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1 Introduction

Once the famous paper [1] established the existence of a solution of ten-dimensional
heterotic supergravity that realised a four-dimensional Minkowski space via the standard
embedding, it was quickly realised that these vacua provide an easy route to describing
viable phenomenological solutions of string theory. The standard embedding, roughly
speaking, corresponds to a compactification on a Calabi-Yau 3-fold with vanishing torsion
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H = 0, at least to order α8 3 in perturbation theory. More general solutions, in which
H could be non-vanishing, corresponding to choices of holomorphic vector bundles with
connection satisfying the hermitian Yang-Mills equation were realised in the beautiful paper
of [2]. These solutions were shown to be unobstructed to all orders in α′ perturbation theory.
The conditions of supergravity were studied to first order in α8 by [3, 4] which related the
field equations to geometric conditions on the vector bundle and six-dimensional manifold,
together with a non-trivial Bianchi identity. The equations were non-linear coupled PDEs
and, although we know solutions exist, we do not yet have a good unstanding of the moduli
space of such solutions. Physically, this important as quantum corrections are more easily
studied that in the type II context, which involved non-perturbative objects like D-branes.
One might hope that there is a nice geometric structure to the moduli space similar to that
of the special geometry of Calabi-Yau manifolds, which exhibits a special Kähler structure
where the space of deformations is described simply by the ∂-cohomology groups H1,1(X,C)
and H2,1(X,C), where X is the Calabi-Yau manifold.

There has been a lot of recent progress in the past decade in trying to formulate both
a cohomological description of the moduli space, and its differential geometric structure.
In [5–7] the authors studied moduli of holomorphic bundles over complex manifolds in the
heterotic context, and then later including the hermitian moduli and torsional solutions [8, 9],
a good understanding of the infinitesimal moduli space of generic torsional compactifications
emerged. At this time new mathematical tools had been developed, such as heterotic
generalised geometry [10], putting the moduli problem on a more firm mathematical
ground [11]. The massless spectrum in these works, however, often suffers from a problem in
that they assume extra degrees of freedom that do not exist in string theory. The cohomology
groups studied are not really the physical ones. In terms of the differential geometric, by
studying the dimensional reduction and gauge symmetries a Kähler metric for the moduli
space of heterotic string theory was proposed in [12]. Remarkably, it is formally very similar
to what was studied in the special geometry of Calabi-Yau manifolds; this lends hope to
the belief there is an underlying special geometry of heterotic theories. The equations
describing the small deformations have been understood in terms of the superpotential [13],
and the same superpotential correctly describes the Yukawa couplings [14]. There have
also been developments in terms of holomorphic string algebroids [15, 16], higher order
deformations [17], and a universal geometry picture of the moduli space [18, 19].1

Of course, many open questions still remain. For example, the original studies of the
moduli problem of the Hull-Strominger system [8, 9, 13] focused on the F-term equations.
We call these F-terms because they can be shown to derive from a functional labelled the
superpotential. In holomorphic gauge, the superpotential is a holomorphic section over the
moduli space, just as it is for four-dimensional supersymmetric field theories. Interestingly
however, one needs to impose a constraint which is the heterotic Bianchi identity is satisfied.
One can phrase the F-term conditions as the existence of a holomorphic top-form, and a
holomorphic vector bundle, and a relation between the contorsion of the metric on X and

1For brevity, we have omitted references to many important works on heterotic moduli, particularly from
the world-sheet point of view. The papers [20–24] and references therein constitute a non-exhaustive list.
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the three-form H. In [8, 9] it was shown that a deformation preserving these conditions
can naturally be viewed as an element of the first cohomology of a holomorphic double
extension bundle Q. In [17] it was further shown that preserving the constraints coming
from D-terms, that is the Yang-Mills condition on the bundle and a conformally balanced
geoemetry, comes down to picking a particular representative of this cohomology class. This
is similar to the moduli space of hermitian Yang-Mills connections A on a holomorphic vector
bundle E . Here the holomorphic condition imposes that the infinitesimal deformations of
A define a class in H(0,1)(EndE), while the Yang-Mills constraint imposes that we choose
the harmonic representative. A similar observation can be made for the Calabi-Yau moduli
problem, where it has been shown that holomorphic gauge equals harmonic gauge, see for
example [19], where the moduli are given by harmonic forms. In this paper we explore
this subtlety further for the heterotic moduli problem. We point out that as the moduli
naturally take values in the holomorphic double-extention Q, again in a holomorphic gauge
as described in [12, 18, 19], the notion of harmonic must be considered in the context of
a natural inner product on Q. The correct inner product to consider derives from the
Kähler metric on the moduli space [12], and using this, the D-term conditions now impose
a harmonic gauge with respect to this metric.

The second question we address concerns a subtlety often ignored in previous work.
Recall that part of the defining equations of the Hull-Strominger system includes the
heterotic Bianchi identity

dH =−α
8

4
(
TrF 2 − TrR2

)
,

where H is the heterotic NS flux, F is the curvature of a connection A on a holomorphic
vector bundle E , while R is the curvature of a connection Θ on the tangent bundle TX .
Which connection to use on TX is a long debated subject. In the usual field choice,2

both the world-sheet [3] and supergravity analysis [29] point to natural connection, often
referred to as the Hull-connection. Using this connection however presents a problem for
mathematicians, in that the system is only accurate modulo O(α′2) corrections. Physically
this is to be expected, but in order to make exact mathematical statements of the system,
ala Yau’s Theorem for Calabi-Yau manifolds or the Donaldson-Uhlenbeck-Yau Theorem for
Hermitian Yang-Mills connections, then an exact system of equations is required. A common
“cheat” then is to promote the Hull connection to a hermitian Yang-Mills connection in its
own right. This renders an exact system of equations, which is also more in line with the
generalised geometry perspective [10, 30]. This is also the approach used in most previous
studies of the moduli problem of the Hull-Strominger system.

However, introducing a new connection on the tangent bundle also introduces new
nonphysical spurious modes in the moduli problem, corresponding to deformations of this
connection. These modes can be interpreted as field redefinitions [28], and the true moduli
space would then be given as a complicated sub-variety. This is a bit unsatisfactory for
two reasons. Firstly, one would like to understand better exactly how the space of physical
deformations fits within the larger moduli space including these surious modes. Secondly,

2It has been pointed out many places that field redefinitions may be used to change the connection, see
e.g. [25–28], but this is a rather subtle point as explained below.
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and more crucially, once we inevitably come to quantise the classical system of equations
in order to understand the quantum moduli space, fluctuating these nonphysical modes
will again have an impact which we ignore at our peril. It may be possible to deal with
these modes though Lagrange-multiplier techniques or by other means. Alternatively, one
might go back to the beginning and redo the moduli story using the correct physical Hull-
connection. This is the approach we have initiated in the current paper. To be more specific,
we have derived the cohomology which correctly counts the physical spectrum of solutions,
without ekstra spurious degrees of freedom. The answer turns out to be both interesting
and subtle, prompting many future research questions to explore. See Conclusions and
Outlook section 6.

Setting the stage. In this paper we study heterotic vacua that have a large radius
limit. In this limit, the vacua are solutions of α8 -corrected supergravity. This effective field
theory is fixed up to and including α8 2 by supersymmetry and the result is also consistent
with string scattering amplitudes. We refer to the resulting equations of motion as the
Hull-Strominger system [3, 4]. The vacua we study have a smooth limit α8 → 0 which
forces H → 0, and a ten-dimensional spacetime of the form

M10 = R3,1 × X ,

with X a complex 3-fold with c1(X ) = 0. With an appropriate gauge fixing the dilaton
is constant up to order α8 3 [31], and the background is topologically a CY manifold with
a holomorphic vector bundle E admitting a connection A that satisfies the hermitian
Yang-Mills equation. These are the only compact supergravity solutions with a valid α8 → 0
limit, which guarantees the supergravity solutions are also solutions of string theory up to
non-perturbative corrections. There are also solutions in which as α8 → 0, the three-form H

is non-trivial. However, one must study either non-compact manifolds, be non-perturbative
in the dilaton via, e.g. non-geometric solutions, or consider solutions without a convergent
α8 expansion. We do not consider such solutions here because the higher order perturbative
α8 corrections to the Hull-Strominger equations (and likely worldsheet instantons) will play
an important role modifying the higher order α8 behaviour, and these α8 corrections have
not been completely determined yet. We expand upon our justification for restricting to
solutions with a smooth α8 → 0 limit in appendix C.

The moduli space is a finite dimensional complex Kähler manifold M . See appendix B
for an overview of the notation use when discussing moduli, following [12]. Each point
y ∈M corresponds to a heterotic vacuum and there is a Kuranishi map which relates tangent
vectors δy on M to deformations of fields.3 Small gauge transformations correspond to
deforming the Kuranishi map and there is a choice in which the map is holomorphic [19]. We
call this holomorphic gauge. In holomorphic gauge, there is a relation between deformations
of the connection Θ on the tangent bundle TX and the moduli of X [18]

δΘ(0,1) = δyαDαΘ , where DαΘµ
ν
σ = ∇σ ∆αµ

ν + i∇ν (∂αω)σµ . (1.1)

3See [6, 32] for previous work on Kuranishi maps and higher order deformations in the heterotic context.
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Here we have introduced holomorphic and anti-holomorphic coordinates on M as ya =
(yα, yβ) using the complex structure inherited from the heterotic theory. On X real
coordinates are denoted xm, complex coordinates (xµ, xν) and ∇σ is the Levi-Civita
connection of the Ricci-flat metric on X . We denote J the complex structure on X and (in
holomorphic gauge) a holomorphic deformation is a (0, 1)-form valued in the holomorphic
tangent bundle. We write this in the notation of [12] viz. δyα∆αµ

ν . Similarly, if ω is the
hermitian form on X then (∂αω)σµ is a holomorphic deformation of the hermitian form
restricted to its (1, 1) component. In holomorphic gauge this is equal (up to a factor of
i) to a gauge invariant deformation of the B-field, denoted B(1,1)

α [19]. The analogue of
complexified Kähler deformations for heterotic theories is the combination

Zα = Bα + i∂αω .

The key point is that δΘ(0,1) is fixed in terms of ∆α and Z(1,1)
α .

In contrast, in [8, 9, 11] the deformation δΘ(0,1) is treated as a degree of freedom
independent of the other moduli with its own set of parameters. That is, δΘ(0,1) corresponds
to an arbitrary element of H1(EndTX ), and with these spurious degrees of freedom one
finds a D-operator on an extension bundle Q in which D2 = 0 and its first cohomology
is related to the deformations of heterotic theories plus the spurious degrees of freedom.
Specifically, one first considers the Atiyah extension, as described in section 3 and first
applied to the heterotic context in [5, 6]

0 // EndE i1 // Q1
π1 // T (1,0)

X
// 0 .

This sequence governs the combined moduli space of complex manifolds with a holomorphic
vector bundle. As described in section 4, one then extends this bundle by End(TX ) to
account for the spurious deformations of the connection δΘ(0,1)

0 // End(TX ) i2 // Q2
π2 // Q1 // 0 .

Finally, to account for the deformations of the hermitian structure, one further extends this
bundle by the holomorphic cotangent bundle as

0 // T ∗X (1,0) i // Q
π // Q2 // 0 .

The extension class is derived from the heterotic anomaly cancellation condition (or
Bianchi identity), and gives rise to a natural D-operator on Q whose first cohomol-
ogy counts the spectrum including the spurious deformations. This cohomology can
then be described in terms of more familiar cohomologies using homological algebra and
long-exact sequences [8, 9].

A very natural question to ask is then what happens to the operator D and bundle
Q when we eliminate the spurious degrees of freedom? Our main goal is to answer this
question. What we find is that in holomorphic gauge [19], the natural object to consider is
now a further extension Q of the Atiyah extension given by (5.9)

0 // T ∗X (1,0) i // Q π // Q1 // 0 .
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The bundle Q governs the moduli problem without the spurious degrees of freedom, with
a D operator acting as a differential on this bundle. Its kernel amounts to ‘F-term’ type
equations. The extension class is again derived from the heterotic anomaly cancellation
condition. It should however be noted that in this case, the extension class is no longer
tensorial due to the apparence of a holomorphic covariant derivative, see (5.1). As a result,
the new differential operator D is no longer a connection on Q, as it fails to satisfy the
Leibniz rule. However, it is still a perfectly well defined linear operator on Q. Moreover,
given an inner product on Q one can define an adjoint of D, and use it to describe harmonic
forms with respect to D.

Our next goal is therefore to use the moduli space metric constructed in [12, 18]4 to
construct an adjoint operator D† and show that the co-kernel of D describe D-term type
equations. D-term equations here refer to first order deformations of the Hermitian-Yang-
Mills equation and balanced equations.5

In other words, the physical massless moduli of the heterotic supergravity at large
radius are harmonic representatives of the cohomology of the D-operator. This is the main
result of the paper.

Hodge-theory further says that these harmonic forms are in one-to-one correspondence
with the cohomology of D.6 Using long exact sequences in cohomology and kernels of exten-
sion maps, this cohomology can again be computed in terms of more familiar cohomologies
such as the complex structure moduli H(0,1)(T (1,0)

X ), the bundle moduli H(0,1)(EndE), and
the hermitian moduli H(0,1)(T ∗X (1,0)).

In the next section we review some results setting up our notation. In section 3 we review
how extension bundles describe deformations of complex manifolds with a holomorphic
vector bundle. In section 4 we revist and refine the calculation in [8, 9], including the
spurious degrees of freedom. We find a family of operators D on a double extension, and
using the metric in [12] show its adjoint describes deformations of the Hermitian-Yang-Mills
equation and balanced equation. In section 5, we construct an extension Q and D-operator
whose cohomology describe the F-terms and the harmonic representatives the D-terms. We
give a review of our main results in section 6, and discuss future directions.

2 Review of results

2.1 α′–corrected supergravity

The heterotic action is fixed by supersymmetry up to and including α8 2 corrections. There
is nice basis of fields in which the action, equations of motion and supersymmetry variations
are particularly compact. This was constructed in [34] to order α8 by supersymmetrising
the Lorentz-Chern-Simons terms in H and extended to α8 2 in [29]. The action and Bianchi

4This is the natural string theory moduli space metric constructed in α8 -corrected supergravity, and so is
valid for the solutions of Hull-Strominger with a smooth α8 → 0 limit.

5We use F-term equations and D-terms equations loosely: without an off-shell definition of string theory,
viz. string field theory, they don’t really make sense.

6In upcoming work we further analyse the operator D [33], investigating its ellipticity properties, Hodge-
theory etc.
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identity for H is unique up to field redefinitions; there is no ambiguity in the theory. The
action, in the field basis of [31], is given by

S= 1
2κ2

10

∫
d10X

√
g10 e

−2Φ
{
R− 1

2 |H|
2+4(∂Φ)2−α

′

4
(
Tr |F |2−Tr |R

(
Θ+
)
|2
)}

+O
(
α′3
)
.

(2.1)
Our notation is such that µ, ν, . . . are holomorphic indices along X with coordinates
x; m,n, . . . are real indices along X . The 10D Newton constant is denoted by κ10,
g10 = − det(gMN ), Φ is the 10D dilaton, R is the Ricci scalar evaluted using the Levi-
Civita connection and F is the Yang-Mills field strength with the trace taken in the adjoint
of the gauge group.

We take the p-form norm as |T |2 = 1
p!TM1···MpT

M1···Mp and the curvature squared terms
correspond to

Tr |F |2 = 1
2TrFMNF

MN and Tr |R(Θ+)|2 = 1
2RMN

A
B

(
Θ+
)
RMNB

A

(
Θ+
)
,

where the Riemann curvature is evaluated using a twisted connection

Θ±M
A
B = ΘM

A
B ±

1
2HM

A
B ,

with ΘM is the Levi-Civita connection and A,B are the tangent space indices. The
three-form H satisfies a Bianchi-identity

dH =−α
8

4
(
TrF 2 − TrR2

)
, (2.2)

while at the same time it is related to the hermitian form as H = dcω. With respect to a
fixed complex structure this corresponds to

H = i
(
∂ − ∂

)
ω ,

and so the Bianchi identity in this complex structure is

2i∂∂ω = α8

4
(
TrF 2 − TrR2

)
. (2.3)

The decomposition of the connections into type is

A = A−A† , Θ = θ − θ† .

where A = A(0,1) and θ = Θ(0,1) and we are using conventions in which A and Θ
are antihermitian.

All we care about is that the Bianchi identity (2.2), equations of motion and super-
symmetry variations match calculations from string scattering amplitudes [35] which has
been checked [36]. This data is fixed, up to the usual caveat of field redefinitions. Indeed,
if one were to perform a field redefinition, so that for example the curvature tensor R in
the Bianchi identity is evaluated with a different connection, then the field redefinitions
will propagate through the supersymmetry variations and equations of motion, likely losing

– 7 –
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their simple closed form. For example, if one evaluated R using the Chern connection, then
this requires a field redefinition in which resulting in a metric g̃ that is no longer a tensor
— it is charged under gauge transformations like the B-field — and this field redefinition
is likely modify the supersymmetry variations already at order α8 .7 We choose to use the
usual conventions in which g is a metric tensor and R is evaluated with Θ+.

From now on we work to first order in α8 . For emphasis, we will sometimes include
+O(α′2) in our equations, but this will mostly be suppressed.

2.2 Holomorphic gauge and F-term equations

In appendix B we give a brief summary of the notation of small deformations of heterotic
supergravity used in this paper, following [12, 18]. We use that notation to briefly summarise
some of the equations the field deformations must satisfy. Consider a first deformation
described by differentiating the fields by a real parameter ya. Taking the derivatives of the
supergravity equations of motion, they obey the following equations to first order in α8 :

∂∆a
µ = 0 ,

∂A(DaA) = ∆a
µFµ ,

∂Z(0,2)
a + ∂Z(1,1)

a = 2i∆a
µ(∂ω)µ + α8

2 Tr
(
DaAF

)
− α8

2 Tr
(
DaΘR

)
,

∂Z(0,2)
a = 0 .

(2.4)

We assume h(0,2) = 0, and so the last line is Z(0,2)
a = ∂β

(0,1)
a and this means left hand side

of the third line is ∂-exact.
There are equations coming from the HYM equation ω2F = 0 and the balanced equation

d(ω2) = 0 which are analysed below in section 2.3. Both these equations and (2.4) are
invariant under small gauge transformations [19]:

∆a
µ ∼ ∆a

µ + ∂εa
µ , DaA ∼ DaA+ εa

µFµ + ∂Aφa ,

Za ∼ Za + εa
m(H + idω)m + α8

2 Tr (Fφa) + d(ba + iεamωm) ,

Za ∼ Za + εa
m(H − idω)m + α8

2 Tr (Fφa) + d(ba − iεamωm) ,

(2.5)

where Za = Ba + i∂aω and Za = Ba − i∂aω. A convenient choice of gauge fixing is
holomorphic gauge:

∆α
µ = 0 , δΩ(3,0) = δyαkαΩ , DαA = 0 ,

Z(1,1)
α = 0 , Z(0,2)

α = Z(0,2)
α = Z(2,0)

α = 0 . (2.6)

7This is nicely described in [27]. If one wishes to preserve manifest (0, 2)-supersymmetry on the worldsheet,
then R in the Bianchi identity should be evaluated with the Chern connection. If one wishes to preserve
manifest (0, 1)-supersymmetry with g a conventional metric tensor then one evaluates the Bianchi identity
with Θ+.

– 8 –
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In this gauge, we have, for example,

∂∆α
µ = 0 , ∂A(DαA) + Fµ∆α

µ = 0 , (2.7)

where ∆α
µ is a (0, 1)-form valued in T (1,0)

X . The gauge simplifies other equations such as

∂Z(1,1)
α − 2i∆α

µ(∂ω)µ + α8

2 Tr
(
RDαΘ

)
− α8

2 Tr
(
F DαA

)
= 0 , (2.8)

and determines

Z(1,1)
α = 2iDαω

(1,1) = 2B(1,1)
α , Z(0,2)

α =2B(0,2)
α =− 2iDαω

(0,2) .

It should be noted that while the field Z(0,2)
α vanishes in this gauge fixing, the field Z(0,2)

α

does not. This field can be thought of as the antisymmetric part of ∆αµν = ∆αµ
ρgρν . In

the standard embedding, where H = 0, this term vanishes; in the more generic heterotic
case it does not. Hence, it is a physical degree of freedom whose role in a heterotic vacuum
is not yet clear. The role of Z(1,1)

α is analogous to the complexified Kähler modulus for a
CY manifold.

We refer to (2.7) and (2.8) as F-term equations.

2.3 D-term equations

An analysis of deformations in holomorphic gauge of the balanced equation and hermitian
Yang-Mills equation was presented in [19]. This gives a relation between deformations in
terms of adjoint operators. In this section we revist this calculation massaging the equations
with a prescenice of results to come.

The top-form Ω on X has a norm

‖Ω‖ = 1
3!ΩmnpΩ

mnp
.

It is related to the dilaton d log ‖Ω‖ =−2dφ. We gauge fix as in [19, 31] so that the dilaton
is a constant on X and so in this gauge ‖Ω‖ is also a constant. Furthermore, in holomorphic
gauge (2.6), (∂αΩ)(3,0) = kαΩ, where kα is a constant on X. Using this, a first order
variation of the norm is

∂α ‖Ω‖2 = ‖Ω‖2 (kα − ∂α log√g) .

As ‖Ω‖ and kα are constants over X, it follows ωλσ∂αωλσ = 1
2iω

λσZαλσ is a constant on X.
A first order holomorphic variation of the balanced equation is

∂
(
ωZ(1,1)

α

)
= 0 , (2.9)

−i∂
(
ωZ(1,1)

α

)
+ 2 ∂ (ω∆α

µωµ) = 0 . (2.10)

Using the Hodge dual relation for a (1, 1)-form (A.5), together with ωλσZαλσ being a
constant and the balanced equation, the first equation amounts to

∂
†Z(1,1)

α = 0 . (2.11)
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The second equation is

∂
(
∂αω

(0,2)
)
ω + ∂

(
∂αω

(1,1)
)
ω +

(
∂αω

(0,2)
)
∂ω +

(
∂αω

(1,1)
)
∂ω = 0 . (2.12)

The Hodge dual of a (2, 3)-form in (A.7) can be used together with the gauge fixed F-term
equation (2.8) and the constraint ∇Ch/H

µ ∆α
µ = 0 [19], as well as the background equations

of motion Hµν
ν = 0, ω2F = 0, ∂αωµν = 2i∆α[µν] to rewrite this equation in terms of

contractions. This result is

i

2

(
∂ω
)νρµ

Zαρµ−
α8

4

[
Tr
(
F νµDαAµ

)
−Tr

(
RνµDαΘµ

)]
+∇Ch/Hµ∆αµ

ν+i∆αρλ (∂ω)νρλ = 0 ,
(2.13)

where ∇Ch/Hµ is the Chern or Hull connection (see [19] for discussion on this ambiguity).
Because H = O(α8 ) and ∆α[ρλ] = O(α8 ) [12], the last term is O(α8 2) and so is dropped from
hereon. A good consistency check is to derive this equation by differentiating gµνHµνρ = 0.

A first order variation of the Hermitian Yang-Mills equation can be written as

∂
†
A(DαA) + 1

2F
µνZαµν = 0 . (2.14)

A similar equation is satisfied for the connection Θ on the tangent bundle to this order in
α8 . That is

∂
†
Θ(DαΘ) + 1

2R
µνZαµν = 0 . (2.15)

In holomorphic gauge, we declare ‘F-term’ type equations to be (2.7)–(2.8). We do not
have a good definition of string field theory, so we use this terminology with care. The
motivation for the nomenclature is that these are the equations, together with an appropriate
definition of holomorphy, that derive from a superpotential type construction [13, 14]. The
equations (2.13)–(2.15) deriving from the balanced and HYM equation we declare to be
D-term equations. A main outcome of this paper is to show that there is a D-operator acting
on first order fluctuations whose kernel corresponds to F-term equations, and co-kernel to
the D-term equations. This is helps justifies this terminology.

2.4 The Hodge decomposition

The balanced and HYM equations play a role in determining the exact and co-exact terms in
the Hodge decomopsition of fields. We present this to emphasise the fact that deformations
of a heterotic theory are not simply the harmonic representatives in the usual sense. Taking
into account the F-term equations, the Hodge decomposition is

Z(1,1)
α = Z(1,1) harm

α + ∂
†
ξ(1,2)
α ,

∆α = ∆α
harm + ∂κα ,

DαA = DαAharm + ∂AΦα + ∂
†
AΨ(0,2)

α .

(2.16)

The role of the cohomology we aim to compute is to tell us what linear combinations of
harmonic terms in (2.16) correspond to unobstructed deformations. The exact and co-exact
terms in the Hodge decomposition are physical and so are important and are determined
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by substituting into the HYM and balanced equations and solving the corresponding
Poission equations:

ξ(1,2)
α = �−1

∂

(
∆α

µ (∂ω)µ −
iα8

4 Tr (DαAF )

+ iα8

2

(
∇ν∆α

µ + 1
2 ∇

µ Z(0,1)
αν

)
Rνµ

)
+ ∂

†– closed , (2.17a)

κα
µ = �−1

∂

(
−1

2
(
∂†Zα

)µ
+ 1

4i (Zανρ) (∂ω)νρµ
)
, (2.17b)

Ψ(0,2)
α = �−1

∂A
(∆α

µFµ) + ∂
†
A– closed , Φα = −1

2�
−1
∂A

((
Zµν
α

)
Fµν

)
. (2.17c)

The point here is that deformations of fields are not only highly coupled but they are not
harmonic representatives. A natural question to ask is: can we change the gauge to find a
harmonic decomposition? The answer is not likely without significant sacrifice. For example,
one easily loses the holomorphic dependence of deformations on parameters. This is unlike
the study of CY manifolds in which one studies holomorphic deformations that are also
harmonic, viz. ∂-harmonic (1, 1) forms and (2, 1)-forms [37]. This derives from H = 0, an
additional constraint that we do not have in the more general situation.

One point of this paper is to point out that without sacrificing holomorphy, the
complicated Hodge decomposition beautifully reorganises itself into harmonic representatives
of a D-operator on a certain extension bundle, provided we use the appropriate inner product
to define the adjoint of this operator. This provides a natural framework where holomorphic
gauge becomes harmonic gauge.

3 Warm-up: extension bundles for complex manifolds

One approach to understanding (2.4)–(2.6) is inspired from the work of Atiyah [38], who
described the deformations of a holomorphic bundle on a complex manifold. This was also
studied in the heterotic context in [5, 6], and its instructive to review this with an eye
towards the full heterotic story.

Consider a holomorphic bundle on a complex manifold. Atiyah, in 1955, pointed out
that not all complex structure deformations are allowed as some may introduce a non-trivial
F (0,2) component destroying holomorphy of the bundle. Those that are allowed satisfy

∂A(DαA) + Fµ∆α
µ = 0 , and ∂∆α = 0.

Intuitively such complex structure deformations may introduce F (0,2), but can compensated
by a simultaneous deformation of the bundle. A way to realise these constraints is to define
a vector bundle Q1 as a short exact sequence

0 // EndE i1 // Q1
π1 // T (1,0)

X
// 0 , (3.1)
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where π1 : Q1 → TX is the canonical projection and i1 the inclusion map.8 One can then
study (0, p)-forms valued in Q. These are vectors, schematically

(
δαA(p)

∆(p)
α

)
,

where δαA(p) is a (0, p)-form valued in EndE and ∆(p)
α is a (0, p)-form valued in T (1,0)

X .
There is a holomorphic structure defined by an operator D1 given by

D1 =
(
∂A F
0 ∂

)
, F : Ω(0,p)

(
T (1,0)

X

)
→ Ω(0,p+1) (EndE) , F

(
∆(p)
α

)
= Fµ∆(p)

α
µ ,

where, for example, Ω(p,q)(EndE) denotes (p, q)-forms on X valued in EndE . The action of
D1 on a typical fibre of Q1 vanishes if the field deformations obey the requisite equations
of motion:

D1

(
δαA(p)

∆(p)
α

)
=

∂A (δαA(p)
)

+ F
(
∆(p)
α

)
∂∆(p)

α

 = 0 .

Furthermore, D2
1 = 0 if and only if the F (0,2) = 0 and its Bianchi identity holds dAF = 0.

Under a small gauge transformation, which includes a small diffeomorphisms
for generality,

δαA(p) −→ δαA(p) + εα
µFµ + ∂Aφα , δαA(p) † −→ δαA(p) † + εα

µFµ − ∂A†φα ,

∆(p)
α

µ −→ ∆(p)
α

µ + ∂εα
µ , ∆(p)

α
µ −→ ∆(p)

α
µ + ∂εα

µ ,
(3.2)

where εαm is a vector valued (0, p− 1)-form parameterising the small diffeomorphism, and
φα is a (0, p− 1)-form valued in EndE parameterising the small gauge transformation.

The bundle Q and operator D1 are defined with respect to holomorphic deformations
only. The operator D1 is equivariant with respect to gauge transformations:

D1

(
δαA(p) + εα

µFµ + ∂Aφα

∆(p)
α + ∂εα

µ

)
= D1

(
δαA(p)

∆(p)
α

)
.

For p = 1 we enter the case of interest, which are deformations of a complex manifold with
holomorphic bundle. The notation for deformations δαA(1) ∼= DαA and ∆(1)

α
∼= ∆α. The

space of deformations is the cohomology H(0,1)(Q1). However, as can be seen from (3.2)
together with the bundle being stable, so ∂Aφα = 0 has only trivial solutions, any gauge
transformation will introduce a non-holomorphic dependence on parameters. i.e. DαA† 6= 0.
This gauge choice is already made in many physical calculations such as the moduli space
metric [12] or results deriving from the superpotential, e.g. [17]. So the cohomology is to be

8The sequence is exact so ker π1 = im i1 = EndE and by rank-nullity the dimension of a typical fiber at
Q1 is dim(EndE) + dim(TX ).
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treated with care: we are always gauge fixed, and so always fixed a representative. This
becomes more important in the situation to come.9

Setting this issue aside one can use a long exact sequence in cohomologies inherited
from the short exact sequence to show

H(0,1)(Q1) = H
(0,1)
∂A

(EndE)⊕ ker F . (3.3)

The Hodge decomposition of an element of H1
D1

(Q1) is

∆α = ∆α
harm + ∂κα , DαA = DαAharm + ∂AΦα + ∂

†
AΨ(0,2)

α .

Equation (3.3) implies the tangent space to the moduli space is a direct sum. So there
is a choice of coordinates for the moduli space in which parameters decompose into two
components yα = (yα1 , yα2). The first component is one-to-one with H1(EndE):

∆α1 = ∂κα1 , Dα1A = Dα1Aharm + ∂AΦα1 .

where we use ∂A(Dα1A) = 0 and so ∆α1
µFµ = 0. This implies κα1

µFµ = ∂A(· · · ), which
has a solution provided we can invert Fµ and solve for κα1

µ. The terms κα1 and Φα1 are
completely undetermined at this point and so there is an infinite dimensional space of
solutions. In the full heterotic theory, there are additional equations of motion, and these
fix κα1 and Φα1 .

The second component of solutions is one-to-one with ker F ⊂ H1(T (1,0)
X ):

δyα2∆α2 = δyα2
(
∆harm
α2 + ∂κα2

)
, δyα2Dα2A = δyα2

(
∂AΦα2 + ∂

†
AΨ(0,2)

α2

)
,

where δyα2 is a vector in ker F . That is, the cohomology tells us what harmonic repre-
sentative of H1(T (1,0)

X ) appear in this equation. The Atiyah equation implies Ψ(0,2)
α2 =

�−1
∂A

(∆α2
µFµ) while κα2 and Φα2 are undetermined.

The lesson here is that in writing H(0,1)(Q1) = H
(0,1)
∂A

(EndE)⊕ ker F we do not mean
that the field deformations decompose into a direct product. Instead, it is telling us about
what combinations of harmonic forms can appear and that they have a Hodge decomposition.
In this example we have some undetermined exact terms; in the full heterotic theory these
are all fixed by the equations of motion and gauge fixing.

4 Heterotic theories with spurious degrees of freedom

4.1 F-terms

The situation in the Hull-Strominger system is more complicated as we have hermitian
deformations, the B-field and a set of equations in (2.4)–(2.6) together with a Bianchi identity.

9The Kaluza-Klein reduction of heterotic supergravity at the standard embedding is almost always
performed in harmonic gauge. Deformations of the complexified Kähler form and deformations of complex
structure are then zero modes of Laplacians. Quantities such as the moduli space metric [37] are calculated
with this particular choice of representative. Interestingly, this moduli space metric is not manifestly gauge
invariant. Also note that the standard embedding holomorphic gauge and harmonic gauge are the same.
Outside the standard embedding, holomorphic gauge is preferred as it naturally connects the complex
structure of X with the moduli spaceM.
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The approach of [8, 9] is to include deformations of the tangent bundle δΘ(0,1) = δyαDαθ as
independent degrees of freedom. The tangent bundle TX is holomorphic with R(0,2) = 0, and
the curvature two-form obeys the HYM equation ω2R = 0.10 Hence, Dαθ obeys an Atiyah
equation, of the same form as the second equation of (2.4). These we refer to as spurious
degrees of freedom because in the physical theory the deformations Dαθ are determined
in terms of the other deformations ∆α, DαA and Dαω. Nonetheless, they lead to a nice
mathematical result which we review and refine here. Define an extension Q2 of Q1:

0 // End(TX ) i2 // Q2
π2 // Q1 // 0 ,

with a differential operator

D2 =

∂θ 0 R
0 ∂A F
0 0 ∂

 ,

which acts on forms valued in Q2. The operator R is analogous to F : R(∆α) = Rµ∆α
µ

where Rµ is the curvature two-form for θ. The operator D2
2 = 0 provided R(0,2) = 0 and its

Bianchi identity holds.
To incorporate hermitian deformations define a bundle Q by the short exact sequence

0 // T ∗X (1,0) i // Q
π // Q2 // 0 .

We consider (0, p)-forms valued in Q denoted as

Y (p)
α =


Z(p)
αν

δαθ
(p)

δαA(p)

∆(p)
α

 .

The first row is a (0, p)-form valued in T ∗ (1,0)
X , the middle two rows are (0, p)-forms valued

in EndTX and EndE respectively, while the last line is a (0, p)-form valued in T (1,0)
X . The

special case of Y (1)
α corresponds to the field deformations of interest, where Z(1)

αν
∼= Zανµdxµ,

δαA(1) ∼= DαA and δαθ
(1) ∼= Dαθ. We will need this more general construction in later

sections and when we construct the adjoint operator.
In the appendix section D we find a family of operators that satisfy D2 = 0 off-shell

and reproduce the F-term equations. The operator in [9] is an example of this family. In
this paper we use a D-operator in this family whose presentation is simpler:

D =
(
−∂ H
0 D2

)
,

where H : Ω(0,p)(Q2)→ Ω(0,p+1)(T ∗ (1,0)
X ) is a linear operator

Hν
(
δαθ

(p), δαA(p),∆(p)
α

)
= 2i∆(p)µ

α (∂ω)µν + α8

2
(
Tr
(
δαA(p)Fν

)
− Tr

(
δαθ

(p)Rν
))

,

10If you assume the Bianchi identity and supersymmetry variations hold then equations of motion, to
first order in α8 , hold if and only if ω2R = 0. This result is valid to first order in α8 as originally derived
in [3, 39] with an elegant summary of the result in the appendix of [40].
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and we show in section D.2 that D2 = 0 off-shell. We see that

DY (1)
α = 0 ,

corresponds to the F-term equations (2.7)–(2.8).
We note that

Hν
(
D2

(
δαθ

(p), δαA(p),∆(p)
α

))
= ∂Hν

(
δαθ

(p), δαA(p),∆(p)
α

)
,

while under a small gauge transformation (2.5)

Hν
(
δαθ

(p)+∂θψα+εαµRµ, δαA(p)+∂Aφα+εαµFµ,∆(p)
α +∂εα

)
= Hν

(
δαθ

(p), δαA(p),∆α

)
+ ∂Hν (ψα, φα, εαµ) .

(4.1)

It is important that the gauge symmetry has an action on the complexified hermitian term

Z(1,1)
α ∼ Z(1,1)

α + 2iεαµ(∂ω)µ + α8

2 Tr (φαF ) + ∂(b(0,1)
α + iεαµωµ) + ∂b(1,0)

α .

Here bα is a one-form associated to gauge transformations of the B-field. At first sight, we
seem to have a problem: DY (1)

α = 0 is no longer satisfied as the term ∂(b(0,1)
α + iεαµωµ)

spoils the equation. The resolution is that (2.8) is derived from (2.4) in holomorphic gauge.
There are no residual gauge transformations that preserve holomorphic gauge, which means
any small gauge transformation is going to violate the gauge fixing condition. Instead
of (2.8) we need to use is the third line of (2.4) and this involves Z(0,2)

α , which is no longer
zero. Indeed, we need to pair the transformation of Z(1,1)

α with

Z(0,2)
α ∼ Z(0,2)

α + ∂
(
b(0,1)
α + iεαµωµ

)
.

Then we find that under a small gauge transformation

∂Z(1,1)
α + ∂Z(0,2)

α ∼ ∂Z(1,1)
α + ∂Z(0,2)

α + ∂H (ψα, φα, εαµ, ) .

As h(0,2) = 0, the equations of motion imply Z(0,2)
α = ∂β

(0,1)
α :

∂Z(1,1)
α + ∂Z(0,2)

α = ∂
(

Z(1,1)
α − ∂β(0,1)

α

)
= H(Dαθ,DαA,∆α) ,

where βα is a gauge dependent quantity. In holomorphic gauge it vanishes. A gauge
invariant formulation likely involves this combination. It would be interesting to relate these
observations to the complexified gauge transformations studied in [41], particularly in light
of the D-term calculations we perform below. The lesson is that the cohomological property

H : H(0,p)
D1

(X,Q1) −→ H
(1,p+1)
∂

(X ) ,

is subtle, and a better understanding of complexified gauge symmetries and GIT would
probably help.

Setting this issue aside, it is shown in [8, 9] that there is a long exact sequence in
cohomology to describe first order deformations of D:

H
(0,1)
D

(Q) = H(0,1)
(

T ∗X
)
⊕ kerH , kerH ⊆ H1 (Q2) , (4.2)

where
H(0,1) (Q2) = H(0,1) (End TX )⊕H(0,1) (EndE)⊕ (kerF ∩ kerR) . (4.3)

There are also the hermitian Yang-Mills and balanced equations to take into account. We
show their role appears in the adjoint operator D†.
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4.2 The D-terms and the adjoint operator D†

A metric on Q describes how to pair field deformations to produce a real number. In
string theory, a natural metric to use is the moduli space metric. As we preserve N = 1
supersymmetry in spacetime, the metric is Kähler. With the spurious degrees of freedom,
this was first derived in [12] using a dimensional reduction of the α8 -corrected supergravity
theory considered here. The result in our notation is

g]
αβ

= 1
V

∫
X

(1
4Z(1,1)

α ?Z(1,1)
β

+α8

4 Tr
(
Dαθ?Dβθ

)
−α

8

4 Tr
(
DαA?DβA

†
)

+∆α
µ?∆β

ν gµν

)
,

(4.4)

We have written the antihermitian connections as A = A − A†, A = A(0,1) and DβA =
−DβA

† with similar expressions for Θ = θ − θ†.
We take the metric on a pair of sections Y (p)

α and Y (p)
β to be the natural generalisation

of the moduli space metric:

〈Y (p)
α ,Y (p)

β 〉 = 1
V

∫
X

(1
4Z(p)

αν ?Z(p)
β µ
gνµ + α8

4 Tr
(
δαθ

(p) ? δβθ
(p)†
)

−α
8

4 Tr
(
δαA(p) ? δβA

(p)†
)

+ ∆(p)
α

µ ?∆(p)
β

ν gµν

)
,

(4.5)

where we hermitian conjugate in the appropriate way so the metric is real.
The metric allows us to define an adjoint operator D†.

〈DY (p)
α ,Y (p+1)

β 〉 = 〈Y (p)
α , D

†Y (p+1)
β 〉 . (4.6)

It is instructive to explicitly compute:

〈DY (p)
α ,Y (p+1)

β 〉

= 1
4V

∫
X

(
−∂Z(p)

αν+2i∆(p)
α

µ (∂ω)µν−
α8

2 Tr
(
δαθ

(p)Rν
)

+α8

2 Tr
(
δαA(p)Fν

))
?Z(p+1)

βλ
gνλ

+ α8

4V Tr
∫ (

∂θ
(
δαθ

(p)
)

+Rµ∆(p)
α

µ
)
?δβθ

†(p+1)

− α8

4V Tr
∫ (

∂A
(
δαA(p)

)
+Fµ∆(p)

α
µ
)
?δβA

(p+1)†+ 1
V

∫
∂∆(p)

α
µ?∆(p+1)

β
νgµν

= 1
V

∫
X

{1
4Z(p)

α ?

(
−∂†Z(p+1)

β

)
+α8

4 Tr
(
δαθ

(p)?

(
(−1)p+1 1

2RµνZβ
µν (p+1)+∂†

θ†
δβθ
†(p+1)

))
−α

8

4 Tr
(
δαA(p)?

(
(−1)p+1 1

2FνσZβ
νσ (p+1)+∂†A†δβA

†(p+1)
))

+∆(p)
α

µ?

(
(−1)p i

2 (∂ω)µ
ρνZβρν

(p+1)+α8

4 TrRµν δβθ
†ν (p+1)

−α
8

4 TrFµν δβA
†ν (p+1)+∂†∆(p+1)

β µ

)}
= 〈Y (p)

α ,D
†Y (p+1)

β 〉 ,
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where our notation is, for example, Zα
µν (p+1) = 1

p!Zα
µν
λ1···λpdx

λ1···λp . Comparing with (4.5)
we identify

D
† =


−∂† 0 0 0
R̃† ∂

†
θ 0 0

F̃ † 0 ∂
†
A 0

H† R̂† F̂† ∂†

 , (4.7)

where

R̃† : Ω(0,p+1)
(

T ∗(1,0)
X

)
−→Ω(0,p) (End TX ) , R̃†

(
Z(p+1)
αν

)
= (−1)p 1

2R
νρZ(p)

ανρ ,

F̃† : Ω(0,p+1)
(

T (0,1)
X

)
−→Ω(0,p) (End TX ) , F̃ †

(
Z(p+1)
α

)
= (−1)p 1

2F
ρνZ(p)

αρν ,

R̂† : Ω(0,p+1) (EndTX )−→Ω(0,p)
(

T (0,1)
X

)
, R̂†

(
δαθ

(p+1)
)

=−α
8

4 Tr
(
Rνρ δαθ

(p)
ρ

)
,

F̂† : Ω(0,p+1) (EndE)−→Ω(0,p)
(

T (0,1)
X

)
, F̂†

(
δαA(p+1)

)
= α8

4 Tr
(
F νρ δαA(p)

ρ

)
,

H† : Ω(0,p+1)
(

T ∗(1,0)
X

)
−→Ω(0,p)

(
T (1,0)

X

)
, H†

(
Z(p+1)
αν

)
= (−1)p+1 i

2
(
∂ω
)νρλ

Z(p+1)
αρλ

.

(4.8)
The action of D† on Y (1)

α is

D
†


Z(1)
αν

Dαθ

DαA

∆α
µ

=



∇µZανµ

∂
†
θDαθ+ 1

2R
νµZανµ

∂
†
ADαA+ 1

2F
νµZανµ

− i
2

(
∂ω
)µρλ

Zαρλ−
α8

4 Tr
(
RµρDαθρ

)
+ α8

4 Tr
(
FµρDαAρ

)
−∇Ch/Hµ∆αµ

ν


,

(4.9)
where we use that R and F are antihermitian and in the last line, we used the balanced
equation to derive an identity

∂
†∆µ = − ? iω2

2
(
∂∆µ + gµσ∂gσρ ∆ρ

)
= −∇Ch/Hµ∆αµ

ν . (4.10)

We then find that
D
†Y (1)

α = 0 ,

is precisely the D-term equations (2.13)–(2.15).
Hence we have derived the remarkable fact, that in holomorphic gauge (with spurious

degrees of freedom) we have

DY (1)
α = 0 ⇐⇒ F-terms , D

†Y (1)
α = 0 ⇐⇒ D-terms .

This is despite the fact the individual deformations such as DαA or ∆α
µ are not

harmonic representatives in the usual notion of harmonic, as demonstrated explicitly
in (2.16), (2.17a)–(2.17c). Instead, if we work with (0, 1)-forms valued in Q then all we
need to do is study harmonic representatives of this D-operator. However, we are not yet
at the physical case yet: we still need to eliminate the spurious degrees of freedom.
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5 Eliminating the spurious degrees of freedom

The space of deformations of D on the bundle Q is not the moduli space of string theory.
Indeed, string scattering amplitudes and/or supersymmetry tell us that DαΘ is not an
independent degree of freedom, but determined in terms of the remaining fields. In [18, 31]
this is calculated to lowest order in α8 :

DαΘµ
ν
σ = ∇σ ∆αµ

ν + 1
2 ∇

ν Zασµ , (5.1)

where

∇σ ∆αµ
ν = ∂σ ∆αµ

ν + Γσνλ ∆αµ
λ , and ∇µ Zασν = ∂µ Zασν − Γµλν Zασλ .

The Γ are the Levi-Civita symbols, which because this result is derived for solutions which
have a smooth limit α8 → 0 with H → 0, are the same as the Chern connection.11 The
dilaton is constant to α8 3 by a choice of gauge fixing [31]. See also appendix C of [19] for
the calculation in the notation of this paper.

5.1 Constructing the bundle Q

We now turn to constructing an extension bundle Q whose sections describe the physical
degrees of freedom. Recall that to first order in α8 , the first order deformations satisfy an
Atiyah equation ∂θ(Dαθ) = ∆α

µRµ. We check (5.1) satisfies this explicitly. First, note

∇ρ∇ν∆α
µ = ∇ρ

(
∂ν∆α

µ + Γνµλ ∆α
λ
)
,

[∇ρ,∇ν ] ∆ασ
µ = (∂ρΓνµλ) ∆ασ

λ +
(
∂νΓρλσ

)
∆αλ

µ = Rµλρν∆ασ
λ −Rλσρν∆αλ

µ ,

where Rµλρν is the Riemann curvature tensor on a complex manifold. Second,

∂ (DαΘ)µ ν = dxρ∇ρ
(
∇ν∆α

µ + i∇µDαω
(0,1)
ν

)
= dxρ [∇ρ,∇ν ] ∆α

µ + 1
2dx

ρ [∇ρ,∇µ] Z(0,1)
αν + 1

2∇
µ
(
∂Z(0,1)

αν

)
= dxρσRµλρν∆ασ

λ + dxρσRλσνρ∆αλ
µ

= ∆α
λRµνλ

(0,1) ,

(5.2)

where Rλσνρ = Rλρνσ is used in the penultimate line. We use that R(0,2) = 0 and
∂Zα = O(α8 ). In fact, because Θ is an instanton (to first order in α8 ), DαΘ obeys an
Atiyah equation and so we conclude that this result actually holds up to and including first
order in α8 . Hence, if there are any α8 corrections to (5.1) then we know that in (5.2) that
they must cancel.

A corollary of (5.2) is that the expression (5.1) is a solution of DY (1)
α = 0 and so

bona-fide element of the cohomology H1
D

(Q). This is serves as another consistency check
and is part of our intuition that the true moduli space is some subspace of H1

D
(Q).

11As the connection Θ only appears together wit a factor of α8 , modulo higher orders we can also take Γ
symbols to be the symbols of the Levi-Civita connection of the Ricci-flat metric.
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Using the symmetry DαΘµ
ν
σ =−gνλDαΘµ

ρ
λ gρσ we can write

α8

2 Tr (DαΘR) = α8
(
∇ν∆α

µ + 1
2 ∇

µ Z(0,1)
αν

)
Rνµ , (5.3)

where Rνµ = Rρσ
ν
µ dxρσ is the Riemann tensor and we have used Rµν = −Rνµ.

Now, using (5.2) with the Bianchi identity for R, (A.1) we find

∂
(
TrDαΘ(0,1)R

)
= ∆α

µTrRµ ∧R+O(α8 2) . (5.4)

Using (5.3) we see that a consequence of (5.4) is that

∂
((
∇µ Z(0,1)

αν

)
Rνµ

)
= 0 ,

and so it should be ∂-exact. Indeed, this is the case and we now derive an explicit expression.
Start by recalling that Rνµ obeys a hermitian Yang-Mills equation ∇µRνµρσ = 0 to first
order in α8 and so

(∇µ Z(0,1)
αν )Rνµ = ∇µ (Z(0,1)

αν Rνµ) .

As the Levi-Civita symbols are pure to this order in α8 we find the term in parenthesis can
be written as

Z(0,1)
αν Rνµ =−dxρ

[
∇ρ, ∂

]
Z(0,1)
αµ ,

so that (
∇µ Z(0,1)

αν

)
Rνµ =−dxρ∇µ

([
∇ρ, ∂

]
Z(0,1)
αµ

)
.

Using that ∂(Z(0,1)
αµ ) = O(α8 ) and that R(0,2) = 0 we find(

∇µ Z(0,1)
αν

)
Rνµ =−∂

(
dxρ∇µ∇ρZ(0,1)

αµ

)
.

Note that ∇ρZ(0,1)
αµ = ∂ρZ(0,1)

αµ − ΓρλµZ(0,1)
αλ and so does not become ∂.

Using these results, (2.8) can be rewritten as:

∂

(
Z(1,1)
α − α8

2 dxρ
(
∇µ∇ρZ(0,1)

αµ

))
−2i∆α

µ (∂ω)µ+α8Rνµ∇ν (∆α
µ)− α

8

2 Tr (DαAF ) = 0 .
(5.5)

It is natural to perform a field redefinition

Z̃(1,1)
α = Z(1,1)

α − α8

2 dxρ∇µ∇ρZ(0,1)
αµ , (5.6)

which is well-defined in α8 -perturbation theory, and in particular, invertible. It is not overly
surprising that the complexified hermitian form needs to be corrected in α8 . The field
redefinition will propagate into other relevant equations, such as deformations of the HYM
and balanced equations and the moduli space metric. But it is the natural thing to do to
realise a holomorphic structure on the extension bundle.

There is a cohomology that captures these field deformations. To describe it, we need
to generalise some of the above results above to (0, p)-forms. First, we ansatz that (5.1)
generalises to

δαθ
(p) ν

σ = ∇σ ∆(p)
α

ν + 1
2 ∇

ν Z(p)
ασ . (5.7)
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Second we need the generalisation of the D-operator for the spurious case, written in
components in (D.10). The only non-trivial part is to evaluate Tr δαθ(p)Rν using (5.7) and
substitute into the first line of (D.10) giving

̂̃Z(p+1)
ν = −∂Z̃(p)

αν + 2i∆(p)
α

µ (∂ω)µν + α8∇σ
(
∆(p)
α

τ
)
Rστ νλdx

λ + α8

2 Tr
(
δaA(p) Fν

)
.

A consistency check is that the relation (5.7) satisfies the second line of (D.10). We also
have the field redefinition

Z̃(p)
αν = Z(p)

αν + α8

2 (−1)p∇µ∇νZ(p)
αµ . (5.8)

Now construct the extension bundle. The extension Q1 defined in (3.1) is unchanged.
Q2 is now not necessary. Consider a short exact sequence

0 // T ∗X (1,0) i // Q π // Q1 // 0 , (5.9)

where T ∗X (1,0) are holomorphic co-vectors (forms). p-forms valued in Q are denoted as in
the previous subsection

Y (p)
α =

 Z̃(p)
αν

δαA(p)

∆(p)
α

 .

We have abused notation in using the same letter Y (p)
α as for the spurious case, but it

should be clear from context what we mean.
Define the operator D on sections valued in this bundle as

D =
(
−∂ Hnew

0 D1

)
,

where the map, or extension class, Hnew : Ω(0,p)(Q1)→ Ω(0,p+1)(T ∗ (1,0)
X ) is now given by

Hnew
ν

(
δαA(p),∆(p)

α

)
= 2i∆(p)

α
µ (∂ω)µν − α

8∇ρ
(
∆(p)
α

λ
)
Rρλ ν + α8

2 Tr
(
δαA(p)Fν

)
,

and where Rρλ ν = Rρλ νσdxσ. The action of D is

D

 Z̃(p)
αν

δαA(p)

∆(p)
α

 =


−∂Z̃(p)

αν + 2i∆(p)
α

µ(∂ω)µν − α8 (∇ρ∆(p)
α

λ)Rρλ ν + α8

2 Tr (δαA(p)Fν)
∂A(δαA(p)) + Fµ∆(p)µ

α

∂∆(p)
α

 .

(5.10)
This operator satisfies D2 = 0 after using the Bianchi identity (2.3).12 Furthermore,
DY (1)

α = 0 corresponds to precisely the F-term equations (2.7)–(2.8) together with (5.1).
12Note that the operator D squares to zero on the nose if one modifies the Hull-Strominger system to use

the curvature of the zeroth order Ricci-flat Calabi-Yau metric in the Tr R2 term in the Bianchi identity.
Otherwise, this only holds modulo α8 2 corrections.
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Finally, it should be noted that in contrast to the spurious case of section 4, this
operator is not a connection in that for a function f and section Y (p)

α of Q the Lebniz rule
is not satisfied:

D
(
f Y (p)

α

)
6= ∂f ∧ Y (p)

α + fDY (p)
α . (5.11)

This is due to the appearance of a holomorphic derivative in the new extension map
Hnew
ν .13 Nonetheless, D is still a well defined linear operator on Q whose cohomology can

be computed using long exact sequences like before. Moreover, given an inner product on
Q, one can define the adjoint of D and study it’s harmonic modes.14

5.2 The D-terms and the adjoint operator D†

The moduli space metric, after including (5.1), is [12, 18]

g]
αβ

= 1
V

∫
X

(
∆α

µ ?∆β
ν gµν + 1

4Z(1,1)
α ?Z(1,1)

β
+ α8

4 Tr
(
DαA ?DβA

))
+ α8

2V

∫
X
d6x
√
g
(
∆αµν ∆βρσ + 1

4Zαρµ Zβ σν

)
Rρµσν +O

(
α8

2
)
,

(5.12)

where we have used holomorphic gauge (2.6) in writing Z(1,1)
α = 2iDαω

(1,1). We need to
write down g]

αβ
in the new variables Z̃(1,1)

α via the field redefinition (5.6). First note that∫
X

Z(1,1)
α ?Z(1,1)

β
=∫

X

{
Z̃(1,1)
α ? Z̃

(1,1)
β − α8

2
(
∇µ∇ρZ̃(0,1)

αµ

)
dxρ ? Z̃

(1,1)
β − α8

2 Z̃(1,1)
α ?

(
∇µ∇ρZ̃

(1,0)
β µ dxρ

)}
.

The second term is∫
X

(
∇µ∇ρZ̃(0,1)

αµ dxρ
)
?Z̃

(1,1)

β =−
∫
X
d6x
√
g
(
∇µ∇ρZ̃αµλ

)
Z̃β

ρλ

=
∫
X

(
∇µZ̃(0,1)

αµ

)
?

(
∇τ Z̃

(1,0)

βσ

)
−
∫
X
d6x
√
g
(

[∇µ,∇ρ]Z̃αµλ

)
Z̃β

ρλ .

The commutator involves both the Riemann curvature and Ricci tensor Ricδτ =−Rδµµτ :[
∇µ,∇τ

]
Z̃αµλ = −Rδµµτ Z̃α δλ −R

δ
λ
µτ Z̃αµδ = Ricδτ Z̃α δλ −R

δ
λ
µτ Z̃αµδ .

The Ricci tensor vanishes to this order in α8 . So∫
X

(
∇µ∇ρZ̃(0,1)

αµ dxρ
)
?Z̃

(1,1)
β =

∫
X

(
∇µZ̃(0,1)

αµ

)
?

(
∇τ Z̃

(1,0)
β τ

)
+
∫
X
d6x
√
gRµδστ Z̃αµδZ̃βστ .

The third term follows in the same way. Hence, the moduli space metric in these variables is

g]
αβ

= 1
V

∫
X

(
∆α

µ ?∆β
ν gµν + 1

4Z̃(1,1)
α ? Z̃

(1,1)
β + α8

4 Tr
(
DαA ?DβA

))
− α8

4V

∫
X

(
∇µZ̃(0,1)

αµ

)
?

(
∇τ Z̃

(1,0)
β τ

)
− α8

8V

∫
X
d6x
√
g Rµδστ Z̃αµδZ̃β στ

+ α8

2V

∫
X
d6x
√
g
(
∆αµν ∆βρσ

)
Rρµσν .

(5.13)

13We are grateful to Mario Garcia Fernandez for pointing this out.
14The Hodge-theory, elliptic properties and other relations of D to the Hull-Strominger system will be

studied in an upcoming paper [33].

– 21 –



J
H
E
P
1
1
(
2
0
2
2
)
0
9
6

It is straightforward to generalise this calculation to a metric on (0, p)-forms:

〈Y (p)
α ,Y (p)

β 〉 = 1
V

∫
X

{1
4Z̃(p)

αν ? Z̃
(p) ν
β − α8

4
(
∇µZ̃(p)

αµ

)
?

(
∇τ Z̃

(p)
β τ

)

+ α8

8 (−1)pRµδστ Z̃(p)
αµδ

? Z̃
(p)
β στ −

α8

4 Tr
(
δαA(p) ? δβA

(p)†
)

+ ∆(p)
α

µ ?∆(p)
β

ν gµν + α8

2 (−1)p+1Rµρνσ∆(p)
αµ

ν ?∆(p)
β ρ

σ
}
,

(5.14)

where ∆(p)
αµ

ν = 1
(p−1)!∆

(p)
αµλ1···λp−1

νdxλ1···λp−1 . For p = 0, the third and last terms are not
present. We have also used

α8

4 Tr
(
δαθ

(p)?δβθ
†(p)

)
=

α8

2 (−1)p+1
{1

4
(

Z(p)
α

)
µδ
?

(
Z(p)
β

)
στ
Rµδστ+

(
∆α

(p)
)
µ

ν?
(
∆(p)
β

)
σ

τRµσντ

}
.

Using the derivative operator in (5.10) and the metric above, we compute the adjoint
following the logic of section 4.2. Many of the terms follow through identically. For ease of
notation, we now drop the tilde on Z(p)

α . The adjoint is

〈DY (p)
α ,Y (p+1)

β 〉

= 1
V

∫
X

{1
4

[
−∂Z(p)

αν+α8

2 Tr
(
δαA(p)Fν

)
+2i∆(p)

α
µ (∂ω)µν−α

8∇σ∆(p)
α

τRνλ
σ
τdxλ

]
?Z(p+1)ν

β

+α8

4 ∂
(
∇σZ(p)

ασ

)
?

(
∇τZ(p+1)

β τ

)
+α8

8 (−1)pRσλτν
(
−∂Z(p)

α

)
σλ
?Z(p)

β τν

−α
8

4 Tr
[(
∂AδαA(p)+Fµ∆(p)

α
µ
)
?δβA

†(p+1)
]

+
(
∂∆(p)

α

)
µ?∆(p+1)

β
ν gµν+α8

2 (−1)p+1Rµρνσ
(
∂∆(p)

α

)
µ

ν?
(
∆(p+1)
β

)
ρ

σ
}

= 1
V

∫
X

{1
4Z(p)

αν ?

[
−∂†Z(p+1)ν

β
+α8

2 (−1)pRτσνλ∇λZ(p+1)
β τσ

]

−α
8

4 ∇
µZ(p)

αµ ?∇τ
(
−∂†Z(p+1)

β

)
τ
+α8

8 (−1)pRτνσδZ(p)
ασδ

?
(
−∂†Z(p+1)

β τν

)
−α

8

4 Tr
(
δαA(p)?

(
∂†A†δβA

†(p+1)+ 1
2 (−1)p+1FµνZβ

µν (p+1)
))

+∆(p)
α

µ?

[
(−1)p i

2 (∂ω)ρνλZ(p+1)
βρν

−α
8

4 TrF λν δβA
†
ν

(p+1)+∂†∆(p+1)
β

λ

−α
8

4 (−1)pRλνστ∇νZ(p+1)
βστ

+α8

2 (−1)pRλρµσ∇λ∆(p+1)
βρ

σ
]
gµλ

+α8

2 (−1)p+1 ∆(p)
αν?

(
∂†∆(p+1)

β

)
ρ

σRµσ
ρν
}

= 〈Y (p)
α ,D

†Y (p+1)
β 〉 .
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We compare with the metric (5.14) and work to first order in α8 to deduce the action of
the adjoint operator on sections

D†Y (p+1)
α =

 Ẑ(p)
α

δ̂αA(p)

∆̂(p)
α

µ

 , (5.15)

where

Ẑ(p)
α = −∂†Z(p+1) ν

α − α8

2 (−1)pRτσλν∇λZ(p+1)
α τσ ,

δ̂αA(p) = ∂
†
AδαA(p+1) + 1

2 (−1)p F ρνZ(p+1)
αρν ,

∆̂(p)
α

µ = (−1)p+1 i
2
(
∂ω
)µρλ

Z(p+1)
αρλ

+ α8

4 Tr
(
Fµρ δαA(p+1)

ρ

)
−∇Ch/H ν∆(p)

αν
µ

+ α8

2 (−1)pRµρστ∇σ∆(p)
α τ

ρ − α8

4 (−1)pRµρστ∇ρZ(p)
α στ .

(5.16)

That is, the first line is a component of the balanced equation (2.11), after the redefini-
tion (5.6); the second line is the vanishing of the HYM equation (2.14); the third line is the
other component of the balanced equation (2.13), where we use (1.1).

We observe that the case D†Y (1)
α = 0 amounts to precisely the D-terms!

6 Conclusion and outlook

So we have shown that the physical field deformations of the Hull-Strominger system, in
holomorphic gauge, are given by harmonic representatives of the D operator on the new Q
bundle, with the spurious degrees of freedom eliminated. These are harmonic with respect
to the inner product on Q derived from the moduli space metric in [19]. We see

DY (1)
α = 0 ⇐⇒ F-terms , D†Y (1)

α = 0 ⇐⇒ D-terms .

Along the way we also demonstrated that the non-physical calculation, in which
one has additional spurious degrees of freedom, are captured by a D-operator with an
analogous relation between the F-terms and D-terms and D-closure and D-coclosure. That
means that with respect to the D-operator we could equally well call holomorphic gauge,
harmonic gauge.

It would be interesting to reconcile these results with the complexified gauge transfor-
mations and moment maps in a GIT-type analysis of these solutions studied in [16, 41].
There are also examples of mathematical interest, such as that related to the Hopf surface
which do not have an obvious valid α8 -expansion, yet appear to be governed by a (0, 2)
superconformal algebra [42]. Nonetheless, one could still try to construct the adjoint opera-
tor D† and compare with the space of deformations obtained. It would also be interesting
to see to what extent the structure discovered in this paper extends to higher orders in
α8 . We expect the generalised geometry approach of [11, 15, 16, 41, 43] to be relevant for
these scenarios.
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Another avenue of interest is to investigate further the properties of this new found
operator D. As mentioned above, D is not a connection on Q as it fails to satisfy the Leibniz
rule. However, one can still investigate its properties like ellipticity, Hodge theory, etc. [33].
One could also ask about higher orders in deformation theory. Presumably at second and
third order in deformation theory there are relations with the L3 algebra described in [17].
As noted there and elsewhere, with the spurious modes included there is a close relation with
generalised geometry, as the connection D forms a natural part of a generalised holomorphic
Courant algebroid. This connection is however lost for the operator D.15 In spite of this,
we do believe it is important to understand the moduli problem without the spurious
modes included. In particular, when we inevitably come to analysing the quantum moduli
problem. For example, the action constructed in [17] hints towards a (quasi-)topological
theory for heterotic geometries, in close analogy with holomorphic Chern-Simons theory.
One may hope to quantise this theory and define a notion of topological invariants and
enumerative geometry for heterotic geometries, which would generalise the well-known
Donaldson-Thomas invariants [44]. However, if we ignore the subtleties of fluctuating the
spurious modes, we run the risk of introducing unwanted anomalies, effective couplings, etc.
Moreover, as pointed out in appendix C, the spurious modes come with a negative definite
kinetic term in the supergravity action, and ignoring this can lead to all sorts of craziness in
the quantum theory. It may be possible to handle the extra modes using some sophisticated
Lagrange-multiplier technique or Palatini formalism. However, string theory has told us
what the correct degrees of freedom are, and so it might be wise to stick to them.

Finally, it is known in the study of CY manifolds that special geometry involves
relations between the moduli and matter sectors. It would be interesting to extend these
results to the charged matter sector utilising the matter metric [14]. The results here are
reminiscent of the study of the tt∗ equations of the special geometry of CY manifolds [45],
in which one studies a fiber bundle whose base manifold is the moduli space and fibres are
harmonic elements of the cohomologies H(2,1) ⊕H(1,1). Until now, we haven’t been able to
demonstrate a cohomology with harmonic representative capturing the deformations of the
full heterotic theory. This might be a new door worth opening.
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A Some useful relations

A.1 Curvatures and Bianchi identity

The Bianchi identity for a curvature R evaluated with a connection Θ is

dRmn + Θm
pR

p
n −RmpΘp

n = 0 , ⇔ dΘR = 0 . (A.1)
15We thank the JHEP referee for making this remark.
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For now, we take R to be the Riemann curvature tensor. It has symmetry properties

Rmnpq = −Rmnqp = −Rnmpq = Rpqmn .

We have need for commutators of derivatives to lowest order in α8 e.g.

[∇µ,∇τ ]Zαµλ = −RδµµτZα δλ −R
δ
λ
µτZαµδ = RicδτZα δλ −R

δ
λ
µτZαµδ .

It involves both the Riemann curvature and Ricci tensor Ricδτ =−Rδµµτ : the Ricci tensor
vanishes to this order in α8 .

It is useful to note that

2i∂
(
∂ω
)
µν

= 2i
(
∂∂ω

)
µν

= −α
8

4 Tr
(
F 2
)
µν

= α8

2 TrFµFν ,

where we omit the TrR2 term as it follows in the obvious way with a minus sign.

A.2 Hodge dual relations

It is useful to recount from the appendix of [19] adjoint differential operators and some
Hodge dual relations for forms on X.

The Hodge ? operator acts on type

? : Ω(p,q)(X)→ Ω(N−q,N−p)(X) .

Given k-forms η, ξ and a metric ds2 = gmndxm ⊗ dxn on X, the Hodge dual defines
an inner product

( · , · ) : Ωk(X)× Ωk(X)→ R ,

with
(η, ξ) = 1

V k!

∫
X
d6x
√
g ηm1...mk ξm1...mk .

Now consider two forms ηk and ξl, where the subscript denotes their degree and k ≤ l,.
Contraction is

y : Ωk(X)× Ωl(X)→ Ωl−k(X) ,

and acts as follows

ηk y ξl = 1
k!(l − k)! η

m1...mk ξm1...mk n1...nl−k dx
n1...nl−k = 1

k! η
m1...mk ξm1...mk .

An interesting feature of this operator is that it is the adjoint of the wedge product

(σl−k y ξl, ηk) = (ξl, σl−k ∧ ηk) . (A.2)

Recall, the de Rahm operator d can be written

d = dxm∇LC
m .

Using (A.2) and integration by parts

(dη, ξ) = (dxm∇LC
m η, ξ) = (∇LC

m η, ξ
m) = (η,−∇LC

m ξ
m) .
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It follows that

d†ξk =−∇LC
m ξ

m =− 1
(k − 1)! ∇

LC
n ξ

n
m1...mk−1 dx

m1...mk−1 .

The de Rham differential splits into the sum of Dolbeault operators d = ∂ + ∂.
Analogously, the codifferential also splits d† = ∂† + ∂

† where

∂† : Ω(p,q)(X)→ Ω(p−1,q)(X) , ∂† =− ? ∂ ? ,

∂
† : Ω(p,q)(X)→ Ω(p,q−1)(X) , ∂

† =− ? ∂ ? .
(A.3)

One-forms, type (1, 0):

? η(1,0) =−i η(1,0) ω
2

2 . (A.4)

Two-forms, types (2, 0) and (1, 1):

? η(2,0) = η(2,0) ω ,

? η(1,1) =−i ηµµ
ω2

2 − η
(1,1) ω = (ω y η(1,1)) ω

2

2 − η
(1,1) ω ,

(A.5)

Three-forms, types (3, 0) and (2, 1):

? η(3,0) =−i η(3,0) ,

? η(2,1) = i η(2,1) − ηµµ (1,0) ω = i η(2,1) − i
(
ω y η(2,1)

)
ω ,

(A.6)

Type (2, 3):

? η(2,3) = i
2 ηµν

µν (0,1) = i
2 ω y

(
ω y η(2,3)

)
. (A.7)

B Summary of notation of supergravity deformations

We give a brief summary of some notation in describing deformations of heterotic supergravity
to first order in α′.

We consider heterotic supergravity, correct to first order in α′, on R3,1 × X, where
X is a complex manifold. There is moduli space M with real coordinates denoted ya.
The moduli space is complex, in fact it is Kähler, and so there is a choice of holomorphic
coordinates which we denote ya = (yα, yβ). For each y ∈ M there is a solution to the
quantum corrected supergravity equations of motion which we denote [X ,E , H] and refer
to this as a heterotic structure. If we pick a y ∈ M and consider small deformations in
the neighbourhood y → y + δy then the corresponding data in the heterotic solution is
modified, for example the complex structure is deformed J → J + δJ . We need to relate
the field deformations, e.g. δJ , to the deformations of the parameters δya and this is done
by considering derivatives. The details of this can be found in the references [12, 14, 18],
but we very briefly state some results here in order to be complete.
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First, consider the integrable complex structure J and with corresponding complex
coordinates xm = (xµ, xν). Deformations can be expressed in terms of the undeformed
complex structure as

δJ = δJν
µ dxν ⊗ ∂µ + δJν

µ dxν ⊗ ∂µ .

It is convention to express this in terms of a tensor and to relate the field deformation to
small changes in parameters ya:

δJν
µ = δya

(
2i∆a ν

µ ) .
We often think of deformations of fields as appropriate derivatives with respect to parameters.
For example, in this case, this would mean ∂aJµ

ν = 2i∆a ν
µ. Demanding the Nijenhuis

tensor be preserved implies ∂∆a
µ = 0, in which we understand ∆a

µ ∼= ∆a ν
µdxν . The

parameters, collectively denoted ya, are also coordinates for a manifold M , the moduli space.
There is a compatible hermitian form ω. A deformation of ω can be written as

δω(2,0) = δya∆a
µωµ , δω(1,1) = δya(∂aω)(1,1) , δω(0,2) = δya∆a

µωµ , ωm = ωmndxn .

The gauge field A transforms under gauge symmetries

A→ ΦA = ΦAΦ−1 − (dΦ) Φ−1 , (B.1)

and under the background gauge principle its deformation transforms homogenously δA →
ΦδAΦ−1. To relate this deformation and its gauge property to the coordinates of the moduli
space one introduces covariant derivatives with respect to parameters

δA = δyaDaA ,

where
DaA = ∂aA− dAΛa , and where dAΛa = dΛa + [A, Λa] . (B.2)

Here Λadya is a connection on the moduli space and transforms appropriately under
gauge transformations

Λa → ΦΛa = Φ Λa Φ−1 − (∂aΦ) Φ−1 . (B.3)

When it does so, the covariant derivative transforms homogeneously: ΦDaA = ΦDaAΦ−1.
Consider the three-form H

H = dB − α8

4
(
CS[A]− CS[Θ]

)
, CS[A] = Tr

(
AdA+ 2

3 A
3
)
, (B.4)

defined so that it satisfies the Bianchi identity. Here Θ is the gauge potential for frame
transformations.16 Under background gauge transformations

ΦB = B − α8

4
(
Tr (AY )− Tr (ΘZ)− U

)
,

1
3 Tr

(
Y 3
)

= dU , (B.5)

16Note that Θ is a field dependent object, but we leave it arbitrary for this appendix.
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where Y = Φ−1dΦ and Z = Ψ−1dΨ, where Φ is a gauge transformation and Ψ a frame
transformation of TX . A variation of H is

δH = δya
(
dBa −

α8

2 Tr
(
DaAF

)
+ α8

2 Tr
(
DaΘR

))
, (B.6)

where Ba is well-defined two-form defined as

Ba = DaB + α8

4 Tr (ADaA)− α8

4 Tr (ΘDaΘ)− dBa , (B.7)

DaB = ∂aB −
α8

4 Tr (Λa dA) + α8

4 Tr (Πa dA) . (B.8)

Here Π is the connection on the moduli space responsible for frame transformations, and
the field Ba is a 1-form on X.

It is convenient to form the complexified combinations

Za = Ba + i ∂aω , Za = Ba − i ∂aω ,

where we denote Daω
(p,q) = (∂aω)(p,q) while on a real form Daω = ∂aω. Za is the heterotic

analogue of a complexified Kähler deformation in the theory of Calabi-Yau manifolds.

C A supergravity no-go theorem

No-go theorems are well-known in the context of type II and M-theory flux vacua. Classical
supergravity equations of motion, when integrated over a compact manifolds, force all non-
trivial fluxes to vanish. The evasion of these theorems comes in the form of α8 -corrections
to supergravity, interpreted as the contribution of orientifold planes, objects with negative
stress-energy tensor. Here we briefly recount an analogous result in heterotic string theory;
this demonstrates that if one wants solutions of supergravity then H = O(α8 ).

In this section only we work to α8 3, as it is not complicated to include the α8 2 correction.
The equations of motion are given by

R−4(∇Φ)2+4∇2Φ− 1
2 |H|

2−α
′

4
(
Tr |F |2−Tr |R

(
Θ+
)
|2
)

+O
(
α8

3
)

= 0 ,

RMN+2∇M∇NΦ− 1
4HMABHN

AB−α
′

4
(
TrFMPFN

P

−RMPAB

[
Θ+
]
RN

PAB
[
Θ+
])

+O
(
α8

3
)

= 0 ,

∇M
(
e−2ΦHMNP

)
+O

(
α8

3
)

= 0 ,

D−M
(
e−2ΦFMN

)
+O

(
α8

3
)

= 0 ,

(C.1)

here M,N = 0, · · · , 9, D− = ∇− + [A, ·], with ∇− computed with respect to the Θ−

connection, and RMN is the Ricci tensor. We restrict to the internal manifold X directions
and by manupulating the equations above we can write

∇2
(
e−2Φ

)
= e−2Φ|H|2 + α′

4 e
−2Φ

(
Tr |F |2 − Tr |R

(
Θ+
)
|2
)

+O
(
α8

3
)
. (C.2)
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This is actually the form of the equation of motion derived in [46] by computing the two-loop
beta function.

Integrating both sides over X, using that X is compact, we see∫
d6x
√
g |e−ΦH|2 + α8

4

∫
X
d6x
√
g
(
Tr |F |2 − Tr |R

(
Θ+
)
|2
)

= 0.

As |H|2 is positive definite, we immediately see that H = O(α8 ). So if we want to study
solutions of string theory in which the Hull-Strominger system is a well-behaved description,
then H = O(α8 ). From this, we can use the gauge fixing to set the dilaton to be a constant
and we are in the regime studied in this paper.

If we didn’t have the contribution of the last term there would be no solution at all —
this is the classical supergravity no-go theorem. We evade this because of the Green-Schwarz
anomaly cancellation condition between the classical supergravity contributions and the
α8 -correction involving the curvature squared terms. In certain backgrounds heterotic
theories are dual to type IIB theories, and this contribution can be understood as coming
from the contribution of O7-planes in type IIB, which carry negative energy density. This
explains physically why the contribution from the TrR2 term in the moduli space metric
appears with the opposite sign from all the other terms. That is [12],

g]
αβ

= 1
V

∫
X

(1
4Z(1,1)

α ?Z(1,1)
β

+α8

4 Tr
(
DαA?DβA

)
+∆α

µ?∆β
ν gµν−

α8

4 Tr
(
DαΘ?DβΘ

))
.

This does not mean the moduli space metric has indefinite signature: it is constructed in
supergravity and so necessarily α8 � 1 meaning the last term, no matter its value, cannot
change the signature of the metric. Even after substituting for the spurious degrees of
freedom, the same logic will apply.

If one wanted to study solutions where α8 is large, then if we want it to be relevant at
all to string theory (along with all its beautiful results such as mirror symmetry, special
geometry and sigma models) then we need to include the higher order α8 -corrections. It is
already known that there is an α8 2 correction to the hermitian sector of the metric [31]. As
pointed out in that paper, there are going to be α8 3 corrections, such as the α8 3 correction to
the moduli space metric calculated using mirror symmetry [47] at the standard embedding

Kα8 3 = − log
(4

3

∫
X
ω3 + 8α8 3ζ (3)χ (X)

)

≈ − log
(4

3

∫
X
ω3
)

+ 8α8 3 ζ (3)χ(X)
V

+ · · · ,
(C.3)

where V is the volume of X, ζ is the Riemann zeta function and χ the Euler number.
Presumably, if we understood (0, 2)-mirror symmetry, we could determine all the α8 -
corrections to the moduli space metric.

With all deformations turned on, the Kähler potential for the moduli space metric g]
αβ

was first shown to be [12]

K = − log
(4

3

∫
X
ω3
)
− log

(
i
∫
X

Ω Ω
)
. (C.4)
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It is remarkable that this also encodes the deformations of the vector bundle despite
involving quantities which naively belong to X.17 In the gauge in which the dilaton is
constant [31], the norm ‖Ω‖ is constant over X and so the compatibility relation between
Ω and ω is

i
∫
X

ΩΩ = 1
3!

∫
X
‖Ω‖2 ω3 .

Substituting into (C.4) we see that

K = − log
(∫

X
‖Ω‖ω3

)
, (C.5)

where we have dropped irrelevant numerical constants.
We now show this is equivalent to the four-dimensional dilaton as written in Einstein

frame. Indeed, in Einstein frame of the dimensional reduction of heterotic supergravity to
R3,1, the ten-dimensional dilaton is written18

Φ = Φ0 + ϕ(Xe) + α8
3Φ3(X,x) + · · · ,

where Xe = (X0, · · · , X3) are the R3,1 coordinates and xm are the coordinates of X. The
first term is the zero mode and so a constant. There is a purely d = 4 fluctuation ϕ(X)
and the next non-zero term is Φ3 which is cubic order in α8 . The canonical definition of
the four-dimensional dilaton, even for non-Kähler manifolds is (see for example [48]):

e−2φ4 = e−2ϕ(Xe) 1
g2
sV0

∫
X

1
3!ω

3 +O
(
α8

3
)
,

where gs = eΦ0 is the zero-mode of the dilaton and is the string coupling constant. For the
Hull-Strominger system to be a good approximation to string theory, we require gs → 0. V0
is a reference volume of X, measured at any point in moduli space, and appears in order
for the dilaton to be dimensionless.

A consequence of supersymmetry is that

d log ‖Ω‖ =−2dΦ +O
(
α8

2
)
, (C.6)

where d is the ten-dimensional exterior derivative. We therefore get

e−2φ4 = 1
g2
sV0

∫
X

1
3! ‖Ω‖ω

3 +O(α8 2) .

Supersymmetry here is important. The four-dimensional dilaton appears in a combination
with the universal axion — the B-field whose legs span R3,1: S = b+ ie−2φ4 . In the language
of N = 1, d = 4 supersymmetry S is a component of a linear multiplet.

We we see that, up to irrelevant constants,

2φ4 = − log
∫
X
‖Ω‖ω3 − log

( i
2
(
S − S

))
+O

(
α8

2
)
. (C.7)

17There is additional term coming from the universal axio-dilaton which in the tradition of special geometry
we do not write as it is completely decoupled from all the other parameters. We discuss it below.

18We again use that modulo an appropriate gauge fixing the dilaton is constant up to order α8 3 [31].

– 30 –



J
H
E
P
1
1
(
2
0
2
2
)
0
9
6

The second term we often do not include as the universal axio-dilaton is not coupled to any
other fields at this order in α8 and gs and so its contribution to the moduli space metric is
somewhat trivial [12].

As promised, we have shown that K = 2φ4 and the four-dimensional dilaton is the
Kähler potential (C.4) first written in [12]. All we demanded here were the physically
reasonable assumptions that supergravity is a good approximation, viz. α8 , gs → 0.

Supersymmetry does not afford the dilaton functional any protection from α8 corrections.
The linear multiplet is a fully-fledged D-term and so will receive corrections at all orders
in α8 .19 That being so, we expect the first correction already at α8 2. Many issues arise.
It is not even clear, for example, if the four-dimensional dilaton and the Kähler potential
for the moduli space metric at α8 2 are the same thing. Given the supergravity action
and supersymmetry variations are known at this order, determining this correction is an
interesting future direction. It would be very interesting to determine the α8 3 corrections
as well, though the supersymmetry variations and equations of motion are not completely
known at this order.

Recently, [16] took (C.7) as the Kähler potential for the moduli space metric to
deformations of the first order α8 Hull-Strominger system assuming the complex structure is
fixed. They then related this to the Aeppli and Bott-Chern cohomology. In the limit α8 → 0
with H → 0, in which the Hull-Strominger system accurately describes string backgrounds,
it reproduces [12] as we demonstrated above. Their metric also applies to formal solutions
of the Hull-Strominger system one allow for α8 to be large and for non-trivial dilaton
with torsion H = O(1). However, as discussed above, such solutions are not obviously
string solutions because of the non-trivial dilaton behaviour and because the α8 2, α8 3, · · ·
corrections are not included. They do not find, for example, the α8 3 correction to the metric
predicted from mirror symmetry in the special case of the standard embedding cf. (C.3).
This term will dominate of the lower order contributions in such solutions. Furthermore,
interesting pathologies can also arise in the large α8 limit, such as the moduli space metric
being degenerate and so not Kähler as required by N = 1 d = 4 supersymmetry. This
reinforces the importance of including perturbative α8 2, α8 3, · · · -corrections to the Hull-
Strominger system — they will dominate over the lower order Hull-Strominger equations
at string scale volumes. No doubt α8 -corrections in the form of worldsheet instantons will
play an even more important role as well — it is these that encode geometric invariants of
interest in pure mathematics.

So if we want to apply the formalism of the Hull-Strominger system to examples where
H = O(1) then we must necessarily include the α8 -corrections and gs-corrections to the
supersymmetry variations, equations of motion and in turn the moduli space metric. Even
if the dilaton is constant, determining how the α8 -corrections modify the Kähler potential
beyond the first order result in [12, 18] for heterotic theories remains an open question.
These higher order terms will dominate and qualitatively change the behaviour of the metric.
For example, such terms should presumably force the metric to remain positive definite
even though we have a contribution at order α8 with a negative sign. We know this must be

19We thank Gabriele Tartaglino-Mazzucchelli for explaining this to us.
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the case as there are strong arguments from [2, 49] that at least in α8 -perturbation theory
these geometries define sigma models that flow to unitary conformal field theories with
positive definite kinetic terms for the moduli fields, and so, positive definite metric.

The role of the dilaton is even more mysterious: if there are string solutions on compact
manifolds, then they are not described by conventional sigma models. As pointed out
in [50], the (0, 2) sigma model for the Hopf surface — a simple geometric example in which
the dilaton is non-trivial at zeroth order in α8 — is not unitary and so the sigma model
does not describe a physical string theory. In fact, the dilaton scalar is not even globally
well-defined on the Hopf surface, so it is not clear how it solves the supergravity equations
of motion (C.1) globally. Finding a suitable modification of this worldsheet theory and Hopf
surface geometry so that we have a unitary theory flowing to a unitary (0, 2) conformal
field theory would be very interesting. Recently, [42] conjectured some of the algebraic
structures such a theory should have — it would be very interesting to try to turn this into
a description of a unitary conformal field theory.

D Constructing a family of D operators

We construct a family of D-operators on the Q bundle of (0, p)-forms that square to zero
and DY (1)

α = 0 corresponds to the F-terms; D†Y (1)
α = 0 corresponds to the D-terms.

D.1 Warm-up: complex manifolds and holomorphic bundles

As a warm-up we start by setting Z(p)
α = 0 and δαΘ(p) = 0. The F-term equations (2.7)

restrict to

∂A(DαA) + Fµ∆α
µ = 0 , ∂∆α

µ = 0 , (D.1)

while the D-term equations are (2.13)–(2.14).

0 = ∂
†
A(DαA) , 0 =−α

8

4 Tr
(
F νµDαAµ

)
+∇µ∆αµ

ν . (D.2)

We define D1 to be

D1 =
(
∂A F
0 µ̃p∂

)
, F(∆p

α) = λ̃pFµ∆p
α
µ .

with λ̃p, µ̃p arbitrary coefficients. We see that D2
1 = 0 amounts to

∂Aλ̃pFµ∆p
α
µ + λ̃p+1µ̃pFµ∂∆p

α
µ ,

and so
− λ̃p + λ̃p+1µ̃p = 0 . (D.3)

We use the appropriate restriction of moduli space metric (4.5)

〈Y (p)
α ,Y (p)

β 〉 = 1
V

∫
X

(
−α

8

4 Tr
(
δαA(p) ? δβA

(p)†
)

+ ∆(p)
α

µ ?∆(p)
β

ν gµν

)
.
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to compute the adjoint operator

〈D1Y (p)
α ,Y (p+1)

β 〉 = 1
V

∫
X

{
− α8

4 Tr
(
δαA(p) ?

(
∂†A†δβA

† (p+1)
))

+ ∆(p)
α

µ ?

(
−λ̃p

α8

4 TrF λν δβA
†
ν

(p+1) + µ̃p∂
†∆(p+1)

β
λ
)
gµλ

}
= 〈Y (p)

α , D
†
1Y (p+1)

β 〉 ,

From this we read off

D
†
1Y (p+1)

α =
(

∂
†
AδαA(p+1)

λ̃p
α8

4 TrFµν δαAν (p+1) − µ̃p∇ν∆(p+1)
αν

µ

)
.

We check that (D†1)2 = 0. Indeed, the only non-trivial part is

(D†1)2 =
(
−λ̃p−1 + λ̃pµ̃p−1

) α8
4 TrFµτ∇λδαA(p+1)

τλ
= 0 ,

and as expected we find exactly (D.3), the same condition on the coefficients as for D2
1 = 0.

This is a good consistency check.
We now compare with the F-terms and D-terms. The F-terms amount fo D1Y (1)

α = 0
and so this fixes λ̃1 = 1. The D-term equation (D.2) corresponds to D†1Y (1)

α = 0 and we see

λ̃0 = µ̃0.

One simple solution is to pick µ̃p = λ̃p = 1. We generalise this calculation to include the
spin connection and hermitian terms.

D.2 Hull-Strominger with spurious degrees of freedom

We now do this for the entire Hull-Strominger system with the spurious degrees of freedom.
We introduce a D operator with p-graded coefficients in the same way. Its action in
components is

Ẑ(p+1)
αν = µp∂Z(p)

αν + 2iεp∆(p)µ
α (∂ω)µν + α8

2 λp
(
Tr (δαA(p)Fν)− Tr (δαθ(p)Rν)

)
,

δ̂αA(p+1) = ∂AδαA(p) + λ̃pFµ∆(p)µ
α ,

δ̂αθ
(p+1) = ∂θδαθ

(p) + λ̃pRµ∆(p)µ
α ,

∆̂(p+1)
α = µ̃p∂∆(p)

α .

(D.4)

As a matrix we write this as

D =
(
µp∂ Hp

0 D2

)
, (D.5)
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where Hp(∆(p)
α , δαA(p)) = 2iεp∆(p)µ

α (∂ω)µν + α8

2 λp
(
Tr (δαA(p)Fν)− Tr (δαθ(p)Rν)

)
and D2

is the natural generalisation of D1 taken to act on both δA(p) and δθ(p).

D


Z(p)
αν

δαθ
(p)

δαA(p)

∆(p)
α

 =


−∂Z(p)

αν + 2i∆(p)µ
α (∂ω)µν + α8

2

(
Tr (δαA(p)Fν)− Tr (δαθ(p)Rν)

)
∂θ(Dαθ) +R(∆α)
∂A(DαA) + F(∆α)

∂∆α

 . (D.6)

We now check that D2 = 0. From the previous subsection we see that D2
2 = 0 amounts

to −λ̃p + λ̃p+1µ̃p = 0. The rest of the calculation amounts to checking

Ẑ(p+2)
αν =µp+1∂Ẑ(p+1)

αν +2iεp+1∆̂(p+1)µ
α (∂ω)µν+α8

2 λp+1

(
Tr
(
δ̂αA(p+1)Fν

)
−Tr

(
δ̂αθ

(p+1)Rν

))
= 0 ,

We find this is the case if

λp+1 + λpµp+1 = 0 , λ̃p − λ̃p+1µ̃p = 0 ,

εpµp+1 + εp+1µ̃p = 0 , µp+1εp + λp+1λ̃p = 0 , (D.7)

together with the Bianchi identity

2i∂∂ω = α8

4 TrF 2 − α8

4 TrR2 .

and we have included the condition for D2
2 = 0. Just as for D2

1 = 0 in the previous section,
this calculation is offshell — we do not need to use the equations of motion.

We now compute the adjoint D† using the metric (4.5).

〈DYα,Yβ〉

= 1
4V

∫
X

{
µp∂Z(p)

αν+2iεp∆(p)µ
α (∂ω)µν+ α8

2 λp
(
Tr (δαA(p)Fν)−Tr (δαθ(p)Rν)

)}
?Zν

β

− α8

4V

∫
X

(
∂AδαA(p)+λ̃pFµ∆(p)µ

α

)
?δβA

†(p+1)+ α8

4V

∫
X

(
∂θδαθ

(p)+λ̃pRµ∆(p)µ
α

)
?δβθ

†(p+1)

+ 1
V

∫
µ̃p∂∆α

µ?∆(p+1)
β µ

= 1
4V

∫
X

Z(p)
αν ?µp∂

†Z ν

β−
α8

4V

∫
X
δαA(p)?

(
∂†

AδβA
†(p+1)+(−1)p+1 λp

2 FντZντ

β

)
+ α8

4V

∫
X
δαθ

(p)?
(
∂†
θδβθ

†(p+1)+(−1)p+1 λp
2 RντZντ

β

)
+ 1
V

∫
X

∆α
µ?
{ i

2εp(−1)p(∂ω)µντZντ
β
−λ̃p

α8

4 TrFµτδβA
†τ+λ̃p

α8

4 TrRµτδβθ
†τ+µ̃p∂†∆(p+1)

β µ

}
.

(D.8)
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So we find

D
†


Z(p+1)
αν

δαθ
(p+1)

δαA
(p+1)

∆(p+1)
α

µ



=


µp∂

†Z(p+1)
αν

∂
†
θδαθ

(p+1)+ 1
2 (−1)pλpRρνZ(p+1)

αρν

∂
†
AδαA(p+1)+ 1

2 (−1)pλpF ρνZ(p+1)
αρν

i
2 (−1)p+1

εp
(
∂ω
)µρλZαρλ+α8

4 λ̃p
(
Tr
(
Fµρ δαA(p+1)

ρ

)
−Tr

(
Rµρ δαθ

(p+1)
ρ

))
+µ̃p∂

†∆(p+1)
α

ν

 .

(D.9)
A non-trivial check is that (D†)2 = 0 if and only if D2 = 0.

We now compare with the F-terms and the D-terms. The F-terms equations (2.7)–
(2.8) follow if DY (1)

α = 0 and µ1 = −ε1 = −λ1 and λ̃1 = 1. The D-term equations are
the variations of the HYM and balanced equations, written down in (2.11), (2.13), (2.14)
and (2.15).20 These correspond to D†Y (1) = 0 with λ0 = 1, ε0 = λ̃0 = µ̃0. One can check
that these satisfy the consistency equations (D.7). Taken together these consistency checks
are non-trivial.

We list two convenient solutions. The first is µp = λ̃p = µ̃p = 1 and εp = λp = (−1)p.
This corresponds to the D-operator [9] in our conventions. A second choice is µp = −1 and
λ̃=µ̃p = λp = εp = 1, which avoids any explicit (−1)p factors. In components this second
choice is

Ẑ(p+1)
αν = −∂Z(p)

αν + 2i∆(p)µ
α (∂ω)µν + α8

2
(
Tr
(
δαA(p)Fν

)
− Tr

(
δαθ

(p)Rν
))

,

δ̂αA(p+1) = ∂AδαA(p) + Fµ∆(p)µ
α ,

δ̂αθ
(p+1) = ∂θδαθ

(p) +Rµ∆(p)µ
α ,

∆̂(p+1)
α = ∂∆(p)

α .

(D.10)

So in summary we have found a family of D operators and its adjoint via the moduli
space metric. The equations of motion correspond to DY (1) = 0 and D

†Y (1) = 0; in
other words the first order deformations in holomorphic gauge correspond to the harmonic
representatives of D.

The non-spurious case follows in an identical manner to this case after making the
appropriate substitution for δαθ(p) and redefinition in Zα discussed in the main text.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

20Its worth noting the last term of (2.13) does not appear as it would come from the inner product of a
pair of (0, 2)-deformations, Z(0,2)

α , which is O(α8 2) and so dropped.
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