (D1)

where Q is as in Eq. (80). We define (f(K, P)) similarly in
the obvious way. Observe that if f only depends on some
proper subset of the variables integrated over, this still
corresponds to the angular average of f over the angles
upon which it depends.

We also note that in this Appendix we use the convention
where we have rescaled all momenta by my and then
removed the tildes as in the later parts of our main text.
With the integrals that we will evaluate here, this is
equivalent to simply setting mg = 1.

1. The integral in [I_,(d)]"Y

In this section, we demonstrate that

) o

which was used in Eq. (121) above. To perform this
averaging, we use the definition of the self-energy given
in Eq. (B18), leading to

«nmmﬂnzl—ww+w(

TelMI(K)?) = (R (K)

(D3)

where we use the lightlike four-vectors V defined in
Appendix B 1 as well as the analogously defined U* =
(—i,0) with @ € R a unit vector. Additionally, we have
defined the unit vector N in the temporal direction. In going
from the second to the third line above, we have changed
variables in one term, @ <> V, to combine two terms.

Now observe the identity

2if(-N_f(-U+2if<-N_f(-U*
KU kKU "k-UuU KU

, (D4)

where we used the definition of U, and the fact that i only
appears in the temporal part. But then inside an angular
average over K, by multiplying the numerator and denom-

inator by K - U*, we find
kN k- U Kk
<1+2’A > :<—A > :U*”U*”< - >
K-U/4 K-U/, |K-U*/,
(D5)

We note that the function we are averaging over depends
only on the components of K within span(N, @) (and we
note that {N,@} form a perpendicular basis for this sub-
space). If we split K = K+ K, with K| € span(N, o)
and K, -N =K, -i =0, then

ke K'KY K"K o
B [ [l — KK
K-UP K -UP (KNP (K- 6)?

(D6)

where we have recognized the denominator simply as
K|, |. We therefore see that the angular average involved
above is the average of a unit vector over all of its
directions, which simply leads to a constant multiple of
the identity within its span 5""” However, U only depends

on vectors within that span as well, and so we see

142 =0. (D7)
K-

ik-N UrUsy
< > J  const.
Note that the entire analysis of this term could be conducted
in the subspace span(N, ).
Using the above results, our original average simplifies
to

ke, = - [ RS o9

We shall now analyze this within the three-dimensional
subspace span(N, 1, ¥). Let us first split K = K |+ Ky as
above, but this time with K| € span(N ,04,V)and K | N =
K, -4 =K, -Vv=0.Because ti and V are perpendicular to
N, we can set up a three-dimensional coordinate system as
depicted in Fig. 7 to perform the integral. Note that because
of the geometry within this subspace, only the angle
between @ and V is in the d-dimensional spatial subspace.
The calculation proceeds as

074015-39



TYLER GORDA et al.

PHYS. REV. D 104, 074015 (2021)

SN2\ <K|| 'N>2(U' V)Z
(Tr[II(K)*])y = _/ < (K- U)K} -V)

r(d/2)

- -7,

7 df sin @
2a(1 — cos a)z/ o
0 2

dep/(2x)

2r
XA [1 4+ itanOcos @|[1 + itanOcos(p — a)]

_T@p2) I
]/ds d-2

- Valld-1)/2

Ty e,
= ]Adsd

Val((d-1)/2
=1-w(d) —l—l//(izd),

where, we used the fact that fﬁ = 1. This is the desired
result.

2. The integrals in [I,gcp|UY = [I_,]"Y

In this subsection, we list all the one-dimensional
integrals appearing in the p, contribution from
[Iagep]YY — [I_,]YY. We start by deriving an analytic
angular average occurring in that term, which involves
the function II;. Using the angular average in Eq. (D2),
expanding for small ¢, and setting the O(¢) terms equal on
each side of the equality yields

(2Tr[My (KT, (K)] = Ty o (K)?
— Tr[IT(K)?)(In 2 + In[sin(8) sin(®p) sin(Pg)]));
n* -9

=— (D10)

v

FIG. 7. Our choice of coordinates for the angular average in
Eq. (D9). The angle between @ and V here is a polar angle in the
d-dimensional spatial subspace.

dé sin 0] cos 0|

1- 2 |7
a(1 ~cosa) A 2+ (1 + cos a)tan?(6)

2a {1 —cosa+2(1 + cosa) In (cos%)]

(D9)

|

All of the integrals involving only Iy o, X € {T,L} can be
performed analytically. In particular, if we average over the
angles (in d = 3), the following identities hold:

1

(T (K )] = 5. (D11)
(In[sin(®p)]); = % —In2, (D12)
(In[sin(@)]); = =1 +In2, (D13)

. . 1 =2 7
(In[sin(@g )| Tr[IH(K)?]); = —E—f—ﬁ—glnz, (D14)
(M o(K)?), = —%+ 2. (D15)

Substituting these, we can deduce the following analytic
equality:

(D16)

In addition to this analytic integral, the above contribu-
tion to py has many additional sources that can only be
computed numerically. After many manipulations and
angular averages, one can deduce that the p, contribution
from [Ixpcp)VY — [I_5]YV is the sum of the terms

201 11 13311
A e (22 ),
Po 2{12“+6/’+< 36+6n>7

oo 1 11

e ls =g letgle= 11, —g(ln)Z + cg], (D17)

where these contributions are mainly one-dimensional
integrals, defined as
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1, = (Tr[[y(K)? In?[TTy(K)]]); =~ 0.2694302213,  (D18)
Iy = (po(K)? In[MIpo(K)]); ~ —0.06345103322, (D19)
1, = (Tr[I3(K) In[Tly(K)])); ~ —0.2770771704,  (D20)

15 = (In[sin(® )| Tr[TZ(K) In[TTy(K)]]) ~ 0.06818971068,
(D21)

1, = (Tr[lly(K)IT, (K) In[[1y(K)]]); ~ —0.1249403621,

(D22)

1, = (Tr[[y(K) In?[[y(K)]])5 ~ 1122871337,  (D23)

1, = (Tr[I(K) In[TTy(K)]]); ~ —0.8577878295,  (D24)
15 =2

co =g g ~ 07783772888, (D25)

Substituting these numerical values into Eq. (D17), one
reproduces the result of 10.84411 found in Table II. In
deriving these results, we have used the angular average
involving II; in Eq. (D16), some of the averages in
Egs. (D11)—~(D15), as well as the following two averages:

1 2

(In?fsin(@p)]); = =5 + 71[—2 ~l2+In?2,  (D26)
”2

(n?[sin(@)]); =2 =" =2n2+1°2.  (D27)

APPENDIX E: CANCELLATIONS OF THE
FACTORIZATION SCALE AND ASSOCIATED
DIVERGENCES AMONG THE
DIFFERENT REGIONS

In this Appendix, we work through a simple factorized,
two-dimensional integral expression to demonstrate the
following two points about the sum over the soft, hard, and
mixed regions contributing to the physical double loga-
rithms of the coupling at N3LO: First, we show how all of
the O(¢72) and O(e") terms cancel when one sums over
these three regions, explicitly illustrating the cancellations
of the divergences in the column labeled “two-loop HTL”
in the right panel of Fig. 4, using a single ¢ regulator in all
four regions. Second, we show how the coefficient of the
O(e"), In?(mg/A,) term in the soft region is exactly double
the coefficient of the final In?>a'/? term obtained by
summing over the three regions and cancelling spurious
double-logarithmic terms.

Let us begin by showing briefly why spurious double
logarithms arise in the soft region. To this end, we consider
the simple factorized example integral

2= | (A) / “appi2"E ' (@)
0 P2—|—m123

with d = 3 — 2¢, as before. We think of this as the soft part
of a full calculation, which we detail further below. If we
examine what one of these integrals yields upon integra-
tion, namely

=T (" - sec dn
2 B\, 2

m m m
o~ 2—5 —miln <A_E> +e [mlzaln2 (A—E>} + 0(¢?), (E2)

h h

we observe the following: When this term is squared, there
is both the square of the original O(&°) (single) logarithm,
and the cross term between the O(e™!) divergence and the
O(e') double logarithm. Only the former of these loga-

rithms contributes in the end to the In? ai/ 2 term, and the
second one is spurious. These spurious logarithms must
cancel when one sums over all three regions, since the
O(e7?) and O(e™!) will cancel out in this sum. We now
show this explicitly in our simple example.

To begin, let us note that if we were to resum the gluonic
lines with the full one-loop quark kinematics in the gluonic
polarization tensors (instead of just resumming with HTL-
resummed kinematics), there would be no divergences at
all. This follows from the fact that the quark contribution to
the one-loop gluonic self-energies behaves like

#
H]—loop.(K) >~ — + O(K_4)

quark - Kz (E3)

in the UV (see Egs. (A7) and (A9) in Ref. [46]), and thus
the matter integrals would be completely UV convergent,
and no divergences could arise at all.

Let us thus consider such a UV-convergent full expres-
sion, and examine the contributions from each kinematic
region. Let us choose

]2

finite

© d m% 2
PP——E _exp(—P
[ app e
1 m m
= mAd =7 =2Si| =E )]sin[ —E
mE{z[ﬂ i . | sin .
2
-Ci <@> cos <@> }
H H
= miln? (’7:5) + 2ygmi In (n;E> +vimi + O(m),
(E4)
which is a modification of our original /2. Let us split this
up into hard and soft regions, regulating them all in

dimensional regularization. If we do this to the /,;. itself
first, we have the following:
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1. Soft region

This is the same as the original example / above, as we can ignore the exp(—P/u) term, so we again find

2
B0 2
Ties = 55 =t n(5E) + e i (5E) | + 0(e) (65)

In order to make this simpler to multiply with the hard part, let us rewrite this as
i ~m—12:‘—m2 n(ZE) + (L) | + e m2|in +In 2—I—O(sz) (E6)
finite,s — e E U Ah E ,M Ah .

2. Hard region

Here, we can ignore the m% in the denominator:

0 d-3
T = ()~ [ apPitexpl-p /) =m%(i) I(d-3)
0

o)) el (@ foe

We thus see that the full result for the regulated 1d integrand is

m
Tsinite = Itinitess + Itiniten = —1M3 |:7E +In (7]3” ; (E8)

which, when squared, agrees with Eq. (E4) above at O(m,). Let us now inspect each of the kinematic regions, which we for
simplicity denote by ss, sh, hs, and hh according to which combinations of the soft and hard contributions are combined:

Lo + Iy + Ing + Iy = Lg + 20 + Iy (E9)
We find
Iss :Iﬁnite.s'lﬁnite.s
me e F () ()] 5 ot [ +In o) (E10)
S — — my €),
482 E )23 Ah E ,Ll Ah
21, = 2Ufinite s * finiten
4 4
mg  mj,
~ e M I 21
et () ()
2 2
S I 21n 0 Ell
il () r2m()] ) o ®1
and

Ihh = Ifiniteﬁh . Iﬁnite,h

4’"41; +_4 [ m(/%)} +mé{%2—|—2|:yE —1n<Aih>]2} + O(e). (E12)

One may easily verify that the sum of these terms as written here reproduces Eq. (E4), as it must. In particular, all of the
divergent terms and the terms involving the fictitious mass scale Ay, cancel. From this exercise, we also see that the double-
logarithmic terms that contain the ratio mg/u of physical scales, are distributed as
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(Issy 2Ish1 Ihh) |DL = <2m4E1n2 <E> s —mélnz <@> s O) s
u u

(E13)

which indeed sum to the correct result. Importantly, we see that the coefficient of the ss contribution matches the coefficient
of the In?(mg/A,y) there and is indeed twice the value that is obtained from summing over all four regions, as claimed.
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