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In-medium kinetic theory of D mesons and heavy-flavor transport coefficients
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We extend the kinetic theory of D mesons to accommodate thermal and off-shell effects due to the medium
modification of the heavy-meson spectral functions. From the Kadanoff-Baym approach we derive the off-shell
Fokker-Planck equation which encodes the heavy-flavor transport coefficients. We analyze the thermal width
(damping rate) of D mesons due to their scattering off light mesons, focusing on new in-medium effects: off-shell
corrections, inelastic channels, and the contribution of the Landau cut. We obtain that the latter effect (absent
for vacuum scattering amplitudes) brings sizable corrections at moderate temperatures. We discuss how the
heavy-flavor transport coefficients, like the drag and diffusion coefficients, are modified in matter. We find that
the D-meson spatial diffusion coefficient matches smoothly to the latest results of lattice-QCD calculations and
Bayesian analyses at higher temperatures.
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I. INTRODUCTION

Heavy hadrons are considered to be an efficient and
unique probe for testing the different quantum chromody-
namics (QCD) phases created in heavy-ion collisions (HiCs),
in both quark-gluon plasma (QGP) and hadronic phases (see
Refs. [1–5] for recent reviews). Due to the large mass of the
heavy (charm and bottom) quarks as compared to the mass
of the light-flavor quarks, heavy quarks have large relaxation
times and, thus, cannot totally relax to equilibrium during
the fireball expansion in HiCs. For this reason, heavy mesons
constitute ideal probes to characterize the QGP properties and
determining their in-medium properties in a hadronic medium
at extreme conditions is a subject that attracts a lot of interest
nowadays.

The characterization of the different QCD phases can be
performed by analyzing experimental observables in HiCs,
such as the nuclear modification ratio as well as the elliptic
flow [1–6]. These physical observables are strongly correlated
to the behavior of the transport properties of heavy hadrons,
and these depend crucially on the interaction of the heavy
particles with the surrounding medium.
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In particular, the diffusion of open-charm (D mesons) in
hadronic matter was initially obtained within an effective
theory that incorporated both chiral and heavy-quark symme-
tries [7] and also using parametrized interactions with light
mesons and baryons [8]. Moreover, the scattering amplitudes
of D mesons with light mesons and baryons were obtained by
means of effective Lagrangians at leading order [9]. However,
the need of unitarization was later pointed out so as to avoid
unphysically large transport coefficients [10].

Following these initial works, we exploited chiral and
heavy-quark symmetries to obtain the unitarized effective
interaction of heavy mesons, such as D [11,12] and also B̄
[13,14], with light mesons and baryons. With these inter-
actions, we obtained the heavy-meson transport coefficients
as a function of temperature and baryochemical potential of
the hadronic bath by means of the Fokker-Planck equation
approach [11,12,15]. Moreover, we examined the transport
coefficients of the low-lying heavy baryons (�c and �b) using
a similar unitarized framework to account for the interaction
of these states with light mesons [16,17].

Similar approaches using different models or effective
descriptions, both below and above the phase transition,
have been developed (see Refs. [8,9,15,18–30] for some
references). These works exploited the Fokker-Planck (or
Langevin) equation description for the heavy particles. Some
studies pointed out limitations in the QGP phase and
considered the Boltzmann equation instead [16,31]. While
Fokker-Planck or Boltzmann kinetic equations seem natural
starting points to address transport coefficients, the scattering
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amplitudes used to describe collisions (computed from a mi-
croscopic model) were completely independent of the kinetic
theory. Therefore, from a purely theoretical perspective, there
is a lack of internal consistency in these calculations, as it
would be desirable to construct both the interaction rates and
the transport equation from the same microscopic theory.

On the other hand, in most of the previous analyses the
transition amplitudes of heavy mesons with light hadrons
and, hence, the transport coefficients were calculated with-
out implementing medium corrections for the interactions.
Indeed, off-shell effects cannot be accounted for in the stan-
dard Boltzmann or Fokker-Planck equations. For that, an
extension using the more general Kadanoff-Baym equations
is required. Second, in-medium interactions induce new kine-
matic domains which affect the D-meson properties. These
new effects—which would also affect D-meson transport
coefficients—can be naturally incorporated on the derivation
of an off-shell kinetic equation. Therefore, to apply our find-
ings of Refs. [32,33] we are forced to address the derivation
of an off-shell kinetic equation and, with this, to consistently
describe interaction rates and the transport equation from the
same effective theory.

In this paper we focus on D mesons and analyze the effect
on the transport properties of the scattering of these heavy
mesons with a mesonic bath at finite temperature. To this
end we make use of the in-medium unitarized amplitudes in
a mesonic environment at finite temperature recently devel-
oped in Refs. [32,33] that have been tested against lattice
QCD calculations below the temperature of the QCD phase
transition [34]. The final goal is to calculate the D-meson
transport coefficients below the transition temperature, paying
a special attention to the inclusion of off-shell effects coming
from the full spectral features of the D meson in a hot mesonic
bath. We will compare our results with the latest results of
lattice-QCD [35–39] and Bayesian analyses [40] performed
for temperatures close and above Tc.

The paper is organized as follows. In Sec. II we intro-
duce the kinetic equation for D mesons incorporating the
T -matrix approximation in the collision terms. In Sec. III
we particularize to an equilibrium situation and describe the
T -matrix approach and the spectral properties of D mesons at
finite temperature. In Sec. IV we show the different kinematic
contributions to the D-meson thermal width coming from the
off-shell treatment of the D meson. In Sec. V we obtain the
different transport coefficients within the off-shell approach
after rederiving the Fokker-Planck equation. Our results are
given in Sec. VI, while we conclude in Sec. VII. In the
Appendix we detail the derivation of the on-shell Fokker-
Planck equation to connect to the formalism used in previous
works.

II. NONEQUILIBRIUM DESCRIPTION: OFF-SHELL
KINETIC EQUATION WITH T -MATRIX APPROXIMATION

In this section we describe the kinetic equation for D
mesons interacting with light particles. The corresponding
effective field theory (both in vacuum and at finite T ) has been
developed in Refs. [32,33]. Therefore we would like to be able
to use quantum field theory techniques in order to achieve our

goal. This can be addressed via the Kadanoff-Baym equations
[41], which have been derived for real scalar fields several
times in the literature [41–50] using the real-time formalism
[51,52]. For this reason, we skip standard steps in the deriva-
tion of the kinetic theory and only stress the particular details
concerning our heavy-light system.

We want to note that in this work the derivation of a
kinetic theory—technically more involved than the calcula-
tion of equilibrium quantities—is employed to determine the
particular form of the transport equation and then to provide
a rigorous and practical definition of the transport coeffi-
cients. However, the actual calculation of these coefficients (as
well as the thermal decay widths) only requires equilibrium
properties, which will be mostly taken from our previous
Refs. [32,33]. The eventual solution of the kinetic equation
in real time is not addressed in this work and left for future
studies.

Out of equilibrium, the fundamental quantities are the two
Wightman functions for the D meson. Their definition is

iG>
D (x, y) ≡ 〈D(x)D(y)〉, (1)

iG<
D (x, y) ≡ 〈D(y)D(x)〉, (2)

and they correspond to the time-ordered Green’s function (or-
dered along the real-time contour) of the D-meson propagator,
depending on the relative ordering of the time arguments
x0, y0 [41,46,47,49].

The momentum dependence is introduced through a
Wigner transform (Fourier transform of the relative coor-
dinates). Then we focus on G<

D (X, k) also called Wigner
function (X being the center of mass coordinates). This func-
tion satisfies the following kinetic equation [41–50],[

kμ − 1

2

∂Re �R(X, k)

∂kμ

]
∂iG<

D (X, k)

∂X μ

+ 1

2

∂Re �R(X, k)

∂X μ

∂iG<
D (X, k)

∂kμ

− i

2

{
�<(X, k), Re GR

D(X, k)
}

PB

= 1

2
i�<(X, k)iG>

D (X, k)

− 1

2
i�>(X, k)iG<

D (X, k), (3)

which is given as function of 4-position X μ = (t, X) and
4-momentum kμ = (k0, k). Notice that k0 and k are indepen-
dent variables (although related via the spectral distribution
SD(X, k), to be defined later). Such a general case where the D
meson is not on its mass shell—as its energy is not determined
by its momentum—will be generically denoted as off-shell.
Already in equilibrium, we have shown in Refs. [32,33] that
the D meson at T �= 0 is characterized by a continuous spec-
tral function, which represents the distribution of possible
energies for a given value of the momentum (see later).

In addition, the D-meson properties are modified by dif-
ferent self-energies: �R(X, k) is the retarded one, and the
“greater” and “lesser” �≷(X, k) are related to the collision
processes of the D mesons (see more details in Refs. [42–50]).
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In fact, the right-hand side of Eq. (1) represents the collision
term of the transport equation. Also the retarded Green’s
function GR

D(x, y) appears in the so-called Poisson bracket of
Eq. (1).

As in this work we will eventually apply equilibrium
properties in a homogeneous background, we neglect the
mean-field term in Eq. (1), proportional to ∂X μRe �R [53].
In addition, we will not consider the Poisson bracket in the
left-hand side. This term was shown to be unimportant in
the quasiparticle limit and can be safely neglected [42,49,53].
However, one should not forget that in the off-shell case it
contributes to the out-of-equilibrium dynamics of G<

D (X, k)
[44,53] (see also Ref. [49] and references therein).

With these approximations we arrive to the final form of
the “off-shell” transport equation,

[
kμ − 1

2

∂Re �R(X, k)

∂kμ

]
∂iG<

D (X, k)

∂X μ

= 1

2
i�<(X, k)iG>

D (X, k) − 1

2
i�>(X, k)iG<

D (X, k) .(4)

For completeness, the transport equation for G>
D (X, k) is

similar to Eq. (4) and shares the same collision term,

[
kμ − 1

2

∂Re �R(X, k)

∂kμ

]
∂iG>

D (X, k)

∂X μ

= 1

2
i�<(X, k)iG>

D (X, k) − 1

2
i�>(X, k)iG<

D (X, k) .(5)

Related to the dispersion relation and the spectral func-
tion of the D mesons one can consider the equations for
the retarded/advanced Green’s function GR/A

D [41–50]. For
a scalar field, these are complex conjugated, GR

D(X, k) =
[GA

D(X, k)]∗, and related to the Wightman functions as

GR
D(X, k) − GA

D(X, k) = G>
D (X, k) − G<

D (X, k). (6)

After some standard manipulations of the equations of
motion one can arrive to the familiar equation,

[
k2 − m2

D,0 − �R(X, k)
]

GR
D(X, k) = 1, (7)

where the (out-of-equilibrium) retarded self-energy dresses
the bare mass of the D meson. The pole of the retarded Green’s
function, i.e., the zero of the left-hand side of Eq. (7), will
generically provide the dispersion relation of the D meson
modified by interactions. In the next section we will detail its
form in the homogeneous and equilibrium case [32].

To close the equation for G<
D (X, k) the remaining step is

to detail the D-meson self-energies in terms of the Green’s
functions. In our case, in consistency with the effective ap-
proach described in Refs. [32,33], we will incorporate exact
unitarity constraints to the scattering matrix, implementing
an in-medium T -matrix resummation of the scattering am-
plitudes. In the nonequilibrium context this is called the
T -matrix approximation [41,42,44], where the D-meson self-
energies �≷(X, k) can be written in terms of the (retarded)

FIG. 1. The two-loop structure of �≶(X, k) for the D me-
son. Solid lines: D-meson propagator G≶

D (X, k1); dashed lines:
light meson propagator G≶

� (X, k2), G≷
� (X, k3); red circles: T -matrix

operators.

T -matrix element as [41]

i�<(X, k) =
∑

{a,b,c}

∫
d4k1

(2π )4

∫
d4k2

(2π )4

∫
d4k3

(2π )4

× (2π )4δ(4)(k1 + k2 − k3 − k)

× ∣∣T (
k0

1 + k0
2 + iε, k1 + k2

)∣∣2

× iG<
Da

(X, k1)iG<
�b

(X, k2)iG>
�c

(X, k3), (8)

i�>(X, k) =
∑

{a,b,c}

∫
d4k1

(2π )4

∫
d4k2

(2π )4

∫
d4k3

(2π )4

× (2π )4δ(4)(k1 + k2 − k3 − k)

× ∣∣T (
k0

1 + k0
2 + iε, k1 + k2

)∣∣2

× iG>
Da

(X, k1)iG>
�b

(X, k2)iG<
�c

(X, k3). (9)

Diagrammatically, the self-energies �≶(X, k) are given by
the two-loop diagram represented in Fig. 1. The solid lines
represent heavy mesons, while dashed lines are � propaga-
tors, and the vertices stand for the full T matrices. All of them
are nonequilibrium quantities and only known after solving
the transport equation.

The sum over a, b, and c in Eqs. (8) and (9) encodes the
different species that can interact and that are fixed by the
effective vertices. This sum is restricted to particular combina-
tions (respecting conservation of quantum numbers) which are
described in detail in Ref. [33], where a full coupled-channels
analysis was performed. In particular, Da can describe ei-
ther D or Ds mesons, and �b,�c can represent π, K, K̄, η.
Figure 2 shows all 10 allowed diagrams, although not all of
them are equally important. We will comment on this when
addressing the effect of inelastic processes in our calculations.

We now discuss the form of the Wightman functions
G≶

D,�(X, k). The light degrees of freedom satisfy their own set
of Kadanoff-Baym equations, which are coupled to those of
the heavy mesons. In the context of heavy-ion collisions, the
standard approach for heavy-flavor dynamics is to exploit the
fact that the light degrees of freedom have reached equilibrium
much before than the heavy sector, as the latter has a much
longer relaxation time (roughly proportional to the mass of
the particle). In our goal of accessing transport coefficients of
heavy mesons, we will also assume this, so there is no need to
consider the kinetic equation for light mesons.
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FIG. 2. Diagrams contributing to �
≶
D (X, k) for the D meson in Eqs. (8) and (9). A total of 10 channels are needed due to the coupled-

channels problem for the D-meson interaction. Red circles are T -matrix elements in the appropriate channel.

In addition, we apply the thermal local equilibrium solution
for G≶

� (X, k), which can be expressed as [41]

iG<
�(X, k) = 2πS�(X, k) f (0)

� (X, k0), (10)

iG>
�(X, k) = 2πS�(X, k)

[
1 + f (0)

� (X, k0)
]
, (11)

where S�(X, k) is the equilibrium light-meson spectral func-
tion and f (0)

� (X, k0) is the equilibrium occupation number,
i.e., the Bose-Einstein distribution function. Equation (11)
incorporates the Bose enhancement factor 1 + f (0)

� (X, k0).
Concerning the D mesons, we will assume that they are

not far from equilibrium (which is enough to address the
calculation of the transport coefficients) and use a similar form
as in Eqs. (10) and (11) for the Green’s function, the so-called
Kadanoff-Baym ansatz,

iG<
D (X, k) = 2πSD(X, k) fD(X, k0), (12)

iG>
D (X, k) = 2πSD(X, k) [1 + fD(X, k0)], (13)

where the D-meson spectral function SD(X, k) and the distri-
bution function fD(X, k0) are out of equilibrium.

Inserting these ansätze into the kinetic equation [see
Eq. (4)], together with the D-meson self-energies defined in
Eqs. (8) and (9), one obtains(

kμ − 1

2

∂Re �R

∂kμ

)
∂

∂X μ
[SD(X, k) fD(X, k0)]

= 1

2

∫ 3∏
i=1

d4ki

(2π )3
(2π )4δ(4)(k1 + k2 − k3 − k)

× ∣∣T (
k0

1 + k0
2 + iε, k1 + k2

)∣∣2
SD(X, k1)

× S�(X, k2)S�(X, k3)SD(X, k)

× [
fD

(
X, k0

1

)
f (0)
�

(
X, k0

2

)
f̃ (0)
�

(
X, k0

3

)
f̃D(X, k0)

− f̃D
(
X, k0

1

)
f̃ (0)
�

(
X, k0

2

)
f (0)
�

(
X, k0

3

)
fD(X, k0)

]
, (14)

where we defined f̃i(X, k0) ≡ 1 + fi(X, k0). Notice that we
have not written explicitly the sum over {a, b, c} in the right-
hand side, but it should be understood to account for all
possible physical processes.

Focusing on the positive-energy D meson one can integrate
over dk0 along the positive branch in both sides,∫ +∞

0
dk0

(
kμ − 1

2

∂Re �R

∂kμ

)
SD(X, k)

∂ fD(X, k0)

∂X μ

= 1

2

∫ +∞

0
dk0

∫ 3∏
i=1

d4ki

(2π )3
(2π )4

× δ(4)(k1 + k2 − k3 − k)
∣∣T (

k0
1 + k0

2 + iε, k1 + k2
)∣∣2

× SD(X, k1)S�(X, k2)S�(X, k3)SD(X, k)

× [
fD

(
X, k0

1

)
f (0)
�

(
X, k0

2

)
f̃ (0)
�

(
X, k0

3

)
f̃D(X, k0)

− f̃D
(
X, k0

1

)
f̃ (0)
�

(
X, k0

2

)
f (0)
�

(
X, k0

3

)
fD(X, k0)

]
, (15)

where the transport equation for the spectral function has been
used after Eq. (14).1

This equation is very similar to the standard Boltzmann
equation but the effects of the medium (temperature and den-
sity) are here incorporated into the T matrix and the spectral
functions of the interacting particles. The reduction of this
equation to the classical Boltzmann equation makes an ex-
tra assumption for the spectral functions, the quasiparticle
approximation. In that approximation the spectral function
is only characterized by the quasiparticle energy Ek and the
thermal decay width γk , and S(k) admits a Lorenztian shape
peaked at Ek and with a spectral width γk � Ek . In the limit
γk/Ek → 0 one can consider the narrow limit,

S(k) → zk

2Ek
[δ(k0 − Ek ) − δ(k0 + Ek )]. (16)

1Note that from Eqs. (12) and (13) one has SD(X, k) =
i[G>

D (X, k) − G<
D (X, k)]/(2π ). Then, subtracting the transport equa-

tions, Eq. (5) minus Eq. (4), one obtains that the transport equation
for the spectral density reads[

kμ − 1

2

∂Re �R(X, k)

∂kμ

]
∂SD(X, k)

∂X μ
= 0.
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FIG. 3. Labelling of incoming and outgoing momenta in a
generic binary scattering. Solid lines represent heavy mesons, while
dashed lines represent light mesons. The vertex corresponds to a
retarded T -matrix element.

In this limit one is effectively treating the quasiparticle as a
stable state (no thermal width), but with a medium-modified
energy Ek plus a correction due to the zk factor.

The narrow limit allows to trivially perform the integra-
tion over k0

i variables in the kinetic equation in Eq. (15) to
obtain the on-shell (or Boltzmann) transport equation. When
assuming this approximation for all the particles involved,
different combinations of the Dirac delta functions can be
taken, which describe different scattering processes [46,53].
However in this limit, the energy-momentum conservation
only allows 2 ↔ 2 processes [48,53]. Among those, the one
with a DD̄ pair in the initial state can be neglected due to
the low D-meson population (and the inverse reaction is sup-
pressed due to the high energy threshold for the two incoming
pions). Therefore one only considers one type of collisions
(D� → D�). We label the momenta of a generic scattering
as k + 3 → 1 + 2, see Fig. 3 for illustration.

Denoting for simplicity fi ≡ fD,�(X, Ei ) (where the
species is fixed by the value of i, i.e., i = {1, k} for the heavy
meson, i = {2, 3} for the light meson), we obtain[

∂

∂t
− k

Ek
· ∇X

]
fk

= zk

2Ek

∫ [
3∏

i=1

d3ki zi

(2π )32Ei

]
(2π )4δ(3)(k + k3 − k1 − k2)

× {δ(Ek + E3 − E1 − E2) |T (Ek + E3, k + k3)|2

× ( f1 f2 f̃3 f̃k − f̃1 f̃2 f3 fk )

+ δ(Ek − E3 − E1 + E2) |T (Ek − E3, k + k3)|2

× ( f1 f̃2 f3 f̃k − f̃1 f2 f̃3 fk )}, (17)

where the two different collision terms depend on the sign
of the energy of the light meson E3. The first one evaluates
the scattering amplitude above the mass threshold of parti-
cles k and 3 and we will refer to it as unitary contribution.
The second one implies the scattering amplitude below the
energy threshold and it is nonzero due to the so-called Landau
cut [9,54] of the two-particle propagator. This term will be
referred to as Landau contribution, and it will be of key
importance in this work.

If only elastic collisions are considered, then one can sim-
plify the equation by exchanging variables k2 and k3 in the
last term to obtain[

∂

∂t
− k

Ek
· ∇X

]
fk

= zk

2Ek

∫ [
3∏

i=1

d3ki zi

(2π )32Ei

]
(2π )4δ(4)(k + k3 − k1 − k2)

× [|T (Ek + E3 + iε, k + k3)|2

+ |T (Ek − E2 + iε, k − k2)|2]

× ( f1 f2 f̃3 f̃k − f̃1 f̃2 f3 fk ). (18)

This equation looks almost as the Boltzmann equation2 con-
sidered in previous works, where the effect of the Landau
contribution was neglected, vacuum scattering amplitudes
were employed, and the factors zi were set to 1. A version
of the transport equation where these factors were kept is
presented in Ref. [45]. In our particular case, the approxima-
tion zi � 1 is an excellent one, given the good quasiparticle
description of the D mesons. Notice that the quasiparticle
energies in Eq. (18) and the T matrix do contain medium
modifications.

III. D-MESON PROPERTIES AT THERMAL EQUILIBRIUM

In the previous section we have sketched the derivation of a
kinetic equation for the D mesons, which sets a starting point
in the study of the nonequilibrium evolution of these heavy
particles. As explained, the analysis of the real-time dynamics
will be analyzed in a future study, as our current goal is to
extract transport coefficients, for which equilibrium properties
are enough.

In this section we analyze the different elements appear-
ing in the off-shell kinetic equation of Eq. (15), namely the
T -matrix elements, the retarded D-meson self-energy, and
the spectral function, for the particular case of a system in
equilibrium.

A. T -matrix equation at finite temperature

The T matrix appearing in Eqs. (8) and (9) is a retarded 4-
point amplitude which follows from a Bethe-Salpeter equation
in coupled channels,

Ti j = Vi j + VikGD�,kTk j . (19)

In the equilibrium case, it was solved at finite temperature in
Refs. [32,33] taking potentials Vi j that were obtained from
an effective theory for the interaction of charmed mesons
with the light pseudoscalar degrees of freedom �, respecting
both chiral and heavy-quark spin-flavor symmetry. The two-
meson loop function GD�,k was regularized with a cutoff, with
which we reproduced lattice-QCD data of scattering lengths in

2More exactly, the Boltzmann-Uehling-Uhlenbeck equation, as
quantum effects are incorporated.

025203-5



JUAN M. TORRES-RINCON et al. PHYSICAL REVIEW C 105, 025203 (2022)

FIG. 4. (a) Bethe-Salpeter equation for the T matrix (red circle) of the scattering Di�i → Dj� j at finite temperature, with a dressed
internal heavy-meson propagator (thick orange line). (b) Heavy-meson propagator dressed with its thermal self-energy. (c) Pionic contribution
to the D-meson self-energy, showing the infinite sum of diagrams resulting from the expansion of the T matrix (diagrams adapted from
Ref. [32]).

vacuum [55], and at finite temperature it was calculated em-
ploying the imaginary-time formalism. The Bether-Salpeter
equation at finite temperature is depicted schematically in
Fig. 4(a), where the heavy-meson propagator in GD�,k is
dressed with the self-energy obtained from closing the pion
line of the T -matrix element. The Dyson equation for the
dressed heavy-meson propagator is graphically represented in
Fig. 4(b), while the contribution to the D-meson self-energy
coming from the in-medium pions is shown in Fig. 4(c) (anal-
ogous figures apply for the contribution of other � mesons
and the unlabeled intermediate particles can be any D� com-
bination with the proper quantum numbers). Note that the
diagramatic equations depicted in Figs. 4(a) and 4(b) are
coupled to each other. In Refs. [32,33] the T matrix and the
heavy-meson self-energy are calculated self-consistently in
thermal equilibrium.

From Fig. 4(c) one can see that the unitarity cut of the
T matrix provides a source for the charmed-meson vacuum
decay width through the imaginary part of the corresponding
self-energy. As a matter of example, when a D meson interacts
with a pion it can suffer an elastic scattering or, if the energy of
the collision is large enough, then the pair can also convert into
a Dη or DsK̄ pair. At finite temperature the bath is populated

by � mesons, although their relative importance is weighted
by the appropriate Bose-Einstein distribution functions. Con-
sequently, at T �= 0 the contribution of the unitary cut to the
decay width is convoluted by statistical weight factors, and
additional physical processes appear in the kinematic region
of the so-called Landau cut, which are forbidden in vacuum
due to kinematic restrictions, such as the absorption of in-
medium real light mesons by the D meson.

On the other hand, the structure of the T matrix is
smeared at finite temperature and the thresholds of the unitary
(
√

s � (mD + m�)) and Landau (
√

s � |mD − m�|) cuts are
smoothened with increasing temperatures as a result of the
widening of the D-meson spectral function (see Refs. [32,33]
for details).

B. Quasiparticle approximation at finite temperature

Let us now consider the D-meson self-energy and spectral
function at finite temperature. These equilibrium quantities
can be computed using the imaginary-time formalism, as was
done in Ref. [33], and a subsequent analytic continuation to
real energies.

The D-meson retarded propagator reads [cf. Eq. (7) in
equilibrium],

GR
D(k0, k) = 1

(k0)2 − k2 − m2
D − Re �R(k0, k; T ) − iIm �R(k0, k; T )

, (20)

where mD is the (vacuum) D-meson mass, renormalized by the vacuum contribution of the retarded D-meson self-energy �R.
Please notice that after mass renormalization, the real and imaginary parts of the self-energy in Eq. (20) only contain thermal
corrections.

The spectral function can be obtained from the imaginary part of the retarded Green’s function as [41,46]

SD(k0, k) ≡ iG>
D (k0, k) − iG<

D (k0, k)

2π
= − 1

π
Im GR

D(k0, k), (21)

where we have used Eq. (6). This definition of SD(k0, k) is compatible with the conventions used in Refs. [32,33] for the
equilibrium case.

In terms of the D-meson retarded self-energy, the spectral function reads

SD(k0, k) = − 1

π

Im �R(k0, k; T )[
(k0)2 − k2 − m2

D − Re �R(k0, k; T )
]2 + [Im �R(k0, k; T )]2

. (22)
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FIG. 5. Left panel: D-meson quasiparticle energy in a thermal pion gas. Right panel: Thermal width (or twice the damping rate) of D
mesons in a thermal pion gas.

Unless otherwise stated, this generic form is the one that
we implement in our calculations, and the function is ex-
tracted from Ref. [33] (see Figs. 6 and 7 in that reference).
In the quasiparticle approximation the pole of the retarded
Green’s function in Eq. (20) is not far from the vacuum one
and the spectral function can be written as

SD(k0, k) � zk

2πEk

γk

(k0 − Ek )2 + γ 2
k

, (23)

where Ek is the quasiparticle energy, solution of

E2
k − k2 − m2

D − Re �R(Ek, k; T ) = 0, (24)

and the damping rate γk is defined as

γk = − zk

2Ek
Im �R(Ek, k; T ), (25)

with the zk factor,

z−1
k = 1 − 1

2Ek

[
∂Re �R(k0, k; T )

∂k0

]∣∣∣∣
k0=Ek

. (26)

In particular, this approximation entails that the D-meson
damping rate should be much smaller than the quasiparticle
energy Ek . We conclude this section by discussing how reli-
able is the quasiparticle approximation using improved results
with respect to those in Ref. [33].3

First, we extract the quasiparticle energies Ek for three
different temperatures T = 40, 100, 150 MeV, spanning the
range considered in Ref. [33]. The quasiparticle energies are
computed by solving Eq. (24), and they are given in the left
panel of Fig. 5 as a function of the D-meson momentum. The
value of Ek at k = 0 is interpreted as the D-meson thermal
mass mD(T ) = Ek=0, and it decreases with temperature. In-
deed, we have checked that mD(T ) coincide almost perfectly
with the values obtained by looking at the peak of the spectral
function calculated from Eq. (22). This agreement is already

3The differences essentially consist in an increase of the values of
the cutoffs in the integrals of the imaginary time formalism.

an indication of the good quasiparticle approximation. Notice
that, in agreement with our previous calculation [33], the
results of Fig. 5 only contain the pion contribution into the
D-meson self-energy.

We have numerically checked that the zk factors are very
close to 1. Rather independent of the quasiparticle momentum
k, we observe up to 2% (1%) deviations from unity for T =
150 MeV (T = 100 MeV). For T = 40 MeV, the factor zk is
fully compatible with 1. Therefore the approximation zk � 1
is an excellent one, and will be used in what follows.

As shown in Eq. (25), the damping rate γk is computed
from the imaginary part of the D-meson self-energy. Instead
of γk , we show in the right panel of Fig. 5 the D-meson
thermal width �k , simply defined as twice the damping rate,
�k ≡ 2γk . This quantity is negligible at low temperatures, but
the effects of the medium makes it sizable at T = 150 MeV,
with thermal widths of the order of 70 MeV. Nevertheless,
these values are still small (∼30 times smaller) compared to
the corresponding Ek . This validates the quasiparticle approx-
imation in our system, at least, in the equilibrium case for the
temperatures and momenta considered in this work.

In the next sections we will explore different approxima-
tions to address the D-meson thermal width and transport
coefficients. From the results presented in this section—where
the quasiparticle approximation is a very good one—we can
anticipate that pure off-shell effects will not contribute much
to these quantities. Nevertheless, in some of the calculations
we will keep the full shape of the spectral function in order
to quantify the importance of its broadening due to thermal
effects.

IV. ANALYSIS OF THE D-MESON THERMAL
WIDTH IN EQUILIBRIUM

In this section we analyze in great detail several effects on
the D-meson thermal width �k , defined as twice the damping
rate of Eq. (25). We work in the equilibrium case and for
a D meson which propagates on-shell, i.e., its energy Ek is
fixed by the momentum k through Eq. (24). However, notice
that the internal propagators of the retarded self-energy do not
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need to be on their mass shell. These off-shell effects will be
addressed here, together with the importance of the Landau
cut and the contribution of the inelastic channels.

A. Thermal width from the imaginary part
of the scattering amplitude

In the right panel of Fig. 5 we have already shown the D-
meson thermal width, given by

�k = − zk

Ek
Im �R(Ek, k), (27)

obtained from the retarded self-energy calculation of
Ref. [33]. In that work only the effect of pions was considered
in the self-consistent calculation of the D-meson self-energy,
as the contribution of the other light mesons is very sup-
pressed. Here we will also analyze these contributions as we
have access to all the elements of the T matrix.

Let us review the calculation of �k in more detail and
study the contributions from the different kinematic ranges.
Following the method used in Refs. [32,33], the calculation
of Eq. (27) in terms of T -matrix elements is performed in
the imaginary time formalism via the expression of the self-
energy

�(iωn, k) = −T
∫

d3 p

(2π )3

∑
iωm

Gπ (iωm, p)

× TDπ (iωm + iωn, p + k), (28)

which is diagrammatically represented in the lower diagram
of Fig. 4. Here iωn denotes the external Matsubara frequency
while iωm is the internal one, which is summed over.

In accordance to the approximation made in Ref. [33], in
this work we also use the free pion propagator,

�(iωn, k) = −T
∫

d3 p

(2π )3

∑
iωm

1

(iωm)2 − E2
p

× TDπ (iωm + iωn, p + k). (29)

Introducing the spectral representation of the T -matrix am-
plitude,

TDπ (iωm + iωn, p + k) = − 1

π

∫ ∞

−∞
d


Im TDπ (
, p + k)

iωm + iωn − 

,

(30)
summing over Matsubara frequencies via complex inte-
gration, by deforming the domain to encircle the three
simple poles, and finally performing the analytic continuation
(iωn → k0 + iε), we obtain the imaginary part of the retarded
self-energy,

Im �R(Ek, k)=
∫

d3 p

(2π )3

[
f (0)(Ep)

2Ep
Im TDπ (Ek + Ep, p + k)

+ 1 + f (0)(Ep)

2Ep
Im TDπ (Ek − Ep, p + k)

− f (0)(Ek + Ep)

2Ep
Im TDπ (Ek + Ep, p + k)

+ f (0)(Ek − Ep)

2Ep
Im TDπ (Ek − Ep, p+k)

]
,

(31)

where we have already fixed the external D-meson energy
to the quasiparticle energy Ek , which is a function of k, cf.
Eq. (24). We have neglected the zk factors, because they are
very close to 1, as previously discussed (but they can be easily
incorporated, if desired).

Using the result in Eq. (31), we can write the D-meson
thermal width in Eq. (27) as the contribution of four pieces,

�k = �
(1)
k + �

(2)
k + �

(3)
k + �

(4)
k , (32)

where

�
(1)
k = − 1

Ek

∫
d3 p

(2π )3

f (0)(Ep)

2Ep
Im TDπ (Ek + Ep, p + k),

(33)

�
(2)
k = − 1

Ek

∫
d3 p

(2π )3

1 + f (0)(Ep)

2Ep
Im TDπ (Ek − Ep, p + k),

(34)

�
(3)
k = 1

Ek

∫
d3 p

(2π )3

f (0)(Ek + Ep)

2Ep
Im TDπ (Ek + Ep, p + k),

(35)

�
(4)
k = − 1

Ek

∫
d3 p

(2π )3

f (0)(Ek −Ep)

2Ep
Im TDπ (Ek −Ep, p + k).

(36)

It is important to realize that both �
(1)
k and �

(3)
k receive

a contribution from the scattering amplitude above the two-
particle mass threshold; while �

(2)
k and �

(4)
k depend on the

values of the T matrix below threshold. The latter contribution
is related to the Landau cut and only appears at finite temper-
ature when the total momentum of the collision is different
from zero or when the masses of the interacting particles are
different [54,56,57].

In particular, when vacuum amplitudes are used, the
Landau cut disappears, and only �

(1)
k and �

(3)
k contribute.

Incidentally, this is the situation in the pion-pion vacuum
scattering of Ref. [58], where only �

(1)
k appears. In our case,

�
(3)
k is in fact extremely small, because it is roughly pro-

portional to the product of the pion and D-meson densities,
and the latter are very scarce.4 However, when considering a
medium-dependent interaction, �

(2)
k and �

(4)
k will also have a

potential important contribution that we now quantify.
To gauge the weight of the different terms in Eq. (32)

we plot in Fig. 6 the different contributions at three different
temperatures. The input for TDπ is taken from updated results
of the scattering amplitudes obtained in Ref. [33].

At small temperatures (T = 40 MeV) the terms �
(1)
k + �

(3)
k

dominate. Nevertheless, the two pieces coming from the Lan-
dau cut �

(2)
k + �

(4)
k give a nonzero contribution resulting in

a 20% of the total thermal width. At T = 100 MeV, the
contribution of the unitarity cut [�(1)

k + �
(3)
k ] and the Lan-

dau cut [�(2)
k + �

(4)
k ] are similar. For the higher temperatures

4This can be shown from the relation f (0)(Ek + Ep) =
f (0)(Ek ) f (0)(Ep)/[1 + f (0)(Ek ) + f (0)(Ep)].
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FIG. 6. The D-meson thermal width as computed from
Eq. (32). In dashed lines we show the contribution of �(1) + �(3)

[Eqs. (33)+(35) above the threshold], whereas in dotted lines, we
display the contribution of �(2) + �(4) [Eqs. (34)+(36) below the
threshold (Landau cut)].

T = 150 MeV the contribution from the Landau cut already
surpasses that of the unitary cut. This means that for tem-
peratures close to Tc there is a dominant contribution to the
thermal width coming from the Landau cut, which would be
overlooked if vacuum amplitudes were used. We have also
checked that �

(3)
k is negligible for all momenta and temper-

atures.

B. Thermal width from the scattering amplitude squared

The calculation of the thermal width due to thermal pi-
ons using Eqs. (32) to (36) allowed us to distinguish the
relative weight of the unitary and Landau contributions. How-
ever, the effect of the individual collision terms (Dπ →
Dπ, Dπ → Dη, Dπ → DsK̄) cannot be disentangled. On the
other hand, the computation of heavy-flavor transport coeffi-
cients is performed from the kinetic transport equation, where
the collision rates, that are proportional to |TDπ |2, are used.
For these reasons, we will derive an alternative expression for
�k , in terms of the scattering amplitude squared, which will
also serve to double check our previous determination of �k .

We start from the same definition of the thermal width of
Eq. (27) and use the relation

Im �R(Ek, k) = 1

2i
[�>(Ek, k) − �<(Ek, k)]. (37)

In equilibrium, we can exploit the so-called Kubo-Martin-
Schwinger relation between the “lesser” and “greater” self-
energies [41,46],

�<(Ek, k) = e−βEk �>(Ek, k), (38)

obtaining

�k = i

2Ek
[�>(Ek, k) − �<(Ek, k)] = i

2Ek

1

f̃ (0)
k

�>(Ek, k),

(39)
where we have denoted f̃ (0)

k ≡ f̃ (0)(Ek ) and already simplified
zk � 1.

We can now insert the expression in Eq. (9) for �>(Ek, k),
which provides an interpretation of the thermal width in terms
of particle collisions. As in the derivation of the off-shell
transport theory we replace the light-meson propagators by
those for free particles but keep the full spectral function of
the internal D meson. We can write the thermal width as

�k = �
(U )
k + �

(L)
k , (40)

with

�
(U )
k = 1

2Ek

1

f̃ (0)
k

∑
λ=±

λ

∫
dk0

1

∫ 3∏
i=1

d3ki

(2π )3

1

2E2

1

2E3

×|T (Ek + E3, k + k3)|2 SD
(
k0

1 , k1
)

×(2π )4δ(3)(k + k3 − k1 − k2)

×δ
(
Ek + E3 − k0

1 − λE2
)

f̃ (0)(k0
1

)
f (0)(E3) f̃ (0)(λE2),

(41)

�
(L)
k = 1

2Ek

1

f̃ (0)
k

∑
λ=±

λ

∫
dk0

1

∫ 3∏
i=1

d3ki

(2π )3

1

2E2

1

2E3

× |T (Ek − E3, k + k3)|2 SD
(
k0

1 , k1
)

×(2π )4δ(3)(k + k3 − k1 − k2)

×δ
(
Ek − E3 − k0

1 − λE2
)

f̃ (0)
(
k0

1

)
f̃ (0)(E3) f̃ (0)(λE2),

(42)

where, like in the expression in Eq. (9), there is an implicit
restricted summation over particle species, according to the
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allowed scattering channels. In particular, if one focuses on
the pion contribution to the D-meson thermal width—hence
particle 3 being a π—then the remaining sum over species 1
and 2 contains three possibilities: Dπ → Dπ, Dπ → Dη, and
Dπ → DsK̄ scatterings.

The separation made in Eq. (40) makes it clear that �
(U )
k

evaluates the scattering amplitude above threshold, and it is
related to the unitary cut of the scattering amplitude, while
�

(L)
k evaluates it below threshold and is therefore related to

the Landau cut.
Before showing results, let us mention that, as in the on-

shell reduction of the transport theory, if the internal D meson
is approximated by a narrow quasiparticle, only the positive
branch of the spectral function SD(k0

1 , k1) and λ = +1 can
hold the energy conservation in Eq. (41). The same is true
for Eq. (42) but with λ = −1. Therefore in the on-shell case
(o.s.), the expressions in Eqs. (41) and (42) reduce to

�
(U )
k

∣∣
o.s. = 1

2Ek

1

f̃ (0)
k

∫ 3∏
i=1

d3ki

(2π )32Ei
|T (Ek + E3, k + k3)|2

× (2π )4δ(3)(k + k3 − k1 − k2)

×δ(Ek + E3 − E1 − E2)

× f̃ (0)(E1) f (0)(E3) f̃ (0)(E2), (43)

�
(L)
k

∣∣
o.s. = 1

2Ek

1

f̃ (0)
k

∫ 3∏
i=1

d3ki

(2π )32Ei
|T (Ek − E3, k + k3)|2

× (2π )4δ(3)(k + k3 − k1 − k2)

× δ(Ek − E3 − E1 + E2)

× f̃ (0)(E1) f̃ (0)(E3) f (0)(E2). (44)

Given the special kinematics of �
(L)
k , one cannot express

the energy-momentum conservation in terms of a single δ(4)

function. Only in the particular case of elastic (el) scattering
one can make a change of variables k2 ↔ −k3 in �

(L)
k to arrive

to

�
(U )
k

∣∣el

o.s. = 1

2Ek

1

f̃ (0)
k

∫ 3∏
i=1

d3ki

(2π )32Ei
(2π )4

× δ(4)(k + k3 − k1 − k2)|T (Ek + E3, k + k3)|2
× f̃ (0)(E1) f̃ (0)(E2) f (0)(E3), (45)

�
(L)
k

∣∣el

o.s. = 1

2Ek

1

f̃ (0)
k

∫ 3∏
i=1

d3ki

(2π )32Ei
(2π )4

× δ(4)(k + k3 − k1 − k2)|T (Ek − E2, k − k2)|2
× f̃ (0)(E1) f̃ (0)(E2) f (0)(E3). (46)

Equations (45) and (46) can be potentially useful when the
D meson is treated as a narrow quasiparticle and inelastic
collisions are neglected. Unless otherwise stated, we do not
assume this.

Coming back to the general result of Eqs. (41) and (42),
where the full spectral function of the internal D meson is
kept, it is possible to analytically check that �

(U )
k in Eq. (41)

is equal to the combination �
(1)
k + �

(3)
k in Eqs. (33) and (35),

while �
(L)
k in Eq. (42) exactly coincides with �

(2)
k + �

(4)
k in

Eqs. (34) and (36). To do that, one needs to apply the unitarity
condition (or optical theorem in the coupled-channels case),

Im TDπ→Dπ (E , p)

=
∑

a

T ∗
Dπ→a(E , p) Im GR

a (E , p)Ta→Dπ (E , p), (47)

which follows from the T -matrix equation at finite tempera-
ture, together with [33]

GR
a=Di,� j

(E , p)

=
∫

d3q

(2π )3

∫
dω

∫
dω′ SDi (ω, q)S� j (ω

′, p − q)

E − ω − ω′ + iε

× [1 + f (0)(ω) + f (0)(ω′)], (48)

where the spectral function of the light meson S�(ω′, p − q)
is to be taken in the narrow limit.

Notice that the sum over intermediate states (a) in the
optical theorem in Eq. (47) is to be taken as a sum over
species Di and � j restricted to the physical states which
couple to Dπ . If only elastic collisions Dπ → Dπ were
used, then the optical theorem is necessarily violated. The
effect of inelastic processes has been normally ignored in the
literature.

We present the results of Eqs. (41) and (42) for tem-
peratures T = 40, 100, 150 MeV in Fig. 7. We separate the
contributions of the unitary and Landau cuts for each temper-
ature and obtain a similar result to that in Fig. 6 (where the
integration over Im TDπ→Dπ was employed). For consistency
with the coupled-channels optical theorem, we have included
the three channels Dπ → Dπ , Dπ → Dη, and Dπ → DsK̄ .

C. Quantification of different effects

The differences between the two approaches, as well as
the analysis of several other effects are summarized in the
following.

1. Effect of truncation

As stated, one can analytically prove that the two alter-
native methods to extract �k , first via Eq. (32) and second
through Eq. (40), are equivalent. In addition, we have stated
that this equivalence can also be checked via direct application
of the optical theorem in Eq. (47).

However, the numerical implementation can introduce
small differences when a UV cutoff is employed. We name
this the effect of truncation. This can be easily understood
by looking at Eq. (47). The first method to compute �k uses
Im TDπ→Dπ , and a UV cutoff in |p| simply truncates the left-
hand side of Eq. (47) at that momentum. On the other hand,
the second method employs the right-hand side of Eq. (47),
where the same cutoff is imposed on |TDπ→a|2, but the term
Im GR

a is calculated analytically to perform the integrations.
Therefore, the way in which a UV cutoff is imposed in the
numerical calculations does not ensure that the truncation
effect is the same for the two methods.

A first comparison between Figs. 6 and 7 does not show
appreciable differences. In Fig. 8 we show the total �k from
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FIG. 7. Thermal width of D mesons generated with the inter-
action with pions as computed from �(U ) [Eq. (41)] using dashed
lines, and �(L) [Eq. (42)] using dotted lines. The full calculation
that includes both �(U ) and �(L) is shown with solid lines. Inelastic
channels (Dπ → Dη and Dπ → DsK̄) are also included.

the two methods in a single plot for better comparison. Note
that the second method includes the three channels (elastic
and inelastic) involving pions. Both methods compare very
well for low momentum at all temperatures. We have checked
that the good comparison persists between unitary and Landau
cuts separately. We only obtain deviations at high momentum
(hence cutoff effects). Nevertheless, the differences in �k are

FIG. 8. Thermal width of D mesons in a thermal pion gas. Com-
parison between the two methods described in the text.

at most 5%, and only for high momenta (which are in any case
suppressed when folded with the Bose distribution function).

2. Off-shell effects

We now describe the differences between the use of the on-
shell and off-shell approaches. We have extensively described
how to implement off-shell effects by keeping the full spectral
function of the internal D-meson propagator, as opposed to us-
ing the narrow limit. To determine the differences we use the
second method to compute �k , including the three channels
involving pions.
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FIG. 9. Thermal width of D mesons in a thermal pion
gas. Comparison between the off-shell calculation (solid
lines) [Eqs. (41)+(42)] and the on-shell one (dotted lines)
[Eqs. (43)+(44)].

The results are presented in Fig. 9. The off-shell calculation
is performed through Eqs. (41)+(42), and the spectral func-
tion SD is taken from the update of the results in Refs. [32,33].
For the on-shell calculation we employ Eqs. (43)+(44) where
the intermediate D meson is taken on shell (narrow limit). In
both cases we use the same temperature-dependent scattering
amplitudes.

As expected, the effects of the spectral function width
become more apparent at higher temperatures. When T → 0

the thermal width goes to zero, and the narrow quasiparticle
approximation becomes exact in this limit. In any case, the
quasiparticle peak is rather narrow at all temperatures consid-
ered, as was already reported in Ref. [33], and the off-shell
effects are generically small. These effects are of the order
of 10% for �k at the highest temperature T = 150 MeV and
rather independent of the external momentum k.

3. Effect of inelastic channels

We now discuss the effect of inelastic channels in the
second method to compute �k , given by Eqs. (40)–(42). While
their inclusion is strictly required to account for the coupled-
channels optical theorem, in the practice, their effect is small.
This can be seen in Fig. 10 for the case of the D-meson
thermal width, only due to the pions of the medium. In that
plot we show in solid lines the complete result with the three
inelastic channels, and in dashed lines the result with only the
elastic channel Dπ → Dπ . The effect is rather small for all
T and k, and for the highest temperature T = 150 MeV and
momentum they are at most 5%. Therefore, we will neglect
the effect of inelastic channels in the calculations of transport
coefficients.

4. Effects of the light mesons in the bath

While one can safely neglect the inelastic channels, one
should not forget that there are four different elastic channels
for the interactions of D mesons with light pseudoscalars
(Dπ, DK, DK̄, Dη). As the contribution of the most massive
mesons is also Boltzmann suppressed, they become increas-
ingly important as the temperature is increased.

In order to study the effect of the contribution of the dif-
ferent species, we define an averaged thermal width (only
function of temperature) as

�(T ) = 1

nD

∫
d3k f (0)(Ek )�k, (49)

where f (0)(Ek ) is the equilibrium Bose-Einstein distribution
function and nD is the D-meson particle density.

In the left panel of Fig. 11 we show the contributions to
the D-meson width coming from the different meson baths
(π, K, K̄, η). As expected, the contribution of more massive
mesons is negligible at low temperatures due to the thermal
suppression factor, and only the pion term is relevant. At
T = 150 MeV the more massive mesons already contribute
with several MeV to the D-meson decay width but are still
subdominant with respect the pion one.

5. Comparison with previous approaches

Finally, we compare our results (labelled as “full”), includ-
ing unitary and Landau contributions, together with thermal
amplitudes, inelastic channels, and off-shell effects, with the
calculations of Refs. [8,59,60]. These are shown in the right
panel of Fig. 11. We focus on the thermal width of D mesons
coming from the interaction with a thermal bath of only pions
and fix the D-meson momentum to k = 0. Fuchs et al. [59] use
an effective interaction at lowest order between D mesons and
pions and extract the width from the self-energy correction
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FIG. 10. Thermal width of D mesons in a thermal pion gas com-
puted via the off-shell kinetic formulas in Eqs. (41) and (42). The
calculations are done using elastic scattering (dotted lines) or adding
also inelastic channels (solid lines), following the optical theorem in
coupled channels.

due to pions. He et al. [8] use a similar interaction based on
Ref. [59] but compute the thermal width using a formula sim-
ilar to Eq. (45). The two calculations provide similar results
and they are fairly consistent with our results using the unitary
cut alone (label “w/o Landau cut”). Notice that, apart from the
different interaction, we also include inelastic channels while
He et al. in Ref. [8] do not. This partially explains why our

curve is slightly larger than the other two. Then, Cleven et al.
[60] perform a similar calculation to ours, but the effective
approach is based on SU(4) chiral symmetry. Medium effects
are also incorporated, including the Landau cut contributions,
resulting in a D-meson thermal width almost twice larger that
the previously discussed two approaches but still smaller than
the present results for temperatures higher than 100 MeV,
the difference reaching around 30% at T = 150 MeV. This
is probably due to the fact that the small mass shift of the
D meson, which in our model turns out to be attractive, is
ignored in the results of Ref. [60], thereby making them to be
less affected by the contributions of the subthreshold Landau
cut.

To summarize, in this section we have analyzed several
contributions to the D-meson width and found that the effect
of off-shell dynamics, inelastic channels, and truncation er-
rors are relatively small for the calculation of the D-meson
thermal width. However, the contribution of the Landau cut is
essential to describe this coefficient at finite temperatures. We
have shown that this contribution appears—thanks to exact
unitarity considerations—not only in the imaginary part of the
retarded self-energy but also in the collision term of the kinetic
equation. Guided from the results in �k , we expect that this
contribution will be very important for the calculation of the
D-meson transport coefficients as well.

V. OFF-SHELL D-MESON TRANSPORT COEFFICIENTS

In this section we study the transport coefficients of a D
meson, when thermal scattering amplitudes are implemented.
To obtain a sensible definition of the relevant transport coef-
ficients we need to go back to the kinetic equation described
in Sec. II and incorporate the separation of scales between
the D-meson heavy mass and other scales in the system
to convert the off-shell kinetic equation in Eq. (14) into a
Fokker-Planck equation [61,62]. Once this is done, we are
able to identify the so-called drag force A, and the diffusion
coefficients B0, B1, Ds, and compute them with thermal effects
incorporated.

A. Reduction to an off-shell Fokker-Planck equation

Let us start with the off-shell kinetic equation [see Eq. (14)]
where, for simplicity, we keep implicit the sum over scattering
channels,

(
kμ − 1

2

∂Re �R

∂kμ

)
∂

∂X μ
G<

D (X, k)

= 1

2

∫ 3∏
i=1

d4ki

(2π )4
(2π )4δ(4)(k1 + k2 − k3 − k)

× ∣∣T (
k0

1 + k0
2 + iε, k1 + k2

)∣∣2

× [G<
D (X, k1)G<

�(X, k2)G>
�(X, k3)G>

D (X, k)

− G>
D (X, k1)G>

�(X, k2)G<
�(X, k3)G<

D (X, k)]. (50)
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FIG. 11. Left panel: Contribution to the D-meson averaged thermal width from a thermal bath of pions, kaons, antikaons, and η mesons.
Right panel: Comparison of the D-meson thermal width at k = 0 in a pion thermal bath for different calculations. See main text for the different
sources.

Inspired by previous derivations [10,61,62], we define an
off-shell scattering rate

W
(
k0, k, k0

1 , q
)

≡
∫

d4k3

(2π )4

d4k2

(2π )4
(2π )4δ

(
k0

1 + k0
2 − k0

3 − k0)
× δ(3)(k2 − k3 − q)

× ∣∣T (
k0

1 + k0
2 + iε, k − q + k2

)∣∣2

× G>
�(X, k2)G<

�(X, k3)G>
D

(
X, k0

1 , k − q
)
, (51)

where we have replaced the variable k1 by the momentum
loss q ≡ k − k1. Equation (51) describes the collision rate
of a D meson with energy k0 and momentum k to a final D
meson with energy k0

1 and momentum k − q. It depends on
the spectral weights and the populations of the particles 1,
2, and 3 of the binary collision, encoded in the Wightman
functions. It can be interpreted as a collision loss term for a
D meson with momentum k. In fact, the loss term of Eq. (50)
can be directly written as

−1

2

∫
dk0

1

2π

d3q

(2π )3
W

(
k0, k, k0

1 , q
)
G<

D (X, k0, k). (52)

The gain term of Eq. (50) can be interpreted as a loss term
of an incoming D meson with momentum k1, losing the same
momentum amount q and ending with momentum k (notice
that k0 is an independent free variable). This term reads

1

2

∫ 3∏
i=1

d4ki

(2π )4
(2π )4δ

(
k0 + k0

3 − k0
1 − k0

2

)

× δ(3)(q + k3 − k2)
∣∣T (

k0 + k0
3 + iε, k + q + k3

)∣∣2

× G<
D (X, k0, k + q)G>

�(X, k2)G<
�(X, k3)G>

D

(
X, k0

1 , k
)

= 1

2

∫
dk0

1

2π

d3q

(2π )3
W

(
k0, k + q, k0

1 , q
)
G<

D (X, k0, k + q).

(53)

Then Eq. (50) can be written as

2

(
kμ − 1

2

∂Re�R

∂kμ

)
∂

∂X μ
G<

D (X, k)

=
∫

dk0
1

2π

d3q

(2π )3

[
W

(
k0, k + q, k0

1 , q
)
G<

D (X, k0, k + q)

− W
(
k0, k, k0

1 , q
)
G<

D (X, k0, k)
]
. (54)

This equation is an alternative form of Eq. (50), conve-
nient for the formal reduction to the off-shell Fokker-Planck
equation. For this purpose we exploit the separation of scales
between the meson masses, as the mass of the D meson is
much larger than the temperature and any of the light-meson
masses. Such a Brownian picture implies that the typical mo-
mentum exchanged in the elastic collision is of the order of
T and much smaller than the total momentum of the heavy
particle q � k [10,61,62].

Then we can Taylor expand the combination W (k0, k +
q, k0

1 , q)G<
D (X, k0, k + q) around k up to second order. In

doing so, we consider a homogeneous thermal bath, as the
light sector is assumed to be equilibrated in much shorter
timescales, so that one can employ a space-averaged Green’s
function [62]. In addition, we also set zk � 1 as usual.

After a few steps one obtains a Fokker-Planck equation for
G<

D (t, k0, k)

∂

∂t
G<

D (t, k) = ∂

∂ki

{
Â(k; T )kiG<

D (t, k)

+ ∂

∂k j

[
B̂0(k; T )�i j+B̂1(k; T )

kik j

k2

]
G<

D (t, k)

}
,

(55)
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with �i j = δi j − kik j/k2 and we have defined

Â(k0, k; T ) ≡
〈
1 − k · k1

k2

〉
, (56)

B̂0(k0, k; T ) ≡ 1

4

〈
k2

1 − (k · k1)2

k2

〉
, (57)

B̂1(k0, k; T ) ≡ 1

2

〈
[k · (k − k1)]2

k2

〉
, (58)

where k1 has been reintroduced, replacing q. The hat is used
to denote off-shell transport coefficients, as they depend sepa-
rately on k0 and k.5 The average is defined as

〈F (k, k1)〉

= 1

2k0

∑
λ,λ′=±

λλ′
∫ ∞

−∞
dk0

1

∫ 3∏
i=1

d3ki

(2π )3

1

2E22E3
SD

(
k0

1 , k1
)

× (2π )4δ(3)(k + k3 − k1 − k2)

× δ
(
k0 + λ′E3 − λE2 − k0

1

)|T (k0 + λ′E3, k + k3)|2

× f (0)(λ′E3) f̃ (0)(λE2) f̃ (0)(k0
1

) F (k, k1), (59)

where the spectral function of the D meson is kept. We will
use the relation of Eq. (59) to compute the off-shell transport
coefficients in Eqs. (56) to (58). This approach stands at the
same level of Eqs. (41) and (42) and accounts for thermal
modifications, off-shell effects, as well as the Landau cut
contributions (case λ′ < 0). It will be denoted as “OffShell”
in the following. This is the most complete calculation of
transport coefficients used in this work.

It is important to notice that in general it is not possible
to derive a Fokker-Planck equation for fD(t, k) including
off-shell effects in the transport coefficients, because after k0

integration in both sides, one cannot factorize the distribution
function from the transport coefficients. Only in the partic-
ular case of a narrow quasiparticle it is possible to trivially
integrate k0 and arrive at the kinetic equation for fD(t, k),
thus reproducing the previous approaches in the literature
[27,30]. For the interested reader we detail the derivation of
the on-shell Fokker-Planck equation in the Appendix.

We remind that, although not explicitly written in Eq. (59),
there is a sum over all allowed (elastic+inelastic) channels in
these expressions. However, as we have learned from the ther-
mal width, the contribution of the inelastic processes is very
small, and therefore they will be neglected in what follows.
Nevertheless, all elastic channels (Dπ , DK , DK̄ , and Dη) will
be added when computing the coefficients.

The described “OffShell” approximation, based on
Eq. (59), is rather general. However we already know that
the quasiparticle approximation is excellent for the D mesons.
Therefore one can replace the D-meson spectral function by
the expression in Eq. (16) and neglect the zk factor altogether.

5In our previous works we have denoted the coefficients as F , �0,
and �1, respectively. To avoid confusion with the thermal width �k

we have modified the notation to A, B0, B1, which is also a common
choice in the literature.

This brings two consequences: (1) The Fokker-Planck equa-
tion in Eq. (55) for G<

D (t, k) can be written for fD(t, k) instead,

∂

∂t
fD(t, Ek )

= ∂

∂ki

{
A(k; T )ki fD(t, Ek )

+ ∂

∂k j

[
B0(k; T )�i j + B1(k; T )

kik j

k2

]
fD(t, Ek )

}
, (60)

where the coefficients only depend on |k| as the quasiparticle
energy is put on shell,

A(k; T ) ≡
〈
1 − k · k1

k2

〉
Thermal U+L

, (61)

B0(k; T ) ≡ 1

4

〈
k2

1 − (k · k1)2

k2

〉
Thermal U+L

, (62)

B1(k; T ) ≡ 1

2

〈
[k · (k − k1)]2

k2

〉
Thermal U+L

, (63)

and (2) the scattering rate gets simplified because, as for
the Boltzmann equation, only one type of process is able to
conserve energy-momentum when all four particles in the
collision are on their mass shell. In this approximation it is
possible to write

〈F (k, k1)〉 Thermal U+L

= 1

2Ek

∫
d3k1

(2π )4

d3k2

(2π )3

d3k3

(2π )3
(2π )4δ(4)(k1 + k2 − k3 − k)

× [|T (Ek + E3, k+k3)|2 + |T (Ek − E2, k − k2)|2]

× 1

2E12E22E3
f (0)(E3) f̃ (0)(E2) F (k, k1), (64)

where we have only considered elastic collisions, as in
Eq. (18).

This expression looks closer to the previous calculations of
the heavy-flavor transport coefficients, but the Landau contri-
bution still remains in addition to the unitary one. Scattering
amplitudes also include medium effects. This approximation
to compute the transport coefficients will be denoted as “Ther-
mal U+L.”

One can yet consider another simplification, in which one
simply sets the Landau contribution to zero. At finite tem-
perature there is no reason to neglect this term, but we will
consider this approximation—denoted as “Thermal U”—for
the sake of comparison and to quantify the effect of the Lan-
dau cut. In any case, this approximation should be realistic at
low temperatures, where the Landau cut disappears. The scat-
tering rate to be used in the “Thermal U” approximation reads

〈F (k, k1)〉Thermal U

= 1

2Ek

∫
d3k1

(2π )4

d3k2

(2π )3

d3k3

(2π )3
(2π )4δ(4)(k1 + k2 − k3 − k)

× |T (Ek + E3, k + k3)|2 1

2E22E32E1

× f (0)(E3) f̃ (0)(E2) F (k, k1). (65)
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TABLE I. Different approximations for the computation of the D-meson transport coefficients used in this work. Details are given in the
main text.

Approximation name Interaction rate Thermal effects on |T |2 and Ek Landau cut Off-shell effects

Vacuum Eq. (65) ✗ ✗ ✗

Thermal U Eq. (65)
√

✗ ✗

Thermal U+L Eq. (64)
√ √

✗

OffShell Eq. (59)
√ √ √

We should point out that, strictly speaking the previous
two approximations partially contain off-shell effects (that is,
information about the D-meson spectral shape) in the self-
consistent calculation of the T matrix, but not in the explicit
spectral function in the interaction rate. On the contrary,
the “OffShell” approximation contains the complete spectral
function in both instances.

Finally, to match our results to previous approaches we will
simply use Eq. (65) without any thermal effects neither in the
quasiparticle energies nor the scattering amplitudes. We will
use vacuum amplitudes and standard relativistic expressions
for the energies Ek =

√
k2 + m2

D , E1 =
√

k2
1 + m2

D , where mD

is the D-meson vacuum mass. This approximation is denoted
as “Vacuum,” as it is the one that most resembles our previous
calculations.

We summarize in Table I the different approximations to
compute the D-meson transport coefficients. It starts with
the simplest one, where vacuum amplitudes without thermal
corrections are used, to the most involved one, where thermal
and off-shell effects are taken into account.

VI. RESULTS FOR D-MESON TRANSPORT
COEFFICIENTS

We start the description of our numerical results with
the D-meson drag force A(k; T ) [or Â(k0, k; T ) in the off-
shell case], and the momentum diffusion coefficient B0(k; T )
[B̂0(k0, k; T ) for the off-shell approximation]. We will present
results in the so-called static limit k → 0 (|k| = 50 MeV in
the actual computation). In this limit B0 = B1, which we have
checked numerically in all cases.

In Fig. 12 we present the drag force A (left panel) and
the diffusion coefficient B0 (right panel) under the different
approximations of Table I. “Vacuum” corresponds to the ap-
proximation used in our previous work [11], where vacuum
scattering amplitudes and masses were employed.

All the remaining approximations use thermal scattering
amplitudes and temperature-dependent quasiparticle energies.
“Thermal U” only incorporates the unitary cut, and the differ-
ences with respect to “Vacuum” are entirely due to thermally
dependent interactions and masses. Rather surprisingly, we
find no appreciable differences with respect to “Vacuum” even
at high temperatures. The main difference comes when we
add the Landau contribution, which is incorporated in the
“Thermal U+L” scenario. At our top temperatures, the con-
tribution of this cut is even more important than the one of
the unitary cut. This was already anticipated in the D-meson
thermal width in Sec. IV.

Finally, we present our results incorporating off-shell ef-
fects, which employ the full spectral distribution of the
in-medium D meson. This approximation is denoted “Off-
Shell” in Table I. In this case, to fix the external energy
dependence we have simply set k0 = Ek with |k| = 50 MeV
(static limit). Only a small difference can be observed in A
at high temperatures with respect to the “Thermal U+L” ap-
proximation, concluding that the genuine off-shell effects are
not as important as including the Landau cut contribution (the
same happened for the thermal width in Fig. 9). This result
is not very surprising as the D-meson spectral function is
still very narrow for the temperatures considered here, so the
quasiparticle approximation works extremely well. As in the
“Thermal U+L” case, the “OffShell” approximation presents
a substantial contribution of the Landau cut to the transport
coefficients, absent in the vacuum case.

In the off-shell approximation, when the D meson carries a
finite thermal width, 1 ↔ 3 processes are also allowed. In this
work we have neglected those because the required production
threshold is higher than the elastic one. However, it would
be very interesting to analyze the Bremsstrahlung processes
D → D + π + π and their role in the D-meson energy loss.
This is left for a future work.

We finally explore the spatial diffusion coefficient Ds(T )
[10]. This coefficient [usually normalized by the thermal
wavelength, 1/(2πT )] can be obtained from the static limit
of the B0(k; T ) coefficient,

2πT Ds(T ) = lim
k→0

2πT 3

B0(k; T )
. (66)

This coefficient is shown in Fig. 13. In accordance with
the previous transport coefficients, the main difference comes
from the Landau contribution, which makes the diffusion co-
efficient to decrease almost by a factor of 3 close to Tc, which
is a remarkable effect. The results for the “Thermal U+L” and
“OffShell” are almost identical.

Let us comment that an alternative way to fix the k0 de-
pendence of the off-shell transport coefficients is to define an
average coefficient weighted by the D-meson spectral func-
tion. For example, one could define an average B0 as

B0(k; T ) = 2
∫ ∞

0
dk0k0SD(k0, k)B̂0(k0, k; T ). (67)

In the narrow quasiparticle limit this average coincides
with the on-shell evaluation if one uses zk � 1 in addition,

B0(k; T ) =
∫ ∞

0
dk02k0 zk

2Ek
δ(k0 − Ek )B̂0(k0, k; T )

� B̂0(Ek, k; T ). (68)
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FIG. 12. D-meson transport coefficients in the static limit k → 0 (where B1 = B0) using the different approximations described in Table I
(see also main text for details). The curve that incorporates all the thermal and off-shell effects is the one denoted as “OffShell.”

Because in our case the quasiparticle approximation works
very well, the evaluation of the off-shell coefficient at k0 = Ek

gives similar results to the one using Eq. (67).
To conclude this section we detail the different contribu-

tions of adding the light mesons one by one. In Fig. 11 we
showed how the pions provided the main contribution to the
thermal decay width at temperatures below Tc, being the K , K̄ ,
and η mesons subleading even at T � 150 MeV. In the right
panel of Fig. 13 we present the spatial diffusion coefficient
in the “OffShell” approximation, when the light mesons are
sequentially added. One also observes that the contribution of
the more massive states is very small due to their thermal sup-
presion (the negligible contribution of baryons at μB = 0 was
studied in Ref. [11]). However, one should keep in mind that
close to Tc one could expect the excitation of many states and

resonances which can collectively contribute to the transport
coefficient in a substantial way (see Ref. [63] for the shear
and bulk viscosities). Therefore, our predictions might not be
trustable in the T � Tc region, so our results are shown up to
T = 150 MeV.

A. Comparison with other approaches

To conclude this study we compare our results below Tc

to recent lattice-QCD calculations of the heavy-flavor trans-
port coefficients for temperatures T � Tc. We also include a
recent calculation using Bayesian methods to analyze the HiC
data under a simulation code to obtain a posterior estimation
of the spatial diffusion coefficient [40]. In our case we will
show our most complete calculation (“OffShell” approxima-
tion) together with the “Vacuum” calculation for comparison.

FIG. 13. Left panel: Spatial diffusion coefficient [divided over the thermal wavelength (2πT )−1] using the different approximations in
Table I (see also main text for details). The “OffShell” curve is the one incorporating all the thermal and off-shell effects. Right panel: Same
coefficient in the “OffShell” approximation incorporating sequentially the different light mesons in the calculation.

025203-17



JUAN M. TORRES-RINCON et al. PHYSICAL REVIEW C 105, 025203 (2022)

FIG. 14. Left panel: Spatial diffusion coefficient (normalized by the thermal wavelength) around Tc. Right panel: Momentum diffusion
coefficient κ/T 3 = 2B0/T 3 around Tc.

From the lattice-QCD side we compile the results presented
in Refs. [35–39]. All these are given as functions of T/Tc. To
compare the different results in terms of an absolute tempera-
ture, we fix Tc = 156 MeV [64].

In the left panel of Fig. 14 we show the spatial diffusion
coefficient as defined in Eq. (66). In the right panel we present
the momentum diffusion coefficient κ as it is usually defined
in the lattice-QCD community. This coefficient is related to
B0 in the static limit as

κ (T ) = 2B0(k → 0; T ). (69)

In fact this coefficient is not independent of Ds as κ =
4πT 3/(2πT Ds). Nevertheless, we provide the results of κ/T 3

to stress the plausible matching, where a possible maximum
happens at the crossover temperature.

Details of the different lattice-QCD calculations can be
found in their corresponding publications. All of them are
characterized by the use of the quenched approximation
[SU(3) pure glue plasma] and with different ranges of temper-
ature (Refs. [36,37,39] only provide results for a characteristic
temperature of 1.5Tc). With the exception of the calculation
in Ref. [35] all results take the lattice continuum limit. The
majority of the calculations use a multilevel update to reduce
noise [35–38], except for the most recent [39] which employs
gradient flow.

We observe a very good matching around Tc among our
results, the lattice-QCD data, and the result from a Bayesian
analysis [40], especially for the case with thermal and off-shell
effects included. This is better seen for the κ/T 3 coefficient.
Nevertheless, as commented before, our results are not able to
capture the increase of hadronic states and resonances which
are excited close to Tc � 156 MeV. While we have shown that
the individual contribution of more massive hadrons is tiny,
the total (iso)spin degeneracy of such states could compensate
their thermal suppression and produce an additional decrease
of the diffusion coefficient at Tc [63]. On the other hand, the
results coming from the calculations at T > Tc also suffer

from sizable uncertainties in the crossover region and cannot
also be fully trusted there.

We now comment on the comparison of “Vacuum” approx-
imation to our previous calculation in Ref. [11] using vacuum
amplitudes. In that work we reported a similar diffusion co-
efficient with slightly smaller values at high temperatures,
e.g., at T = 150 MeV the value 2πT Ds � 8 (here we obtain
2πT Ds � 12). In turn, the A and B0, B1 coefficients were
systematically larger in Ref. [11]. The differences come from
several improvements with respect to that work: (1) The LECs
of the effective Lagrangian are fixed here thanks to recent
lattice-QCD calculations [55], while in Ref. [11] we followed
a less rigorous procedure of fixing the LECs by matching the
mass and width of the D(2400) resonance (whose properties
reported by the PDG, in turn, have changed since then), and
(2) here we adopt a full consistent coupled-channels approach,
while in Ref. [11] this was done only partially (for example,
the channels involving Ds were not considered there).

We should finally mention that for T > Tc we have only
shown the results coming from lattice QCD and Bayesian
calculations, but there exist many theoretical calculations
of these coefficients using different models or effective ap-
proaches [8,18,19,23,26,27,30,65–68].

VII. CONCLUSIONS

In this work we have extended the kinetic theory descrip-
tion of D mesons at low energy to include medium (thermal)
effects and spectral properties of open-charm states [32,33].
In particular, we have derived the off-shell Boltzmann and
Fokker-Planck equations from the D-meson effective-field
theory in the T -matrix approximation.

As an application, we have calculated the D-meson ther-
mal width (or damping rate), the drag force coefficient, the
diffusion coefficients in momentum space, and the spatial
diffusion coefficient. These transport coefficients were previ-
ously computed using vacuum amplitudes employing on-shell
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kinetic equations [11]. Here we achieve a consistent formula-
tion between in-medium interactions with light mesons and an
off-shell kinetic approach.

Due to their large vacuum mass, thermal corrections and
spectral broadening of D mesons are relatively small, so that
the quasiparticle picture is maintained for the temperature
range considered in this work. For this reason, it is still appro-
priate to consider a Fokker-Planck reduction of the Boltzmann
equation to describe this system. We have derived an off-shell
Fokker-Planck equation, where the kinetic coefficients are
now interpreted as “off-shell” transport coefficients. We have
shown that, in general, there is no off-shell Fokker-Planck
extension for the D-meson distribution function fD(t, k) [only
for the Wightman function G<

D (t, k0, k)], unless the extreme
narrow limit of the spectral functions is used. In this limit a
clear connection to previous approaches can be made.

Our main observation is that the use of thermal scattering
amplitudes causes the appearance of a new kinematic range
in the meson-meson interaction, the so-called Landau contri-
bution. We have found that the contribution to the transport
coefficients is rather large at moderate temperatures, even
for on-shell D mesons. In fact, it dominates all dissipative
coefficients at temperatures above 100 MeV, and at T =
150 MeV this new contribution is as large as the standard
contribution due to the unitary cut. While these new effects
modify substantially the transport coefficients close to Tc, the
final results are consistent with lattice-QCD determinations of
the momentum and spatial diffusion coefficients. For a fully
consistent matching with some lattice-QCD results (which
use the infinite quark mass limit) it is necessary to increase

the mass of our heavy hadron. We leave for a future work the
calculation using B mesons [13,14,69,70], and the analysis of
the validity of heavy-quark flavor symmetry at finite tempera-
tures. As an alternative (and complementary) approach to the
Fokker-Planck equation, it would be interesting to perform a
study of the Langevin equation from the perspective of the
Kadanoff-Baym formalism [71].
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APPENDIX: ON-SHELL FOKKER-PLANCK EQUATION

In Sec. V A we have obtained the (off-shell) Fokker-Planck equation for the D-meson (homogeneous) Wigner function
G<

D (t, k0, k). We reproduce it here again for convenience,

∂

∂t
G<

D (t, k0, k) = ∂

∂ki

{
Â(k0, k; T )kiG<

D (t, k0, k) + ∂

∂k j

[
B̂0(k0, k; T )�i j + B̂1(k0, k; T )

kik j

k2

]
G<

D (t, k0, k)

}
, (A1)

with the “off-shell” coefficients defined in Eqs. (56)–(58),

Â(k0, k; T ) = 1

2k0

∫
dk0

1

2π

d3q

(2π )3
W

(
k0, k, k0

1 , q
) q · k

k2
, (A2)

B̂0(k0, k; T ) = 1

2k0

1

4

∫
dk0

1

2π

d3q

(2π )3
W

(
k0, k, k0

1 , q
) [

q2 − (q · k)2

k2

]
, (A3)

B̂1(k0, k; T ) = 1

2k0

1

2

∫
dk0

1

2π

d3q

(2π )3
W

(
k0, k, k0

1 , q
) (q · k)2

k2
, (A4)

where we have expressed the average in terms of the integration of a scattering rate W integrated over the transferred momentum.
These equations follow immediately from the Fokker-Planck reduction of the transport equation.

The scattering rate reads

W
(
k0, k, k0

1 , q
) ≡

∫
d4k2

(2π )4

d4k3

(2π )4
(2π )4δ

(
k0

1 + k0
2 + k0

3 − k0
)
δ(3)(k2 + k3 − q)

× ∣∣T (
k0

1 + k0
2 + iε, k − q + k2

)∣∣2
G>

�

(
k0

2 , k2
)
G<

�

(
k0

3 , k3
)
G>

D

(
k0

1 , k − q
)
. (A5)

We stress again that on the integration over dk0/(2π ) of Eq. (A1) it is not possible to obtain the standard Fokker-Planck
equation with “on-shell” coefficients depending only on k, due to the presence of a D meson with a generic spectral function. To
match the previous results and derive the “on-shell” version of the coefficients, one needs to apply the Kadanoff-Baym ansatz of
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Eqs. (12) and (13) and particularize for the narrow quasiparticle limit of the spectral function in Eq. (16) with zk � 1,

G<
D (t, k0, k) = 2π

2Ek
[δ(k0 − Ek ) − δ(k0 + Ek )] fD(t, k0), (A6)

and similarly for particles 1, 2, and 3.
Then, after integration on the positive branch of k0 one is able to obtain the Fokker-Planck equation for fD(t, k):6

∂

∂t
fD(t, k) = ∂

∂ki

{
kiA(k; T ) fD(t, k) + ∂

∂k j

[
B0(k; T )�i j + B1(k; T )

kik j

k2

]
fD(t, k)

}
, (A7)

where the coefficients read

A(k; T ) =
∫

d3q

(2π )3
w(k, q)

q · k
k2

, (A8)

B0(k; T ) = 1

4

∫
d3q

(2π )3
w(k, q)

[
q2 − (q · k)2

k2

]
, (A9)

B1(k; T ) = 1

2

∫
d3q

(2π )3
w(k, q)

(q · k)2

k2
. (A10)

We have introduced the “on-shell” scattering rate

w(k, q) ≡ 1

2Ek

∫
dk0

1

2π
W

(
Ek, k, k0

1 , q
)
, (A11)

which in terms of the scattering amplitude reads

w(k, q) =
∫

d3k3

(2π )6
f (0)
� (k3) f̃ (0)

� (k3 + q)
1

2Ek2Ek3 2Ek+q2Ek3+q
(2π )4δ

(
Ek + Ek3 − Ek+q − Ek3+q

)
×

[
|T (Ek + E3, k + k3)|2 + ∣∣T (

Ek − Ek3+q, k − k3 − q
)∣∣2

]
. (A12)

The expressions of the coefficients in Eqs. (A8)–(A10) together with the on-shell scattering rate in Eq. (A12) coincide with those
used in our previous works [10,11,16], apart from the Landau term arising in Eq. (A12), which is the new contribution found in
the present work.

6We slightly abuse of notation here, as it should strictly read f (t, Ek ).
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