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Abstract: Several past studies have shown the use of glass fibre-reinforced polymer (GFRP) bars to
alleviate the reinforced steel rusting issue in different concrete structures. However, the practise of
GFRP bars in concrete columns has not yet achieved a sufficient confidence level due to the lack
of a theoretical model found in the literature. The objective of the current study is to introduce a
novel prediction model for the axial capability of concrete columns made with bars of GFRP. For this
purpose, two different approaches, such as data envelopment analysis (DEA) and artificial neural
networks (ANNs) modelling, are used on a collected dataset of 266 concrete column specimens
made with GFRP bars from previous literature works. Eight parameters were used to predict
the axial performance of GFRP-based RC columns. The proposed DEA and ANNs predictions
demonstrated a good correlation with the testing dataset, having R2 values of 0.811 and 0.836,
respectively. A comparative analysis of the DEA and ANNs models is undertaken, and it was found
that the suggested models are capable of accurately forecasting the structural response of GFRP-made
RC column structures. Then, a comprehensive parametric analysis of 266 GFRP-based columns was
performed to study the effect of different materials and their geometrical shape.

Keywords: sustainability; axial capacity; construction; glass fibre-reinforced polymer (GFRP);
reinforced concrete; data envelopment analysis

1. Introduction

Steel corrosion is considered an important parameter for erosion in steel structures or
infrastructures due to chloride attacks, such as those in coastal and freezes thaw salt cli-
mates [1–5]. However, structural deterioration such as cracking and spalling of the concrete
cover would be a common and frequent issue throughout its service life, compromising
the load-bearing capability of the RC structures or members. Nowadays, fibre-reinforced
polymer (FRP) bars are widely used due to their resistance property against steel corrosion.
FRP is also being used as interior stiffeners of bridge components in various countries,
including Canada [6,7]. GFRP (Glass-FRP) bars also have been promoted to be applied
in construction uses because of their inexpensive cost and excellent strength at low steel
proportion [5]. They have become increasingly important in certain concrete structures that
have been subjected to a particularly harsh environment [8].
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Fibre-reinforced polymers, also called FRPs, have several advantages as compared to
conventional or corrosive steel bars, including increased tensile strength, reduced mainte-
nance costs, reduced temperature conductivity, chemical inertness, and electromagnetic
resistance [9–11]. The FRP bars are used as longitudinal (lateral) reinforcement in reinforced
concrete members, i.e., beams or columns, to provide lateral control against buckling due
to their lower elastic modulus over steel bars. In the present hostile conditions, FRPs
have become a suitable alternative to traditional steel in RC structures [12–16]. FRP rein-
forcement has been used as a substitute for steel in bridge decks, especially in the US and
Canada [17]. Regarding this, no guidelines or standards for GFRP-reinforced columns have
been proposed in North America. Similarly, the usage of GFRP bars as longitudinal braces
in columns is not suggested by Canadian codes [18,19]. This is since the GFRP-reinforced
sections exhibit unstable compressive behaviour. However, statistics and research articles
on the structural performance of GFRP-RC (columns) are scarce in the literature.

In the past few decades, GFRP reinforcement has been used to provide flexural or shear
support in RC structures [20,21]. Recently, the structural performance of GFRP steel bars
used as transverse or longitudinal concrete reinforcement columns to withstand axial loads
and flexural moments has gained considerable interest [22–24]. Numerous researchers are
attempting to determine the strength reducing parameters for GFRP concrete reinforcement
columns using a similar approach to steel bars [25–28]. Therefore, it is necessary to refine
the strength decrease variables using a vast dataset of GFRP reinforced columns made
by different studies in previous studies. Moreover, there are obvious limitations to such
approaches used to estimate the behaviour of GFRP-reinforced compression members.
For example, the tensile or compressive strengths of GFRP-reinforcement are not quite sim-
ilar, and the contribution of GFRP reinforcement against the axial compressive abilities of
the GFRP-RC compression member is not considered. The axial capacity and even ductility
of GFRP bars in compression members are improved by increasing the confinement of
concrete composite materials. In contrast, the axial load capacity was affected as compared
to a concrete column embedded with steel bars [29–33]. Neglecting the impact of GFRP
bars on the axial response of structural elements made with GFRP bars is conservative.
The effects of GFRP bars on reinforced concrete columns overlap with the laboratory tests
performed when examining the structural stability of GFRP bars [24,34].

In the previous literature, there are numerous studies on the employment of FRP bars
in various structural elements [35–48]. De Luca et al. [49] studied the effects of glass FRP
bars in compression members on a large scale. It was established that the axial load design
of concrete compression members with GFRP was not like that of reinforced concrete
columns made with steel bars. Moreover, a comparison was carried out between steel and
GFRP bars in compression members. The samples were cast with both reinforcement bars
and had equivalent dimensions. The central-strengthened GFRP concrete proved to have
had no effect on the axial capacity of the columns. Moreover, samples with a smaller tie
distance showed more ductile behaviour as compared to those with a wider tie distance.
The presence of GFRP bars showed a 5 to 11% improvement in axial capacity when sufficient
vertical ties were used [25,49,50]. The behaviour of square GFRP-based RC columns was
studied by Tobbi et al. [25]. It is evident that the application of GFRP ties was an effective
means of confining the concrete core. It was experimentally found that by reducing the tie
spacing gap ranging between 120−80 mm, the axial load-bearing ability of the columns
was raised by around 20%. Another researcher [51] investigated the load capacity of
GFRP reinforcement in compression members. It was found that to achieve equivalent
performance as shown by reinforced concrete made with steel bars, the hybrid columns
should have higher GFRP spiral and vertical or longitudinal reinforcement ratios. Similarly,
the authors developed equations for the prediction of stress-strain mechanisms along with
axial strength in circular columns made of reinforced CFRP [26,52,53]. It was concluded
that the longitudinal reinforcement of CFRP gave a 5 to 10% increase in ultimate axial
strength. Hadi et al. [54] investigated 12 samples made of GFRP-reinforced bars measuring
205 and 800 mm in diameter and height, respectively. It was found that neglecting the
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presence of GFRP bars in column axial performance leads to a significant variation in
experimental testing and empirical findings.

The empirical evidence estimates for the FRP-based RC columns were established
with a restricted number of prior data, worksheets, and curve-fitting algorithms with
basic curve fitting tools. To get an appropriate model, investigators cannot cover all
the correlations and pairs of parameters. Artificial neural networks have grabbed the
attention of academics in Civil Engineering for simulating a variety of structures [55].
ANNs are non-linear models and could capture complicated interactions between various
parameters in a structure, even when the nature of such interactions is unknown. The
numerical methods developed with regression analysis are thought to be ineffective in
predicting the effects of FRP bars in concrete columns. The performance of such structures
is influenced by the interaction of numerous variables, and hence, the prior experimental
evidence is inconsistent. The interactions between the multiple parameters in the ANN
algorithm are controlled automatically and updated based on the information collected
for training. It is preferable to acquire a large set of data from the previous study to
ensure the validity of such a proposed approach using linear regression. Numerous novel
numerical simulations related to genetic coding, regression analysis, and artificial neural
networks (ANNs) have been used as an optimum setting for FRP-based reinforced or
confined concrete [12,56–64]. In parallel to these techniques, different researchers were
applying benchmarking techniques like data envelopment analysis (DEA), which were
emerging with the quality to evaluate multiple inputs and multiple output for converging
into one index value for ranking and prioritizing the best available combinations [65–78].
However, FRP and GFRP related research was also growing and researchers [79–93] were
focusing on this field with variety of experiments and variable exploration using different
statistical techniques.

The application of data envelopment analysis (DEA) for measuring the axial per-
formance of RC columns wrapped with GFRP bars has not yet been found in previous
studies. Therefore, the main purpose of the current study is to introduce an effective
and novel approach named data envelopment analysis (DEA) for the prediction analysis
of the axial strength of GFRP bars in RC columns. Finally, the validity of the proposed
models is checked based on the comparative analysis of both models. The collected dataset
was consisting of specimens made with GFRP bars, which were collected from previous
literature works. Moreover, a comprehensive parametric analysis of GFRP-based columns
was performed to study the effects of different materials and their geometrical shapes.
The results of this study will help researchers and structural engineers in the analysis and
design of GFRP-made RC column members.

2. Development of Dataset

The experimental axial behaviour of GFRP-based RC columns has been studied exten-
sively in the literature by several studies. The application of optimization can be divided
into the following four categories: cost reduction, improve structural performance, reduce
carbon emission, and multi-objective (combination of two or more). The optimization
process of modelling approaches is based on three main components such as design pa-
rameters, cross-sectional areas, and constraints. The methodology to achieve structural
optimization and acquire the best design is described by optimization methods and prac-
tices. Computing and design software are the two forms of software applications used in
structure optimization. Optimization programs are run using computational software such
as ANNs and DEA model, which determines the best outcome using repetitions. Then, the
geometrical data of the concrete columns can easily be transferred to another software such
as E-Tab.

A large dataset of 266 RC column specimens wrapped with FRP were collected in
the context of these studies as provided in Supplementary Datasheet. FRP bars were
used for longitudinal bars, and FRP or steel hoops, FRP spirals, were used for transverse
reinforcement. The cross-sections of 142 samples were a circular shape, whereas the cross-
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sections of 124 samples were square or rectangular in shape. Out of these, 18 samples
were made with steel spirals, 33 concrete samples with steel hoops placed transversely,
and 97 samples of GFRP hoops. In total, 08 samples are wrapped from CFRP spirals, and
110 samples are confined in GFRP spiral (helical). The following parameters included in
this dataset (study) are: (i) details of GFRP concrete columns related to its cross section,
(ii) ultimate tensile stress (fu) of FRP reinforcement, (iii) compressive strength (fc) of
concrete, (iv) ultimate tensile strain (εu) of FRP reinforcement, (v) elastic modulus (Ef)
of FRP bars column, (vi) transverse (t) and (vii) longitudinal (l) reinforcement ratio, and
(viii) column axial load carrying capacity (Pn).

Table 1 summarizes the statistical analyses of all these indicators. The coefficient of
variance is abbreviated as COV, while the standard deviation of varying parameters is
St. Dev. Statistical analyses were carried out for all eight variables, and descriptive analyses
of these parameters are presented in Table 1. The standard deviations values are different
among these variables. The standard deviation value for efficiency is less among all, which
is 0.1738, and the average mean value is 0.8106. The standard deviation value of Ag is
53,563 mm, whereas their average mean value is 68,208. The Q3 values indicated that 75%
of the datasets are equal or < than to this reading. The higher variation values indicate
a greater spread of the datasets. Correlation analyses were also carried out to find out
the significance level among the variables (Figure 1). When the p-values are <0.05, then it
shows a statistically significant result among the two variables. If the p-value is >0.05, then
it will not be a statistically significant result and we reject it. The probability values of all
parameters are summarized in Figure 1.

Table 1. Statistical analysis of the parameter for GFRP-based RC columns.

Variable Mean St. Dev COV Min Q1 Median Q3 Max

Ag (mm2) 68,208 53,563 78.53 17,663 35,198 61,048 73,025 372,100
fu(MPa) 1018.0 337.6 33.17 405.9 735.0 930.0 1289.0 1680.0
Ef(GPa) 57.27 25.52 44.55 23.40 44.25 54.90 59.00 141.00
εu (%) 1.7950 0.3873 21.58 0.9700 1.5000 1.6000 2.3000 2.4200
ρl (%) 1.9696 0.8808 44.72 0.5500 1.3000 1.9000 2.2000 4.7200

Af (mm2) 1216.5 783.1 64.37 212.5 711.4 1175.8 1567.7 4051.6
ρt (%) 1.3811 1.0527 76.22 0.0100 0.6300 1.1000 1.9100 5.3000

Efficiency 0.8106 0.1738 21.45 0.3952 0.7030 0.8355 0.9957 1.0000
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3. Data Envelopment Analysis (DEA) Model

There are basically two methodologies (such as parametric and non-parametric) in
scientific research studies for determining the performance of the system, and each of them
requires an output function. The parametric process uses a pre-existing functional form,
whereas the nonparametric procedure does not rely on this. In fact, a structure with multi-
ple inputs and outputs cannot be represented using the parametric form [65]. Nowadays,
multiple input and output systems, instead of a one or a single output, are frequently used
in practical applications. As a result, Charnes et al. [66] and Zhu et al. [67,68] developed
DEA to analyse systems with multiple inputs and outputs. Cooper et al. introduced and
presented a non-parametric method of assessing relative effectiveness while considering
homogonous decision-making units called DMUs in 1978 [69]. DEA is a statistical linear
programming approach that is used in this methodology (study). Several research articles
based on the model have been published in different sectors (such as the finance industry,
roads, agriculture, civil engineering, mining, academic institutions, healthcare, product
management, energy, the environment, and many other fields) that have expanded tremen-
dously during the previous four decades. Hence, the application of DEA has progressively
spread in multiple fields of research [70–74]. Moreover, it is well suited to commercial
practises, and it has been regarded as a valuable analytical research tool [67,75]. The DEA
model assesses their effectiveness. It is based on a decision-making unit called the DMU, in
which multiple parameters are used for the understanding of input or output variables,
which are frequently complex and vital. An output frontier, also called an envelopment
degree of outcome potential fit, determines a unit’s performance in DEA. A unit within the
efficiency threshold is said to be an efficient unit; conversely, it is considered an inefficient
unit. The rating of effectiveness for such a system is positive, ranging from 0 to 1. A rating
of 1 means a unit is efficient, while a score of <1 represents an inefficient unit. A reference
conceptual diagram can be seen in Figure 2.
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4. Research Methodology
4.1. Efficiency Calculation Model (Most Efficient Combination for Column Development)

Data envelopment analysis or modelling is a computational way of design as first
proposed by Charnes et al. [66], which compares the performance of many decision-making
units called DMUs based on so many inputs or outputs. Let’s define a set of ns in DMU,
each of which uses “m input” to yield output “s”. When it comes to constant return scale,
each efficiency of DMU is established based on its total weighted outcomes and is divided
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by the sum of its input nodes [76]. Figure 3 presents the research methodology (flow chart)
adopted for the current research work.

Efficiency of DMUj = ej =
weighted sum of outputs
weighted sum of inputs

=
u1y1j+···+usysj

v1x1j+···+vmxmj

(1)
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DEA model optimizes the productivity of all DMUs based on the defined attributes.
The overall performance (eo) for individual DMUO (ej) can be calculated by using the given
below Equation (2) as per CRS in accordance with n multiple DMUs.

Maxeo =
∑s

r=1 uryro
∑m

i=1 vixio

S.t. ej =
s=1
∑

i=1
uryrj

m
∑

i=1
xij ≤ 1, j = 1, . . . , n,

ur ≥ 0, r = 1, . . . , s,

vi ≥ 0, i = 1, . . . , m.

(2)

where the weight of the “outcome r” is denoted by “ur”, the weight of the “input i” is
denoted by “vi” and the efficiency or performance of DMUj model is denoted by “ej”.
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As Model Equation (3) is non-linear coding, Charnes Cooper [69] modifications can be
used to change it to linear coding.

Max eo =
s
∑

r=1
uryro

S.t.
s
∑

r=1
uryrj −

m
∑

i=1
vixij ≤ 0, j = 1, . . . , n,

m
∑

i=1
vixio = 1,

ur ≥ 0, r = 1, . . . , s,

vi ≥ 0, i = 1, . . . , m.

(3)

The BBC (Banker, Charnes, Cooper) model of past DEA especially by Banker et al.
(Equation (3)) can also be used to measure the accuracy of a specific DMUo with reference
to the variable returns scale mechanism [76].

Max eo =
s
∑

r=1
uryro + u0

S.t.
s
∑

r=1
uryrj −

m
∑

i=1
vixij + u0 ≤ 0, j = 1, . . . , n,

m
∑

i=1
vixio = 1,

ur ≥ 0, r = 1, . . . , s,

vi ≥ 0, i = 1, . . . , m.

u0 is free in sign

(4)

Here, u0 value can be positive, negative, and neutral resulting in return scale of
variable with careful consideration for an ideal solution. In most cases, RS reveals that a
trade-off among inputs or outputs is expected before one of such variables.

In this study, axial response of GFRP bars in concrete structures is measured using
this model with multiple input and output variables. These variables are then scored
and analyzed using the DEA model to determine their efficiency or performance. The
optimal axial capacity is often in the thoughts of a decision maker (researcher). However,
a researcher (DM) may frequently make a note to develop a more detailed comparison
among DMUs on predefined E. The current further analysis will facilitate to measure the
ultimate efficiency in the separation of all the competent axial capacities of concrete column.
Lingo software was also used to acquire the outputs of the DEA models in this study. Lingo
is an advanced design tool and modelling application for prediction of complicated and
large mathematical equations and can also deal with linear, non-linear, and hybrid forms
of systems. Another benefit of this tool is that it has a simple structure and simplicity of
design, as most of the commands (keys) and words applied are familiar as compared with
those found in previous computational model literature works.

4.2. Ranking Process

In this section, we first employ a method for obtaining common weights, which is both
helpful and necessary for ranking efficient axial strength. As a solution to the available
alternative weights, the steps below are presented [77].

Step 1: solve Equation (4) and obtain a set of effective DMUs; E =
{

je∗j = 1, j ∈ {1, . . . , n}
}

.

Step 2: solve Equation (5) and calculate the optimum value called ∆.
Step 3: solve Equation (6) and find max common weights as well as optimum estimate Φ.
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Step 4: solve Equation (7) and find out efficiency score (rating) for axial capacity of concrete
column made of GFRP bars.

The performance of the set of useful DMUs for the axial compression loading member
is determined in first stage. In stage 2, we shall try to minimize the overall virtual gap
among all production quality and their productivity about frontier forecasts. We choose
one appropriate weight in stage 3 as stage 2 often confronts the availability of other weights.
As a result, we keep the ideal significance level of (5) as a linear programming criterion (6).
We also use the optimization of the total input weights and elimination of the total output
weights as the requirement in the current free factor u0. Therefore, accepting a smaller value
of weights is related to a broader set of output metrics and similarity for output indicators.
It is preferable to employ a wider set of input metrics weights rather than a narrower range
of input indicators [77]. Proceed by establishing Equation (7) and then solving it to get the
score of efficient DMUo, with θ0 value in the decision making of variables by using the
infinity norm [78].

∆∗ = Min ∑
j∈E

∆j

S.t.
s
∑

r=1
uryrj −

m
∑

i=1
vixij + u0 + ∆j = 0, j ∈ E,

ur ≥ ε > 0, r = 1, . . . , s,

vi ≥ ε > 0, i = 1, . . . , m.

∆j ≥ 0, j ∈ E

u0 is free insign

(5)

ϕ∗ = Min
s
∑

r=1
ur −

m
∑

i=1
vi + u0

S.t.
s
∑

r=1
uryrj −

m
∑

i=1
vixij + u0 + ∆j = 0, j ∈ E,

∑
j∈E

∆j = ∆∗

ur ≥ ε > 0, r = 1, . . . , s,

vi ≥ ε > 0, i = 1, . . . , m.

∆j ≥ 0, j ∈ E

u0 is free in sign

(6)

θ∗o = Max
s
∑

r=1
uryro −

m
∑

i=1
vixio + u0 − vtyt0

S.t.
s
∑

r=1
ur +

m
∑

i=1
vi − vt = 1,

s
∑

r=1
ur −

m
∑

i=1
vi + u0 = ϕ∗,

s
∑

r=1
uryrj −

m
∑

i=1
vixij + u0 ≤ 0, j ∈ E, j 6= o,

0 < ε ≤ ur, r = 1, . . . , s,

0 < ε ≤ vi ≤ M, i = 1, . . . , m.

u0 is free in sign

(7)

Here, M is a real number (R), and r is equal to 1. yt0 is equal to max(yr0). The gap
among the efficient DMUs in represented by ∆j with frontier efficiency. Note that ∆j is
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equal to zero and denotes that DMUj is in Hyperplane −∑m
i=1 vixi + ∑s

r=1 uryr = 0. So,
given Equation (8) can be used as per available data variables as follows:

Efficiency of DMUj = ej =
weighted sum of outputs
weighted sum of inputs

= u1 f c′+u2Pn
v1Ag+v2fu+v3Ef+v4εu+v5ρl+v6Af+v7Pt

(8)

The value of the 1 is considered as best option. It will help to calculate the best efficient
combination for column with highest strength and axial load capacity. From the developed
data set, only best available combination from each research resource have been shown in
Table 2. Green colour shows excellent combination and orange colour shows good available
conditions within a single source but have value less than 1.

Table 2. DEA-based efficient combination evaluation of GFRP-based columns.

Inputs Outputs
Sources Ag

(mm2) fu(MPa) Ef(GPa) εu (%) ρl (%) Af
(mm2) ρt (%) fc’

(MPa)
Pn

(kN)
Efficiency Remarks

(Option)

S1 [79] 70,650 934 55.4 1.56 1.1 783.87 1 20 2826 0.917 Good
S2 [52] 71,595.14 934 55.4 1.56 2.2 1567.74 1.5 22 2871 0.669 Good
S3 [80] 49,062.5 1237 60 2.1 2.41 1175.80 1.49 31.8 1588 0.532 Good
S4 [81] 49,455.785 1281.5 61.3 2.1 1.78 759.68 1.57 25 1035.3 0.432 Good

112,500 800 40 1.5 1 1175.80 0.15 39 3285 1.000 Excellent
112,500 800 40 1.5 1 1175.80 0.15 39 3285 1.000 ExcellentS5 [82]
112,500 800 40 1.5 1 1175.80 0.15 39 3285 1.000 Excellent
372,100 608 44.2 1.38 1 4051.60 0.63 43.7 15,235 1.000 Excellent

S6 [49] 372,100 712 44.4 1.6 1 4051.60 0.63 40.6 12,949 0.895 Good
36,286.625 930 59 1.6 0.55 212.54 0.94 40 1018 1.000 Excellent
36,286.625 930 59 1.6 0.73 283.39 0.94 40 1179 0.997 Good
36,286.625 930 59 1.6 0.73 283.39 2.75 40 1459 1.000 ExcellentS7 [22]

36,286.625 880 59 1.6 0.73 283.39 2.75 40 523 0.999 Good
S8 [29] 41,600 1200 50 2.4 1.8 759.68 0.5 32.8 1367 0.803 Good

25,600 930 59 1.7 1.8 759.68 0.5 32.8 353 1.000 Excellent
S9 [34] 25,600 930 59 1.7 1.8 759.68 0.5 32.8 234 1.000 Excellent
S10 [40] 164,025 600 40 1.5 1 1700.31 0.66 25.3 4616 0.720 Good
S11 [41] 164,025 600 40 1.5 2.5 4051.60 0.63 25.3 5294 0.722 Good
S12 [43] 73,024.625 1680 141 1.19 2.2 1567.74 2.68 35 2564 0.810 Good
S13 [44] 73,024.625 1680 141 1.19 3.3 2351.61 1 35 2670 0.860 Good
S14 [48] 73,024.625 1680 141 1.19 2.2 1567.74 1.8 35 2652 0.820 Good

73,024.625 1289 54.9 2.3 2.2 1567.74 1.1 70.2 4709 1.000 Excellent
73,024.625 1289 54.9 2.3 2.2 1567.74 1.1 70.2 4689 1.000 Excellent
73,024.625 1289 54.9 2.3 2.2 1567.74 1.1 70.2 5120 1.000 ExcellentS15 [47]

73,024.625 1289 54.9 2.3 2.2 1567.74 1.7 70.2 4680 1.000 Excellent
S16 [54] 32,989.625 1200 50 2.4 1.6 759.68 4.2 37 1309 0.831 Good
S17 [83] 44,100 1641 67.9 2.41 1 506.45 2.74 29.3 1285 0.619 Good

17,662.5 800 30 0.97 2.1 425.08 1.7 40 426.59 1.000 Excellent
17,662.5 800 30 1.35 2.1 425.08 1.7 40 411.88 1.000 Excellent
17,662.5 800 30 1.57 2.1 425.08 1.7 40 387.36 1.000 Excellent
17,662.5 800 30 1.4 2.1 425.08 3.4 40 529.56 1.000 Excellent
17,662.5 800 30 1.7 2.1 425.08 3.4 40 490.33 1.000 Excellent
17,662.5 800 30 1.9 2.1 425.08 3.4 40 460.91 1.000 Excellent
17,662.5 800 30 1.28 2.1 425.08 1.7 40 490.33 1.000 Excellent
17,662.5 800 30 1.5 2.1 425.08 1.7 40 460.91 1.000 Excellent

S18 [84]

17,662.5 800 30 1.7 2.1 425.08 1.7 40 430.4 1.000 Excellent
S19 [50] 32,989.625 1600 66 2.42 4.72 759.68 3.82 37 2041 0.841 Good
S20 [54] 35,281.04 1600 66 2.42 4.72 759.68 1.91 37 3068 1.000 Excellent
S21 [85] 49,062.5 1184 62.6 1.89 2.43 1175.80 0.78 34.42 1988 0.682 Good
S22 [79] 70,650 934 55.4 1.56 2.2 1567.74 3.14 42.9 2935 0.827 Good
S23 [51] 50,645.06 740 43.3 1.71 1.6 783.87 0.75 36 1975 0.854 Good
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Table 2. Cont.

Inputs Outputs
Sources Ag

(mm2) fu(MPa) Ef(GPa) εu (%) ρl (%) Af
(mm2) ρt (%) fc’

(MPa)
Pn

(kN)
Efficiency Remarks

(Option)

22,500 735 50 1.5 1.4 283.39 0.01 20.8 370 1.000 Excellent
22,500 735 50 1.5 1.4 283.39 0.01 20.8 370 1.000 Excellent
22,500 735 50 1.5 1.4 283.39 0.01 20.8 370 1.000 Excellent

17,662.5 735 50 1.5 1.9 283.39 0.01 20.8 345 1.000 Excellent
17,662.5 735 50 1.5 1.9 283.39 0.01 20.8 345 1.000 Excellent
17,662.5 735 50 1.5 1.9 283.39 0.01 20.8 345 1.000 Excellent
22,500 735 50 1.5 1.4 283.39 0.01 20.8 365 1.000 Excellent
22,500 735 50 1.5 1.4 283.39 0.01 20.8 365 1.000 Excellent

S24 [86]

22,500 735 50 1.5 1.4 283.39 0.01 20.8 365 1.000 Excellent
32,349.065 800 46.2 1.57 2.5 783.87 3.2 50 1353 1.000 Excellent
32,349.065 800 46.2 1.57 2.5 783.87 3.2 50 1285 1.000 Excellent
32,349.065 800 46.2 1.57 3.7 1175.80 3.2 50 1623 1.000 ExcellentS25 [87]

32,349.065 800 46.2 1.57 3.7 1175.80 3.2 50 1570 1.000 Excellent
S26 [88] 22,500 1103 54.1 1.5 1.04 425.08 0.63 23.51 677 0.847 Good

22,500 630 40 1.5 2.3 506.45 0.33 25.7 401 1.000 Excellent
22,500 630 40 1.5 2.3 506.45 0.33 25.7 120 1.000 Excellent
22,500 630 40 1.5 3.4 759.68 0.33 25.7 215 1.000 Excellent
22,500 630 40 1.5 2.3 506.45 0.33 25.7 382 1.000 Excellent
22,500 630 40 1.5 2.3 506.45 0.33 25.7 129 1.000 Excellent

S27 [89]

22,500 630 40 1.5 3.4 759.68 0.33 25.7 220 1.000 Excellent
122,500 728 47.6 1.53 1.9 2550.47 1.7 32.6 4006 0.720 Good

S28 [25] 122,500 728 47.6 1.53 1.9 2550.47 1.7 32.6 4006 0.720 Good
S29 [25] 122,500 747 48.2 1.56 0.8 1012.90 2.55 36.4 3900 0.959 Good
S30 [90] 40,000 735 46 1.6 0.8 283.39 3.1 32.1 936.8 0.916 Good

90,000 654 39 2.1 1.3 1175.80 0.37 55.2 2191 1.000 Excellent
S31 [91] 90,000 654 39 2.1 1.3 1175.80 0.37 55.2 2191 1.000 Excellent

44,100 405.9 23.4 1.8 1.15 506.45 2.24 29.3 1285 1.000 Excellent
S32 [83] 44,100 405.9 23.4 1.8 1.15 506.45 2.24 29.3 803 1.000 Excellent
S33 [92] 122,500 840 45 1.87 1.39 1567.74 1.8 42.5 5670 0.985 Good

Note: In this table, only the most efficient values from each source have been shown. (Value 1 is an excellent value
and less than that is accepted as a good value). Green value of efficiency (i.e., 1) shows the best output, a best
combination of the columns produced with the help of GFRP. Green colour shows excellent combination (i.e., 1)
and orange colour shows good available conditions within a single source but have value less than 1.

5. Results and Discussions
5.1. Assesment of Artificial Neural Networks Modelling

The testing data collected from the literature are used for training and validation of
the ANNs model for better analysis result. A large dataset of 266 RC column specimens
wrapped with FRP was collected in the context of these studies, as provided in the Sup-
plementary Datasheet. The FRP bars were used for longitudinal bars, and FRP or steel
hoops, and FRP spirals, were used for transverse reinforcement. The cross-sections of
142 samples were of a circular shape, whereas the cross-sections of 124 samples were square
or rectangular in shape. Out of these, 18 samples were made with steel spirals, 33 concrete
samples with steel hoops placed transversely, and 97 samples of GFRP hoops. In total,
08 samples are wrapped in CFRP spirals, and 110 samples are confined in GFRP spirals
(helical). K-fold cross-validation is recommended for such a given data size, as per the
relevant papers. The data from the similar research works were combined to create a unique
predictive model for each axial capacity parameter under consideration, such as (i) details
of GFRP concrete columns related to its cross section, (ii) ultimate tensile stress (fu) of
FRP reinforcement, (iii) compressive strength (fc) of concrete, (iv) ultimate tensile strain
(εu) of FRP reinforcement, (v) elastic modulus (Ef) of FRP bars column, (vi) transverse (t),
and (vii) longitudinal (pl) reinforcement ratio, while column axial load carrying capacity
(Pn) is taken as an output variable for the training of dataset using ANNs model. In this
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study, seven hidden layers were selected for ANNs modelling, equivalent to seven input
parameters for better understanding and desired output of the system, as shown in Figure 4.
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5.2. Assesment Procedure

An extensive empirical approach from the past research was assessed on the produced
data source of GFRP-wrapped RC columns to acquire a general equation for axial capacity.
The existing approaches used for modelling the axial strength of concrete members wrapped
with GFRP bars were also studied. Different statistical indicators (such as root mean squared
error (RMSE), the sum of squared error (SSE), and coefficient of determination (R2)) were
used to evaluate such equations. The value of R2 is a significant statistical indicator used for
the perfect fit and prediction of the experimental dataset and was used in the comparison
analysis as given by Equation (9).

R2(x, y) =

 n(∑ xy)− (∑ x)(∑ y)√[
n ∑ x2 − (∑ x)2

][
n ∑ y2 − (∑ y)2


2

(9)

where the total data size is represented by “n”, “x” denotes the axial load capability of
GFRP bars in concrete elements as determined by tests, and “y” is the parameter projected
by empirical equations for the load ability of RC columns made with GFRP bars. The
model has been presented by Afifi et al. [26] and found the greatest R2 value (R2 = 0.711).
The performance of the prediction model improves with the increase in the R2 value.
When R2 equals 1.0, it indicates that the experimental and estimated findings for the
load-carrying capacity of concrete columns are perfectly correlated. Therefore, the current
proposed model is inspired by the model presented by Afifi et al. [26]. The input of FRP
reinforcement in the measurement of the axial load capacity of compression members
made with GFRP bars was considered due to their reduced cross-sectional area and tensile
strength, Eq 10, represents the suggested model in its general form.

Pn = α1(Az − AFRP) fc + α2 fFRP AFRP (10)

where α1 and α2 are called reduction factors, Ag represents the gross (total) sectional area
of testing specimens, AFRP represents the net sectional area used for FRP-reinforcement,
and fFRP represents their tensile characteristics. The ranges of such determinants were
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established using the curve fitting approach in MATLAB software by changing error rates
to produce better fitting. Equation (11) can be used to show the relationships as given
by [12].

α1 = 0.85− β fc (11)

Here, β is a constant. The readings of β constant of 0.0029 and 0.021 were obtained by
the curve fitting method to acquire the close relationship of the experimental datasets. The
axial strength of GFRP bars in confined concrete elements is measured with the following
developed model:

Pn =
(
0.85− 0.0029 f ′c

)(
Ag − AFRP

)
f ′c + 0.0208 fFRP AFRP (12)

The proposed Equation (12) is used for measuring the axial performance of columns
made from GFRP bars or with any type of FRP bar spiral or hoops. A reduction factor
(α) larger than (>) 0.646 (i.e., α1 = 0.85—0.0029f ’c ≥ 0.646) should be used for measuring
axial strength. The precision of this proposed model was better as compared with all
previously established simulations with certain constraints. For example, compressive
strength should be within the range (20–70 MPa), fFRP factor should be 406 to 1680 (n/mm2),
and εu (peak tensile strain) should be between 0.97−2.42%. The proposed equation in this
study responded well with an R2 value equal to 0.73.

5.3. Assesment of Cross-Validation Mechanisms of ANNs Model

The K-fold method is used for cross-validation of a dataset through ANNs modelling.
In the K-fold mechanism, the value of k is taken as five, as this method works on 80 and
20 principles. For example, there are overall 266 samples used as a dataset for modelling of
ANNs. Out of these, 18 samples were made with steel spirals, 33 concrete samples with
steel hoops placed transversely, and 97 samples of GFRP hoops. In total, 08 samples are
wrapped in CFRP spirals, and 110 samples are confined in GFRP spirals (helical). The
experimental datasets consist of the physical and mechanical parameters to predict the axial
performance of GFRP-based concrete column members. Out of 266 specimens, 212 (80%)
samples were used for the training of the dataset, while 54 samples (20%) were used for
the testing of the ANNs model. The final results obtained from the training stage of the
ANNs model on the considered parameters can be seen in Figure 4. The training and
validation phase of the ANNs model showed (as shown in Table 3) good matching for the
axial capacity of compression members made with GFRP bars.

Table 3. Training and Validation parameters for GFRP-made RC columns Efficiency using ANNs.

Measures Training Validation

R2 0.8363599 0.864329
RMSE 0.1146142 0.1108383

Sum Freq 212 54

Training and validation graphical profile can also be seen in Figure 5a,b showing
relationship between actual efficiency calculate through DEA and predicted efficiency
through ANN. In addition to that, Figure 5c,d shows comparative relationship related to
residual profile for training and validation data.
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5.4. Prediction Profiler

The prediction profiler plot has been performed on the various parameters using
artificial neural network modelling, as shown in Figure 6. The given figure showed the
relationships among different variables. The first row (from the left) of the prediction profile
showed the efficiency of the model against the cross-sectional area of the columns. It has
been observed that initial efficiency was reduced with increasing the cross-sectional area
of the column, whereas it tends to increase with an increase in its value. The relationship
between tensile strength and the efficiency of axial strength is seen in Figure 6 in the second
row (from the left). It was observed that fu values were increased with a decrease in the
efficiency range. Similarly, the interaction of efficiency and Ef (elastic modulus) is presented
in the third row (from the left), and it was observed that at the start, the efficiency value
had decreased with the change in Ef, and afterwards, there was a significant increase in
efficiency value observed with increasing Ef values. The relationship of efficiency against
ultimate tensile strain and longitudinal bar ratio was plotted in the fourth and fifth rows
are given below in Figure 6. There is a decreased trend in efficiency values recorded with
an increase in their percentage values, i.e., εu (%) and pl (%). There is an increasing trend
observed between efficiency and Af values, which can be seen in Figure 6, in the second row
from the right. In the last row from the left, there is a plot between efficiency and pt (%). It
can be observed from their plot that initially, there were showed decreased efficiency values
with increasing pt percentages. Afterwards, there is a significant increase in efficiency was
recorded with increasing pt percentages as per the previous dataset obtained from different
research works.
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5.5. Interaction Profiler

The interaction profiler, or plot among various parameters for the prediction of the
axial strength of GFRP embedded bars in RC columns, is presented in Figure 7. The
interaction plot helps us to study and understand the behaviour or relationship between
different variables for better comparative analysis. The efficiency or performance of GFRP
reinforcement against different factors is presented in Figure 7. In the first row (from the
left), the efficiency of GFRP bars and the cross-sectional area of columns in mm2 units
are presented and show an increase in efficiency values with an increase in Ag values of
the specimens. The relationship between fu and efficiency is presented in the second row
from the left of Figure 7. It was observed that, overall, the value of fu was increased with
the addition of GFRP bars. The fu values of GFRP bars are greatly affected by two main
parameters, such as the Ag of the columns and the compressive strength of GFRP-made
concrete columns. Similarly, there is a decreased trend line was observed between the
efficiency of GFRP bars against elastic modulus values, as can be seen in the third row
(from the left). The interaction profiler between the efficiency of GFRP-made RC columns
against both the tensile strain and longitudinal reinforcement ratio (pl) of concrete columns
prepared with GFRP bars in the fourth and fifth row from the left side. It was observed that
the efficiency of GFRP bars has decreased with both increasing εu (%) and pl percentages.
Moreover, the interaction plot between efficiency and Af (mm) is presented in the sixth
row from the left. Initially, the efficiency of the GFRP bars is reduced, and after that,
there is increase trend in efficiency was observed with an increase in Af values. In the
last row from the left side, there is an interaction plot between efficiency and pt (%) of
GFRP-made specimens, which shows an increased trendline with an increasing percentage
of pl. In conclusion, we can say that the performance of GFRP bars has been improved with
their addition to RC columns as compared to traditional reinforced concrete structures, but
the increase in their strength is greatly affected by several factors.

5.6. Comparison of Predictions

The axial performances of GFRP-RC columns were carried out using ANNs, DEA
and empirical models. The developed database had 266 specimen results out of which
124 are square or rectangular columns and 142 are circular columns. The results clearly
shows that the suggested equation and models can accurately predicted the axial behaviour
of concrete structures wrapped with GFRP. The axial capacity of glass FRP-based RC
columns are compared based on R-square values for all suggested models. The R2 value
of 0.83 and 0.86 were observed during training and validation of ANNs model whereas,
the root mean square error (RMSE) values were 0.1146 and 0.1108 during training and
validation of ANNs model. Similarly, the R2 value of 0.73 were obtained during extensive
empirical model on all collected base of 266 specimens. Due to concrete cover and FRP
reinforcement, the reducing indicators for the axial capacity of GFRP-made RC columns
should be 0.85- 0.0029f’c and 0.021 as obtained from empirical model. The efficiency of
1 reflects the strong axial performance of GFRP wrapped columns which was observed
during prediction using DEA model as described in Table 2. The accuracy of DEA model
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was quite better as compared to other models based on results prediction. As a result,
the suggested models are capable of accurately forecasting the structural response of
GFRP-made RC column structures.
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6. Parametric Study

The suggested experimental model was developed by considering concentric stress
or estimating the axial behaviour of compression members of 266 specimens having a
rectangular shape made with GFRP bars. Four major factors (such as the cross-section of
column side length (B), compressive strength (fc’), vertical bar ratio of FRP (ρl), as well
as tensile behaviour of reinforced column with FRP reinforcement (fu) have been studied
and investigated throughout the parametric investigation in this research work. The other
variables were assumed constant while the significance of one parameter was investigated.

6.1. Influence of GFRP on Column Cross Sectional Area (Ag)

Figure 8 exhibits the influence or behaviour of “Ag” (unit in mm2) on reinforced
concrete columns made with GFRP bars in 2D contour plots. The different values of “Ag”
ranging between 17,663–372,100 mm2 were employed for parametric analysis. It was
discovered that changing “Ag (mm2)” resulted in an increase in fc’ between 20−70 MPa
along with a fu value of 1680 (n/mm2) and 4.72% of ρl value. Moreover, the axial behaviour
of GFR-RC specimens was increased. The effect of increasing the “Ag” value was observed
along with a range of ρl between 0.55–4.72%. Moreover, increasing the “B” values between
150 and 375 mm in conjunction with elevating fu values within 405–1680 (n/mm2) increased
the overall axial performance of GFRP-RC structures.
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6.2. Influence of GFRP on Compressive Strengths (fc’ ) of Concrete

Figure 8 demonstrates the behaviour of the compressive strength (f’c) of the GFRP
bar embedded in a concrete column. It was discovered that raising the f’ c ranging be-
tween 20 and 70 (n/mm2) with the increasing gross sectional area “Ag” ranging from
17,663–372,100 mm2 increased the axial strength of GFRP bars in compression members.
Similarly, the factor that increases f’ c is also increasing ρl by 0.55–4.72%. Likewise, boosting
fc’ between 20–70 (n/mm2) while rising fu value by 405 to 1680 (unit MPa) resulted in a rise
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of column axial capacity. As a result, optimizing the fu and fc measurements for concrete
strength as well as FRP reinforcement had the same effect.

6.3. Influence of Longitudinal Steel Ratio (pl)

The investigated readings of ρl were found to range from 0.55 to 4.72%, as presented
in contour plot of Figure 8. The percentage change in the axial performance of GFRP
bars in the RC column was 33.18%, when the ρl was increased from 0.55 to 4.72% and
the compressive strength was increased from 20 to 70 MPa. The gain in ρl value with
the growth in fu ranging from 405 to 1680 MPa only had a benefit of 0.28%. Besides this,
improving ρl by 0.55–4.72% in conjunction with expanding “Ag” values from 17,663 to
372,100 mm2 improved the load-carrying capacity of columns made with GFRP bars.

6.4. Effect of the FRP Reinforcement on Tensile Properties (Fu)

The results of fu variation due to the addition of GFRP reinforcement in confined
structures are presented in Figure 8. The mechanical performance in terms of fu was
investigated thoroughly within the range of 405 to 1680 n/mm2. It was concluded that the
axial performance of GFRP-based concrete specimens was improved by 0.28% as the ρl
value changed by 0.55 to 4.72%. The effect of increasing fu was just 24.16% while increasing
“Ag” between 17,663–372,100 mm2. The increase in axial strength was recorded as 357.5%
when the compressive strength was between 20 and 70 MPa, whereas the fu value changed
from 405 to 1680 MPa. By studying the impact of any two factors in each subplot, all
the parametric data analyses were seen in a 2D way. The axial strength of compression
members made with GFRP reinforcement has been increased. This increase is significantly
affected by two factors, such as the cross-sectional area of testing specimens and fc. The
axial capacities of columns were enhanced by expanding the overall cross-sectional surface
area of specimens. The influence of longitudinal FRP bars on their tensile strength and
reinforcement ratio (ρl) was minimal.

7. Conclusions

The main objective of this article is to provide a novel DEA model and ANNs predic-
tion of the axial strength of GFRP-based compression members using a large testing dataset
compiled from prior research. To accomplish this, a careful analysis of previous related
simulations for studying and modelling the axial bearing strength of GFRP in concrete
members was carried out to determine the effective simple version of the presented empiri-
cal analysis. DEA and ANNs approaches were presented to provide the perfect match to
the testing datasets. In addition, extensive experimental research was carried out using the
suggested empirical approach to evaluate the impacts of various contents and structural
variables on GFRP embedded RC columns. The following main findings of this research
are given below:

• In this study, the DEA analysis was performed on the collected dataset obtained from
similar past research works, and the DEA model showed a good correlation between
different parameters, as can be observed in Table 2. A rating of 1 means the relationship
among variables (units) is efficient, while a score of <1 represents an inefficient unit.

• In this study, also ANNs technique for prediction were suggested through a massive
set of databases for a total of 266 reinforced concrete samples made of GFRP derived
from the literature. The ANNs structure has seven hidden layers and displayed a
strong relationship with an R2 value of 0.836 and 0.864 during the validation and
testing phases of ANNs modelling, respectively.

• When compared to earlier published models, the empirically suggested estimate for
the axial performance of GFRP bars in RC columns showed better results for a built
dataset of 266 samples with an R2 = 0.73. Due to concrete cover and FRP reinforcement,
the reducing indicators for the axial capacity of GFRP-made RC columns should be
0.85- 0.0029f’c and 0.021.
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• The validity of the models was tested by a comparison analysis of the estimations
of the currently proposed models (such as empirical and DEA simulations) for all
266 concrete specimens. Moreover, R2 = 0.913 reflects the strong axial performance
prediction for RC columns made with GFRP bars. As a result, the suggested models
are capable of accurately forecasting the structural response of GFRP-made RC column
structures in the form of efficiency.

• The parametric analysis adopting the presented empirical relationship demonstrated
that as the geometry area of the column (B) and the concrete strength increase, the
overall axial strength of GFRP bars in concrete columns also increases dramatically.
The axial capacity of column specimens was enhanced the overall cross-sectional
area of the specimen was raised by 1.5 times more. Both the tensile strength and the
reinforcement ratio (ρl) of GFRP bars had no impact on the resulting axial load of an
RC compression member composed of GFRP.

• To conclude this, the DEA approach is an effective tool for solving complex rela-
tionships among different parameters i.e., multiple inputs and multiple outputs, of
concrete structures and GFRP concrete columns for future construction projects.

8. Limitations of the Study

Due to the rapid advancement of GFRP bar fabrication methods, there are several
variances in long-term structural performance among the wide variety of GFRP bars made
by different companies. The test findings revealed that the strength drop in our study
and all this comparative research is slightly different. Variances in material characteristics,
i.e., matrix and GF, and exposed environmental constraints, particularly the solution
temperature, were attributed to this cause. More research on the structural and durability
properties of GFRP bars is necessary to enrich the existing knowledge.
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