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ABSTRACT 24 
 25 
An analytical solution of the dynamic response of offshore wind turbines under wave load with 26 
nonlinear Stokes’s wave theory and wave-structure and soil-foundation interactions is developed. 27 
Natural frequencies and the corresponding modes are obtained. The effect of the wave-structure 28 
interaction, the added mass, the foundation stiffness, and the nacelle translational and rotational 29 
inertia on the motion of the structure is investigated. The nonlinear loading provided by the drag 30 
term of Morison’s equation is successfully handled. A parametric study to examine the effect of 31 
the structural parameters on the dynamic response is conducted and the results of the proposed 32 
analytical solution are compared to numerical ones. The proposed method has the following 33 
advantages: a) it is accurate and straightforward because of its analytical nature, b) it does not 34 
ignore the drag term in the wave loading by keeping its nonlinearity nature, c) the structure of 35 
the wind turbine is modeled as a continuous system, d) it takes into account the effect of the 36 
rotational and translational inertia of the nacelle on the dynamic response, e) it provides an 37 
interpretation of the effect of the sea level variation in changing the natural frequencies. 38 
 39 

Keywords: Offshore Wind Turbine, Response, Natural frequencies, Natural modes, Wave-40 
Structure interactions, Nonlinear wave kinematics, Soil-Structure Interactions. 41 
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1. Introduction 43 

Passing from carbon-emission to carbon-neutral energy sources motivates many countries to 44 
invest in renewable energies. Among them, offshore wind turbines (OWTs) have been chosen as 45 
the main source of renewable energy for many European countries [1]. Being installed in the 46 
offshore and nearshore mostly by fixed support structures poses challenges in optimum 47 
designing. Furthermore, the prediction of the long-term structural behavior of these structures 48 
required for structural integrity assessment is not available because the majority of the OWTs 49 
have been installed in the past ten years, and the data acquisition is very costly.  50 

OWTs are subjected to coupled dynamic phenomena due to the interaction of wind and wave 51 
loads and the rotor’s vibration. Therefore, dynamic stability and vibration control [2,3] is a topic 52 
that attracts the attention of researchers. Pioneering works on vibrational control of large real-53 
life structures under dynamic loading have been performed by Adeli and Saleh [4–7]. Reviews of 54 
advances in vibration control algorithms for smart structures up to 2017 are presented by [8–10]. 55 
Since the coupling phenomena are complicated to be modeled by regular deterministic 56 
techniques, Machine Learning (ML) algorithms seem to be a promising alternative tool. Adeli and 57 
associates developed intelligent control algorithms employing neural networks and ML 58 
techniques as far back as 2008 [11,12]. More recent work on intelligent control of large real-life 59 
buildings and bridge structures was presented by [9,13–19] to discuss and advance the novel 60 
concept of integration of vibration control, health monitoring of structures [20,21] and energy 61 
harvesting [22] for smart cities of the future. 62 

A key technology in the field of structural engineering in recent years has been automated 63 
structural health monitoring (SHM). There are two fundamentally different approaches to SHM, 64 
one based on vibration [23] and the other based on imaging and computer vision [24]. Vibration-65 
based SHM technology requires adroit integration of vibration theory, signal processing such as 66 
wavelets [25], and machine learning [26,27].  SHM technology has been used successfully and 67 
there is a significant body of research on health monitoring of building structures and bridges [28], 68 
dams [29], railways [30], pavements [31], retaining structures along highways [32], and tunnels 69 
[33], but little work has been reported on health monitoring of offshore structures and wind 70 
turbines. A method of vibration-based SHM is based on computing and monitoring the structural 71 
properties such as natural frequencies and mode shapes [34]. Besides, the remaining fatigue life 72 
is also necessary to be evaluated and monitored in the case of offshore structures. One of the 73 
main challenges in fatigue life estimation, apart from selecting a novel accumulating damage 74 
model [35–37], is the availability of the stress history resulting from dynamic response of the 75 
structure in the hot spots.  76 

The stress history required for fatigue life evaluation can be obtained from two main sources. One 77 
source would be simply by measuring the stress history of the real operating structure. Although 78 
the field data is extremely valuable because it reflects the real behavior of the structure, 79 
harvesting field data is expensive and in some cases, impossible. An alternative source would be 80 
generating data through the mathematical models by simulating the real operating situation. An 81 
immediate method in providing the response or stress history of an OWT structure, including all 82 
its complexities, is to utilize the numerical models by discretizing the structure via finite elements 83 
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methods. Many researchers [38–48] are using commercial software packages or numerical 84 
platforms to simulate these structures due to their accessibility and ability to create high-fidelity 85 
models. However, numerical solutions are still time-consuming, and their performance is affected 86 
by stability issues especially in very complicated time domain problems. The other alternative to 87 
generating response data is to develop the analytical solutions to achieve the response as a single 88 
function by which the response is evaluated for arbitrary loading parameters. Analytical solutions 89 
are straightforward, provide always-true and reliable results as opposed to the numerical ones 90 
but challenging to achieve because of complex mathematics. 91 

Unlike a large number of existing numerical models, very few analytical models of the OWTs have 92 
been published. Scientists such as Graff [49] and Meirovitch [50] started early works on the 93 
classical methods of solving the wave equation in a cantilever flexural beam in the 60s and 70s. 94 
They introduced some methods for solving these equations. For instance, Graff [49] listed five 95 
methods: 1) Finite Fourier transform, 2) Expansion in the natural modes (in the spatial domain), 96 
3) Laplace transform, 4) Laplace transform-natural mode expansion, and 5) solution by the natural 97 
modes (in both spatial and temporal domain). In the first two methods, it is assumed that the 98 
solution contains two separate parts in time and space. While for the last three ones, the solution 99 
begins directly from the equation of motion with an arbitrary function. Among these methods, 100 
expansion in the natural modes relies on the structure’s natural modes, which can be found from 101 
the homogeneous form of the equation of motion with respect to its boundary conditions. This 102 
method also provides the result in the form of a single function as apposed to numerical solutions 103 
where a set of numbers is obtained as the response. Expansion in the normal modes is also flexible 104 
in the external load situations. Complex loading can be expanded by using the Fourier series and 105 
analyzed. Selecting other methods requires more effort, and sometimes impossible to find the 106 
solution. For instance, the method of Laplace transforms requires inverse Laplace transform, 107 
which is nearly impossible to be determined analytically for complicated boundary conditions. 108 
Pavlou [51] developed an analytical solution for the evaluation of the response of the OWT under 109 
the linear waves. In this work, the translational and rotational inertial effect of the nacelle, the 110 
hydrodynamic damping, and the soil-foundation interaction have been analytically investigated 111 
for gravity-based supported structures. The achieved analytic inversion of Laplace Transforms was 112 
very challenging in this analysis. Apart from mentioned methods, very few analytical solutions 113 
have been proposed in the past years. In a rare case, Wang et al. [52] developed a mathematical 114 
model for dynamic analysis of an onshore wind turbine by using the thin-walled theory [45,53–115 
55] to simulate the comprehensive behavior of the wind turbine.  116 

Expansion of the response in the natural modes requires having an accurate and reliable 117 
estimation of the natural frequencies of the OWT structure. In the past few years, researchers 118 
have attempted to provide models in which the realistic situation of an OWT is included. Most of 119 
the works have been focused on the soil and foundation situation. In a study conducted by Arany 120 
et al. [56], an analytical model was developed by simulating foundation flexibility using three 121 
springs. The effect of boundary conditions on the natural frequencies has been parametrically 122 
studied by defining some non-dimensional parameters. Having compared the analytical natural 123 
frequencies with the measured ones from the actual OWTs, a slight inaccuracy was reported, 124 
which is not improved by modeling the tower with the Timoshenko beam theory. In another 125 
study, They [57] proposed a simplified methodology to have a quick hand calculation of the 1st 126 
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natural frequency of an OWT. In their works, the effect of the fluid-structure interactions of the 127 
added mass has not been considered, which may be the reason for the inaccuracy they have 128 
reported. Bouzid et al. [58] established a nonlinear finite element model [59] to obtain the head 129 
stiffness of the monopile support structure at the mudline. Their purpose was to improve the 130 
accuracy of the results obtained by Arany et al. [56,57]. Recently, Alkhoury et al. [60] established 131 
a full 3D model for the DTU 10 MW OWT including all the details of the nacelle, blades, rotor, as 132 
well as full 3D modeling of the soil inside and outside of the monopile and cross-sectional variation 133 
of the tower structure. More details about this work will be presented later in this paper for the 134 
sake of verification.  135 

The natural frequencies of the OWT were also measured in the real-operating systems. Damgaard 136 
et al. [61] have reported the cross-wind modal properties of an OWT. They have reported that the 137 
1st natural frequency is time-dependent which might be because of erosion of the soil around the 138 
monopile or soil scouring. Later, variation of the natural frequency in time attracts the attention 139 
of Prendergat et al. [62,63], resulting in two publications. In their first work [62], the scouring 140 
effect on the natural frequency was investigated without considering the effect of added mass in 141 
the system. In their second work [63], however, they considered other factors such as water 142 
added mass influencing the dynamic properties of the system. Another investigation on the 143 
measured data conducted by Dong et al. [64] also reported the time-dependent dynamic 144 
properties of an OWT. Moreover, a precise analysis was performed on the measured data by 145 
Cosgriff et al. [65]. The 1st natural frequency was separately plotted versus the wave height and 146 
wind speed based on 20 min measured data in the calm sea condition while the wind velocity was 147 
under the cut in speed. The trend reveals that the 1st natural frequency is reduced as the wave 148 
height and wind speed increase. This phenomenon raises suspicion about the effect of added 149 
mass on the natural frequencies by sea level variation.  150 

Attempts toward providing an accurate response require accurate and realistic inputs in the 151 
analysis alongside accurate and realistic models and solutions. In the case of bottom-fixed OWTs 152 
which are mostly installed in shallow to intermediate water depth, measurements and studies 153 
reveal that nonlinear wave theory should be implemented to simulate the realistic sea states. A 154 
study conducted by Natarajan [66] showed that using the 2nd order wave theory significantly 155 
increases the extreme loading on the monopile support structure of OWTs. Yingguang Wang [67] 156 
utilized a transformed linear method to simulate the 2nd order irregular wave to obtain the wave 157 
load by including the sea bottom effect. Shaofeng Wang et al. [68] conducted a case study to 158 
investigate the ultimate wave loads on a 10 MW OWT. All of them have reported a significant 159 
increase in wave load on the structure.   160 

In the present work, a new analytical solution for modal analysis of OWT structures is presented. 161 
Nonlinear waves and wave-structure and soil-foundation interactions are accounted for in the 162 
solution. The consideration of the 2nd nonlinear wave kinematics improves the ability of the 163 
method to cover a higher range of wavelength and height, providing more realistic loading on the 164 
structure. OWTs are subjected to different types of environmental loading such as wind, waves, 165 
ocean currents, earthquakes, ship collisions, etc [69]. Among them, dealing with the wave loads 166 
is still a challenging task due to its complexities and uncertainties [70]. Therefore, this study 167 
focuses on the wave load. Moreover, the analytical modeling of the translational and rotational 168 
inertia effect of the nacelle and the fluid-structure and soil foundation interaction improves the 169 
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reliability of the dynamic simulation. The novelty of the presented work beyond the published 170 
literature is based on the following advantages: The solution is accurate and straightforward 171 
because of its analytical nature, it does not ignore the drag term in the wave loading, the structure 172 
of the wind turbine is modeled as a continuous system by including its geometrical discontinuities, 173 
it takes into account the effect of the rotational and translational inertia of the nacelle, and it 174 
provides an interpretation of the effect of the sea level variation on the natural frequencies. The 175 
research presented in this paper can be extended for health monitoring of offshore structures 176 
and wind turbines which is intended as part of future research by the authors.  177 

2. Formulation of the problem 178 

A typical horizontal axis OWT consists of nacelle and blades systems mounted on the top of a 179 
tower fixed to the seabed by a monopile, as illustrated in Figure 1-a. A transition part connects 180 
the tower and monopile at sea level. In this paper, an OWT is modeled as a cantilever column 181 
supported by a set of springs at one end and free at the other end, see Figure 1-b. This cantilever 182 
beam, which is called the system for the rest of this paper, consists of two parts separated from 183 
the platform level at the top of the transition part. This is because their dimensions and properties 184 
can be significantly different. The cross-sectional properties of each part are assumed constant. 185 
The symbols definition used in this paper is represented in Table 1. The monopile under the 186 
seabed is also modeled by a set of four springs representing the lateral, rotational, cross-coupled, 187 
and vertical stiffnesses with constants of 𝐾𝐾𝐿𝐿,𝐾𝐾𝑅𝑅 ,𝐾𝐾𝐿𝐿𝑅𝑅 ,𝐾𝐾𝑧𝑧, respectively [71]. 188 

In this study, the motion of the system is considered as a lateral deflection due to the wave load 189 
applied up to Mean Sea Level (MSL). As shown in Figure 1-c, the deflection, 𝑥𝑥(𝑧𝑧, 𝑡𝑡), is defined as 190 
a continuous function of time, t, and space, z, implying to represent the motion of the system with 191 
an infinite degree of freedom. 192 

2.1. The governing equation 193 

For the system introduced in Figure 1-c, the Bernoulli-Euler beam theory can be applicable for 194 
small displacements [49]. Therefore, the equation of motion along the height of the system with 195 
the origin from the seabed can be written as 196 

 𝐸𝐸𝐸𝐸(𝑧𝑧) 𝑥𝑥(𝑖𝑖𝑖𝑖)(𝑧𝑧, 𝑡𝑡) + M(z)�̈�𝑥(𝑧𝑧, 𝑡𝑡) = 𝑞𝑞(𝑧𝑧, 𝑡𝑡) 𝐻𝐻3(𝑧𝑧) (1) 

where, 𝑞𝑞(𝑧𝑧, 𝑡𝑡) is the external forces acting perpendicular to the monopile’s longitudinal axis. 197 
𝐸𝐸𝐸𝐸(𝑧𝑧) and 𝑀𝑀(𝑧𝑧) are the flexural rigidity and mass per unit length of the system. For the system 198 
defined in Figure 1, they are defined as follows: 199 

 𝑀𝑀(𝑧𝑧) = 𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇  𝐻𝐻1(𝑧𝑧) + 𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀𝐻𝐻2(𝑧𝑧) + 𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀𝐻𝐻3(𝑧𝑧) (2) 

  𝐸𝐸𝐸𝐸(𝑧𝑧) = 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝐻𝐻1(𝑧𝑧) + 𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀𝐻𝐻2(𝑧𝑧) + 𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀𝐻𝐻3(𝑧𝑧) (3) 

Where 𝐻𝐻𝑖𝑖(𝑧𝑧), 𝑖𝑖 = 1, 2, 3 are the step functions defined as  200 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Offshore Mechanics and Arctic Engineering. Received April 22, 2022;
Accepted manuscript posted August 22, 2022. doi:10.1115/1.4055402
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/doi/10.1115/1.4055402/6913132/om
ae-22-1062.pdf by Stavanger U

niversity user on 01 Septem
ber 2022



The Journal of Offshore Mechanics and Arctic Engineering (OMAE) 

6 
 

 𝐻𝐻1(𝑧𝑧) = �
1,            𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿
0,            𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
0,                   𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑

 (4) 

 𝐻𝐻2(𝑧𝑧) = �
0,            𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿
1,            𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
0,                  𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑

 (5) 

 𝐻𝐻3(𝑧𝑧) = �
0,                𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿
0,                𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
1,                       𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑

 (6) 

For a slender structure, Morison’s equation from [72,73] can be adopted for dynamic modeling. 201 
Also, the relative velocity formulation is applicable for a moving slender structure subjected to 202 
the wave loads. Since the bottom-fixed support structure is of interest, it is expected that the 203 
underwater motion of the system to be way below its diameter. Therefore, the relative velocity 204 
in the drag term can be reduced to the wave horizontal particle velocity. For an ocean  wavelength 205 
larger than five times the monopile diameter and the small displacement, the wave load on the 206 
monopile can be represented by the relative velocity formulation [72] as 207 

𝑞𝑞(𝑧𝑧, 𝑡𝑡) = −𝜌𝜌𝑇𝑇𝐶𝐶𝐴𝐴𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀�̈�𝑥(𝑧𝑧, 𝑡𝑡) + 𝜌𝜌𝑇𝑇𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀
𝐷𝐷𝐷𝐷(𝑧𝑧, 𝑡𝑡)
𝐷𝐷𝑡𝑡

+
1
2
𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝐷𝐷(𝑧𝑧, 𝑡𝑡)|𝐷𝐷(𝑧𝑧, 𝑡𝑡)| (7) 

In equation (7), the two first terms inside the curl bracket are inertial and the third one is the drag 208 
term. The total derivative of the wave horizontal particle velocity, 𝐷𝐷𝐷𝐷(𝑧𝑧, 𝑡𝑡) 𝐷𝐷𝑡𝑡⁄ = 𝜕𝜕𝐷𝐷 𝜕𝜕𝑡𝑡⁄ +209 
𝐷𝐷 𝜕𝜕𝐷𝐷 𝜕𝜕𝑥𝑥⁄ + 𝑤𝑤𝜕𝜕𝐷𝐷 𝜕𝜕𝑧𝑧⁄ , in the inertial term can be reduced to  �̇�𝐷(𝑧𝑧, 𝑡𝑡) = 𝜕𝜕𝐷𝐷(𝑧𝑧, 𝑡𝑡) 𝜕𝜕𝑡𝑡⁄  by neglecting 210 
the advocative terms which are reported to slightly increase the load when they are included [70]. 211 
The inertia term reveals that the −𝜌𝜌𝑇𝑇𝐶𝐶𝐴𝐴𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀�̈�𝑥(𝑧𝑧, 𝑡𝑡) provides an additional mass to the system 212 
affecting its oscillating properties. This added mass can represent itself in the equation of motion, 213 
Eq. (1). By substituting Eq. (7) into Eq. (1) the result will be 214 

 𝑥𝑥(𝑖𝑖𝑖𝑖)(𝑧𝑧, 𝑡𝑡) + A(z)�̈�𝑥(𝑧𝑧, 𝑡𝑡)  =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
𝑄𝑄(𝑧𝑧, 𝑡𝑡) 𝐻𝐻3(𝑧𝑧) (8) 

where 215 

 𝐴𝐴(𝑧𝑧) =
1

𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2 𝐻𝐻1(𝑧𝑧) +
1
𝑎𝑎MA2

𝐻𝐻2(𝑧𝑧) +
1
𝑎𝑎𝑀𝑀𝑀𝑀2

𝐻𝐻3(𝑧𝑧) (9) 

 𝑎𝑎Tow2 =
𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇
𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇

 (10) 

 𝑎𝑎MA2 =
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀

 (11) 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Offshore Mechanics and Arctic Engineering. Received April 22, 2022;
Accepted manuscript posted August 22, 2022. doi:10.1115/1.4055402
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/doi/10.1115/1.4055402/6913132/om
ae-22-1062.pdf by Stavanger U

niversity user on 01 Septem
ber 2022



The Journal of Offshore Mechanics and Arctic Engineering (OMAE) 

7 
 

 𝑎𝑎MU2 =
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀

𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀 + 𝜌𝜌𝑇𝑇𝐶𝐶𝐴𝐴𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀
 (12) 

 𝑄𝑄(𝑧𝑧, 𝑡𝑡) = 𝜌𝜌𝑇𝑇𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀�̇�𝐷(𝑧𝑧, 𝑡𝑡) +
1
2
𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝐷𝐷(𝑧𝑧, 𝑡𝑡)|𝐷𝐷(𝑧𝑧, 𝑡𝑡)| (13) 

Eq. (8) represents a partial differential equation governing the motion of the system subjected to 216 
the wave load. The added mass is included on the right side of the equation. Thus, the left side is 217 
not dependent on the motion of the tower. Parameter 𝑎𝑎𝑀𝑀𝑀𝑀 are containing the mass of the system 218 
underwater including added mass. Therefore, the wave-structure interaction is included in the 219 
equation of motion. 220 

It can be seen in Eq. (8) that there are three separate systems, the tower, monopile above water 221 
and monopile underwear, acting together to govern the motion of the system. Therefore, it can 222 
be separated in the form of three independent equations as 223 

 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇
(𝑖𝑖𝑖𝑖) (𝑧𝑧, 𝑡𝑡) +

1
𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2  �̈�𝑥𝑇𝑇𝑇𝑇𝑇𝑇(𝑧𝑧, 𝑡𝑡)  = 0 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (14) 

 𝑥𝑥𝑀𝑀𝐴𝐴
(𝑖𝑖𝑖𝑖)(𝑧𝑧, 𝑡𝑡) +

1
𝑎𝑎𝑀𝑀𝐴𝐴2

 �̈�𝑥𝑀𝑀𝐴𝐴(𝑧𝑧, 𝑡𝑡)  = 0 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (15) 

 𝑥𝑥𝑀𝑀𝑀𝑀
(𝑖𝑖𝑖𝑖)(𝑧𝑧, 𝑡𝑡) +

1
𝑎𝑎𝑀𝑀𝑀𝑀2

 �̈�𝑥𝑀𝑀𝑀𝑀(𝑧𝑧, 𝑡𝑡)  =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
𝑄𝑄(𝑧𝑧, 𝑡𝑡), 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (16) 

In the three above equations 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇(𝑧𝑧, 𝑡𝑡), 𝑥𝑥𝑀𝑀𝐴𝐴(𝑧𝑧, 𝑡𝑡) and 𝑥𝑥𝑀𝑀𝑀𝑀(𝑧𝑧, 𝑡𝑡) stand for the lateral motion of 224 
the system in the tower, monopile above water and underwater, respectively. Eq. (14) and (15) 225 
are homogeneous partial differential equations implying that the motion above water is a kind of 226 
free vibration whereas the underwater motion, represented in Eq. (16), is a forced vibration due 227 
to the external load. Therefore, the above water motion is activated by the motion of the 228 
underwater part via a series of boundary conditions which will be introduced later.  229 

2.2. The boundary and initial conditions 230 

To accommodate the motion of the system with the equation of motion in Eq. (8), two sets of 231 
conditions at the two ends of the system are needed. The motion of the system at the seabed is 232 
governed by a set of 4 springs as illustrated in Figure 1-b. Vertical stiffness, 𝐾𝐾𝑧𝑧, can be neglected 233 
because the vertical motion of the system is negligible. The three remaining springs can be 234 
collected in the matrix form to obtain the shear force, 𝐹𝐹, and bending moment, 𝑀𝑀, at the seabed 235 
by the following equation [71]: 236 

 �
𝐹𝐹(𝑡𝑡)
𝑀𝑀(𝑡𝑡)� = � 𝐾𝐾𝐿𝐿 𝐾𝐾𝐿𝐿𝑅𝑅

𝐾𝐾𝐿𝐿𝑅𝑅 𝐾𝐾𝑅𝑅
� �
𝑥𝑥(0, 𝑡𝑡)
𝑥𝑥′(0, 𝑡𝑡)� (17) 

By substituting the shear force and bending moment from the beam theory into the above 237 
equation and expanding, it yields to the following two boundary conditions. 238 
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 −𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀 𝑥𝑥𝑀𝑀𝑀𝑀′′′ (0, 𝑡𝑡) = K𝐿𝐿𝑥𝑥𝑀𝑀𝑀𝑀(0, 𝑡𝑡) + 𝐾𝐾𝐿𝐿𝑅𝑅𝑥𝑥𝑀𝑀𝑀𝑀′ (0, 𝑡𝑡) (18) 

 𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀 𝑥𝑥𝑀𝑀𝑀𝑀′′ (0, 𝑡𝑡) = 𝐾𝐾𝐿𝐿𝑅𝑅𝑥𝑥𝑀𝑀𝑀𝑀(0, 𝑡𝑡) + KR 𝑥𝑥𝑀𝑀𝑀𝑀′ (0, 𝑡𝑡) (19) 

At the top of the tower, a heavy nacelle is mounted providing lump mass to the system. The effect 239 
of the translational and rotational inertia of the mass of the nacelle can be simulated as the two 240 
following conditions: 241 

 −𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇  𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇′′ (𝐿𝐿, 𝑡𝑡) = 𝐽𝐽𝑃𝑃�̈�𝑥𝑇𝑇𝑇𝑇𝑇𝑇′ (𝐿𝐿, 𝑡𝑡) (20) 

 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇  𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇′′′ (𝐿𝐿, 𝑡𝑡) = 𝑀𝑀𝑁𝑁�̈�𝑥𝑇𝑇𝑇𝑇𝑇𝑇(𝐿𝐿, 𝑡𝑡) (21) 

The rotational motion of the nacelle produces the momentum proportional to the tower’s 242 
rotational acceleration �̈�𝑥𝑇𝑇𝑇𝑇𝑇𝑇′ (𝐿𝐿, 𝑡𝑡) at the top of the system which should be in equilibrium with 243 
the total moment of the system producing boundary condition in the form of Eq. (20). Besides, 244 
the translational acceleration of the nacelle, �̈�𝑥𝑇𝑇𝑇𝑇𝑇𝑇(𝐿𝐿, 𝑡𝑡), creates an inertial force that should be 245 
equal to the internal shear force of the tower at the nacelle level. This equilibrium is represented 246 
by Eq. (21). 247 

As mentioned earlier, the two Eqs. (15) and (16) govern the motion of the monopile. Therefore, 248 
it is necessary that these equations are linked together at the sea level via some boundary 249 
conditions. They are  250 

  𝑥𝑥𝑀𝑀𝑀𝑀(𝑑𝑑, 𝑡𝑡) = 𝑥𝑥𝑀𝑀𝐴𝐴(𝑑𝑑, 𝑡𝑡) (22) 

 𝑥𝑥𝑀𝑀𝑀𝑀′ (𝑑𝑑, 𝑡𝑡) = 𝑥𝑥𝑀𝑀𝐴𝐴′ (𝑑𝑑, 𝑡𝑡) (23) 

 𝑥𝑥𝑀𝑀𝑀𝑀′′ (𝑑𝑑, 𝑡𝑡) = 𝑥𝑥𝑀𝑀𝐴𝐴′′ (𝑑𝑑, 𝑡𝑡) (24) 

 𝑥𝑥𝑀𝑀𝑀𝑀′′′ (𝑑𝑑, 𝑡𝑡) = 𝑥𝑥𝑀𝑀𝐴𝐴′′′ (𝑑𝑑, 𝑡𝑡) (25) 

Also, Eqs. (14) and (15) are connected by following boundary conditions 251 

 𝑥𝑥𝑀𝑀𝐴𝐴(𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) = 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇(𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) (26) 

 𝑥𝑥𝑀𝑀𝐴𝐴′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) = 𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) (27) 

 𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀𝑥𝑥𝑀𝑀𝐴𝐴′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) (28) 

 𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀𝑥𝑥𝑀𝑀𝐴𝐴′′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) = 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇′′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝑡𝑡) (29) 

The last eight boundary conditions are based on the system’s continuity on deflection and slope 252 
of the motion at sea level as well as the internal shear force and bending moment continuity of 253 
the system at a point where two systems are linked together. 254 

It is assumed that the tower motion starts from the position when it is at the rest. Therefore, the 255 
initial deflection and the velocity of each part of the tower are zero. It yields to the following initial 256 
conditions 257 
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 𝑥𝑥(𝑧𝑧, 0) = �̇�𝑥(𝑧𝑧, 0) = 0 (30) 

3. Solution for the equation of motion 258 

The method that has been chosen to solve Eq. (8) is to expand the response in the natural modes 259 
of the system. The natural frequencies of the system and consequently the natural mode shapes 260 
will be obtained. Then, they will be utilized in the solution for the forced vibration. 261 

3.1. Natural modes 262 

The natural modes will be evaluated by using the homogenous form of Eq. (16) as well as Eq. (14) 263 
and (15) which are 264 

 𝑥𝑥𝑇𝑇𝑀𝑀
(𝑖𝑖𝑖𝑖)(𝑧𝑧, 𝑡𝑡) +

1
𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2  �̈�𝑥𝑇𝑇𝑀𝑀(𝑧𝑧, 𝑡𝑡)  = 0 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (31) 

 𝑥𝑥𝑀𝑀𝐴𝐴𝑀𝑀
(𝑖𝑖𝑖𝑖) (𝑧𝑧, 𝑡𝑡) +

1
𝑎𝑎𝑀𝑀𝐴𝐴2

 �̈�𝑥𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧, 𝑡𝑡)  = 0 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (32) 

 𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖𝑖𝑖) (𝑧𝑧, 𝑡𝑡) +

1
𝑎𝑎𝑀𝑀𝑀𝑀2

 �̈�𝑥𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧, 𝑡𝑡)  = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (33) 

It should be noted that the subscript 𝑛𝑛 in quantity indicates that it belongs to the 𝑛𝑛𝑃𝑃ℎ natural 265 
mode. So, 𝑥𝑥𝑇𝑇𝑀𝑀(𝑧𝑧, 𝑡𝑡) , 𝑥𝑥𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧, 𝑡𝑡) , and 𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧, 𝑡𝑡)  are the natural mode shapes of the tower, 266 
monopile above water and monopile underwater, respectively. The solution for the above 267 
equations is proposed in the form of 268 

 𝑥𝑥𝑇𝑇𝑀𝑀(𝑧𝑧, 𝑡𝑡) = 𝑋𝑋𝑇𝑇𝑀𝑀(𝑧𝑧)𝑇𝑇𝑇𝑇𝑀𝑀(𝑡𝑡) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (34) 

 𝑥𝑥𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧, 𝑡𝑡) = 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧)𝑇𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡) , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (35) 

 𝑥𝑥𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧, 𝑡𝑡) = 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧)𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡), 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (36) 

Substituting the Eqs. (34) to (36) into Eqs. (31) to (33) will yield 269 

 𝑋𝑋𝑇𝑇𝑀𝑀
(𝑖𝑖𝑖𝑖)(𝑧𝑧)𝑇𝑇𝑇𝑇𝑀𝑀(𝑡𝑡) +

1
𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2  𝑋𝑋𝑇𝑇𝑀𝑀(𝑧𝑧)�̈�𝑇𝑇𝑇𝑀𝑀(𝑡𝑡)  = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (37) 

 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀
(𝑖𝑖𝑖𝑖) (𝑧𝑧)𝑇𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡) +

1
𝑎𝑎𝑀𝑀𝐴𝐴2

 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧)�̈�𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡)  = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (38) 

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀
(𝑖𝑖𝑖𝑖) (𝑧𝑧)𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) +

1
𝑎𝑎𝑀𝑀𝑀𝑀2

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧)�̈�𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)  = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (39) 

After some algebraic manipulations, they are transformed to 270 
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𝑋𝑋𝑇𝑇𝑀𝑀

(𝑖𝑖𝑖𝑖)(𝑧𝑧)
𝑋𝑋𝑇𝑇𝑀𝑀(𝑧𝑧) = 𝛽𝛽𝑇𝑇𝑀𝑀4 = −

1
𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2  

�̈�𝑇𝑇𝑇𝑀𝑀(𝑡𝑡)
𝑇𝑇𝑇𝑇𝑀𝑀(𝑡𝑡)

 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (40) 

 
𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀

(𝑖𝑖𝑖𝑖) (𝑧𝑧)
𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧) = 𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀4 = −

1
𝑎𝑎𝑀𝑀𝐴𝐴2

 
�̈�𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡)
𝑇𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡)

 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (41) 

 
𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀

(𝑖𝑖𝑖𝑖) (𝑧𝑧)
𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧) = 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀4 = −

1
𝑎𝑎𝑀𝑀𝑀𝑀2

 
�̈�𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)
𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡)

 , 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (42) 

Where 𝛽𝛽𝑇𝑇𝑀𝑀, 𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀 and 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 are the wavenumbers for the tower and monopile above water and 271 
underwater, respectively. Eqs. (40), (41), and (42) can be separated to form the following 272 
equations 273 

 𝑋𝑋𝑇𝑇𝑀𝑀𝑖𝑖𝑖𝑖 (𝑧𝑧) − 𝛽𝛽𝑇𝑇𝑀𝑀4 𝑋𝑋𝑇𝑇𝑀𝑀(𝑧𝑧) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (43) 

 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀𝑖𝑖𝑖𝑖 (𝑧𝑧) − 𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀4 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (44) 

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖 (𝑧𝑧)− 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀4 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (45) 

And  274 

 �̈�𝑇𝑇𝑇𝑀𝑀(𝑡𝑡) + 𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2  𝛽𝛽𝑇𝑇𝑀𝑀4  𝑇𝑇𝑇𝑇𝑀𝑀(𝑡𝑡) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (46) 

 �̈�𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) + 𝑎𝑎𝑀𝑀𝑀𝑀2  𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀4  𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑑𝑑 < 𝑧𝑧 ≤ 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (47) 

 �̈�𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡) + 𝑎𝑎𝑀𝑀𝐴𝐴2  𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀4  𝑇𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝑧𝑧 ≤ 𝑑𝑑 (48) 

In the above six equations, the temporal and spatial variables are separated. Therefore, they can 275 
be solved independently. Since every section of a continuous system should vibrate with the same 276 
natural frequency in each mode shape, so 𝑇𝑇𝑇𝑇𝑀𝑀 = 𝑇𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡) = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡). By comparing the two Eqs. 277 
(46) and (47), one can conclude that 𝑎𝑎Tow2  𝛽𝛽𝑇𝑇𝑀𝑀4 = 𝑎𝑎M𝑀𝑀2  𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀4 = 𝑎𝑎M𝐴𝐴2  𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀4  because 𝑇𝑇𝑇𝑇𝑀𝑀 =278 
𝑇𝑇𝑀𝑀𝐴𝐴𝑀𝑀(𝑡𝑡) = 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀(𝑡𝑡). Therefore, 279 

 �̈�𝑇𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2 𝑇𝑇𝑀𝑀(𝑡𝑡) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 0 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (49) 

Where  280 

 𝜔𝜔𝑀𝑀2 = 𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇2  𝛽𝛽𝑇𝑇𝑀𝑀4 = 𝑎𝑎𝑀𝑀𝑀𝑀2  𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀4 = 𝑎𝑎𝑀𝑀𝐴𝐴2  𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀4  (50) 

Since 𝑇𝑇 is a periodic function, it will oscillate with the cyclic frequency of 𝜔𝜔𝑀𝑀 which is a natural 281 
frequency of the system.  282 

The solution of the motion Eqs. (34), (35), and (36) can be imposed into the boundary conditions 283 
defined by Eqs. (18) to (29) to yield the boundary conditions independent from the time variable. 284 
They are 285 
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 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′′′ (0) + 𝛼𝛼1𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(0) + 𝛼𝛼2𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′ (0) = 0, 𝛼𝛼1 =
𝐾𝐾𝐿𝐿

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
,𝛼𝛼2 =

𝐾𝐾𝐿𝐿𝑅𝑅
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀

 (51) 

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′′ (0) − 𝛼𝛼2𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(0)− 𝛼𝛼3𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′ (0) = 0, 𝛼𝛼3 =
𝐾𝐾𝑅𝑅

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
 (52) 

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(𝑑𝑑) − 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝑑𝑑) = 0 

(53) 
 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′ (𝑑𝑑) − 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀′ (𝑑𝑑) = 0 

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′′ (𝑑𝑑) − 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀′′ (𝑑𝑑) = 0 

 𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀′′′ (𝑑𝑑) − 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀′′′ (𝑑𝑑) = 0 

 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) − 𝑋𝑋𝑇𝑇𝑀𝑀(𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 0 

, α4 =
𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀

 (54) 
 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) − 𝑋𝑋𝑇𝑇𝑀𝑀′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 0 

 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)− 𝛼𝛼4𝑋𝑋𝑇𝑇𝑀𝑀′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 0 

 𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀′′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)− 𝛼𝛼4𝑋𝑋𝑇𝑇𝑀𝑀′′′ (𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) = 0 

 𝑋𝑋𝑇𝑇𝑀𝑀′′ (𝐿𝐿)− 𝛼𝛼5𝜔𝜔𝑀𝑀2𝑋𝑋𝑇𝑇𝑀𝑀′ (𝐿𝐿) = 0, 𝛼𝛼5 =
𝐽𝐽𝑝𝑝

𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇
 (55) 

 𝑋𝑋𝑇𝑇𝑀𝑀′′′ (𝐿𝐿) + 𝛼𝛼6𝜔𝜔𝑀𝑀2𝑋𝑋𝑇𝑇𝑀𝑀(𝐿𝐿) = 0, 𝛼𝛼6 =
𝑀𝑀𝑀𝑀

𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇
 (56) 

Where 𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1 ...6 are the solution variables introduced to implement the soil-structure 286 
interactions, nacelle-blades mechanical properties, and the systems mechanical properties at sea 287 
level.  288 

The solution for Eqs. (43), (44) and (45) are in the form of  289 

𝑋𝑋𝑇𝑇𝑀𝑀(𝑧𝑧) = 𝑇𝑇1  𝑐𝑐𝑓𝑓𝑐𝑐(𝛽𝛽𝑇𝑇𝑀𝑀𝑧𝑧) +  𝑇𝑇2 𝑐𝑐𝑓𝑓𝑐𝑐ℎ(𝛽𝛽𝑇𝑇𝑀𝑀𝑧𝑧) + 𝑇𝑇3  𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽𝑇𝑇𝑀𝑀𝑧𝑧) + 𝑇𝑇4  𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛽𝛽𝑇𝑇𝑀𝑀𝑧𝑧) (57) 

𝑋𝑋𝑀𝑀𝐴𝐴𝑀𝑀(𝑧𝑧) = 𝐴𝐴1  𝑐𝑐𝑓𝑓𝑐𝑐(𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀𝑧𝑧) +  𝐴𝐴2 𝑐𝑐𝑓𝑓𝑐𝑐ℎ(𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀𝑧𝑧) + 𝐴𝐴3  𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀𝑧𝑧) + 𝐴𝐴4  𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀𝑧𝑧) (58) 

𝑋𝑋𝑀𝑀𝑀𝑀𝑀𝑀(𝑧𝑧) = 𝑈𝑈1  𝑐𝑐𝑓𝑓𝑐𝑐(𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧) +  𝑈𝑈2 𝑐𝑐𝑓𝑓𝑐𝑐ℎ(𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧) + 𝑈𝑈3  𝑐𝑐𝑖𝑖𝑛𝑛(𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧) + 𝑈𝑈4  𝑐𝑐𝑖𝑖𝑛𝑛ℎ(𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧) (59) 

where 𝑇𝑇𝑖𝑖, 𝐴𝐴𝑖𝑖, and 𝑈𝑈𝑖𝑖  are the constant coefficients for each natural mode shape. Substituting the 290 
proposed solutions expressed by Eqs. (57), (58), and (59) into the 12 boundary conditions 291 
represented by Eqs. (51) to (56) will yield a system of 12 linear equations. In matrix form, they can 292 
be represented as   293 

 𝑷𝑷 ×𝑫𝑫 = 0, 𝑫𝑫 = {𝑈𝑈1  𝑈𝑈2  𝑈𝑈3  𝑈𝑈4  𝐴𝐴1  𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 𝑇𝑇1  𝑇𝑇2 𝑇𝑇3 𝑇𝑇4}𝑇𝑇 (60) 
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Where P is the matrix containing trigonometrical and hyper trigonometrical functions and D is the 294 
constant coefficients vector. The concept of natural modes oscillation is that the oscillation should 295 
be independent of the constant coefficients in Eqs. (57) to (59). Therefore, the determinant of 296 
matrix P should be zero to yield a singular matrix. In matrix P, there are three variables 𝛽𝛽𝑇𝑇𝑀𝑀, 𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀 297 
, 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 , and the singularity condition of matrix P. Two more conditions are needed to find them 298 
with one equation. As mentioned earlier, the cyclic frequency of the system is unique so recalling 299 
the definitions of the wavenumber from Eq. (50) and rewriting them yields 300 

 𝛽𝛽𝑀𝑀𝐴𝐴𝑀𝑀 = 𝛾𝛾𝐴𝐴𝑇𝑇𝛽𝛽𝑇𝑇𝑀𝑀, 𝛾𝛾𝐴𝐴𝑇𝑇 = �𝛼𝛼4
𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀

𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇

4
 (61) 

 𝛽𝛽𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛾𝛾𝑀𝑀𝑇𝑇𝛽𝛽𝑇𝑇𝑀𝑀, 𝛾𝛾𝑀𝑀𝑇𝑇 = �𝛼𝛼4 �
𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀 + 𝜌𝜌𝑇𝑇𝐶𝐶𝐴𝐴𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀

𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇
�

4
 (62) 

where 𝛾𝛾𝑀𝑀𝑇𝑇  and 𝛾𝛾𝐴𝐴𝑇𝑇  are defined to introduce the effect of added mass as well as the rigidity 301 
changes at sea level and platform level to the natural mode shapes, respectively. To find the 302 
coefficient matrix D for each natural mode, Eq. (60) should be solved by substituting the 303 
wavenumbers obtained from the singularity of matrix P. Finally, the natural mode shapes of the 304 
system can be found by substituting variables found for each mode in Eqs. (57), (58) and (59). By 305 
merging them, it can be represented in a single function as 306 

 𝑋𝑋𝑀𝑀(𝑧𝑧) = 𝑋𝑋𝑇𝑇(𝑧𝑧) 𝐻𝐻1(𝑧𝑧) + 𝑋𝑋𝑀𝑀𝐴𝐴(𝑧𝑧)𝐻𝐻2(𝑧𝑧) + 𝑋𝑋𝑀𝑀𝑀𝑀(𝑧𝑧)𝐻𝐻3(𝑧𝑧), 0 ≤ 𝑧𝑧 ≤ 𝐿𝐿 (63) 

3.2. The solution for an external load  307 

The solution of an equation of motion in the form of  308 

 𝑥𝑥(𝑖𝑖𝑖𝑖)(𝑧𝑧, 𝑡𝑡) + A(𝑧𝑧) �̈�𝑥(𝑧𝑧, 𝑡𝑡)  =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
𝐻𝐻3(𝑧𝑧)𝑄𝑄(𝑧𝑧, 𝑡𝑡)  (64) 

can be obtained by using the expansion theorem to represent the motion of the tower in the form 309 
of  310 

 x(𝑧𝑧, 𝑡𝑡) = �𝑋𝑋𝑀𝑀(𝑧𝑧)𝑇𝑇𝑀𝑀(𝑡𝑡)
∞

𝑀𝑀=1

 (65) 

where the 𝑋𝑋𝑀𝑀(𝑧𝑧) is the natural mode of the system which satisfy  311 

 𝑋𝑋𝑀𝑀
(𝑖𝑖𝑖𝑖) −𝜔𝜔𝑀𝑀2𝐴𝐴(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧) = 0 (66) 

The above equation is obtained by substituting Eqs (50) into (43) and (44) and merging them by 312 
using Eq. (9). Substituting Eq. (65) into Eq. (64) yields  313 
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 �𝑋𝑋𝑀𝑀
(𝑖𝑖𝑖𝑖)(𝑧𝑧)𝑇𝑇𝑀𝑀(𝑡𝑡)

∞

𝑀𝑀=1

+ 𝐴𝐴(𝑧𝑧) �𝑋𝑋𝑀𝑀(𝑧𝑧)�̈�𝑇𝑀𝑀(𝑡𝑡)
∞

𝑀𝑀=1

=
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
𝐻𝐻3(𝑧𝑧)Q(z, t)  (67) 

Multiplying both sides by 𝑋𝑋𝑚𝑚(𝑧𝑧) and integrating over the length of the tower, it yields 314 

�𝑇𝑇𝑀𝑀(𝑡𝑡) � 𝑋𝑋𝑚𝑚(𝑧𝑧)𝑋𝑋𝑀𝑀
(𝑖𝑖𝑖𝑖)(𝑧𝑧) 𝑑𝑑𝑧𝑧

𝐿𝐿

0

∞

𝑀𝑀=1

+ ��̈�𝑇𝑀𝑀(𝑡𝑡)� 𝐴𝐴(𝑧𝑧)𝑋𝑋𝑚𝑚(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)𝑑𝑑𝑧𝑧
𝐿𝐿

0

∞

𝑀𝑀=1

=
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝐻𝐻3(𝑧𝑧)𝑄𝑄(𝑧𝑧, 𝑡𝑡)𝑋𝑋𝑚𝑚(𝑧𝑧)𝑑𝑑𝑧𝑧
𝐿𝐿

0
 

(68) 

Substituting 𝑋𝑋𝑀𝑀
(𝑖𝑖𝑖𝑖)from Eq. (66) into Eq. (68) results in 315 

�  � 𝐴𝐴(𝑧𝑧)𝑋𝑋𝑚𝑚(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧) 𝑑𝑑𝑧𝑧
𝐿𝐿

0
��̈�𝑇𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2𝑇𝑇𝑀𝑀(𝑡𝑡)�

∞

𝑀𝑀=1

=
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝐻𝐻3(𝑧𝑧)𝑄𝑄(𝑧𝑧, 𝑡𝑡)𝑋𝑋𝑚𝑚(𝑧𝑧)𝑑𝑑𝑧𝑧
𝐿𝐿

0
 (69) 

The natural modes are orthogonal and normalized. Therefore, the above equation is simplified to  316 

 �̈�𝑇𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2𝑇𝑇𝑀𝑀(𝑡𝑡) =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝐻𝐻3(𝑧𝑧)𝑄𝑄(𝑧𝑧, 𝑡𝑡)𝑋𝑋𝑚𝑚(𝑧𝑧)𝑑𝑑𝑧𝑧
𝐿𝐿

0
 (70) 

It should be noted that the natural modes are normalized such that 317 

 � 𝐴𝐴(𝑧𝑧) 𝑋𝑋𝑀𝑀2(𝑧𝑧) 𝑑𝑑𝑧𝑧
𝐿𝐿

0
= 1 (71) 

By finding 𝑇𝑇𝑀𝑀(𝑡𝑡) from solving Eq. (70), it can be substituted into Eq. (65) to obtain the response of 318 
the tower. 319 

3.3. Solution for the wave load  320 

The wave load acting on the tower was introduced in section 2.1. It was shown that Eq. (8) governs 321 
the motion of the tower with the external load in the form of Eq. (13). It is a function of horizontal 322 
particle wave velocity, 𝐷𝐷(𝑧𝑧, 𝑡𝑡) which is defined based on the 2𝑀𝑀𝑛𝑛 order wave theory [72] as  323 

 𝐷𝐷(𝑧𝑧, 𝑡𝑡) = 𝑓𝑓1 cosh(𝑘𝑘𝑧𝑧) cos(𝜔𝜔𝑡𝑡) + 𝑓𝑓2 cosh(2𝑘𝑘𝑧𝑧) cos (2𝜔𝜔𝑡𝑡) (72) 

where 324 

 𝑓𝑓1 =
𝜔𝜔𝐻𝐻

2 sinh(𝑘𝑘𝑑𝑑) (73) 
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 𝑓𝑓2 =
3

16
𝜔𝜔𝑘𝑘𝐻𝐻2

sinh4(𝑘𝑘𝑑𝑑) (74) 

Eq. (72) can be rewritten as 325 

 𝐷𝐷(𝑧𝑧, 𝑡𝑡) = 𝑓𝑓2 cosh(2𝑘𝑘𝑧𝑧) (𝑓𝑓(𝑧𝑧) cos(ωt) + cos(2ωt)) (75) 

where  326 

 𝑓𝑓(𝑧𝑧) =
8
3

sinh3(𝑘𝑘𝑑𝑑)
𝑘𝑘

cosh(𝑘𝑘𝑧𝑧)
cosh(2𝑘𝑘𝑧𝑧)  (76) 

Substituting Eq. (75) into Eq. (13) yields 327 

 𝑄𝑄(𝑧𝑧, 𝑡𝑡) = 𝐹𝐹1(𝑧𝑧, 𝑡𝑡) + 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) 𝐹𝐹2(𝑧𝑧, 𝑡𝑡)  (77) 

where 328 

 𝐹𝐹1(𝑧𝑧, 𝑡𝑡) = −𝜌𝜌𝑇𝑇𝐶𝐶𝑀𝑀𝐴𝐴𝜔𝜔𝑓𝑓2 cosh(2𝑘𝑘𝑧𝑧) (𝑓𝑓(𝑧𝑧) sin(𝜔𝜔𝑡𝑡) + 2 sin(2𝜔𝜔𝑡𝑡)) (78) 

 𝐹𝐹2(𝑧𝑧, 𝑡𝑡) =
1
2
𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑓𝑓22 cosh2(2𝑘𝑘𝑧𝑧) (𝑓𝑓(𝑧𝑧) cos(𝜔𝜔𝑡𝑡) + cos(2𝜔𝜔𝑡𝑡))2 (79) 

 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) = �+1, 𝐷𝐷(𝑧𝑧, 𝑡𝑡) > 0
−1, 𝐷𝐷(𝑧𝑧, 𝑡𝑡) < 0 (80) 

Eq. (77) is the wave load based on Morison’s formula rewritten from Eq. (13).  𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) is a step 329 
function representing the absolute value function in his formula. To find the response of an OWT 330 
under this load, it needs Eq. (70) to be solved after substituting Eq. (77) in it. The resultant will be 331 
an ordinary nonhomogeneous 2nd differential equation. The solution to this differential equation 332 
can be found by solving Eq. (70) for 𝐹𝐹1(𝑧𝑧, 𝑡𝑡) and 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) 𝐹𝐹2(𝑧𝑧, 𝑡𝑡) separately and adding them by 333 
using the superposition principle. Substituting 𝐹𝐹1(𝑧𝑧, 𝑡𝑡) as 𝑄𝑄(𝑧𝑧, 𝑡𝑡) into the right side of Eq. (70) and 334 
solving the integration with respect to the z variable analytically will lead to the trigonometrical 335 
functions depending on the temporal variable left on the right side of Eq. (70). The solution of it 336 
is pretty straightforward. So, the solution for 𝐹𝐹1(𝑧𝑧, 𝑡𝑡) can be proposed in the form of Eq. (65) 337 
where 𝑇𝑇𝑀𝑀(𝑡𝑡) is found by solving Eq. (70) for 𝐹𝐹1(𝑧𝑧, 𝑡𝑡). 338 

However, the solution for Eq. (70) when the second term of Eq. (77), 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) 𝐹𝐹2(𝑧𝑧, 𝑡𝑡) , is 339 
substituted as 𝑄𝑄(𝑧𝑧, 𝑡𝑡) in the right side of it will be challenging. This term consists of 𝐹𝐹2(𝑧𝑧, 𝑡𝑡) in Eq. 340 
(79) in which temporal and spatial functions are squared and 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) in Eq. (80) which is a step 341 
function depending on the sign of 𝐷𝐷(𝑧𝑧, 𝑡𝑡). To obtain a solution for Eq. (70) in this matter, it needs 342 
to work on these two parts to transfer them into the conventional form of functions with a 343 
combination of spatial functions and linear trigonometrical terms. To start, the squared term of 344 
Eq. (79) is expanded to obtain  345 
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𝐹𝐹2(𝑧𝑧, 𝑡𝑡) =
1
2
𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝑓𝑓22 𝑐𝑐𝑓𝑓𝑐𝑐ℎ2(2𝑘𝑘𝑧𝑧) (𝑓𝑓2(𝑧𝑧) 𝑐𝑐𝑓𝑓𝑐𝑐2(𝜔𝜔𝑡𝑡) + 2𝑓𝑓(𝑧𝑧) 𝑐𝑐𝑓𝑓𝑐𝑐(𝜔𝜔𝑡𝑡) 𝑐𝑐𝑓𝑓𝑐𝑐(2𝜔𝜔𝑡𝑡)

+ 𝑐𝑐𝑓𝑓𝑐𝑐2(2𝜔𝜔𝑡𝑡)) 
(81) 

By using the following trigonometrical relationships  346 

 𝑐𝑐𝑓𝑓𝑐𝑐2(𝜃𝜃) =
1
2

 (𝑐𝑐𝑓𝑓𝑐𝑐(2𝜃𝜃) + 1) (82) 

 𝑐𝑐𝑓𝑓𝑐𝑐(𝜃𝜃) 𝑐𝑐𝑓𝑓𝑐𝑐(2𝜃𝜃) =
1
2

(𝑐𝑐𝑓𝑓𝑐𝑐(𝜃𝜃) + 𝑐𝑐𝑓𝑓𝑐𝑐(3𝜃𝜃)) (83) 

and substituting them into Eq. (81), it yields 347 

 
𝐹𝐹2(𝑧𝑧, 𝑡𝑡) =

1
4
𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝑓𝑓22 cosh2(2𝑘𝑘𝑧𝑧) (𝑓𝑓2(𝑧𝑧) + 1 + 2𝑓𝑓(𝑧𝑧) cos(𝜔𝜔𝑡𝑡)

+ 𝑓𝑓2(𝑧𝑧) cos(2𝜔𝜔𝑡𝑡) + 2𝑓𝑓(𝑧𝑧) cos(3𝜔𝜔𝑡𝑡) + cos(4𝜔𝜔𝑡𝑡)) 
(84) 

which is a function in which the trigonometrical terms are linear. 348 

The value of 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) can be determined by the sign of 𝐷𝐷(𝑧𝑧, 𝑡𝑡). Recalling 𝐷𝐷(𝑧𝑧, 𝑡𝑡) from Eq. (75) and 349 
using the trigonometric relationship in Eq. (82) yields  350 

 𝐷𝐷(𝑧𝑧, 𝑡𝑡) = 𝑓𝑓2 cosh(2𝑘𝑘𝑧𝑧) (2 cos2(𝜔𝜔𝑡𝑡) +  𝑓𝑓(𝑧𝑧) cos(ωt) − 1) (85) 

The above equation reveals that the sign of 𝐷𝐷(𝑧𝑧, 𝑡𝑡) depends on the values of cos(ωt) and 𝑓𝑓(𝑧𝑧). 351 
To evaluate the sign of 𝐷𝐷(𝑧𝑧, 𝑡𝑡), one needs to find when and where it becomes zero. From Eq. (76), 352 
it can be found that 𝑓𝑓(𝑧𝑧) is continuously decreasing when z is increasing because the numerator 353 
is always smaller than the denominator. Also, cosh(𝑘𝑘𝑧𝑧) is always positive and sinh(𝑘𝑘𝑑𝑑) is positive 354 
as long as 𝑘𝑘𝑑𝑑 is positive. Therefore, 𝑓𝑓(𝑧𝑧) is always a positive quantity and does not influence the 355 
sign of 𝐷𝐷(𝑧𝑧, 𝑡𝑡). For this reason, the only term that governs the sign of 𝐷𝐷(𝑧𝑧, 𝑡𝑡) is 𝑓𝑓(𝑧𝑧) cos(𝜔𝜔𝑡𝑡) +356 
cos(2𝜔𝜔𝑡𝑡). For 𝑓𝑓(𝑧𝑧) > 1, there are two positive roots in the [0,2𝜋𝜋/𝜔𝜔] domain. They are  357 

 𝑡𝑡1(𝑧𝑧) =
1
𝜔𝜔

cos−1(
−𝑓𝑓(𝑧𝑧) + �𝑓𝑓2(𝑧𝑧) + 8

4
) (86) 

 𝑡𝑡2(𝑧𝑧) =
2𝜋𝜋
𝜔𝜔
− 𝑡𝑡1(𝑧𝑧) (87) 

Therefore,  358 

 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) = �+1,    0 ≤ 𝑡𝑡 < 𝑡𝑡1(𝑧𝑧) 𝑓𝑓𝑓𝑓 𝑡𝑡2(𝑧𝑧) < 𝑡𝑡 ≤
2𝜋𝜋
𝜔𝜔

−1,                  𝑡𝑡1(𝑧𝑧) < 𝑡𝑡 < 𝑡𝑡2(𝑧𝑧)               
 (88) 
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The above equation represents the value of 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) in the time domain of [0,2𝜋𝜋/𝜔𝜔]. For the time 359 
domain beyond it, the value of 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) can be evaluated by considering the time variable relative 360 
to a one-period time frame since 𝐹𝐹2(𝑧𝑧, 𝑡𝑡) is a periodic function. 361 

Therefore, Eq. (13) can be written in the form of  362 

𝑄𝑄(𝑧𝑧, 𝑡𝑡) = �𝑃𝑃1𝑖𝑖(𝑧𝑧) sin(𝑖𝑖𝜔𝜔𝑡𝑡)
2

𝑖𝑖=1

+ 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡)𝑃𝑃2(𝑧𝑧) + 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡)�𝑃𝑃3𝑗𝑗(𝑧𝑧) cos(𝑗𝑗𝜔𝜔𝑡𝑡)
4

𝑗𝑗=1

 (89) 

where 363 

 𝑃𝑃11(𝑧𝑧) = −𝜌𝜌𝑇𝑇𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀 𝜔𝜔 𝑓𝑓2 cosh(2𝑘𝑘𝑧𝑧)𝑓𝑓(𝑧𝑧) (90) 

 𝑃𝑃12(𝑧𝑧) = −2𝜌𝜌𝑇𝑇𝐶𝐶𝑀𝑀𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀𝜔𝜔𝑓𝑓2 cosh(2𝑘𝑘𝑧𝑧) (91) 

 𝑃𝑃2(𝑧𝑧) = 0.25 𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝑓𝑓22 cosh2(2𝑘𝑘𝑧𝑧) (𝑓𝑓2(𝑧𝑧) + 1) (92) 

 𝑃𝑃31(𝑧𝑧) = 0.25 𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝑓𝑓22 cosh2(2𝑘𝑘𝑧𝑧) 2𝑓𝑓(𝑧𝑧) (93) 

 𝑃𝑃32(𝑧𝑧) = 0.25 𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝑓𝑓22 cosh2(2𝑘𝑘𝑧𝑧)𝑓𝑓2(𝑧𝑧) (94) 

 𝑃𝑃33(𝑧𝑧) = 𝑃𝑃31(𝑧𝑧) (95) 

 𝑃𝑃34(𝑧𝑧) = 0.25 𝜌𝜌𝑇𝑇𝐶𝐶𝐷𝐷𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀𝑓𝑓22 cosh2(2𝑘𝑘𝑧𝑧) (96) 

The solution for Eq. (89) can be found by using the superposition principle since the properties of 364 
the system is linear. The solution for Eq. (89) can be expanded in the natural modes as follows: 365 

 𝑥𝑥(𝑧𝑧, 𝑡𝑡) = �𝑇𝑇𝑀𝑀(𝑡𝑡)𝑋𝑋𝑀𝑀(𝑧𝑧)
∞

𝑀𝑀=1

 (97) 

where 𝑇𝑇𝑀𝑀(𝑡𝑡) satisfies  366 

 �̈�𝑇𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2𝑇𝑇𝑀𝑀(𝑡𝑡) = �𝑣𝑣1n𝑖𝑖 sin(𝑖𝑖𝜔𝜔𝑡𝑡)
2

𝑖𝑖=1

+ 𝑣𝑣2𝑀𝑀 +�𝑣𝑣3𝑀𝑀𝑗𝑗 cos(𝑗𝑗𝜔𝜔𝑡𝑡)
4

𝑗𝑗=1

 (98) 

 𝑣𝑣1n𝑖𝑖 =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝑃𝑃1𝑖𝑖(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)𝑑𝑑𝑧𝑧
𝑛𝑛

0
 (99) 

 𝑣𝑣2n =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡)𝑃𝑃2(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)𝑑𝑑𝑧𝑧
𝑛𝑛

0
 (100) 

 𝑣𝑣3nj =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡)𝑃𝑃3j(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)𝑑𝑑𝑧𝑧
𝑛𝑛

0
 (101) 
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Solving Eq. (98) is possible by using the superposition principle in three parts namely 𝑇𝑇1𝑀𝑀(𝑡𝑡), 367 
𝑇𝑇2𝑀𝑀(𝑡𝑡), and 𝑇𝑇3𝑀𝑀(𝑡𝑡) where  368 

 �̈�𝑇1𝑀𝑀(𝑡𝑡) +𝜔𝜔𝑀𝑀2𝑇𝑇1𝑀𝑀(𝑡𝑡) = �𝑣𝑣1n𝑖𝑖 sin(𝑖𝑖𝜔𝜔𝑡𝑡)
2

𝑖𝑖=1

 (102) 

 �̈�𝑇2𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2𝑇𝑇2𝑀𝑀(𝑡𝑡) = 𝑣𝑣2𝑀𝑀 (103) 

 �̈�𝑇3𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2𝑇𝑇3𝑀𝑀(𝑡𝑡) = �𝑣𝑣3𝑀𝑀𝑗𝑗 cos(𝑗𝑗𝜔𝜔𝑡𝑡)
4

𝑗𝑗=1

 (104) 

Therefore, 369 

 𝑇𝑇𝑀𝑀(𝑡𝑡) = 𝑇𝑇1𝑀𝑀(𝑡𝑡) + 𝑇𝑇2𝑀𝑀(𝑡𝑡) + 𝑇𝑇3𝑀𝑀(𝑡𝑡) (105) 

For Eq. (100), substituting into Eq. (103) results in 370 

 �̈�𝑇2𝑀𝑀(𝑡𝑡) + 𝜔𝜔𝑀𝑀2𝑇𝑇2𝑀𝑀(𝑡𝑡) =
1

𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀
� 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡)𝑃𝑃2(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)𝑑𝑑𝑧𝑧
𝑛𝑛

0
 (106) 

The solution for the above equation can be represented as  371 

 𝑇𝑇2𝑀𝑀(𝑡𝑡) =
1
𝜔𝜔𝑀𝑀

1
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀

� � 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝜏𝜏)𝑃𝑃2(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧) sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝑧𝑧 𝑑𝑑𝜏𝜏
𝑛𝑛

0

𝑃𝑃

0
 (107) 

In the above equation, the function 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡)  poses challenges in solving the integration 372 
analytically. To solve the double integration in the above equation, it requires the removal 373 
𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) from inside the integrations to have a conventional double integration. As defined in Eq. 374 
(88), 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) governs the sign of 𝑣𝑣2𝑀𝑀. It can be either positive or negative, depending on which 375 
time frame it is evaluated. 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) is positive in the time frame of [0, 𝑡𝑡1(𝑧𝑧)], negative in the time 376 
frame of [𝑡𝑡1(𝑧𝑧), 𝑡𝑡2(𝑧𝑧)] , positive in the time frame of [𝑡𝑡2(𝑧𝑧), 𝑡𝑡2(𝑧𝑧) + 2𝑡𝑡1(𝑧𝑧)]  and so on. By 377 
introducing a new integer variable, m, by which 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) is positive when 𝑚𝑚 is an odd integer and 378 
an even number when it is negative. Therefore, 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) can be redefined as   379 

 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) = �+1, 𝑚𝑚 = 1, 3, 5, …               
−1, 𝑚𝑚 = 2, 4, 6, …                (108) 

Since 𝑡𝑡 ∈ [𝑡𝑡𝑒𝑒(𝑚𝑚−1)(𝑧𝑧), 𝑡𝑡𝑒𝑒𝑚𝑚(z)], one can conclude 380 

 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) = (−1)𝑚𝑚−1 (109) 

where 𝑡𝑡𝑒𝑒0(z) = 0 , 𝑡𝑡𝑒𝑒1(z) = 𝑡𝑡1(𝑧𝑧) , 𝑡𝑡𝑒𝑒2(z) = 𝑡𝑡2(𝑧𝑧) , 𝑡𝑡𝑒𝑒3(z) = 𝑡𝑡2(𝑧𝑧) + 2𝑡𝑡1(𝑧𝑧) , and so on. 381 
Substituting the above equation into Eq. (107) and reversing the integration order yields 382 
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𝑇𝑇2𝑀𝑀(𝑡𝑡) =
1
𝜔𝜔𝑀𝑀

1
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀

� 𝑃𝑃2(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)�� sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃1(𝑧𝑧)

0

𝑛𝑛

0

− � sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃2(𝑧𝑧)

𝑃𝑃1(𝑧𝑧)
+ � sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏

𝑃𝑃2(𝑧𝑧)+2𝑃𝑃1(𝑧𝑧)

𝑃𝑃2(𝑧𝑧)
−⋯

+ (−1)𝑚𝑚−1 � sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃

𝑃𝑃𝑒𝑒(𝑚𝑚−1)(𝑧𝑧)
�𝑑𝑑𝑧𝑧 

(110) 

Similarly, for Eq. (104), the solution is 383 

𝑇𝑇3𝑀𝑀(𝑡𝑡) = �
1
𝜔𝜔𝑀𝑀

1
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀

� 𝑃𝑃3j(𝑧𝑧)𝑋𝑋𝑀𝑀(𝑧𝑧)�� cos(𝑗𝑗𝜔𝜔𝑡𝑡) sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃1(𝑧𝑧)

0

𝑛𝑛

0

4

𝑗𝑗=1

− � cos(𝑗𝑗𝜔𝜔𝑡𝑡) sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃2(𝑧𝑧)

𝑃𝑃1(𝑧𝑧)

+ � cos(𝑗𝑗𝜔𝜔𝑡𝑡) sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃2(𝑧𝑧)+2𝑃𝑃1(𝑧𝑧)

𝑃𝑃2(𝑧𝑧)
−⋯

+ (−1)𝑚𝑚−1 � cos(𝑗𝑗𝜔𝜔𝑡𝑡) sin�𝜔𝜔𝑀𝑀(𝑡𝑡 − 𝜏𝜏 )� 𝑑𝑑𝜏𝜏
𝑃𝑃

𝑃𝑃𝑒𝑒(𝑚𝑚−1)(𝑧𝑧)
�𝑑𝑑𝑧𝑧 

(111) 

Therefore, a method of solving the double integration in Eq. (107) is proposed by removing the 384 
function 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡), or better to say the staging of the integration domain, as represented in Eqs. 385 
(110) and (111).  386 

4. Parametric study and numerical example 387 

In this section, the effect of the three solution variables, 𝛼𝛼3, 𝛼𝛼5, and 𝛼𝛼6 introduced in Eqs. (52), 388 
(55), and (56) representing foundation rotational stiffness, nacelle rotational mass, and nacelle 389 
mass, respectively, as well as the water depth on the natural wavenumbers, and the effect of 390 
added mass on the response are investigated.  391 

A numerical example is represented for a reference OWT. The geometry of the system has been 392 
chosen from the DTU 10 MW three-bladed OWT presented by Bak et al. [74]. The structural 393 
properties are summarized in Table 2. Note that the density is considered approximately 8% more 394 
than the regular steel density to take into account the mass of the components such as paint, 395 
bolts, flanges and stiffeners [75]. The average tower diameter is the average of the tower 396 
diameter along its height, and the average thickness is calculated from the actual tower mass [57].  397 

Table 3 represents the hydrodynamic loading parameters used in this study. The coefficients are 398 
chosen by the recommendations provided by DNV-RP-C205 [72].  399 

The values for the coupled springs model are provided in Table 4 by the work presented by 400 
Alkhoury et al. [60]. They calculated these values for the loose sand from the finite element model 401 
created for their study in which the same DTU 10 MW OWT is modeled and studied.  402 
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For this case, the solution variables are calculated and represented in Table 5. By using the 403 
procedure described in section 3.1, the natural frequencies of the tower, fn, are calculated for the 404 
first six modes and represented in Table 4. The corresponding mode shapes are illustrated in 405 
Figure 2 which is to satisfy equation (71). 406 

In Table 6, the natural frequencies are calculated for both cases of considering the added mass 407 
and without the effect of added mass.  As represented, including the effect of added mass in the 408 
system decreases the natural frequencies. This effect in the 1st mode is not as significant as in 409 
higher modes. The reason can be explained by using Figure 2 where the displacement of the 410 
underwater section in 1st mode is remarkably less compared to the higher modes. Besides, the 411 
presence of the weighty nacelle-rotor assembly mass dominates the motion of the 1st mode. 412 
Therefore, the motion of the system in the higher modes is less than in the 1st mode due to the 413 
substantial inertial force at the top of the system.  414 

4.1. Comparison with the finite element model and the degree of accuracy 415 

To evaluate the accuracy of the results, they are compared with the study conducted by Alkhoury 416 
at el. [48,60]. They created a detailed 3D finite element (FE) model within Abaqus/Standard to 417 
compute the natural frequencies of the DTU 10 MW OWT. They used shell elements to model the 418 
tower, including the diameter variation in length and solid elements for monopile. They also fully 419 
modeled the soil inside and outside the monopile to investigate the soil structure interaction. 420 
They also performed a parametric study on the 1st natural frequency by varying the water depth 421 
and monopile’s diameter and thickness. The 1st natural frequencies of the system are calculated 422 
and compared with the values they calculated for the loose sand that are represented in Table 7. 423 
Note that the values of the coupled springs used in this study are also calculated by them which 424 
are obtained from the FE model. The differences between the results obtained by the proposed 425 
model and the FE model reveal that the proposed model underestimated the 1st natural frequency 426 
for every water depth in the range between 13% to 16.8%. Alkhoury et al. [60] also compared the 427 
results of the full 3D model with the one in which the tower cross-section is constant for a water 428 
depth of 25 m. They found that simplifying modeling by considering the tower’s cross-section 429 
constant reduced the 1st natural frequency by 11% for the monopile with 8.3 m in diameter and 430 
9 cm in thickness. The findings of this paper also verify this underestimation with a 13.8% 431 
deviation. Therefore, this simplification underestimates the 1st natural frequency that requires 432 
using more complicated equations of motion to improve the accuracy of the natural frequency 433 
estimation.  434 

4.2. Parametric study on natural wavenumbers 435 

The effect of the water depth and solution parameters, 𝛼𝛼3 , 𝛼𝛼5 , and 𝛼𝛼6 , on the tower 436 
wavenumber, 𝛽𝛽𝑇𝑇𝑀𝑀, have been parametrically studied for the first 5 modes and the results have 437 
been represented in Figure 3 to Figure 6. In these figures, the tower wavenumbers are normalized 438 
to the values of 𝛽𝛽𝑇𝑇𝑀𝑀  when 𝛼𝛼3 = 𝛼𝛼5 = 𝛼𝛼6 = 𝑑𝑑 = 0. In this study, the ratio of water depth and 439 
tower length, 𝑑𝑑/𝐿𝐿, varies from 0 to 1, implying 𝑑𝑑 = 0 and 𝑑𝑑 = 𝐿𝐿, respectively. The variation of 440 
the solution variables as well as their corresponding variation of the parameters used in the 441 
parametric study, is represented in Table 8. It should be noted that the effect of the support’s 442 
lateral stiffness, 𝐾𝐾𝐿𝐿 , and cross-coupled stiffness, 𝐾𝐾𝐿𝐿𝑅𝑅 , which are used in variables 𝛼𝛼1  and 𝛼𝛼2 , 443 
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respectively, are well investigated in the literature in ref. [56].  So, their effect is not included in 444 
the parametric study. Besides, the section of the system is kept constant throughout the length 445 
for simplicity. 446 

4.2.1. The effect of water depth 447 

As illustrated in Figure 3, the wavenumber for the first 5 modes decreases by increasing the water 448 
depth regardless of the boundary conditions properties because of the presence of added mass 449 
to the system for the case of the properties introduced in Table 8. The value of the wavenumber 450 
in the 1st mode remains almost constant by increasing the water depth up to 0.4L and drops up 451 
to L for the case of 𝛼𝛼6 = 0 while the variation is almost constant for the case when 𝛼𝛼6 = 10−6. 452 
This can be because of the domination of the heavy mass in the motion of the system in the 1st 453 
mode. The decrease of the wavenumber for the 2nd mode starts at 0.2L and decreases 454 
approximately the same amount as the 1st mode at the sea level equal to the tower length for the 455 
cases when 𝛼𝛼6 = 0. The initiation of the drop of wavenumber for higher modes is almost half of 456 
the previous modes. It can be concluded that the effect of shallow water compared to the tower 457 
length and consequently the added mass in the lower modes is not significant as opposed to 458 
higher modes where it drops immediately by increasing sea level. This phenomenon may be 459 
important by the fact that the free sea level varies in each wave period. Therefore, the water 460 
surface variation can significantly change higher natural wavenumbers in the shallow water 461 
proportional to the tower length for each period of wave load. However, for higher values of 𝑑𝑑/𝐿𝐿, 462 
the lower natural modes are also influenced by sea level variation. This variation of the natural 463 
frequencies is also reported in the literature for the 1st natural modes based on the measured 464 
data in refs. [61,65]. 465 

The pattern of the variation of wavenumbers by varying the water depth shown in Figure 3 reveals 466 
a wavy-shape decrease in which the reduction rate changes in different mode numbers. It can be 467 
seen that the number of crests in this pattern is equal to the mode number. For instance, for the 468 
2nd mode, two crests at around 𝑑𝑑/𝐿𝐿 = 0.2  and 𝑑𝑑/𝐿𝐿 = 0.8 can be seen while 5 distinguished 469 
crests are visible in the figure for mode 5. Therefore, it can be concluded that the variation of 470 
wavenumbers versus 𝑑𝑑/𝐿𝐿 is converging to a linear reduction rate.  471 

4.2.2. The effect of support rotational stiffness, 𝜶𝜶𝟑𝟑 472 

Figure 4 illustrates the variation of the wavenumber against the different values of 𝛼𝛼3 in 1st and 473 
5th modes at 𝑑𝑑/𝐿𝐿 = 0.227 , for instance. As expected, by increasing 𝛼𝛼3 , or decreasing the 474 
support’s rotational stiffness, the value of the wavenumber decreases linearly in the 1st mode and 475 
nonlinearly in the 5th mode. By increasing the rotational softness of the support the wavenumbers 476 
for all natural modes decrease. This is because the higher rotational softness provides higher 477 
rotation in the support resulting in a reduction of the wavenumbers. In the 1st mode, the effect of 478 
𝛼𝛼3  is more than in the 5th mode. Also, the impact of the 𝛼𝛼3 is less in higher values of the 𝛼𝛼5 and 479 
𝛼𝛼6.  480 

4.2.3. The effect of nacelle-rotor assembly rotational moment of inertia, 𝜶𝜶𝟓𝟓 481 

The parametric study on 𝛼𝛼5 has been illustrated in Figure 5 for the 1st and 5th modes for two values 482 
of 𝛼𝛼3 = ∞ & 0.2 and 𝛼𝛼3 = 0 & 10−6 for 𝑑𝑑/𝐿𝐿 = 0.6 when the values of 𝛼𝛼5 varying between 0 and 483 
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10-3. As it can be seen in Figure 5-a, the wavenumber decreases by increasing 𝛼𝛼5 for the 1st mode. 484 
For the 6th mode, the natural wavenumber is almost insensitive to the variation of 𝛼𝛼5 despite a 485 
rapid decrease of natural wavenumber at small values of 𝛼𝛼5. The decrease of wavenumber can 486 
be explained by the fact that the rotational moment of inertia at the top of the tower increases 487 
the mass momentum of the system at the top. Therefore, the moment of inertia due to the 488 
nacelle-rotor assembly causes the system to oscillate slower, yielding to the lower values of the 489 
natural wavenumbers.  490 

4.2.4. The effect of the nacelle mass, 𝜶𝜶𝟔𝟔 491 

Figure 6 illustrates the variation of the wavenumber against 𝛼𝛼6 ranging from 0 to 10-6 for two 492 
values of 𝛼𝛼3 = ∞ & 0.2 and 𝛼𝛼5 = 0 & 10−3 in 1st and 5th mode when 𝑑𝑑/𝐿𝐿 = 0.6. A reduction can 493 
be seen in Figure 6-a for all cases of 𝛼𝛼3 and 𝛼𝛼5 in 1st mode. By increasing 𝛼𝛼6, which is the increase 494 
of the top mass with respect to the tower’s flexural rigidity, the motion of the tower becomes 495 
slower yielding to the smaller values of the natural wavenumbers. 496 

The reduction effect of 𝛼𝛼6 , which is proportional to the nacelle-rotor assembly mass, can be 497 
explained by the whipping effect of the tower. The inertia of the heavy mass at the top of the 498 
tower may cause a delayed motion relative to the mid-section of the tower in the same direction. 499 
When the mid-section of the tower reaches its maximum displacement, the top section is still 500 
moving imposing extra shear force to the mid-section pushing it to move further, consequently, 501 
increasing the oscillation period, decreasing the frequency, and decreasing the wavenumber of 502 
the system, see Eq. (50). Physically speaking, the heavy mass at the top of the tower produces an 503 
inertia force in the opposite direction of the motion which slows down the motion of the tower.  504 

In higher modes, as illustrated in Figure 6, the variation of the natural wavenumber of the system 505 
is a smooth reduction despite a rapid reduction in the small values of 𝛼𝛼6. The reason for that can 506 
be explained by the fact that the translational acceleration at the top of the tower in higher modes 507 
is relatively smaller than that of the lower modes due to the whipping effect explained earlier. 508 
This makes higher modes less sensitive to the variation of the nacelle mass. Furthermore, this 509 
effect can also be seen in Figure 3 where the curves are gathering together by increasing the mode 510 
number implying that the effect of the boundary conditions at both sides of the system are fading 511 
out of the natural wavenumbers.  512 

4.3. The response of the reference tower to the wave load 513 

The wave load introduced in Eq. (89) is applied to the system and the response is evaluated by Eq. 514 
(97). The properties of Stokes’s wave kinematics applied to Morison’s formula are briefly 515 
represented. The proposed model's ability to deal with the difficulties posed by the drag term is 516 
explained. Besides, the effect of the added mass on the response is investigated for a certain wave 517 
load configuration. Finally, a comparison is performed between the responses obtained by the 518 
proposed solution and the numerical one.  519 

4.3.1. The application of the wave load in the proposed solution 520 

The inherent properties of wave load based on Morison’s formula with Stokes's wave kinematics 521 
raise some difficulties in evaluating the response of the tower. Before presenting how the 522 
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proposed solution deals with these properties, one needs to discuss the properties of the wave 523 
load with Morison’s equation introduced in Eq. (89). To this end, an ocean wave with a height of 524 
5.1 m and a length of 132 m is chosen. This ocean wave represents a normal sea state of a water 525 
depth of 35 m in a wind speed of 26 m/s which is reported as a nonlinear ocean wave state in the 526 
ref. [76]. The properties of this ocean wave are represented in Table 9. The wave horizontal 527 
particle velocity, 𝐷𝐷(𝑧𝑧, 𝑡𝑡), introduced in Eq. (72) and the corresponding ocean wave load are drawn 528 
in Figure 7 a&b, respectively. As expected, the wave horizontal particle velocity is a periodic but 529 
non-symmetric function, which is the property of the 2nd order wave theory. The wave load is also 530 
not started from zero as shown in Figure 7 because of the presence of the cosine function in the 531 
drag term of the wave load formula. 532 

Moreover, Figure 7-a reveals that the wave horizontal particle velocity, 𝐷𝐷(𝑧𝑧, 𝑡𝑡), does not become 533 
zero at the same time for all values of z. This is the second property of the 2nd order wave theory 534 
that causes difficulties in obtaining the response of a system loaded with it. Therefore, the 535 
situation in which 𝐷𝐷(𝑧𝑧, 𝑡𝑡) = 0, depends on temporal and special variables. This is shown more 536 
precisely in Figure 8 for the variation of 𝐷𝐷(𝑧𝑧, 𝑡𝑡) in the z-direction for some instant of time around 537 
the first zero value. Therefore, two functions of 𝑡𝑡1(𝑧𝑧) and 𝑡𝑡2(𝑧𝑧) represented by Eqs. (86) and (87) 538 
are defined to evaluate the time when 𝐷𝐷(𝑧𝑧, 𝑡𝑡) is zero. The importance of defining these two 539 
functions is to evaluate the absolute value function in the drag term of the wave load, 540 
𝐷𝐷(𝑧𝑧, 𝑡𝑡)|𝐷𝐷(𝑧𝑧, 𝑡𝑡)|, in Eq. (13). To compensate for the absolute value function, 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) is defined as 541 
a function 𝑡𝑡1(𝑧𝑧) and 𝑡𝑡2(𝑧𝑧) in Eq. (80). This poses difficulties in evaluating Eqs. (100) and (101). By 542 
defining 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) as Eq. (109) and carrying out the integration, it becomes possible to remove 543 
𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡). In addition, changing the integration order by which the temporal integration is taken 544 
first in the domain as a function of  𝑡𝑡1(𝑧𝑧)  and 𝑡𝑡2(𝑧𝑧)  results in trigonometrical functions. By 545 
introducing 𝑡𝑡1(𝑧𝑧) and 𝑡𝑡2(𝑧𝑧) and their combinations in periods, the special outer integration can 546 
be evaluated analytically since those are functions of reversed trigonometrical functions as can 547 
be seen in Eqs. (86) and (87). Therefore, the response can be obtained as a function without any 548 
need for numerical evaluation. 549 

The presence of 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) in the wave load is quite essential. To show this, an imaginary wave load 550 
based on Eq. (77) is defined as 𝐹𝐹1(𝑧𝑧, 𝑡𝑡) + 𝐹𝐹2(𝑧𝑧, 𝑡𝑡). By drawing it together with the wave load in 551 
Eq. (77), the effect of the 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) reveals itself. Figure 9 illustrates this comparison at the sea 552 
level, z=35. It can be seen that 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) causes significant changes in the wave load when 𝐷𝐷(𝑧𝑧, 𝑡𝑡) 553 
is negative between 𝑡𝑡1(𝑧𝑧) and 𝑡𝑡2(𝑧𝑧). Therefore, its presence cannot be neglected in evaluating 554 
the response. However, the severity of this effect may be different in other wave configurations.  555 

4.3.2. The response of the reference tower to the 2nd wave load 556 

The response history of the system is illustrated in Figure 10 at different heights in which the first 557 
5 natural modes are participating. The selected wave height and length correspond to a wave 558 
frequency of 0.1 Hz, T= 9.52 sec, which is way below the first natural frequency of the reference 559 
tower, 0.1663 Hz, represented in Table 9. As seen in Figure 10, the maximum deflection occurs at 560 
the top of the towers reaching 0.13 m. In addition, the time history deflection curve in Figure 10 561 
reveals that the responses are a non-periodic vibration even though the loading is periodic. This 562 
can be because of the indirect presence of the term 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) in the response in Eqs. (110) and 563 
(111). The indirect presence of 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) in the response shows itself by being displayed in different 564 
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time frames when the direction of the wave horizontal particle velocity changes. This triggers the 565 
transient responses at the beginning of each stage causing the response to be non-periodic. 566 
Moreover, Figure 10 shows that the natural frequencies originating from the transient response 567 
are carried by the steady-state response. This also causes the response to be non-periodic. 568 

The deflection of the reference tower at the early stages of motion is illustrated in Figure 11. The 569 
motion starts from the rest initial condition and follows by imposing the wave load up to sea level, 570 
in this case, 35 m, causing the lower sections of the tower to move while the movement of the 571 
upper section is delayed because of the nacelle mass and tower softness. This can be referred to 572 
as the whipping effect when the motion of the upper sections is amplified by the motion of the 573 
lower sections of the tower. This effect can be seen clearly in the motion of the reference tower 574 
which has low stiffness or heavy nacelle mass at the top. Moreover, by looking at the deflection 575 
of the reference tower in Figure 11 for time instants from t/T=0.08 up to 0.1, T being the period 576 
of the wave which is 9.6 sec, it implies that the motion of the tower in low sections is slowing 577 
down while the upper section is still moving towards the negative deflections representing an 578 
instance for the whipping effect. It should be mentioned that the wave load at zero time is a 579 
positive value, as seen in Figure 7-b, decreasing in the early stages of the loading and reversing its 580 
direction as time passes.  581 

4.3.3. The effect of added mass on the response 582 

The inertia term of Morison’s formula adds an extra mass to the system up to the sea level. To 583 
represent its effect on the response of the reference tower, it is evaluated by considering 𝐶𝐶𝐴𝐴 = 1 584 
and 𝐶𝐶𝐴𝐴 = 0 to simulate a system with and without the presence of the added mass, respectively, 585 
and the time history responses are illustrated in Figure 12 at the nacelle level. As mentioned in 586 
section 4.1.1 and illustrated in Figure 3, the value of the system’s natural wavenumbers decreases 587 
by increasing the sea level resulting from the decrease in natural frequencies based on Eq. (50).  588 
This leads the system with added mass oscillating with higher natural periods falling forward than 589 
the one without added mass, as seen in Figure 12. Furthermore, as seen in Table 6, the added 590 
mass is significantly influenced in the 2nd and higher natural frequencies in the case of the system 591 
of this study. The differences between the natural frequencies in higher modes are visible in 592 
Figure 12.  593 

The effect of the added mass up to the sea level can also be seen in the early stages of the loading 594 
in Figure 13. The added mass increases the inertia force of the system. The higher the inertia force  595 
is, the slower the vibration results. Therefore, the system's motion with added mass included 596 
delays compared to the one without the added mass as seen in Figure 13. It is also revealing that 597 
the added mass is appended to the system up to sea level, providing lower deflection at the lower 598 
sections of the system while the upper sections have almost the same deflection. The overall 599 
interpretation from Figure 13 reveals that the effect of the added mass up to the sea level is 600 
successfully simulated by the proposed solution.  601 

4.3.4. Comparison with numerical results 602 

The derived formulation of the response of the system is based on the expansion in the natural 603 
modes. The accuracy of the solution depends on the number of natural modes participating in the 604 
solution. For a continuous system, an infinite number of modes is expected. The higher number 605 
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of modes participating in the solution, the more accurate the response obtained. It is worthwhile 606 
to mention that the Bernoulli-Euler beam theory in the form of Eq. (1) is applicable for the lower 607 
natural modes only. In higher modes, the shearing deformation and rotatory inertia significantly 608 
affect the natural frequencies [50]. Therefore, reaching higher natural modes requires the 609 
equation of motion with those effects considered. However, as far as the wave load by using 610 
Morison’s formula matters, its validity requires that the ocean wavelength should be five times 611 
[72] higher than the diameter of the slender structure. This limitation causes the frequency of the 612 
ocean wave load to be lower than the system’s first natural frequency. Therefore, only the first 613 
few natural modes may be enough to evaluate the tower's response.  614 

To confirm the accuracy of the proposed solution, a numerical evaluation is performed by using 615 
the standard commercial software Mathematica® [77]. The partial differential numerical solver, 616 
NDSolve, is chosen to solve Eq. (8) by introducing the wave velocity from Eq. (72). The properties 617 
of the system chosen for the numerical evaluation are represented in Table 10. 618 

The wave height, 𝐻𝐻, and length, 𝜆𝜆, are selected to be 3 and 100 meters, respectively. By setting 619 
MaxStepSize equal to 1.4, and AccuracyGoal and PrecisionGoal to 6, NDsolve solves the PDE by 620 
using the Hermite method in orders of 7 and 3 in 𝑧𝑧 and t variables, respectively, in the domain of 621 
𝑧𝑧 ∈ [0,115] and 𝑡𝑡 ∈ [0,34]. Besides, the first 6 natural modes of the tower with the properties 622 
and loading the same as the numerical one are selected for participating in the proposed solution 623 
results. The comparison between the response obtained by the numerical solution and the 624 
proposed one verifies the perfect agreement between the two methods, as illustrated in Figure 625 
14.  626 

5. Conclusions 627 

An analytical solution for the modal analysis of offshore wind turbine strucutres has been 628 
developed. The solution includes the wave-structure interaction by appending an extra mass to 629 
the system underwater. In an effort to propose a more accurate solution based on the classical 630 
analytical methods, the flexibility of the foundation as well as the inertial forces induced by the 631 
nacelle-rotor assembly translational and rotational inertia are assigned to the boundaries of the 632 
system. Besides, the considerable cross-sectional changes at the platform level where the 633 
monopile is connected to the tower by a transition part are taken into account in the solution. 634 
Overall, a system of three partial differential equations consisting of 12 boundary conditions and 635 
2 initial conditions has been solved using the expansion theorem.  636 

The effect of water depth, foundation rotational flexibility, nacelle mass, and nacelle-blades 637 
rotational inertia on the system’s natural wavenumber were studied parametrically for the first 5 638 
natural modes of the system. The results reveal that: 639 

1. The natural wavenumber decreases by increasing the water depth to the tower-length 640 
ratio, 𝑑𝑑/𝐿𝐿, for all natural modes producing a wavy pattern based on the modal number. 641 
The effect of the foundation rotational flexibility, nacelle-blades rotational inertia, and 642 
nacelle mass on the natural wavenumber decreases by increasing the modal number for 643 
all sea level values. More importantly, the variation of the natural wavenumbers by 644 
variation of the sea level implies that the natural wavenumbers or natural frequencies of 645 
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the system vary during sea level variation during a period of wave load. Therefore, the 646 
system's natural frequencies can be considered a time-dependent quantity. It can be 647 
essential in the assessment of the ringing-type resonance of the system and fatigue 648 
loading. 649 

2. The system’s natural frequencies decrease by increasing the foundation rotational 650 
flexibility, mass and the rotational inertial of the nacelle-rotor assembly. This pattern has 651 
been seen at all water depths.   652 

3. The proposed model, based on the simplification of considering the constant cross-653 
section for the tower, underestimates the 1st natural frequency of the system between 654 
13% to 16.8%. Reaching higher accuracy requires establishing more complicated 655 
equations of motions by accounting for the cross-sectional variation of the tower. 656 
However, the proposed method is straightforward and agile in calculating cost-efficient 657 
natural frequencies. 658 

The solution for the undamped response of the tower under the wave load with 2nd order Stokes’s 659 
wave theory based on Morison’s formula has been developed as an analytical function. Two major 660 
contributions are  661 

1. The drag term of Morison’s formula, neglected by many researchers, is successfully 662 
included in finding the response of the system by defining 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) to remove the absolute 663 
value function in the drag term. 664 

2. The comparison made between the responses of the system with and without added 665 
mass showed that the presence of added mass up to the sea level changes the shape of 666 
the response. This also can be important in fatigue evaluation of the system by providing 667 
a more realistic estimation of the stress status in the structure.   668 
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Table 1- Symbols definition 
Symbol Structural properties 

𝐿𝐿 Nacelle level from the seabed (𝑚𝑚) 
𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 Tower length (𝑚𝑚) 
𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇  Tower average diameter (𝑚𝑚) 
𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 Tower average thickness (𝑚𝑚) 
𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 Tower mass of unit length (k𝑔𝑔/𝑚𝑚) 
𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 Tower Young's modulus (𝐺𝐺𝑃𝑃𝑎𝑎) 
𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 Flexural rigidity of the tower, i.e., 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇  (𝐺𝐺𝑃𝑃𝑎𝑎.𝑚𝑚4) 
𝑀𝑀𝑀𝑀 Nacelle-Rotor assembly mass (k𝑔𝑔) 
𝐽𝐽𝑝𝑝 Nacelle-Rotor assembly rotational inertia (k𝑔𝑔.𝑚𝑚2) 
𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  Platform level from the seabed (𝑚𝑚) 
𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀  Monopile average diameter (𝑚𝑚) 
𝑡𝑡𝑀𝑀𝑇𝑇𝑀𝑀 Monopile average thickness (𝑚𝑚) 
𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀 Monopile cross-sectional area (𝑚𝑚2) 
𝑚𝑚𝑀𝑀𝑇𝑇𝑀𝑀 Monopile mass of unit length (k𝑔𝑔/𝑚𝑚) 
𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀  Monopile Young's modulus (𝐺𝐺𝑃𝑃𝑎𝑎) 
𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀 Flexural rigidity of the monopile, i.e., 𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀 (𝐺𝐺𝑃𝑃𝑎𝑎.𝑚𝑚4) 
𝜌𝜌𝑠𝑠 Material Density (k𝑔𝑔/𝑚𝑚3) 

Symbol Support Stiffness 

𝐾𝐾𝐿𝐿 Lateral stiffness (𝐺𝐺𝐺𝐺/𝑚𝑚) 
𝐾𝐾𝐿𝐿𝑅𝑅  Cross stiffness (𝐺𝐺𝐺𝐺) 
𝐾𝐾𝑅𝑅  Rotational stiffness (𝐺𝐺𝐺𝐺.𝑚𝑚) 

Symbol Hydrodynamic loading properties 

𝑑𝑑 Water depth (𝑚𝑚) 
𝐶𝐶𝐷𝐷 Drag coefficient 
𝐶𝐶𝐴𝐴 Added mass coefficient 
𝐶𝐶𝑀𝑀 Inertia coefficient 
𝜌𝜌𝑇𝑇 Sea water density (k𝑔𝑔/𝑚𝑚3) 
𝜆𝜆 Ocean wavelength (𝑚𝑚) 
H Ocean wave height (𝑚𝑚) 
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Figure 1- a) A typical OWT configuration, b) Schematic of the model, c) wave loading direction and system 

coordinates 
 927 
 928 
 929 

Table 2- DTU 10 MW OWT structural properties [74] 
 Symbol Value 
Tower length (m) 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 119 
Tower average diameter (m) 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇  9.6 
Tower average thickness (m) 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 0.0295 
Tower Young's modulus (GPa) 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 210 
Nacelle-Rotor assembly mass (kg) 𝑀𝑀𝑀𝑀 676723 
Nacelle-Rotor assembly rotational 
inertia (kg.m2) 

𝐽𝐽𝑝𝑝 1.7 x 108 

Platform level from mudline (m) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  45 
Monopile average diameter (m) 𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀  8.3 
Monopile average thickness (m) 𝑡𝑡𝑀𝑀𝑇𝑇𝑀𝑀 0.09 
Monopile Young's modulus (GPa) 𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀  210 
Material density (kg/m3) 𝜌𝜌𝑠𝑠 8500 
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 931 
Table 3- Hydrodynamic loading properties 

 Symbol Value 
Water depth (m) 𝑑𝑑 35 
Drag coefficient 𝐶𝐶𝐷𝐷 0.65 
Added mass coefficient 𝐶𝐶𝐴𝐴 1 
Inertia coefficient 𝐶𝐶𝑀𝑀 2 
Sea water density (kg/m3) 𝜌𝜌𝑇𝑇 1025 

 

 932 
Table 4- The values of the coupled springs [60] 

 Symbol Value 
Lateral stiffness (GN/m) 𝐾𝐾𝐿𝐿 2.48 
Cross stiffness (GN) 𝐾𝐾𝐿𝐿𝑅𝑅  -20.7 
Rotational stiffness (GN.m) 𝐾𝐾𝑅𝑅  412 

 

 933 
 934 
 935 

Table 5- Solution variables  

𝑑𝑑/𝑙𝑙 𝑎𝑎𝑇𝑇𝑇𝑇𝑇𝑇 𝑎𝑎𝑀𝑀𝐴𝐴 𝑎𝑎𝑀𝑀𝑀𝑀  𝛼𝛼1 𝛼𝛼2 𝛼𝛼3 𝛼𝛼4 𝛼𝛼5 𝛼𝛼6 𝛾𝛾𝐴𝐴𝑇𝑇  𝛾𝛾𝑀𝑀𝑇𝑇 

0.227 12125 14585 7501 5.84E-04 -4.88E-03 0.097 0.188 1.59E-04 8.48E-07 0.911 1.271 
 

 936 
 937 

Table 6- The natural mode frequencies of the system with and without the effect of added mass 

Mode Number 
fn (Hz) 

Difference (%) 
No added mass Added mass 

1 0.166561 0.166393 -0.1 
2 1.13463 1.0322 -9.0 
3 2.3888 1.98416 -16.9 
4 4.3686 3.8174 -12.6 
5 8.025 6.593 -17.8 
6 12.198 9.8905 -18.9 
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Figure 2- The normalized natural mode shapes of the system with the added mass (MSL=Mean Sea Level) 

 939 
 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
 952 
 953 
 954 
 955 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Offshore Mechanics and Arctic Engineering. Received April 22, 2022;
Accepted manuscript posted August 22, 2022. doi:10.1115/1.4055402
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/doi/10.1115/1.4055402/6913132/om
ae-22-1062.pdf by Stavanger U

niversity user on 01 Septem
ber 2022



The Journal of Offshore Mechanics and Arctic Engineering (OMAE) 

36 
 

Table 7- Comparison of the 1st natural frequency between the proposed method and full 3D FE-based model by [60] 

Water 
depth (m)  

Platform 
level (m) 

Monopile 
outer 

diameter (m) 

Monopile 
thickness 

(cm) 

1st Natural Frequency (Hz) Deviation 
(%) 

Alkhoury et al. [60] Proposed Model  

25 35 

8.3 
9 0.2009 0.1731 -13.8 

10 0.202 0.1743 -13.7 
12 0.2056 0.1771 -13.9 

9 
10 0.2074 0.177 -14.7 
12 0.2112 0.1795 -15.0 
14 0.2158 0.1813 -16.0 

10 
11 0.2177 0.1809 -16.9 
13 0.2186 0.1828 -16.4 
15 0.2207 0.1837 -16.8 

35 45 

8.3 
9 0.1909 0.1663 -12.9 

10 0.1928 0.1682 -12.8 
12 0.197 0.171 -13.2 

9 
10 0.1992 0.1719 -13.7 
12 0.2038 0.1734 -14.9 
14 0.2092 0.176 -15.9 

10 
11 0.2096 0.1768 -15.6 
13 0.2129 0.1784 -16.2 
15 0.2155 0.1795 -16.7 

45 55 

8.3 
9 0.1811 0.1592 -12.1 

10 0.1836 0.1614 -12.1 
12 0.189 0.1648 -12.8 

9 
10 0.1909 0.1658 -13.1 
12 0.1962 0.1686 -14.1 
14 0.2023 0.1708 -15.6 

10 
11 0.203 0.1717 -15.4 
13 0.207 0.1736 -16.1 
15 0.2101 0.175 -16.7 
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Table 8- The range of solution variables used for the parametric study and the equality to the parameters 

Solution variable Equivalent to 

𝛼𝛼1 = ∞ 𝐾𝐾𝐿𝐿 = ∞ 

𝛼𝛼2 = 0 𝐾𝐾𝐿𝐿𝑅𝑅 = 0 

0.2 < 𝛼𝛼3 < ∞ 271 (𝐺𝐺𝐺𝐺.𝑚𝑚) < 𝐾𝐾𝑅𝑅 < ∞ 

𝛼𝛼4 = 1 𝐸𝐸𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀 = 𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 = 1357 𝐺𝐺𝐺𝐺.𝑚𝑚2 

0 < 𝛼𝛼5 < 10−3 0 < 𝐽𝐽𝑃𝑃 < 1.35 × 109 𝐾𝐾𝑔𝑔.𝑚𝑚2 

0 < 𝛼𝛼6 < 10−6 0 < 𝑀𝑀𝑀𝑀 < 1357 𝑡𝑡𝑓𝑓𝑛𝑛 

𝛾𝛾𝐴𝐴𝑇𝑇 = 1 𝐴𝐴𝑀𝑀𝑇𝑇𝑀𝑀 = 𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝑇 

𝛾𝛾𝑀𝑀𝑇𝑇 = 1.36 See Eq. (62) 
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Figure 3- Variation of system’s wavenumber, 𝛽𝛽𝑇𝑇𝑀𝑀, for different values of the water depth ratio, 𝑑𝑑/𝐿𝐿, in the first 5 

modes 
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Figure 4- Variation of normalized wavenumber of the system for the above water section, 𝛽𝛽𝑇𝑇𝑀𝑀, for different values of 

𝛼𝛼3 in the 1st and 5th modes. 
 973 

 
Figure 5- Variation of normalized wavenumber of the system for the above water section, 𝛽𝛽𝑇𝑇𝑀𝑀, for different values of 

𝛼𝛼5 in the 1st and 5th modes. 
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Figure 6- Variation of normalized wavenumber of the system for the above water section, 𝛽𝛽𝑇𝑇𝑀𝑀, for different values of 

𝛼𝛼6 in the 1st and 5th modes. 
 975 
 976 

 
Figure 7- a) The wave horizontal particle velocity, and b) wave load obtained from Morison’s equation, for H=5.1 m 

and 𝜆𝜆=132m.  
 977 
 978 

Table 9- Specification of the ocean wave applied to the reference tower 

Height  Ocean 
wavelength  Water depth Frequency  Period 𝑯𝑯

𝒈𝒈 𝑻𝑻𝟐𝟐
 

𝒅𝒅
𝒈𝒈 𝑻𝑻𝟐𝟐

 
𝑯𝑯
𝒅𝒅

 
Ursell Number 

H (m) 𝝀𝝀 (m) d (m) f (Hz) T (sec) Ur 

5.1 132 35 0.105 9.53 0.00572 0.0392 0.145 2.072 
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Figure 8- The variation of the wave horizontal particle velocity at around 𝑡𝑡1(𝑧𝑧), for wave with 𝐻𝐻 = 5.1 𝑚𝑚 and 𝜆𝜆 =

132 𝑚𝑚.  
 981 

 
Figure 9- The effect of the term 𝐻𝐻𝑃𝑃(𝑧𝑧, 𝑡𝑡) in Morison’s formula with the 2nd order wave kinematics for 𝐻𝐻 = 5.1 𝑚𝑚 and 

𝜆𝜆 = 132 𝑚𝑚 at z=35 m. 
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Figure 10- The response of the reference tower at different heights. 

 984 

 
Figure 11- The response of the reference tower at the early stages of the motion. 
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 985 

 
Figure 12- Comparison between the response of the tower at the hub level with and without the added mass. 
 986 

 
Figure 13- Comparison between the response of the reference tower with and without the added mass at early stages 

of the motion 
 987 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Offshore Mechanics and Arctic Engineering. Received April 22, 2022;
Accepted manuscript posted August 22, 2022. doi:10.1115/1.4055402
Copyright © 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/offshorem

echanics/article-pdf/doi/10.1115/1.4055402/6913132/om
ae-22-1062.pdf by Stavanger U

niversity user on 01 Septem
ber 2022



The Journal of Offshore Mechanics and Arctic Engineering (OMAE) 

44 
 

Table 10-The properties of an OWT for the numerical comparison 
Structural properties Symbol Value Support Stiffness Symbol Value 
Tower length (m) 𝐿𝐿𝑇𝑇𝑇𝑇𝑇𝑇 70 Lateral stiffness (GN/m) 𝐾𝐾𝐿𝐿 ∞ 
Tower average diameter (m) 𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇  6 Cross stiffness (GN) 𝐾𝐾𝐿𝐿𝑅𝑅  0 
Tower average thickness (m) 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 0.045 Rotational stiffness (GN.m) 𝐾𝐾𝑅𝑅  205.72 
Tower Young's modulus (GPa) 𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇 210    

Nacelle-Rotor assembly mass (kg) 𝑀𝑀𝑀𝑀 0 Hydrodynamic loading 
properties Symbol Value 

Nacelle-Rotor assembly rotational 
inertia (kg.m2) 

𝐽𝐽𝑝𝑝 0 Water depth (m) 𝑑𝑑 30 

Platform level from mudline (m) 𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  45 Drag coefficient 𝐶𝐶𝐷𝐷 0.65 
Monopile average diameter (m) 𝐷𝐷𝑀𝑀𝑇𝑇𝑀𝑀  6 Added mass coefficient 𝐶𝐶𝐴𝐴 1 
Monopile average thickness (m) 𝑡𝑡𝑀𝑀𝑇𝑇𝑀𝑀 0.045 Inertia coefficient 𝐶𝐶𝑀𝑀 2 
Monopile Young's modulus (GPa) 𝐸𝐸𝑀𝑀𝑇𝑇𝑀𝑀  210 Sea water density (kg/m3) 𝜌𝜌𝑇𝑇 1020 
Material Density (kg/m3) 𝜌𝜌𝑠𝑠 7820    

 

 988 
 989 

 
Figure 14- Comparison of the results of the proposed solution with the numerical one at z=115 m. 
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