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Uncertainty-aware Prediction Validator in Deep Learning

Models for Cyber-physical System Data
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The use of Deep learning in Cyber-Physical Systems (CPSs) is gaining popularity due to its ability to bring

intelligence to CPS behaviors. However, both CPSs and deep learning have inherent uncertainty. Such un-

certainty, if not handled adequately, can lead to unsafe CPS behavior. The first step toward addressing such

uncertainty in deep learning is to quantify uncertainty. Hence, we propose a novel method called NIRVANA
(uNcertaInty pRediction ValidAtor iN Ai) for prediction validation based on uncertainty metrics. To this end,

we first employ prediction-time Dropout-based Neural Networks to quantify uncertainty in deep learning

models applied to CPS data. Second, such quantified uncertainty is taken as the input to predict wrong labels

using a support vector machine, with the aim of building a highly discriminating prediction validator model

with uncertainty values. In addition, we investigated the relationship between uncertainty quantification and

prediction performance and conducted experiments to obtain optimal dropout ratios. We conducted all the

experiments with four real-world CPS datasets. Results show that uncertainty quantification is negatively cor-

related to prediction performance of a deep learning model of CPS data. Also, our dropout ratio adjustment

approach is effective in reducing uncertainty of correct predictions while increasing uncertainty of wrong

predictions.
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1 INTRODUCTION

Deep learning (DL) is increasingly applied in different phases of the development lifecycle of
Cyber-Physical Systems (CPSs). Such CPSs have critical applications such as water treatment
and distribution networks, smart power grids, robotics, autonomous vehicles, and medical
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infrastructures [21, 55]. Both CPSs and DL have inherent uncertainty that could potentially
lead to unreliable (e.g., unsafe) behaviors of CPSs if such uncertainty is not properly dealt with.
This issue has been well understood by the community. For example, the survey conducted by
Wickramasinghe et al. [58] concludes that a lot of DL solutions for CPS data just produce labels
for input data and do not quantify uncertainty in their predictions, which consequently could
lead to the lack of confidence in these solutions and even further can cause unpredictable and
unsafe CPS behaviors. Therefore, DL models employed for CPS data shall be accompanied with
an uncertainty quantification framework to quantify the uncertainty inherent in these models,
followed by developing mechanisms to deal with such uncertainty.

Deep neural networks are black-box models due to their multilayered nonlinear structures,
which have been criticized for being non-transparent and their predictions not identifiable by
humans [5]. In the CPS context, such black-box Machine Learning (ML) models have been used
to make critical predictions [3]. Existing explainable artificial intelligence (XAI) methods
(e.g., [22, 42]) have been applied to ML models, which are based on image and text datasets to
understand decisions made by such models [50] and assess the reliability of the decisions. How-
ever, applying XAI is not straightforward in CPS since DL models are deployed as an integrated
part of the CPS, and it is often not possible to interfere with it during its operation. In addition,
it is difficult to reason decisions made by CPSs deployed with DL models simply based on sensor
data.

In this article, we study quantification of model uncertainty based on Monte-Carlo Dropout

(MC Dropout) neural networks in prediction models developed from CPS data. MC Dropout was
originally proposed by Gal [14] for uncertainty quantification and has been used for quantifying
uncertainty in autonomous driving [39], robotics [41], and medical imaging [9]. We apply it also
for uncertainty quantification, but our aim is to predict wrong labeling based on uncertainty quan-
tification, which is important to prevent unsafe behaviors of CPS. In contrast to our work, existing
studies, e.g., [26, 33, 49], focus only on quantifying uncertainty. We used the entropy and softmax
prediction probability variance metrics to quantify the prediction time uncertainty of a DL model.
Then, we use quantified uncertainties as a training set to create an additional ML model and predict
incorrect labeling (Prediction Validator of the original DL model using Support Vector Machine

(SVM) together with Radial Basis Function (RBF)).
For evaluation, we used the following CPS datasets: (1) the Secure Water Treatment (SWaT)

available at [19], (2) Sensor readings from a wall-following robot (shortly, Robot) available at
[13], (3) Video conferencing system made available at the GitHub repository,1 and (4) KITTI
available at [38]. Our results show that quantified uncertainties in the prediction time of each
model constructed for each CPS dataset are strongly correlated with the prediction performance
of the model. In order to investigate the correlation between uncertainty and model performance
in the prediction time, we first quantified model uncertainty of all the models trained for all four
datasets. Second, we sorted the test dataset according to uncertainty values in the descending
form. To show the negative effects of the highly uncertain data on the DL models employed
for CPS data, we removed the highly uncertain instances from the test dataset one by one.
Hence, the remaining data’s uncertainty values are lower than the whole test dataset. We
repeated this experiment, leaving only 40% of the data in the test set (i.e., deleting 60%) step by
step. Based on the validation results, we improved the models’ F1 metrics from 0.92 to 1.00 for
SWaT, 0.89 to 1.0 for Robot, 0.79 to 0.97 for the Video conferencing, and 0.96 to 1.00 for KITTI
datasets.

1https://github.com/unc-cps/dsn2021, password: 2020pwd.
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Our research has made the following contributions:

• We demonstrated how uncertainties in the model’s prediction time can be quantified using
the entropy and softmax prediction probability variance.
• We demonstrated the correlation between model uncertainty of DL models and their predic-

tion performance.
• We proposed “prediction validator,” an SVM model with RBF kernel for validating prediction

of DL models employed for CPS data based on quantified uncertainties. The most significant
difference from the literature is that our prediction validator is a model, not just a threshold
value.
• We iteratively re-trained DL models with highly uncertain inputs and improved their pre-

diction performance.
• We conducted experiments with four real-world CPS datasets and proposed a mechanism to

optimize dropout ratios.

The rest of the article is organized as follows: Section 2 introduces the related work. Section 3
presents the context of this work and also presents a running example. Section 4 describes prelim-
inary information about model uncertainty and uncertainty quantification. Section 5 shows our
system overview. Section 6 evaluates the proposed uncertainty quantification method. Section 7
shows the practical applications of NIRVANA. Section 8 concludes this article.

2 RELATED WORK

In this section, we discuss the related work from the following aspects: uncertainty quantification
in DL (Section 2.1), uncertainty in software engineering (Section 2.2), and ML and CPS testing
(Section 2.3), respectively.

2.1 Uncertainty Quantification in DL

Uncertainty quantification in DL models is an ongoing topic of intensive research. The main
method for quantifying uncertainty in DL models is the use of the softmax variance and expected
entropy over multiple models. The work by Gal [14] demonstrated that a neural network model
with prediction-time-activated dropout is equal to a specific variational inference on a Bayesian
neural network model. The prediction model uncertainty is approximated by averaging probabilis-
tic feed-forward MC dropout sampling during the prediction time. This approach is highly effective
in terms of practical implementation for large models and has proved useful in understanding the
dynamics of the networks under different testing conditions [53].

In addition to MC dropout-based Bayesian Neural Network [36], an alternative uncertainty
quantification method in DL is Deep Ensembles, a non-Bayesian method for uncertainty quantifi-
cation [31]. In Deep Ensemble, several models are trained in parallel, and each of them is trained
using random noise (with adversarial instances) in its subset part of the training dataset. The final
output of the training phase is a set of independent classifiers, each of which has its own unique set
of weights. The ensemble can predict the same input instance with different predictions using its
individual models. Considering that Deep Ensemble requires several models, it is not suitable for
single-model uncertainty quantification. Therefore, in this work, we opted for the prediction-time-
activated dropout-based neural networks approach for single-model uncertainty quantification.

Methods in adversarial ML aim to create perturbed instances to evade (or fool) a DL model.
Recently, Ma et al. [36] showed the correlation between uncertainty and model prediction
performance. In their approach, to increase the DL models’ robustness, they applied adversarial
ML attacks (e.g., Fast Gradient Sign Method, Basic Iterative Method, DeepFool, Jacobian-Based
Saliency Map Attack, and Carlini-Wagner) to create highly uncertain and misclassified instances.
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Newly created adversarial instances are used as a new training dataset in the re-training phase
to increase the robustness of the DL model. The iterative training with adversarial instances is
like traditional adversarial training [20]. They used MNIST, Fashion MNIST, and CIFAR-10 image
datasets in their experiments to evaluate the effectiveness of their approach. Though this method
is similar to adversarial training, NIRVANA improves the prediction performance of DL models
by using highly uncertain inputs instead of adversarial inputs.

Ghoshal and Tucker [18] studied how Bayesian Convolutional Neural Networks (CNNs) can
quantify uncertainty in DL models to enhance the diagnostic performance of the human-machine
alliance using a COVID-19 chest X-ray dataset. Another study reported in [45] uses uncertainty
values and quality estimates to model predictive uncertainty estimation. Their main idea relies
on the difference between the detection box and ground truth in images, and therefore is only
applicable for object detection problems but not CPS data.

In our recent work [7], we proposed an uncertainty quantification metric for object detection
models, named PURE. Experiments were performed on the KITTI, Stanford cars, Berkeley Deep-
Drive, and NEXET datasets, together with YoLo, SSD300, and SSD512 object detection models, to
quantify their prediction uncertainty with PURE. PURE is an uncertainty quantification method
in object detection models for autonomous driving; on the other hand, NIRVANA aims to assess
the reliability of DL models’ prediction with another model and improve DL models’ predictions
with generated uncertainty quantification results.

2.2 Uncertainty in Software Engineering

In the last decade, uncertainty has attracted significant attention in software engineering, due to
the fact that uncertainty is gradually being recognized as an inevitable characteristic of complex
systems such as CPSs, due to their increasingly unpredictable, open, and networked operating
environments [16]. There exists a number of solutions (e.g., [2, 8, 60, 61]) in the literature for
modeling or specifying known uncertainty on requirements, design models, and so forth. There
also exist approaches in software engineering that focus on refining uncertainty measurements
from historical data (e.g., [59]), reasoning with Bayesian inference (e.g., [52]), and testing software
systems under uncertainty (e.g., [6, 35]). To compare with NIRVANA, these works are generic
solutions and do not particularly focus on software system with DL models deployed.

Same as for conventional software systems, software systems with DL models employed also
face quality and reliability issues. Not handling them properly has disastrous consequences. To this
end, Zhang [62] proposed an approach to generate highly uncertain test inputs using adversarial
ML attacks and improve prediction performance of DL models. More specifically, the approach
first uses genetic algorithms to generate adversarial instances to effectively penetrate DL defense
techniques, therefore uncovering hidden defects in the DL models. Second, it re-trains the DL
models with adversarial inputs. Tuna et al. [11] showed that adversarial inputs generated by ad-
versarial ML attacks can fool DL models with low prediction uncertainty values. These re-training
approaches based on adversarial inputs are different from NIRVANA, as NIRVANA improves the
prediction performance of DL models by re-training them with highly uncertain training inputs.

In autonomous driving, Michelmore et al. [39] applied variation ratios, entropy, and mutual
information-based uncertainty quantification methods to discover the relation between uncer-
tainty and wrong prediction of steering angles of autonomous cars. They found that wrong angle
decisions of an autonomous car have significantly higher uncertainty values than correct decisions.
Based on this observation, they defined a threshold to determine crash risks. This is different from
NIRVANA, as NIRVANA employs an SVM-based prediction model (instead of a threshold) for pre-
diction validation.
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When particularly considering CPSs with DL models employed, it is critical to verify accurate
interactions between a DL model and the physical operating environment of the CPS with the DL
model employed and confirm its safety and correct operation [32]. Along this line, Dreossi et al.
[10] proposed a toolkit, named VERIFAI, which focuses on the simulation-based safety analysis
of systems enabled with artificial intelligence and ML components. VERIFAI especially explores
challenges with implementing formal methods to understand ML models and analyze system be-
havior under environmental uncertainty. On the other hand, NIRVANA is not a formal method
tool. Instead, it aims to predict wrong DL models’ predictions based on uncertainty values.

2.3 ML and CPS Testing

There is an increasing interest in ML and CPS testing, and new techniques and research have been
conducted toward ML and CPS testing. A survey conducted by Sherin et al. [47] classifies testing
methods in ML models. They showed a dramatic increase in the number of publications between
2015 and 2018. Most ML testing methods are black box (74%), and more than half (57%) of the
proposed ML testing methods are about testing neural networks models.

Asadollah et al. [1] classified CPS testing into six categories: hardware testing, structural and
computation testing, extra-functional properties testing, network testing, integration testing, and
system testing. DL models are now becoming one of the main components of CPSs. Thus, the CPS
testing should also include DL model testing. In another work [64], the authors stated that a CPS is
a complex system with the following features: data driven, software defined, and self-government.
They also said that uncertainty modeling for CPS testing is one of the challenges for future complex
CPS testing methods.

Berend et al. [4] showed that DL models do not provide statistical guarantee and have limited
capability in handling data that falls outside of the training dataset’s distribution (i.e., out-of-

distribution (OOD) data). They conducted a large-scale study on the impact of data distribution
on state-of-the-art DL testing techniques. Their results show that existing OOD detection
techniques could distinguish OOD data from newly generated test cases and a distribution-aware
dataset tends to be more effective in robustness enhancement. Our prediction validator model
predicts wrong predictions of DL models employed for CPS data using uncertainty measure-
ments, which is different from the aim of their study: enhancing model robustness with OOD
datasets.

Zhang et al. [63] investigated the capability of different uncertainty metrics (including predic-
tion confidence score and variation ratio of original prediction) in differentiating benign exam-

ples (BEs) and adversarial examples (AEs) of deep learning models. They further investigated
uncertainty patterns of BEs and AEs generated by existing adversarial ML techniques and observed
that these BEs and AEs follow certain uncertainty patterns and some patterns were largely missed.
Based on these observations, they proposed a technique to automatically generate diverse adver-
sarial data and concluded that uncommon data generated with their method is hard to be defended
by existing defense techniques. To compare with this work, we identify wrong predictions with
uncertainty measurements instead of generating adversarial data. In our recent study [12], we
showed that uncertainty in predictions using inputs manipulated by adversarial ML attacks could
be quite low and show similar patterns, just as in BEs.

Weiss and Tonella [56] proposed a fail-safe DL-based system with a supervisor that monitors the
DL uncertainty for any given input at runtime such as ignoring predictions for high-uncertainty
inputs and running a safe fallback process by stopping a self-driving car at the side of the street,
for instance. The supervisor has the capability to discard predictions for highly uncertain inputs
above a specific threshold. The threshold setting is critical since a high threshold will fail to reject
many false predictions, while a low threshold will result in an excessive number of false warnings.
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The authors introduced a new metric for determining the appropriate threshold value to address
this concern.

3 CONTEXT AND RUNNING EXAMPLE

This section presents the context of this work together with relevant challenges in Section 3.1,
followed by a running example that will be used to explain various concepts throughout the article
(Section 3.2).

3.1 Challenges and Context

Developing CPSs is challenging as compared to classical software due to the unique characteris-
tics of CPSs, such as the interdisciplinary nature (e.g., involving software, hardware, physics), close
interactions with their operating environment including humans, and the use of communication
mediums for communicating among their components [16]. In addition, CPSs face uncertainties
both during their development and throughout their operation, e.g., due to intrinsic uncertainty
of the DL models employed, inherently unpredictable environment, unpredictable human behav-
iors, and unreliable network communications among CPS components [35, 60]. Such uncertainties
make CPSs’ development and operation even more challenging. Thus, to better understand uncer-
tainties of CPS behaviors with the aim to enhance the dependability of the next generations of
CPSs, develop new test cases, and so forth, data produced during their operation can be used for
various analyses with DL models. To this end, the context of this work focuses on CPS data pro-
duced, e.g., during their operation.

The overall context of this article is shown in Figure 1. Since we focus on uncertainty in DL
models employed on CPS labelled data, we expect that there is an Execution and Labelling System

that interacts with the CPS of interest, obtains relevant CPS data, and labels them with a DL model.
Examples of such labels include whether a security attack was detected by the CPS, and whether
or not an execution of the CPS system failed. We would also like to acknowledge that such labeled
data are commonly available and we use them in this article for the evaluation purpose. The La-

beled Data is then the input for Uncertainty Quantification, which consequently produces another
set of data collected for uncertainty metrics (i.e., Uncertainty Measurements). These data are then
the input to another ML model, Prediction Validator, which makes predictions about wrong classi-
fications of DL models employed for CPS data due to uncertainty. In our context, the motivation
of having Prediction Validator is to predict the correctness of the DL models employed for CPS
data’s output by using the model’s uncertainty values. In a typical DL model training, the training
datasetD inevitably cannot include all possible input instances. Thus, any model trained with CPS
data has no chance to reach the goal of discovering the best parameters (i.e., weights in neurons)
that can successfully map all possible inputs to CPS outputs. This makes an inequality between
the ground truth y and the prediction of a model for CPS data ŷ, called model uncertainty. One
straightforward strategy to reduce the model uncertainty is to obtain more data, which is often
not possible in practice. For example, Kendall and Gal [29] stated that given enough data, model
uncertainty could be reduced to a negligible level. This is a hard task that cannot be achieved for
any realistic applications. In this paper, our main aim is about using uncertainty quantification
metrics to predict wrong predictions of DL models employed on CPS labeled data. We end up with
a prediction validator model that indicates how much a given DL model predicts correctly and
how much the actual value (i.e., ground truth) is deviated from the predictions.

3.2 Running Example

To explain various concepts in our method, we will use the running example of the Robot dataset
[13]. The dataset is collected from a robot that moves itself in a room with the help of 24 different
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Fig. 1. Overall context.

Table 1. Sample Sensor Readings of the Robot Dataset

Row No US1 US2 US3 US4 · · · US22 US23 US24 Label

1 1.455 1.477 1.504 5.000 · · · 4.435 0.646 1.448 Move-Forward
2 1.111 1.140 2.331 2.331 · · · 1.079 1.064 1.128 Move-Forward
3 0.548 1.382 1.378 1.395 · · · 0.465 0.531 0.805 Sharp-Right-Turn
4 0.908 0.935 1.631 1.605 · · · 0.891 0.880 0.890 Move-Forward
5 1.273 2.418 2.420 2.628 · · · 0.854 0.862 4.328 Sharp-Right-Turn
6 1.407 1.444 1.458 2.622 · · · 1.404 1.384 1.392 Sharp-Right-Turn
7 0.806 1.486 2.744 2.756 · · · 0.759 0.765 0.789 Sharp-Right-Turn
8 1.272 1.518 2.423 2.423 · · · 1.196 1.181 1.206 Move-Forward
...

...
...

...
...

...
...

...
...

...
n − 1 1.089 1.680 1.671 1.681 · · · 1.304 1.089 1.077 Move-Forward
n 2.325 2.541 5.000 2.073 · · · 4.260 5.000 1.758 Sharp-Right-Turn

sensors attached circularly around its waist. Based on the current set of sensor values, the robot
decides its next move, which is classified into four labels: Move-Forward, Slight-Right-Turn,
Sharp-Right-Turn, and Slight-Left-Turn. Table 1 shows the excerpt of the labeled dataset. The
columns US1 to US24 represent the 24 sensors. The sensor values are continuous. The Label

column shows the label associated with each set of sensor values, i.e., each row in the table. To
validate our method, we will build a DL model to predict the direction of motion based on sensor
readings by using the dataset. We split the dataset as training dataset to build the DL model and
test dataset to evaluate the DL model. We aim to quantify the uncertainty in the decisions of the
DL model about making the next move.

4 PRELIMINARY INFORMATION

A typical ML classification model,h, has the following components: a training dataD, output labels
Y , and a loss function �. Given a dataset D = {(x1,y1), . . . , (xN ,yN )} ⊂ X × Y , where X ∈ Rm×n

is the input instances, x ∈ Rm is an m-dimensional input instance, and Y ∈ {1 · · ·C} with C being
the output labels, training instances {xi ,yi } ∀X are a set of independent and identically distributed
training instances from unknown probability measures P on X × Y . We want to find a model
h : X �→ Y using weights of neural net parameters w and a loss function � : Y × Y �→ R as similar
as possible to the original function that has generated the labels.

The study by Gal [14] indicated that a Bayesian neural network model with prediction-time-
activated dropout is comparable to a specific variational inference on a neural network model
with prediction-time-activated dropout. Their approach is an ensemble approach. In each single
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prediction, the system drops out different neurons in each of the network’s layer according to
the dropout ratio in the prediction time. The predictive mean is the average of the predictions
over dropout iterations, T , and the predictive mean is used as the final prediction, ŷ, for the input
instance x. The overall prediction uncertainty is approximated by finding quantification metrics
(e.g., the entropy and the variance of the probabilistic feed-forward MC dropout sampling) during
prediction time. The final prediction is [14]

p (ŷ = c |x,D) ≈ μ̂pr ed =
1

T

∑

y∈T
p (ŷ |θ ,D), (1)

where θ is the model weights, D is the input dataset, T is the number of predictions of the MC
dropouts, and x is the input sample. The label of input instance x can be estimated with the mean
value of MC dropout predictions p (ŷ |θ ,D), which will be done T times.

Random neurons in each layer are dropped out of the underlying neural network model during
prediction time, according to thep, to build a new model. As a consequence,T distinct classification
models may be employed to forecast the class label of the input instance and quantify the aggregate
prediction’s uncertainty.

For each testing input instance x, the predicted label is assigned with the highest predictive
mean. We used entropy and softmax variance measures in order to quantify how much the model
is uncertain about its labeling predictions. The entropy is a measure defined as the average level
of uncertainty fixed in the likely outcomes of a random variable [9]. The entropy function can be
described as [46]

H (ŷ |θ ,D) = −
∑

c ∈C
p ( f (x) = c ) logp ( f (x) = c ) , (2)

where f (x) is the classification model prediction, and p ( f (x) = c ) is the model’s prediction prob-
ability, f (x), for the class c .

The second approach is the softmax probability variance measure, which measures the uncer-
tainty in the prediction as a function of the model’s softmax probability values variance for each
class. We calculate theT predictions’ softmax output variance for each class and then average the
results to find the mean variance over all classes. The softmax variance can be described as [23]

VAR ( f (x)) =
1

T

T∑

t=1

( f (x) − f (X ))2 . (3)

5 APPROACH

The main goal of this work is to find wrong labeling (i.e., predictions) of DL models for CPSs,
based on model uncertainty quantification in the prediction time. The proposed uncertainty quan-
tification approach mainly consists of three phases: (Phase I) the model building and retraining
phase, (Phase II) the prediction-time-activated dropout-based neural-network-based predictions’
uncertainty quantification phase, and (Phase III) the prediction validator model building phase
(Figure 2).

As shown in Figure 2, Phase I is responsible for data pre-processing and model building with
input dataset D from CPSs. A standard neural network training is performed at this phase, and
both binary and categorical cross-entropy loss functions are used in weight optimization. The
main outcome is the base model, which is the model with the best prediction accuracy and lowest
loss over the entire training set. The most significant difference between the base model and a
standard neural network model is that the prediction time dropout of the base model is active at
the prediction time, while the standard neural network model has no dropouts. Here, we applied
uncertainty-based iterative learning to improve the DL model’s prediction accuracy. Accordingly,
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Fig. 2. Overview of NIRVANA.

(1) we train the DL model with a training dataset, (2) we quantify the uncertainty of the training
set, (3) we rank the training dataset according to their uncertainty values, and (4) we re-train the
DL model with the topmost highly uncertain instances to improve the prediction accuracy.

In Phase II, the base model deactivates several neurons in its every layer according to the
dropout ratio p in each prediction T for an unseen input example x. Figure 2 illustrates multiple
predictions with T different models (Model-1, Model-2,. . . Model-T ), which are generated from
the base model. The selection of the dropout ratio will be discussed in Section 5.2. In this way,
the base model can calculate the effect of the probability distribution of the weights on the MC
dropout models’ decisions based on the softmax output values, and the prediction uncertainty
of the base model can be quantified with entropy values of the calculated prediction softmax
distributions. Hence, the model’s prediction uncertainty is directly related to its accuracy, which is
the average of the softmax prediction accuracy. Another model uncertainty quantification metric
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Table 2. Example Training Datasets: The Table on the Top Shows the CPS Data and the MC Dropout

Model’s Outputs; the Table Below Shows the Training Dataset for Prediction Validator

CPS Dataset MC Dropout Predictions

S1 S2 · · · Sn Real (y) Pred. (ŷ) Entropy Variance y == ŷ

1.455 1.477 · · · 1.448 Move-Forward Move-Forward 0.560541 0.126364 True
1.111 1.140 · · · 1.128 Move-Forward Move-Forward 0.952304 0.304852 True
0.548 1.382 · · · 0.805 Sharp-Right-

Turn
Sharp-Right-
Turn

0.612164 0.162749 True

0.908 0.935 · · · 0.890 Move-Forward Sharp-Right-
Turn

0.988710 0.309782 False

...

2.325 2.541 · · · 1.758 Sharp-Right-
Turn

Move-Forward 0.643164 0.189927 False

⇓
Prediction Validator Training Dataset

Entropy Variance y == ŷ

0.560541 0.126364 0
0.952304 0.304852 0
0.612164 0.162749 0
0.988710 0.309782 1

...

0.643164 0.189927 1

is the softmax probability variance measure, which measures prediction uncertainty as a function
of the model’s softmax probability values variance for each class. As discussed in Section 4, we
calculate the T predictions’ softmax output variances for each class and then average the results
to find the mean variance over all the classes.

In Phase III, class predictions and uncertainty quantifications are used as the training data to
train the model for Prediction Validator, details of which will be discussed in Section 5.1. The
output of Prediction Validator is wrong prediction results, which should be provided to relevant
stakeholders such as CPS operators as an alarm. More discussions are provided in Section 7.

5.1 Prediction Validator

To predict wrong predictions of DL models employed for CPS data, we opted for an SVM-based de-
tection model (i.e., prediction validator). We chose SVM since the scientific literature [28] showed
that SVM’s prediction performance is generally better than multilayer perceptron (MLP). In the
future, we will try with MLP-based classification models. The training dataset for the prediction
validator is prediction outputs of the DL model employed for CPS data and their uncertainty
(Figure 2). Wrong labeling information includes false-positive (FP) and false-negative (FN)

labeled instances in the training dataset. True-positive (TP) and true-negative (TN) predictions
of the DL model employed for CPS data are labeled as 0 in the prediction validator training
dataset; FP and FN predictions are labeled as 1 in the dataset, as shown in Table 2.

Based on our running example of the Robot dataset in Section 3.2, we created a DL model
to predict the direction of the motion. The DL model reads data from the test dataset as input
values and then predicts the label. The training dataset might not contain enough instances to
learn all situations. Our MC dropout-based approach will quantify uncertainty of the DL model’s
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Table 3. DL Model’s Predictions with Uncertainty Values

Row No Entropy Pred. Variance Prediction

1 0.560541 0.126364 Move-Forward
2 0.952304 0.304852 Move-Forward
3 0.612164 0.162749 Sharp-Right-Turn
4 0.988710 0.309782 Move-Forward
5 0.697368 0.225314 Sharp-Right-Turn
6 0.691121 0.222518 Sharp-Right-Turn
7 0.747086 0.244951 Move-Forward
8 0.643164 0.189927 Move-Forward
...

...
...

...
n − 1 0.845818 0.275986 Move-Forward
n 1.258826 0.342335 Move-Forward

Table 4. Prediction Validator Results for the DL Model’s Predictions

Row No Entropy Pred. Variance Prediction Actual Prediction

Validator

1 0.560541 0.126364 Move-Forward Move-Forward Correct
2 0.952304 0.304852 Move-Forward Move-Forward Correct
3 0.612164 0.162749 Sharp-Right-Turn Sharp-Right-Turn Correct
4 0.988710 0.309782 Move-Forward Sharp-Right-Turn Wrong
5 0.697368 0.225314 Sharp-Right-Turn Sharp-Right-Turn Correct
6 0.691121 0.222518 Sharp-Right-Turn Move-Forward Wrong
7 0.747086 0.244951 Move-Forward Sharp-Right-Turn Wrong
8 0.643164 0.189927 Move-Forward Move-Forward Correct
...

...
...

...
...

...
n − 1 0.845818 0.275986 Move-Forward Move-Forward Correct
n 1.258826 0.342335 Move-Forward Sharp-Right-Turn Wrong

prediction with the entropy and softmax prediction probability variance. Table 3 shows the
entropy and softmax prediction probability variance in the Entropy and Pred. Variance columns.
These two values are associated with each row, i.e., one set of sensor values. The row numbers
are the same as in Table 1; i.e., they identify the same set of sensor values. Higher entropy and
prediction variance values indicate higher uncertainty associated with a prediction. For example,
row 2 with the entropy value of 0.95 for the prediction Move-Foward has high uncertainty as
compared with row 1 with the same prediction that has the entropy value of 0.56.

The prediction validator will validate the DL model’s predictions, based on uncertainty values.
Validation results are illustrated in Table 4. Wrong predictions are highlighted in the grey rows.

Suppose we created another dataset using the DL model employed for CPS and its uncertainty
outputs shown in Figure 3. There are two class labels in the new dataset: correct and wrong pre-
dictions. The class labels are separable in the Euclidean space using a region-based classifier such
as RBF kernel-based SVM. Then, the new classifier’s output can be used to show whether the
DL model employed for CPS data prediction for an input instance is likely correct or wrong. Let
X ∈ Rm×n denote the CPS test dataset and y ∈ Rm denote the vector of corresponding labels forX ;
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Fig. 3. Prediction validator model’s uncertainty training dataset.

then the DL model employed for CPS data h : X �→ Y outputs an uncertainty datasetU ∈ Rm×k ,
where k is the number of uncertainty metrics (i.e., variance, entropy).

Algorithm 1 shows the uncertainty dataset generation and prediction validator model building.
The DL model employed for CPS data is built in lines 1–2. The uncertainty dataset is created in
lines 3–6. The prediction validator model is built in line 7.

ALGORITHM 1: Building prediction validator model

Input: Input CPS dataset: (X ∈ Rm×n , y ∈ Rm ), uncertainty metrics list: K
// Create training and test datasets from CPS datasets

1 Xtr ain , ytr ain ,Xtest , ytest ← TrainTestSplit (X ,y)

// Train the DL model employed for CPS data, h, with (Xtr ain , ytr ain )

2 fp ← train(Xtr ain , ytr ain )

// Create an empty uncertainty dataset

3 U ← ∅
// K ∈ {softmax variance, entropy}

4 foreach uncertainty metric k ∈ K do

// Calculate uncertainty metric k values for Xtest

5 U[:,k]← fp .uncertainty (Xtest )

// Obtain label predictions of h, i.e., ŷ, for the test dataset. (ŷ == ytest ) will be

used as the label for uncertainty dataset U.

6 ŷ← fp .predict (Xtest )

// Build a prediction validator model, hvalidator , with uncertainty dataset U and its

label vector (ŷ == ytest )

7 hvalidator ← SVM (U , (ŷ == ytest ))

8 return hvalidator

We designed our prediction validator for classification tasks. To extend it for regression tasks
(i.e., continuous outputs), we need to adjust its implementation. For example, one can use the
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standard error of the regression to create a training dataset, which describes the average distance
that predicted values fall from the ground-truth regression line. This metric can label wrong predic-
tions for the training dataset for the prediction validator model. More specifically, if a continuous
output is higher than the standard error, we can label it as wrong prediction. We will implement
such a prediction validator in the future and evaluate its effectiveness with relevant case studies.

5.2 Dropout Ratio Selection

Considering that a comprehensive approach would increase uncertainty values of incorrectly la-
beled input instances (i.e., FN and FP) while reducing uncertainty values of correctly labeled input
instances (i.e., TP and TN), the model’s prediction time dropout ratio, p, should be tuned for the
base model to produce lower uncertainty values for true predictions and higher uncertainty values
for false predictions. At the same time, this approach should maintain the prediction performance
of the prediction model. Another parameter for estimating the best dropout ratio p value is model
prediction performance. The F1 value of the model is maximized to solve this optimization prob-
lem. The optimization problem’s output is the optimal solution for the given model parameters.
The equation is as follows:

arg min
p

��
�

1

m

∑

xi ∈D
I
(
yi = fp (xi )

)
U ( fp (xi ))

+
1

n

∑

xi ∈D
I
(
yi � fp (xi )

) 1

U ( fp (xi ))

+
1

F
(fp )
1

��
�
,

(4)

wherem is the number of correctly labeled examples, n is the number of incorrectly labeled exam-
ples in the unseen input space,U is the uncertainty quantification metric (i.e., entropy or predic-

tion variance), and F
(fp )
1 is the F1 performance metric value of the model f . We used the greedy

approach for the minimization of Equation (4) to estimate the best p ∈ [0, 1] value for the optimal
model classifier. The optimization problem is a simple minimization problem; there is only one
variable, p, that justifies the sufficiency of using a greedy algorithm.

6 EVALUATION

In Section 6.1, we present the experiment design, followed by the experiment execution in
Section 6.2 and results in Section 6.3. In Section 6.4, we present the threats to validity of our
experiment.

6.1 Experiment Design

We designed a series of experiments by uniformly varying 50 different p ratios from 0.01 to 0.90.
Each experiment was executed 20 times, the results of which, corresponding to each p ratio, are
averaged to smooth the plotting. We selected the best hyper-parameters for the DL models for the
datasets we used in the experiments using a simple grid search, and it turned out that the best
hyper-parameters are the Rmsprop optimizations with a learning rate of 0.01. Figure 4 shows the
DL models for each dataset. The code is available from GitHub.2

2https://github.com/Simula-COMPLEX/nirvana.
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Fig. 4. Prediction-time-activated dropout-based neural network models for each dataset.

In the rest of the section, we first present the datasets we employed for the experiments in
Section 6.1.1, followed by research questions (RQs) (Section 6.1.2) and evaluation metrics
(Section 6.1.3).

6.1.1 Datasets. In this work, we used three publicly available and one industrial CPS datasets:
SWaT [19], Robot [13], KITTI [38], and Video conferencing [44] to demonstrate the efficiency of
NIRVANA.

The SWaT testbed implements the process for secure water treatment. The testbed has four
security attack scenarios: single-stage single-point, single-stage multi-point, multi-stage single-point,

multi-stage multi-point. The testbed consists of 51 sensors and actuators and their values and states
are logged every second. The labeled data in this testbed consists of whether an attack occurred or
not. To obtain such labels, various attacks according to the four scenarios were introduced to the
testbed. The data we used is for over 11 days and it consists of both normal and attack scenarios.

The Robot dataset is the same as our running example presented in Section 3.2; however, the
running example was simplified so that it can be used to explain things easily.

In the Video conferencing dataset, the data was collected about whether two Video conferencing
systems can establish calls with each other under different configurations of the systems. The
two Video conferencing systems are industrial CPSs that are available to us through our previous
research collaborations.3

The KITTI dataset contains a series of computer vision tasks built using an autonomous driving
platform. We used the KITTI road-type classification task [15]. The original dataset was designed
for object detection and segmentation. However, the dataset has six different categories: City, Res-

idential, Road, Campus, Person, and Calibration.4 In our experiments, we classify road types of the
KITTI dataset’s images and consequently selected these three relevant categories: Residential, City,

3Note that due to the industrial nature of the data, we only provided password-protected access to the data only for the

review. If the article is accepted, the data will not be made publicly available.
4http://www.cvlibs.net/datasets/kitti/raw_data.php.
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Fig. 5. Class label distributions of the datasets.

and Road. The other three categories are not relevant since their images contain either no roads
or only a few walking paths. Figure 5 shows the class label distribution of the classes. We selected
50 images for each class to build the DL road classification model. The training time is quite high
because of the images. Therefore, we could only select 150 images due to the practical constraints
on the computational infrastructure we have, though the original KITTI dataset contains a fairly
large number of images.

For the SWaT, Robot, and Video conferencing datasets, we developed feed-forward-based DL
models for prediction. Since the KITTI dataset contains only autonomous car camera views (i.e.,
images), we developed a CNN-based DL model for KITTI to make predictions. In traditional
image classification and object detection tasks, CNN-based DL models are most commonly used
to solve problems that cannot be solved in feed-forward neural networks [27, 48].

Highly correlated features in a dataset are computationally expensive for the model building
phase. To simplify it, we removed the highly correlated features from the SWaT, Robot, and Video
conferencing datasets and trained each model using only low-correlated features to build more
reliable and simple models. The resulting models are used in the evaluation phase to determine
the prediction performance.

6.1.2 Research Questions. NIRVANA aims to explore uncertainty quantification, explore the
relationship between prediction uncertainty and prediction accuracy, and create a prediction
validator model based on this relationship. We formed the following RQs and designed the
experiments to answer them: [RQ0] Is there any correlation between uncertainty and prediction
performance? Studying this RQ is necessary as a positive answer to it motivates us to further
investigate whether uncertainty values can help to improve the prediction performance of the DL
models (RQ4). We numbered this research question as RQ0 since it is a simple question and the
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existing literature has already answered this question to some extent [34, 54]. [RQ1] How can a
model’s decision making be characterized with uncertainty quantification? RQ1 helps us assess
the quality of a DL model’s decision making with two uncertainty quantification methods: entropy
based and softmax prediction variance based. [RQ2] How can a model’s false labeling be predicted
by another model benefiting from uncertainty values (obtained from RQ1)? RQ2 explores the
effectiveness of building a new model to extract decision boundaries (i.e., label clusters) using an
RBF kernel-based SVM for validation data (i.e., prediction validator model). [RQ3] What is the
best dropout ratio for uncertainty quantification for each dataset? RQ3 studies how to find the
best dropout ratios to distinguish highly uncertain and wrong predictions from slightly uncertain
and correct predictions. [RQ4] Can we improve the prediction performance of the DL models by
using highly uncertain instances (obtained from RQ1) in the retraining of the models? RQ4 aims
to demonstrate how to benefit from uncertainty values to build more reliable DL models.

So, overall, RQ0 was designed to confirm the negative correlation between uncertainty and
prediction performance. RQ1 and RQ3 are about producing uncertainty values. RQ2 and RQ4 are
for testing the effectiveness of using another model for predicting false labeling of DL models and
improving their prediction performance, respectively, by both benefiting from uncertainty values
obtained from RQ1 and RQ3.

6.1.3 Evaluation Metrics. As the datasets are not balanced and data is not uniform, we employ
standard metrics in information retrieval to assess the models: the overall prediction accuracy,
average recall, average precision [51], and F1 [37]. We calculate precision and recall values for
each class and then find their mean value.

6.2 Experiment Execution

All the experiments were performed using Python scripts and ML libraries: Keras, Tensorflow, and
Scikit-learn, on the following machine: 2.8 GHz Quad-Core Intel Core i7 with 16GB of RAM.

For each dataset, two models, with and without MC dropout, were trained to obtain prediction
results. In the first model, the dropout is applied at the prediction time. The hyper-parameters such
as the number of hidden layers and the number of neurons in the hidden layers, the activation
function, the loss function, and the optimization method are the same for both models.

Each dataset has been divided into two parts: 33% test sets and 67% training sets. In the test sets,
we randomly chose a subset of the datasets and use them to evaluate the prediction performance
of the models. The number of epochs was set to 500, and the epoch size was fixed for all the models.
The prediction time dropout values were set to 0.01 and increased to 0.90 with an increment of 0.02.

We used dropout layers at the prediction time only. If we traditionally used the dropout
method in training time, the DL models’ neuron weights for each experiment (i.e., for different
dropout values) could be different from each other’s model. Here, we aim to carry out uncertainty
measurements with varying dropout values of the DL model, whose neuron weights are very
close to each other. If we use training time dropouts, then our DL models’ weights can be very
different in each experiment.

MC dropout models were used for each test input with T = 100 times for prediction of the test
dataset. The predicted labels for the test set were calculated by averaging the output of the last
layer’s softmax function over T iterations. The prediction uncertainty for each input in the test
sets was quantified using Shannon entropy and prediction variance, respectively.

6.3 Results

6.3.1 Results for RQ0. To answer this RQ, first, we obtain values of the prediction performance
metrics (i.e., accuracy, precision, recall, and F1) of the base NN models and the prediction-time-
activated dropout-based NN models, as shown in Figure 2. Table 5 presents the prediction
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Table 5. Prediction Performance Metrics of the Models

Dataset Model Acc. Prec. Recall F1

SWaT
Prediction-time-activated
dropout-based NN

0.97 0.99 0.78 0.87

Baseline model 0.97 0.99 0.79 0.88

Robot
Prediction-time-activated
dropout-based NN

0.98 0.98 0.98 0.98

Baseline model 0.97 0.97 0.97 0.97

Video conferencing
Prediction-time-activated
dropout-based NN

0.81 0.80 0.81 0.80

Baseline model 0.81 0.80 0.81 0.80

KITTI
Prediction-time-activated
dropout-based NN

0.94 0.93 0.93 0.93

Baseline model 0.94 0.93 0.93 0.93

performance for each dataset of the two types of models. As shown in the table, the accuracy of
the prediction-time-activated dropout-based NN model is roughly equal to that of the baseline
model’s prediction performance.

Second, all the samples were ranked in descending order according to their uncertainty values to
find highly uncertain instances. Third, we discarded the topmost uncertain examples ranging from
0.1% to 60% in the datasets to demonstrate the negative effect of model uncertainty on prediction
performance by removing the most uncertain samples from the datasets. Figure 6 shows changes
in the prediction performances (measured with F1) of the models with different dropout rates as a
result of removing the most uncertain samples from each dataset. The left side of the figure shows
the entropy-based uncertainty quantification results, whereas the right side of the figure shows
the variance-based uncertainty quantification results. From the figure, we can observe that the
prediction performance of the models increases along with discarding highly uncertain samples
based on entropy-based uncertainty quantification. When looking at the results for variance-based
uncertainty quantification, the trend is not as significant as for the entropy-based uncertainty
quantification. In summary, the correlation between the entropy-based uncertainty quantification
and the prediction performance is highly negatively correlated for most of the dropout rates and
datasets, whereas no correlation between the variance-based uncertainty quantification and the
prediction performance can be observed.

Another way to show DL model performance is ROC plots. In our case, the dropout ratio is
varying. Thus, we need to plot 50 different ROCs for each dataset. Consequently, this approach is
not suitable to show the relationship between uncertainty and prediction performance.

Concluding Remarks for RQ0: The prediction performance of models increases along
with discarding highly uncertain samples based on entropy-based uncertainty quantification,
which is, however, not always the case for variance-based uncertainty quantification.

6.3.2 Results for RQ1. We used entropy and prediction variance values of the DL models’ soft-
max probability outputs to compare each uncertainty quantification method to determine the most
and least uncertain predictions on each dataset. Figures 7 to 10 show the two most uncertain test
instances with entropy-based and softmax prediction probability variance-based uncertainty quan-
tification for the four datasets. Each subfigure shows an input example with prediction probability
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Fig. 6. Accuracy change with the most uncertain input instances removed from the test dataset.

(T times) histogram. The x-axis shows the softmax probability value of the class, and the y-axis
shows its frequency.

From these figures, one can observe that softmax probability output distributions for each class
show very similar patterns in the results. When looking at Figure 9(c), the Video conferencing
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Fig. 7. Most uncertain test instances for the SWaT dataset. Figures (a) and (b) show results of the entropy-

based uncertainty quantification, and Figures (c) and (d) show results of the softmax prediction probability

variance-based uncertainty quantification. Class label 0 is normal and label 1 is attack.

Fig. 8. Most uncertain test instances for the Robot dataset. Figures (a) and (b) show results of the entropy-

based uncertainty quantification, and Figures (c) and (d) show results of the softmax prediction probability

variance-based uncertainty quantification. Class label 0 is Slight-Right-Turn, label 1 is Sharp-Right-Turn,

label 2 is Move-Forward, and label 3 is Slight-Left-Turn.

system model’s prediction is 0, the true label is also 0 for the input example, and the uncertainty
is very high (with the prediction variance being 0.15). Also, the class assignment probabilities for
this input example are almost equal for each class label: 50.00% and 50.00%, indicating highly unre-
liable prediction. When looking at Figure 9(a), the Video conferencing system model’s prediction
is wrong, exhibiting the average prediction probability for 0-class being 49.94 %, and 1-class being
50.01% with an uncertainty value being 1 when measured with entropy.

In summary, the entropy and prediction softmax probability variance-based uncertainty
quantification for the three datasets (i.e., SWaT, Robot, Video conferencing) show very similar
patterns in the results in terms of uncertainty quantification and predictions’ distributions, as
Figures 7 to 9 show that the DL models’ prediction conforms to the normal distribution. The
softmax distribution of the predictions with high uncertainty generally shows a distribution with
a midpoint of 0.5. Moreover, the average softmax prediction values of the class labels are also very
close to each other. The only exception is for the KITTI dataset, as shown in Figure 10. We can see
from the figure that, in general, the KITTI DL model’s predictions have low uncertainty, which
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Fig. 9. Most uncertain test instances for the Video conferencing system dataset. Figures (a) and (b) show

results of the entropy-based uncertainty quantification results, and Figures (c) and (d) show results of the

softmax prediction probability variance-based uncertainty quantification. Class label 0 is Failed and label

1 is Connected.

Fig. 10. Most uncertain test instances for the KITTI dataset. Figures (a) and (b) show results of the entropy-

based uncertainty quantification, and Figures (c) and (d) show results of the softmax prediction probability

variance-based uncertainty quantification. Class label 0 is Residental, label 1 is City, and label 2 is Road.

is also supported from data reported in Table 5, where the precision, recall, and F1 prediction
performance values of the KITTI DL model are higher than the other models.

Concluding Remarks for RQ1: The entropy- and softmax probability variance-based meth-
ods perform similarly in terms of uncertainty quantification and predictions’ distributions,
suggesting that highly uncertain instances’ predictions are likely wrong.

6.3.3 Results for RQ2. We can predict if the labeling is FP or FN with another prediction model
using entropy and variance uncertainty values. For this purpose, for each dataset, we created a
dedicated SVM-based prediction validator model with the following parameter configurations: RBF
kernel, Gamma value being 1,000, Regularization parameter (C) being 1,000. The parameter
values were chosen to maximize the prediction validator accuracy based on grid search. The input
data of these prediction models are the entropy and variance values of each instance in the training
datasets; the labels are correct prediction (0) or wrong prediction (1). These models learn decision
boundaries from the training datasets followed by predicting wrong predictions based on regions.
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Fig. 11. Decision boundaries of the prediction validator models for each dataset.

Table 6. SVM Model Prediction Performance

Data
RBF Linear Polynomial

Prec. Rec. F1 Acc. Prec. Recall F1 Acc. Prec. Rec. F1 Acc.

Robot 0.97 0.95 0.96 0.97 0.81 0.81 0.81 0.81 0.77 0.77 0.77 0.77
SWaT 0.94 0.90 0.92 0.95 0.84 0.84 0.83 0.84 0.79 0.70 0.71 0.78
Video 0.96 0.93 0.94 0.94 0.77 0.77 0.77 0.77 0.74 0.75 0.73 0.75
KITTI 0.97 0.97 0.97 0.97 0.95 0.95 0.95 0.95 0.88 0.85 0.85 0.85

One important feature of a prediction validator model is that it can form decision boundaries
that distinguish among classes in a dataset in the form of polynomial/linear functions and clusters
[25]. In particular, a class’s boundary is defined as a set of clusters with all the instances having
the same label. Figure 11 shows decision boundaries for positive and negative classes separated as
clusters. The grey regions cover positive labeled instances (FN and FP predictions for the base NN
model), while the red regions show negative labeled instances (TP and TN predictions for the base
NN model). In other words, if the entropy and variance uncertainty values of a test instance are in
the grey region of the decision boundary, the prediction validator model will classify this instance
as a wrong prediction.

As shown in Figure 11, there are six clusters (separated grey regions) for SWaT, around 20 clus-
ters for Robot, 2 clusters for Video conferencing, and 1 cluster for KITTI. The prediction validator
model for KITTI results in only one cluster, implying that the prediction validator models with the
RBF kernel can easily distinguish positive and negative instances. Moreover, Table 6 shows the
prediction performance results with three different kernel functions: RBF, Linear, and Polynomial.
From the table, we observe that the RBF-based SVM model for each dataset achieved the highest
classification results. More details about the comparisons will be discussed in Section 7.

Table 7 presents results of the comparison of the threshold-based wrong label prediction and
SVM-based wrong label prediction. We aim to compare the prediction performance of the predic-
tion validator and threshold-based wrong label prediction method. To make a fair comparison, we
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Table 7. Comparison against the Current Standard in Terms of

Entropy-based Uncertainty Quantification

Data
Threshold (Entropy) Based SVM Based

Threshold FPR TPR FPR TPR

Robot 0.763 0.094634 0.752941 0.094718 0.88591
SWat 0.373 0.139068 0.566565 0.138698 0.613824
Video 0.587 0.105154 0.844735 0.105459 0.854712
KITTI 0.910 0.082192 0.571429 0.082278 0.95302

used the false-positive rate (FPR) metric to find the matching threshold value. In this way, we
developed two different models that have the same FPR value. In the threshold-based wrong label
prediction approach, if a prediction’s entropy-based uncertainty value is higher than a predefined
value (i.e., threshold value), this prediction is accepted as wrong. Accordingly, we used the 500
different threshold values between the minimum and maximum uncertainty values. In the sec-
ond step, we calculated the corresponding FPR and TPR values for each threshold value. Finally,
the threshold with the closest FPR rate with the SVM FPR rate is selected. The matching thresh-
old values are 0.763 for Robot, 0.373 for SWat, 0.587 for Video conferencing, and 0.910 for KITTI
datasets. Though the FPR values are almost the same, the TPR values are higher with our SVM-
based method. Therefore, NIRVANA gives better prediction performance than threshold-based
wrong label predictions.

The training dataset used to train a DL model may not contain enough examples and may not
cover all situations for a given task. In this case, the DL model’s prediction uncertainty value
would be high. For this reason, unfamiliar input to the training set will be predicted as wrong
by the prediction validator as it has high uncertainty in its prediction. Moreover, the DL model’s
prediction will probably be incorrect. As can be seen in Table 6, the performance of the prediction
validator model to detect incorrect predictions is quite high, with, for instance, F1 scores between
0.92 and 0.97. As a result, the prediction validator model successfully extracts the relationship
between uncertainty measurements and incorrect predictions.

Concluding Remarks for RQ2: In most cases, the prediction validator model can extract
relationships between uncertainties and incorrect predictions with high accuracy (more than
0.94), recall (at least 0.90), precision (more than 0.97), and F1 score (at least 0.92), thereby
providing a valuable tool for uncertainty analyses related to incorrect predictions.

6.3.4 Results for RQ3. For RQ3, we aim to find the best dropout ratios, p, using Equation (4)
for each dataset. We conducted all experiments using the test datasets to find the best p values.
Figure 12 shows the output (y-axis) of the equation with respect to p. According to the figures,
the best p value is 0.13 for SWaT, 0.59 for Robot, 0.02 for Video conferencing, and 0.09 for KITTI
datasets. We observed that the best p value selected for Robot is higher than for the other datasets.
This is because, from the figure, we can see that the standard deviation of the outputs of Equa-
tion (4) with varying p values (i.e., the dark grey area) for Robot is large. One can also observe
that the outputs increase until the p value reaches 0.59. Therefore, we think that choosing a lower
value for p as the best dropout ratio will not make much difference in uncertainty quantification.

Figure 13 shows the CPS data models’ entropy-based uncertainty quantification with the best p
values for each dataset. The figure has the same shape for all four datasets. In each figure, the x-axis
shows the model uncertainty value and the y-axis shows the density of data points. The green lines
are the TP and TN values of each model. For instance, Figure 13(a) shows the uncertainty histogram
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Fig. 12. Best dropout ratios according to Equation (4).

of the SWaT dataset. Its sub-figure on the left shows the uncertainty of positive examples (true
Attack labels) of predictions with TP and FP labels, respectively. The TP and TN labeled instances’
uncertainty histogram values are clustered in the lower values (the left side of the figures), which
means low uncertainty on correctly labeled samples.

On the other hand, the FP and FN labeled instances’ uncertainty histogram values are more
scattered in the upper values (the right side of the figures), indicating high uncertainty in incor-
rectly labeled samples. This pattern can be observed for all four datasets. The only exception is
on the TN predictions for the Video conferencing dataset. As shown in Figure 13(c), the uncer-
tainty histogram values for the TN predictions (in the Connected class) with FN predictions are
clustered in higher uncertainty values (the right side of the figure), indicating high uncertainty
both in incorrect and in correctly labeled samples. The main reason is that the Video conferencing
dataset’s instances with the negative labels have a similar pattern as instances with the positive
labels. Wrong predictions for the KITTI dataset are only in the Road class. There are no wrong
predictions in the other two classes. The Road class’s histogram plot shows a similar pattern as
the other datasets’ prediction histogram plots; the uncertainty values of correct predictions are on
the left side, while the uncertainty values of wrong predictions are on the right side of the figure.

In conclusion, the uncertainty values of the correct and incorrect predictions are clustered in
different regions in the figures. The correct predictions’ uncertainty values are on the left side (i.e.,
low uncertainty), and the wrong predictions are on the right side (high uncertainty).

Concluding Remarks for RQ3: The selected best dropout ratio for each dataset (0.13 for
SWaT, 0.59 for Robot, 0.02 for Video conferencing, and 0.09 for KITTI) successfully increases
the wrongly labeled instances’ uncertainty values while reducing the correctly labeled in-
stances’ uncertainty values.
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Fig. 13. Prediction-time-activated dropout-based DL model uncertainty for all datasets.

6.3.5 Results for RQ4. We have shown in RQ0 that samples with high uncertainty have a high
rate of wrong predictions. Highly uncertain samples can be used for retraining to improve the
DL models’ prediction performance. To achieve this, we iteratively retrained each DL model. At
each retraining iteration, predictions were made using the test datasets, and we further ranked
these predictions in descending order according to their uncertainty values. We used the most
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Fig. 14. Performance improvements of the DL models when retrained with most uncertain input instances.

F1 scores before and after retraining each DL model are highlighted in each sub-figure.

Table 8. Accuracy Improvement of the DL Models When Retrained with Most Uncertain Input Instances

Accuracy Precision Recall F1

Before After Before After Before After Before After

SWaT 0.96457912 0.98552189 0.96563238 0.98546561 0.96457912 0.98552189 0.96191914 0.985234
Robot 0.80122154 0.93725708 0.80191343 0.93729346 0.80122154 0.93725708 0.80088805 0.93724854
Video 0.97038835 0.99199029 0.97128911 0.99198228 0.97038835 0.99199029 0.9706586 0.99198553
KITTI 0.91666667 1.0 0.91841492 1.0 0.91666667 1.0 0.91652174 1.0

uncertain instances in the next iteration of retraining, and consequently improved the prediction
performance of the DL models.

To converge each iteration, the number of new rows in retraining was selected using a decaying
approach, as shown below:

num_o f _rows =

∑
xi ∈D I

(
yi � fp (xi )

)

1 + α · iter_no
, (5)

where yi is the actual output, fp (xi ) is the predicted output, and α is the tuning parameter. The α
value is 1.0 for the SWaT, Robot, and Video conferencing datasets, and 0.2 for the KITTI dataset.
The KITTI dataset’s number of instances is lower than the other datasets. Thus, we aimed for
the iteration steps to take longer by choosing a lower α value. In this way, we were able to have
more num_o f _instances values in each iteration step. Figure 14 shows the prediction performance
improvement for each dataset. The SWat, Robot, and Video conferencing DL models’ iteration
sizes are 30, while the KITTI DL model’s is 5 because, as shown in the figure, the KITTI DL model
converges to 1.0 within five iterations.

Table 8 summarizes the prediction performance improvement of each DL model. According to
the table, all the DL models’ prediction performance increases after being retrained with highly
uncertain training instances provided with our approach. For instance, the prediction performance
improvements of the DL models in terms of accuracy are 2.17% for SWaT, 16.98% for Robot, 2.23%
for Video conferencing, and 9.09% for KITTI.
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Concluding Remarks for RQ4: Retraining DL models with highly uncertain training in-
stances increases their prediction performance by 2% to 17% on all four metrics. These results
suggest that the prediction performance of a DL model can be improved by retraining the
model with uncertain instances.

6.4 Threats to Validity

A key external validity threat is related to the generalization of results [43]. In our experiments,
we used only four CPS datasets, and we definitely need more case studies to generalize the results.
Moreover, these datasets reflect different types of CPSs, including robotics, automation systems,
and communication systems.

Our key construct validity threat is related to the selection of uncertainty quantification metrics
that do not precisely quantify uncertainty. Nevertheless, note that these quantification metrics
are from the literature [43] and have been applied to quantify uncertainty. In the future, we will
conduct dedicated empirical studies to systematically investigate more uncertainty quantification
metrics. Another threat is to use the SVM algorithm for the prediction validator model. One reason
was that the SVM models are capable of finding nonlinear decision boundaries in input space [24].
Moreover, the SVM algorithm is capable of separating class instances using a hyperplane with
kernel trick (i.e., imitating higher-dimensional input space). Nonetheless, in the future, we will
conduct experiments to build a prediction validator to investigate more classification algorithms.
The last threat is related to activating the dropout layers in the prediction time only. Because of this,
our approach is not fully compatible with Gal’s approach in terms of quantifying uncertainty in
DL models. Also, we developed our implementation without using any uncertainty quantification
library. Being now aware that the uncertainty-wizard library [57] makes uncertainty quantifica-
tion compatible with BNN models, we will carry out experiments by using BNN models and the
uncertainty-wizard library in the future.

Our main conclusion validity threat is due to finding the best dropout ratio that is responsible
for increasing uncertainty for the wrong labeling instances and decreasing the uncertainty for the
correctly labeled instances. To mitigate this threat, we repeated each experiment 20 times for each
dataset to reduce the probability that the results were obtained by chance. In a standard neural
network training, all weights are initialized uniformly at random. In the second stage, using op-
timization, these weights are updated to fit the classification problem. Since the training started
with a probabilistic approach, there is a possibility of facing the local minimum problem in the op-
timization. In order to eliminate the local minimum problem, we repeated the training 20 times to
find the p value that gives the best result. In each repetition, the weights were initialized uniformly
at random but with different values, such that if the optimization function failed to find the global
minimum, in the next experiment, it is likely to find it as the weights have been initialized with
different values.

7 OVERALL DISCUSSION

In this section, we provide overall discussion from two perspectives. First, we present the discus-
sion related to detecting wrong predictions in Section 7.1, followed by discussing applications of
NIRVANA in the context of studied CPSs in Section 7.2.

7.1 Detection of Wrong Predictions

This study demonstrated that there is a strong relationship between DL models’ prediction accu-
racy and predictive uncertainty with various CPS datasets. In existing uncertainty-based prediction
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quality studies [17, 39], a model’s prediction reliability for a given instance is generally decided
using only a threshold value. If a prediction’s uncertainty value is higher than a predefined thresh-
old value, the system concludes that this prediction is likely wrong. Our study shows that this
relationship is not simply a threshold or a linear correlation. We created uncertainty datasets for
each DL model employed for CPS data using the models’ prediction uncertainty over the entire
input CPS datasets. Labels of such an uncertainty dataset are binary classes of correct predictions
(TP and TN) and wrong predictions (FP and FN). In this dataset, we observed that correct and
incorrect predictions are clustered into specific regions. For this reason, we built an SVM model
with RBF kernel that creates region-based decision boundaries in the uncertainty datasets. Thus,
we increased the performance of the detection of wrong predictions as shown in Table 6.

In this study, the prediction validator estimates wrong predictions of classification models using
uncertainty metrics. Apart from classifications, a regression model’s wrong predictions can be
calculated in the same way by using error metrics such as mean absolute error, mean square error,
and root mean square error. Therefore, the prediction validator approximation is suitable not only
for classification but also for regression problems.

7.2 Applications in the Context of the Studied CPS Datasets

Below, we discuss such applications for each of the studied CPS datasets and the corresponding
underlying CPS.

SWaT: The SWaT CPS case study is focused on the detection of security attacks. To this end,
uncertainty datasets produced with NIRVANA can be used as training data or testing input to
facilitate the development and testing of an uncertainty-aware DL-based attack detection system
that can predict attacks in various uncertain situations such as due to sensor and actuator errors.
The aim of such attacks is to deceive the system and lead it to anomalous behavior. When the
decision of the DL model employed for CPS data is wrong, it makes the target system fail (e.g.,
wrong behavior of actuators). In the studies about “Adversarial machine learning” attacks such as
FGSM [20], BIM [30], and DeepFool [40], the uncertainty of the DL models’ decisions as a result of
the attacks is high [12]. For this reason, the use of uncertainty datasets in CPSs’ attack detection
will increase the reliability of the system.

Video conferencing system: For a CPS to work correctly and efficiently, it is essential that
its system parameters are properly configured during its operation. A video conferencing system
running with incorrectly configured parameters is highly likely to fail. In this context, we foresee
two possible applications. First, an uncertainty-aware DL-based component can be developed to
predict call failures ahead of time due to uncertain configurations of the video conferencing system.
Such a component, in addition, can produce quantified uncertainty associated with each predic-
tion, which can be used by the system to make better decisions such as keeping the call connection
but reducing the quality of videos of call participants automatically. Second, an uncertainty-aware
method, by benefiting from uncertainty datasets, for testing videoconferencing systems under var-
ious configurations can be developed.

Robot: In the context of this system, we can possibly develop DL-based systems to predict the
next move of the robot even in uncertain situations such as obstacles with quantified uncertainty
for each move decision. If decisions made by an autonomous robot system involve a high level of
uncertainty, such decisions are probably wrong. It is critical for autonomous robots to measure the
quality of their decisions during navigation and be aware that their decisions may be wrong and
might need to pursue human intervention. For example, we think it can be used for autonomous
robots that can be used in extraterrestrial environments such as the Moon and Mars or deep
ocean research.
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KITTI: The KITTI case study is focused on the detection of road types from autonomous cars’
cameras. We can possibly develop DL-based systems to predict road types in uncertain situations
such as obstacles with quantified uncertainty for each steering wheel angle decision. Detecting
the prediction error made by the DL model employed for CPS data and warning the CPS operator
are of vital importance in many cases to avoid fatal crashes. Examples of autonomous cars making
wrong decisions include detecting lanes incorrectly and outputting wrong steering angle and
braking commands. Such wrong decisions often have a high degree of associated uncertainty,
if it is measured. Figure 11(d) shows the prediction validator’s decision boundaries based on
entropy and variance uncertainty values. While the entropy value is high, the variance value is
low in some instances. The opposite is also observed in some other instances, indicating that
wrong predictions may not have high uncertainty as shown in Section 6.3.5. As we have shown
in our experiments, it is necessary to use another prediction model to derive this uncertainty and
prediction error relationship.

8 CONCLUSION AND FUTURE WORK

In this study, we have discussed five main issues related to uncertainty quantification, its corre-
lation with prediction performance, and prediction validator, namely: (1) How can the model’s
decision making be characterized by uncertainty quantification? (2) Is uncertainty quantification
correlated with the prediction performance of a model? (3) How to predict the model’s wrong
labeling using uncertainty values? (4) What is the strategy for selecting the best dropout ratio?
(5) Can highly uncertain instances be used to improve prediction performance of DL models? We
conducted experiments with four real-world CPS datasets to answer these questions. Our results
confirm that highly uncertain predictions are likely wrong as we observed that uncertainty metrics
are important indicators to show that a DL model makes a wrong decision. Our empirical results
also show that the selected dropout ratio for each dataset successfully increases the wrongly la-
beled instances’ uncertainty values while reducing the correctly labeled instances’ uncertainty
values. In addition, the most accurate classifiers could be obtained with low dropout ratios, sug-
gesting that it is possible for the strategy to improve the classifier’s performance.

All in all, we conclude that this experimental work has given us essential insights into the proper-
ties of epistemic uncertainty in DL for CPS data. We built a highly discriminating prediction valida-
tor model. We also suggest ways for the validation of our strategy for estimating the best dropout
ratio. The current work highlights the need for systematic approaches to improve the predictability
of the models for small samples, with a focus on CPS datasets. In this study, we tested feed-forward
and CNN-based DL model architectures. We will also test more complex DL models to measure
the efficiency of our method. In particular, our next step will be to investigate the generation of
the highly uncertain samples with wrong predictions to improve the prediction performance. Our
second step is to study the Deep Ensemble-based uncertainty quantification in DL models. We
want to show the differences between MC dropout and Deep Ensemble for CPS datasets. Lastly,
NIRVANA is currently applicable for classification tasks. There are also regression models that
have continuous variables in CPSs. In future work, we want to apply the prediction validator
method to continuous variables. Another future work is to use uncertainty-ranking-based test
case generation and prioritization to test DL models. We believe that uncertainty-ranking-based
test case generation would improve prediction performance of DL models. In addition to our
current SVM-based prediction validator, in the future, we also aim to try to build the validator
with other ML algorithms (e.g., DL, MLP, Random Forests) and conduct empirical studies to
evaluate their performance. This approach can also be employed in other fields other than CPSs,
which can be another future work.
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