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Abstract 
In statistical shape analysis, the establishment of correspondence and defining 
shape representation are crucial steps for hypothesis testing to detect and 
explain local dissimilarities between two groups of objects. Most commonly used 
shape representations are based on object properties that are either extrinsic or 
noninvariant to rigid transformation. Shape analysis based on noninvariant 
properties is biased because the act of alignment is necessary, and shape 
analysis based on extrinsic properties could be misleading. Besides, a 
mathematical explanation of the type of dissimilarity, e.g., bending, twisting, 
stretching, etc., is desirable. This work proposes a novel hierarchical shape 
representation based on invariant and intrinsic properties to detect and explain 
locational dissimilarities by using local coordinate systems. The proposed shape 
representation is also superior for shape deformation and simulation. The power 
of the method is demonstrated on the hypothesis testing of simulated data as 
well as the left hippocampi of patients with Parkinson’s disease and controls.  

Keywords: Local coordinate system, Local dissimilarity, Parkinson’s disease, 

Shape alignment, Skeletal representation, s-rep hypothesis testing.  

1 Introduction 

In statistical shape analysis, detecting and characterizing locational differences 

between two groups of objects is a matter of special interest. For instance, in 

medical applications, analysis of shape dissimilarities has the power to shed light 

on organ deformations, supporting diagnosis and treatment.  

Detecting locational differences is a challenging task. For decades, medical 

researchers have been trying to answer four common questions when comparing 

a specific organ of a group of patients versus a control group (CG). 1. Existence: 

Is there any local dissimilarity? 2. Location: What is the location of the 

dissimilarity? 3. Intensity: What is the size of the dissimilarity? 4. Type: What is 
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the type or interpretation of the dissimilarity (e.g., bending, twisting or 

elongation)? Since a dissimilarity can be seen as a distance between two 

entities, each shape analysis method introduces distances between objects’ 

corresponding parts (i.e., local dissimilarities) based on a specific shape 

representation to answer these questions. The shape representation could be 

invariant or noninvariant to object rigid transformation (i.e., translation and 

rotation). Therefore, as Lele and Richtsmeier (2001) discussed, roughly we can 

categorize shape analysis methods into alignment-independent and alignment-

dependent approaches that we call invariant and noninvariant methods, 

respectively. Invariant methods use invariant shape representations to follow the 

principle of invariance (Berger, 1985) based on the fact that the true form of an 

organism does not change if it translates or rotates. In contrast, noninvariant 

methods follow the idea of Kendall (1977) to factor out translation, rotation, and 

(occasionally) scaling from noninvariant shape representations by alignment. 

Usually, noninvariant methods are more straightforward, faster, and provide a 

better intuition than invariant methods, which explains their popularity. In 

comparison, invariant methods are more reliable because they are independent 

of choosing the alignment method or the coordinate system.  

In this work, we propose an invariant method equipped with an invariant shape 

representation that benefits from the advantages of both types of methods. 

Further, it answers all the four above questions in a single framework. For this, 

we locally reparameterize a noninvariant skeletal representation (s-rep) (Pizer 

et al., 2013) to an entirely invariant shape representation. To better understand 

and highlight the advantages of our approach, first we need to review other 

methods in more detail.  

Given two groups of objects, in the most common approaches, whether invariant 

or noninvariant, researchers try to answer the above questions by hypothesis 

testing based on the following steps. Step 1: Introduce shape representation as a 

tuple of corresponding geometric object properties (GOPs) among objects. 
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Step 2: Defining a distance between the corresponding GOPs of the two groups 

known as a test statistic representing the local dissimilarity. Step 3: Measuring 

and analyzing the test statistics to find significant GOPs. Step 4: Applying 

multiple testing methods to control false positives.  

A GOP can be a geometric or spatial feature (e.g., point’s position, surface 

normal direction, Gaussian curvature, etc.), a combination of features and their 

correlations (Tabia and Laga, 2015), or more general a local descriptor as 

discussed in (Laga et al., 2019, Ch.5). A GOP may or may not be invariant to 

object translation and rotation. We call a shape representation invariant if all of its 

GOPs are invariant, otherwise noninvariant. Examples of noninvariant shape 

representations are the point distribution model (PDM) and the discrete s-rep (ds-

rep). A PDM consists of an n-tuple of points 1
( , ... , ) ,

d

n i
x x x

 distributed on or 

inside a d-dimensional object where d = 2, 3 as comprehensively discussed in 

(Srivastava and Klassen, 2016; Jermyn et al., 2017; Laga et al., 2019; Dryden 

and Mardia, 2016). Thus the GOPs in a PDM are the points’ Cartesian 

coordinates. A ds-rep (Pizer et al., 2013) consists of a tuple of directions, tail 

positions and lengths of a set of internal vectors and will be discussed in further 

detail in Section 2.1. A ds-rep is partly invariant as the vectors’ lengths are 

invariant. An example for an invariant shape representation is to convert a PDM 

to Euclidean distance matrix (EDM) representation as a tuple of pairwise 

Euclidean distances of points (Lele and Richtsmeier, 2001).  

Having two groups of shape representations, we can define hypothesis tests 

based on the corresponding GOPs. In other words, we simply test two groups of 

tuples element-wise. Note that it is necessary to factor out translation and 

rotation from noninvariant GOPs by alignment before the analysis. We say the 

analysis is invariant if the shape representation is invariant, otherwise it is 

noninvariant. For example Styner et al. (2006) and Schulz (2013) methods are 

noninvariant as Styner et al. (2006) compared PDMs of brain objects of patients 

with schizophrenia v.s. CG, and Schulz (2013) compared the objects’ ds-reps. In 
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contrast, Lele and Richtsmeier (1991) approach is invariant as they used EDM 

representations to study skull abnormality of patients with Crouzon and Apert 

syndromes. We briefly discuss both invariant and noninvariant methods by an 

example.  

Figure 1(a) illustrates two ellipsoidal objects as defined in Section 2.1.2, where 

the left one is an ellipse, and the right one is a bent ellipse. The objects can be 

seen as an open arm (left one) and a closed arm (right one), where each arm 

consists of three parts, namely the upper arm, elbow, and forearm. Since the 

closed arm is a locally deformed version of the open arm, we consider the main 

difference at the elbow, which is compatible with our visual inspection. Both 

shapes are manually registered with 20 corresponding boundary points depicted 

by circles and crosses. By adding independent random noise to each point, we 

simulated 15 PDMs for each object, as depicted in Figure 1(b). Since a PDM is 

noninvariant, alignment is necessary.  

From several available alignment methods, we choose generalized Procrustes 

analysis (GPA), weighted GPA (WGPA) (Dryden and Mardia, 2016), and square 

root velocity framework (SRVF) (Srivastava and Klassen, 2016). Figure 1(c), 

Figure 1(d) and Figure 1(e) illustrate alignments based on GPA, WGPA, and 

SRVF, respectively. Apparently, there are two main issues. First, the outcomes of 

different alignment methods are remarkably different as each method tries to 

minimize a specific type of distance. Thus, choosing the superior alignment 

method is challenging. Second, detecting locational dissimilarities could be 

extremely biased because alignment affects the distributions of noninvariant 

GOPs of points’ positions. As a result PDM analysis introduce false positives and 

false negatives. In Figure 1(c), WGPA (based on a manually defined covariance 

matrix) reduces the variation of forearm GOPs and increases the variation of 

upper arm GOPs. Similarly, the right point at the elbow in Figure 1(e) has a 

remarkably smaller GOP variation in comparison with other points. Based on 

these types of observations, Lele and Richtsmeier (2001) explained why 
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noninvariant methods are biased and why invariant methods are more reliable. 

However, also for invariant methods a local dissimilarity can lead to false 

positives and false negatives. For instance, if we convert each PDM of our 

example to an invariant shape representation, where GOPs are invariant 

Euclidean distances between points and the centroid of the PDM (i.e., center of 

gravity 1

1
n

i

i
n



 x x

 depicted by bold points in Figure 1(a)), then almost all the 

GOPs in our example become significantly different. Note, in this example, the 

GOPs are defined as extrinsic distances between the points and the extrinsic 

centroid. If the centroid as well as the distances to the centroid are defined 

intrinsic (e.g., by barycentroid (Rustamov et al., 2009)), no differences would be 

detected. To some extent, the same discussion is valid for EDM analysis (EDMA) 

as discussed in supplementary material (SUP). Besides, when we consider only 

invariant GOPs, it is not always easy to map various analysis results from the 

feature space to the object space (Jermyn et al., 2017, Page 6). Consequently, 

some fundamental aspects of shape analysis, such as mean shape, are 

unattainable. For instance, it is easy to calculate the EDM of a point-based model 

like a PDM, but it is difficult or sometimes impossible to reconstruct the model 

based on its EDM. We have the same situation in persistent homology methods 

(Gamble and Heo, 2010; Turner et al., 2014) where the information of the 

persistent diagram is not convertible to the object space.  

In summary, on the one hand, noninvariant methods are biased due to 

alignment, and on the other hand, invariant methods based on extrinsic 

properties could be misleading. Thus, from our point of view, a suitable method 

should be invariant, based on intrinsic object properties, ensure good 

correspondence between the GOPs, and be able to answer the fourth question, 

i.e., to provide a mathematical (and medical) interpretation of the type of 

dissimilarity such as bending, twisting, stretching, protrusion, etc. For example, 

boundary PDMs cannot explain the local bending in closed arms. In contrast, a 

skeletal model (see Figure 2(a)) can explain the bending mathematically, as we 
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will discuss in Section 2.4. However, the main obstacle in the skeletal analysis is 

the definition of correspondence.  

For a specific class of ellipsoidal objects, Pizer et al. (2013) introduced s-rep and 

defined correspondence based on its discrete version ds-rep (see Figure 2(b)). 

As pointed out above, ds-reps are noninvariant and thus might bias the analysis. 

Further, ds-rep analysis is able to identify only a few types of dissimilarities, e.g. 

protrusion or bending. The identification of other types remains challenging. To 

overcome these limitations, we propose a novel hierarchical ds-rep 

parameterization based on local coordinate systems known as local frames. The 

proposed hierarchical local parameterization of ds-rep, called LP-ds-rep, is an 

invariant shape representation which supports sensitive hypothesis testing that is 

not biased by alignment. Note that the hierarchical structure equipped with local 

frames can be modified and fit to any kind of objects (not only ellipsoidals) as 

long as a robust tree structure can be established for the shape model. This is 

the subject of further studies.  

The paper is structured as follows. In Section 2, first, we review basic notations 

and amenities of s-reps and discuss the conventional noninvariant definition of 

ds-rep with the discussed challenges. Then, in Section 2.1.3 and Section 2.1.4, 

we propose the novel LP-ds-rep parameterization. Further, we explain the 

euclideanization of spherical data, mean shape, the transformation between two 

parameterizations, skeletal deformation, and simulation. Section 3 introduces a 

hypothesis test method and discusses controlling false positives. In Section 4 we 

study hippocampal differences between a group of patients with Parkinson’s 

disease and CG. Besides, we compare the results of both parameterizations plus 

EDMA and show the advantages of our method on simulated data. Finally, we 

summarize and conclude the work in Section 5. A flowchart depicting the 

framework of the presented methods can be found in the SUP.  

2 Skeletal representation 
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To understand skeletal representation, we need to review some fundamental 

definitions.  

In this work, the set 
d

   is a d-dimensional (or dD) object if it is 

homeomorphic to the d-dimensional closed ball, where d = 2, 3. We denote the 

boundary and the interior of Ω, by   and Ωin, respectively. Thus, in
    

. 

Also, we consider only objects with smooth boundaries. Therefore,   is a 

closed connected genus-zero smooth surface if d = 3, and it is a smooth closed 

curve if d = 2 (Jermyn et al., 2017, Ch.2). The medial locus of Ω is a collection of 

entirely connected curves or sheets in Ωin forming the centers of all maximal 

inscribed spheres bi-tangent or multi-tangent to  . We denote the medial locus 

of Ω by 
M

 . The skeleton of Ω is any curve or sheet from which non-crossing 

spokes to   emanate at each point of it. Note that a spoke is a vector whose 

tail is on the object’s skeleton, and its tip is on  . We consider a skeletal of an 

object as a set of all non-crossing spokes emanating from its skeleton. Thus, the 

skeletal can be seen as a field of spokes on the skeleton. The medial locus is a 

form of skeleton where medial spokes connecting the center of maximal 

inscribed spheres to their tangency points. The union of the medial spokes forms 

the medial skeletal (Siddiqi and Pizer, 2008).  

Medial representation (m-rep) and its properties have been extensively studied in 

the literature (Pizer et al., 1999; Fletcher et al., 2004; Siddiqi and Pizer, 2008). 

Figure 2(a) illustrates m-reps of two ellipsoidal objects. Briefly, an m-rep is a 

discrete medial skeletal (i.e., finite set of medial spokes). Thus, an m-rep reflects 

the interior object properties such as local widths and directions. However, as 

pointed out in (Pizer et al., 2013), the m-rep is sensitive to boundary noise 

because every protruding boundary kink results in additional medial branches. 

This sensitivity affects m-rep correspondence among a population as two 

versions of the same objects can result in significantly different m-reps. Thus, 

Pizer et al. (2013) relaxed the medial conditions and defined s-rep for a class of 

ellipsoidal objects like hippocampus (discussed in detail in Section 2.1.2) as a 
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penalized version of m-rep. As Liu et al. (2021) described, the s-rep of 3D 

ellipsoidal object Ω has the form (M, S), where skeleton in
M  

 known as 

skeletal sheet is a smooth 2-disk (i.e., an embedded, oriented 2-dimensional 

manifold of genus-zero with a single boundary component), and skeletal S is the 

field of non-crossing spokes on M. The field S consists of three distinct fields of 

spokes: S0 along M0 where M0 is the boundary of M, 
S

  (respectively, 
S

 ) 

defined on the relative interior of M, agreeing (respectively, disagreeing) with the 

orientation of M. Thus, 
S

  and 
S

  map 0
M M

 to two sides of   considered 

as northern and southern part, and S0 maps M0 to the crest of  . We call a 

spoke s an up spoke, down spoke, or crest spoke if it belongs to 
,S S

  , or S0, 

respectively. The same definition is applicable for 2D objects where M is a 

smooth open curve. The relaxed conditions assure stability in the branching 

structure and thus good case-to-case correspondence across a population of s-

reps. The ds-rep is a discrete form of s-rep (i.e., a finite set of spokes). The 

conventional ds-rep parameterization is noninvariant as explained in more detail 

in Section 2.1.1. Afterward, the proposed invariant parameterization based on a 

hierarchical structure of the local frames is introduced. Also, we name the 

conventional parameterization as globally parameterized ds-rep (GP-ds-rep), and 

the new parameterization as locally parameterized ds-rep (LP-ds-rep). Further, 
G P

s  and 
L P

s  denote GP-ds-rep and LP-ds-rep, respectively.  

2.1 Parameterizations 

2.1.1 GP-ds-rep 

There are different ways to fit and parameterize a GP-ds-rep. Depending on the 

method of model fitting e.g., (Liu et al., 2021), some spokes may share a 

common tail position (see Figure 2(b)). Let ns be the number of spokes, and np 

be the number of tail positions s.t. p s
n n

. A GP-ds-rep can be seen as a tuple 
G P

, 1 1 1
( , , ) ( , . . . , , , . . . , , , . . . , )

p s s
j i i i j n n n

s r r r p u p p u u
 where 

{1, ..., }
p

j n 
: 

3

j
p

 is jth 

spoke’s tail position, 
{1, ..., }

s
i n 

: 
2

i
u

, and i
r




 are ith spoke’s direction, 
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and length, respectively. Note 
1

{ ||| || 1}
d d 
  x x  is the unit d-sphere where 

d  . From now on we assume 
1, ...,

s
i n

 and 
1, .. . ,

p
j n

.  

The set 1
{ }

p
n

j j 
p

 forms an 
3

p
n 

 configuration matrix P representing the skeletal 

PDM. Let p
n

I
 be the p p

n n
 identity matrix and p

n
1

 be the 
1

p
n 

 vector of ones. 

Location and scale can be removed by centering and normalizing P to obtain the 

pre-shape 
| | | |

p

p

n

n

C P

P
C P



, where 

1

p p p p

T

n n n n

p

C I
n

  1 1

 is the centering matrix, and 

| | | | ( )
T

X tra ce X X
 is the Euclidean norm. Since || || 1P  , the pre-shape P  lives 

on the hypersphere 
3 1

p
n 

 (Pizer et al., 2013). Therefore, a GP-ds-rep lives on a 

manifold as a direct product of Riemannian symmetric spaces 
3 1 12

( )
p s s

n n n 


 

 where 
3 1

p
n 

 indicates the pre-shape space of the skeletal 

positions, 
2

( ) s
n

 is the space of ns spokes’ directions, and 
1

s
n 

  is the space of 

spokes’ lengths and the scaling factor. As we mentioned before, spoke positions 

and directions are noninvariant as they are in a global coordinate system (GCS). 

Thus, ds-rep analysis based on this representation is biased.  

For m-rep, a semi-local parameterization was proposed by Fletcher et al. (2003) 

based on local frames ( , , ) (3)SO


n b b , where n is normal to the medial locus 

M
  at 

1 2

1 2

,
| | | |

M



 



u u
p b

u u
 is the bisector direction of two equal-length spokes 

with common position, 

 b n b , and SO(3) is the 3D rotation group. Spokes’ 

directions are defined relative to the local frames by the angle [0 , )   between 

b and the spokes (see Figure 5(a)). Because the direction of b and 


b  depends 

on the spokes’ directions, if 2


 

 then b takes an arbitrarily direction that 

violates the uniqueness and consistency of the fitted frame. Besides, the spokes’ 

tail positions and frame directions are noninvariant as they are in GCS.  
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Inspired by Cartan’s moving frames on space curves (Cartan, 1937) and Fletcher

’s semi-local parametrization, we propose a fully local ds-rep parameterization. 

By utilizing the inherent hierarchical structure of ds-reps, we provide a consistent 

definition of local frames independent of GCS that avoids arbitrarily frame 

rotation. This can be done by introducing a leaf-shaped skeletal structure for 

ellipsoidal objects that is reflected in (Liu et al., 2021) (see Figure 6 on page §). 

For this, we need to discuss ellipsoidal objects.  

2.1.2 Ellipsoidal objects 

Intuitively, an object is ellipsoidal if its skeletal structure corresponds to the 

skeletal of an eccentric ellipsoid (i.e., ellipsoid with unequal principal radii).  

Let 
3

3


 be a 3D eccentric ellipsoid. The medial locus of 3  is a 2D ellipsoid 

(i.e., an ellipse) 
2

2


 that we call medial ellipse. The medial locus of 2  is a 

1D ellipsoid (i.e., a line segment) 
1

1


 that we call medial line. The medial 

locus of 1  is a 0D ellipsoid (i.e., a point) 
0

0


 that we call medial centroid. 

Thus 1
n

n
M




 is the medial locus of n  where n = 1, 2, 3. Analogous to 

backward principal component analysis (PCA) (Damon and Marron, 2014), we 

consider 3 2 1
, ,

, and 0  as four principal ellipsoids (see Figure 4(Left)).  

We call a 2D object a perfect 2D-ellipsoidal if its medial locus is a smooth open 

curve that we call medial curve (see Figures 2a and 3a). Let 2


 be a perfect 2D-

ellipsoidal with medial locus 2

M
 . Since 2

M
 (i.e., medial line 1 ) is also a 

smooth open curve, we can define correspondence between 2

M
 and 2

M
  

based on (Srivastava and Klassen, 2016). We consider a point on 2

M
  

corresponding to 0  as the medial centroid of 2


. Let γ represent the medial 

locus 2

M
  (or 2

M
) based on curve length parameterization l. We know that for 

each medial point ( )l , there are two medial spokes, one for each side of the 

medial locus, with tail on ( )l  and tip 


 on the object boundary at  
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2
( ) ( ) | ( ) | ( ) 1 | ( ) | ,

d d
l l l l l

d l d l
 


   t n  (1)  

where n and t are normal and tangent vectors of the medial locus at ( )l , and  

is the radius function such that ( )l  is the radius of the maximal inscribe sphere 

centered at ( )l  (Siddiqi and Pizer, 2008, CH.2). Note that the two spokes at the 

edge (i.e., endpoints) of the medial locus coincide. Thus, in addition to the medial 

locus, the medial skeletal of 2


 corresponds to the medial skeletal of 2 .  

We say a 2D object 2
̂

 is 2D-ellipsoidal if its boundary can be precisely 

approximated1 by the boundary of a perfect 2D-ellipsoidal 2


. Following m-rep 

idea of Pizer et al. (1999), it is reasonable to consider the skeletal of 2
̂

 as the 

skeletal of 2


 to have a better correspondence among a population. Thus, we 

assume 2

M
  as the skeleton of 2

̂
 as depicted in Figure 3(a). In 3D, we define 

3D-ellipsoidal analogous to generalized offset surface.  

Damon (2008) defined generalized offset surfaces as 3D objects similar to 

generalized tubes2 based on sequences of affine slicing planes (not necessarily 

parallel) such that the cross-sections of a generalized offset surface (i.e., the 

intersection of the slicing planes with the object) do not intersect within the 

object, and the boundary of the cross-sections forms the object’s boundary. The 

skeleton of a generalized tube is a smooth curve, and the skeleton of a 

generalized offset surface is a smooth 2-disk. In practice, we can represent a 

generalized tube or an offset surface by a finite but large number of disjoint 

cross-sections. Similarly, we say an object is 3D-ellipsoidal if it can be 

represented by a large number of disjoint cross-sections such that all the cross-

sections are 2D-ellipsoidals, and the length of a curve called the center curve 

connecting the medial centroids of the successive cross-sections is remarkably 

larger than the length of the medial curve of each cross-section. Since the union 

of the medial curves can be seen as a discrete skeletal sheet, Pizer et al. (2013) 

realized such 3D-ellipsoidals as slabular3 and introduced (slabular) ds-reps such 
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that for a slabular, the implied boundary of its ds-rep (i.e., envelope of the spokes

’ tips) approximates the slabular’s boundary. Examples of 3D-ellipsoidals are 

mandible (without considering the coronoid processes), caudate nucleus, kidney, 

and hippocampus. Figure 3(b) illustrates the center curve and the slicing planes 

of a mandible as a 3D-ellipsoidal (left) and a cross-section as a 2D-ellipsoidal 

(right).  

Any eccentric ellipsoid 3  can be seen as a 3D-ellipsoidal such that parallel 

cross-sections are perpendicular to the center curve (i.e., the major axis of 2 ). In 

this sense, a meaningful correspondence4 between the skeletal of a 3D-

ellipsoidal and skeletal of 3  is assumable as the skeleton of both of them 

consists of a center curve, a set of medial curves emanating from the center 

curves, and two spokes at each point of the medial curves pointing towards two 

sides of the skeletal sheet based on Equation (1). However, obtaining such 

correspondence is difficult as it is challenging to define corresponding cross-

sections for a population of c-shape objects e.g., a set of hippocampi.  

A possible approach for defining a skeletal sheet of a 3D-ellipsoidal is to 

understand the object via a diffeomorphism from a reference 3D-ellipsoidal such 

as 3 . Assume 3


 be a 3D-ellipsoidal. Since 3  as a reference object is a 3D-

ellipsoidal and a meaningful correspondence between 3


 and 3  is assumable, 

Liu et al. (2021) defined a (more or less) diffeomorphic transformation 

3 3
:  

 based on stratified mean curvature flow (MCF). The transformation 

provides a boundary registration between 3  and 3


. Then, they applied inverse 

transformation 
1

 (based on the obtained registration and inverse MCF) to 

deform 3  and its interior (i.e., skeletal) to 3


. After deformation (i.e., 
1

3 3
:


 

), 2  transforms to a nonlinear surface M that can be seen as a 2-

disk. Consequently, straight lines on 2  (e.g., medial line and medial spokes) 

become curves. Since we assumed a diffeomorphic transformation, the 

generated curves do not cross each other. We call the deformed medial line 
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1

1
( )



 the spine, and deformed medial spokes veins. Thus, veins are a set of 

non-crossing curves emanating from the spine. Also, we assume the displaced 

medial centroid 
1

0
( )



 as an intrinsic centroid, and call it skeletal centroid or s-

centroid. Thus, M has curvilinear skeletal corresponding to the medial skeletal of 

2 . Figure 4 provides an intuition about the ellipsoid’s medial locus deformation. 

Finally, Liu et al. (2021) generated non-crossing spokes on the skeletal sheet 

such that the implied boundary approximates 3


. The generated spokes 

represent a s-rep as a field of non-crossing spokes on the skeletal sheet.  

Although we apply the method of Liu et al. (2021), we believe it is possible to 

improve the model fitting in many aspect such as a better boundary registration 

based on (Jermyn et al., 2017) that we leave for future studies.  

2.1.3 Local frames 

Based on the defined curves on the s-rep skeletal sheet of ellipsoidals, we can fit 

local frames. Let c M  be a smooth curve in 
3

. We consider 
( )T M

p
b

 as the 

unit velocity vector tangent to c where 
( )T M

p  is the local tangent plane of M at 

cp  with normal n. The local frame can be defined as ( , , ) (3)SO


n b b  where 

 b n b  (see Figure 5(b)). The unit vector b chooses two opposite directions 

depending on the definition of the curve starting and ending points. Besides, the 

frame directions are noninvariant. To have a consistent invariant frame definition, 

we design a hierarchical structure. Then on the basis of the structure, we define 

consistent fitted frames in a population of GP-ds-reps.  

Consider the principal ellipsoids. Similar to Blum’s grassfire flow (Blum 

et al., 1967), we can say each point on 2


 moves to reach the medial line 1 , 

and then moves to reach the medial centroid 0 . Thus, for each boundary point 

there is a path from the point to the medial centroid. In discrete format, each path 

can be represented by a finite set of consequent points sorted based on the 

distance they travel to reach the medial centroid. Imagine two consequent points 
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on the same path. We consider the point that takes the shorter route as the 

parent, and the other one as the child. Therefore, like a spanning tree, each point 

(except medial centroid) has a parent but may have multiple children (see Figure 

6(Top)). Similarly, based on the correspondence between the 2  and the skeletal 

sheet M, each point on the boundary (i.e., edge) of M moves on a vein to reach 

the spine and then moves to reach the s-centroid. Therefore, in discrete format, 

we define parent and child relationship on M as we defined on 2 . In addition, 

given a frame at each skeletal point, we consider the same hierarchical structure 

for the frames.  

A vector that connects a frame to its parent frame is called connection. The tip of 

a connection is at the frame’s origin, and its tail is at the parent’s origin. Further, 

we assume that the s-centroid frame is its own parent without any connection to 

itself. We approximate the direction of b at point Mp  based on three 

consecutive frames. Frames on the spine are parent of multiple children. To have 

a consistent frame definition first we fit frames on the spine. Except for the s-

centroid frame and two critical endpoints of the spine that we will explain later, 

each spinal frame has a spinal parent frame and a spinal child frame. Let 1
p

 and 

2
p

 be the position of the parent and the child frame of p. As illustrated in Figure 

5, assume 1 1
 v p p

 and 2 2
 v p p

 as connections. Let 1
p

 and 2
p

 be the 

projection of 1
p

 and 2
p

 on 
( )T M

p , respectively. We consider 

2 1

2 1
| | | |

  


  

v v
b

v v
 

where 

1

1

1
| | | |

 
 

 

p p
v

p p
, and 

2

2

2
| | | |

 
 

 

p p
v

p p
. In this sense, b is a unit vector 

tangent to a circle (or a line) crossing 1
 p v

, p, and 2
 p v

.  

The endpoints of the spine are critical because their frames have no children on 

the spine. By construction, the medial line is part of the major axis of the medial 

ellipse. Thus, there is a curve on the skeletal sheet correspond to the major axis 

that we call major curve. The major curve contains the spine and two veins. We 
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consider the closest skeletal point (in geodesic sense) on these veins to the 

spine as the spine’s extension and treat the critical points as any other spinal 

point. The s-centroid frame has two spinal children. Let 1
p

 and 2
p

 be the 

position of the children. We define 

2 1

2 1
| | | |

  


  

v v
b

v v
, where 

1

1

1
| | | |

 
 

 

p p
v

p p
, and 

2

2

2
| | | |

 
 

 

p p
v

p p
. Since a vein frame has a parent and a child on the same vein, 

we consider the same definition for them as discussed for spinal frames. Note 

that we treat a vein frame at the intersection of a vein and the spine as a spinal 

frame. For the frames on the edge of the skeletal, we assume the tip of the crest 

spokes from (Liu et al., 2021) as the position of the child frames. The same 

procedure is applicable for the ellipsoid’s GP-ds-rep.  

Figure 6 illustrates the hierarchical structure and a fitted LP-ds-rep to a left 

hippocampus as we discuss in the next section.  

2.1.4 LP-ds-rep 

Given the fitted hierarchical frame structure introduced in the previous section, 

we are now in the position to define LP-ds-rep. In an LP-ds-rep, spokes and 

connections are measured based on their local frames, i.e., their tails are located 

at the origin of a frame. Assume ns, np, and nc as the number of spokes, frames, 

and connections, respectively. Note that 
1

c p
n n 

. Let i
u

 and k
v

 be the ith 

spoke direction and kth connection direction in GCS, respectively, where 

1, ..., , 1, ...,
s p

i n j n 
, and 

1, ...,
c

k n
. Consequently, we denote i


u

 and k


v

 as 

spoke and connection directions based on their local frame, i.e. we re-

parameterize i
u

 and k
v

 to i


u

 and k


v

, respectively. Similarly, if 
( , , )

j j j j
F


 n b b

 be 

the frame Fj in GCS then 
( , , )

j j j j
F

   
 n b b

 denotes Fj based on its parent frame.  

To calculate a vector direction according to a local frame, we use the spherical 

rotation matrix 
( , ) (s in )( ) (co s 1)( )

T T T T

d
R I       x y yw w y yy w w

, where 
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1
( )

, ,
|| ( ) ||

T

d 


 
T

x y y x
x y w

x - y y x , and 
1

co s ( )
T




 y x . Therefore, ( , )R x y  transfers x to 

y along the shortest geodesic and we have ( , )R x y x y  (Amaral et al., 2007).  

For example, let frame 
†

( , , )F


 n b b  be the parent of F , both in GCS. Let 

1 2
(1, 0 , 0 ) , (0 ,1, 0 )

T T
 e e

, and 3
(0 , 0 ,1)

T
e

 be the axes unit vectors of GCS. We 

align 
†

F  to 3 1 2
( , , )I  e e e

 such that 
†

2 1
R R F I

, where 1 3
( , )R R n e

, and 

2 1 1
( , )R R R b e

. Thus, 2 1
F R R F




 represents F  in its parent coordinate system. 

In case we obtain 
†

2 1 3 1 2
( , , )R R F  e e e

, we adjust the result by 2 1 3 3 3
( , , )R R F 1 1 1

 

because 
†

2 1 3 3 3
( , , )R R F I 1 1 1

 where 3
(1,1,1)

T
1

. Note that frame vectors are 

orthogonal, so after rotating n to the north pole by R1, the shortest geodesic 

between b and 1
e

 would be on the equator. This preserve the direction of 1
R n

 

while R2 rotates 1
R F

.  

We follow the the same procedure to calculate the spokes’ and connections’ 

directions based on their local frames j
F



. As a result, we consider a LP-ds-rep 

as a tuple 
L P

, , 1 1 1 1 1
( , , , , ) ( , . . . , , , . . . , , , . . . , , , . . . , , , . . . , )

s s p c c
i i j k k i j k n n n n n

s r F v r r F F v v
        

 u v u u v v
, 

such that 
2

i


u

 and 
2

k


v

 are ith and kth spoke direction and connection 

direction relative to their local frame with lengths i
r




 and k
v




 respectively, 

and 
(3)

j
F S O




 is the jth frame in its parent coordinate system.  

Thus, by construction, the LP-ds-rep is invariant under the act of rigid 

transformation. To remove the scale, we define LP-size as the geometric mean 

of the vectors’ lengths 1 1

1
e x p ( ( ln ( ) ln ( )))

s c
n n

i k

i ks c

r v
n n

 

 


 
. Assume 

i

i

r
 

, and 

k

k

v
 

. A scaled LP-ds-rep can be expressed by 
L P

, ,
( , , , , )

i i j k k i j k
s F 

  
 u v

.  

Result 1. The LP-size of a scaled LP-ds-rep is equal to one (see the proof in 

SUP).  
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Recall, for a GP-ds-rep, the GP-size is defined as the centroid size of the skeletal 

PDM. As we discussed in the introduction, the centroid is an extrinsic property. 

Thus, the centroid size might be a poor measure for the size of an object. The 

same discussion is also true for EDM-size where EDM-size is the geometric 

mean of all pairwise distances (Lele and Richtsmeier, 2001, Ch.4.7.3). Intuitively, 

by opening or closing an arm, the arm’s volume remains the same despite its 

centroid size or EDM-size, i.e., the closed arm has smaller centroid size and 

EDM-size in comparison with the open arm (see Figure 1(a)).  

As Section 2.1.1 discussed, the GP-ds-rep space is 
3 1 1G P 2

( )
p s s

n n n 


  S

. In 

LP-ds-rep, we do not have any pre-shape space. The GOPs of an LP-ds-rep are 

directions and lengths of spokes, directions and lengths of connections, LP-size, 

and frames. Thus, the space is 
1L P 2

( ) ( (3))
ps c s c

nn n n n
S O

  


  S

, where 
2

( ) s c
n n

 

is the space of vectors’ directions, ( (3 ))
p

n

S O  is the space of the frames, and 
1

s c
n n 

  is the space of vectors’ lengths plus LP-size. Further, we can represent 

an LP-ds-rep as 
L P

, ,
( , , , , )

i i j k k i j k
s  

  
 u q v

, where 
3

j


q

 is the unit quaternion 

representation of the frame j
F



 (Huynh, 2009). Thus, we have 

1L P 2 3
( ) ( )

ps c s c
nn n n n  


  S

, where 
3

( )
p

n

 is the space of the frames based on 

their unit quaternion representations.  

2.2 Euclideanization & mean shape 

Having a population of ds-reps, suitable methods to calculate means are required 

in order to perform hypothesis tests on mean differences. The corresponding 

method should incorporate all geometrical components of the model. Both shape 

spaces, the GP-ds-rep space, and the LP-ds-rep space are composed of several 

spheres and a real space. This section will first discuss an approach to analyze 

the spherical parts by principal nested spheres (PNS). Afterward, approaches to 

produce GP-ds-rep means and LP-ds-rep means are discussed.  

2.2.1 PNS 
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PNS (Jung et al., 2012) estimates the joint probability distribution of data on d-

sphere 
d

 by a backward view, i.e., in decreasing dimension. Starting with 
d

, 

PNS fits the best lower-dimensional subsphere in each dimension. A subsphere 

is called great subsphere if its radius is equal to one; otherwise, it is called small 

subsphere. To choose between the great or small subsphere, we use the 

Kurtosis test from (Kim et al., 2020).  

PNS is designed for spherical data (particularly for small sphere distributions) to 

capture the curviness of circular distributions as discussed by Kim et al. (2019). 

PNS is similar to PCA because PCA provides observations’ coordinates called 

residuals as their distances from fitted (hyper)planes, while PNS residuals are 

the observations’ geodesic distances from the fitted subspheres. For example, 

the PNS residuals on 
2

 consist of the geodesic distances between the 

observations and the fitted circle and the minimal arc length between projected 

data on the fitted circle to the PNS mean. Basically, PNS euclideanize the data 

by defines a mapping from 
d

 to 
d

. In many cases, the distribution of the PNS 

residuals is similar to the multivariate normal distribution (see an example in 

SUP).  

Alternatively, a simpler but faster euclideanization is to map the data on the 

tangent space. We transform observations to the north pole (0 , ..., 0 ,1)
T d

 e  by 

( , )
F

R μ e
, where F

μ
 is the Fréchet mean. Then, we map the transformed data to 

the tangent space 
( )

d
T

e  by the Log map 
1

L o g ( ) ( , . . . , )
s in

T d

d
v v




 

e
v

, where 

1 1
( , ... , )

T d

d
v v


 v

, and 
1

1
c o s ( )

d
v






 (Jung et al., 2012; Kim et al., 2020). For 

concentrated von Mises-Fisher distribution, the distribution of projected data to 

the tangent space is close to the distribution of PNS residuals (see SUP).  

2.2.2 Mean GP-ds-rep 

A method to produce means and shape distributions of a population of GP-ds-

reps is composite PNS (CPNS) introduced by Pizer et al. (2013). The method 
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consists of two steps. First, the two spherical parts of the GP-ds-rep shape space 
3 1 12

( )
p s s

n n n 


 

 are analyzed by PNS. Spokes’ lengths and scaling factor can 

be mapped to 
1

s
n 

 with the log. Afterward, all euclideanized variables are 

concatenated in addition to some scaling factors that make all variables 

commensurate. The covariance structure of the resulting matrix is investigated by 

PCA. Consequently, the mean GP-ds-rep is defined as the origin of the CPNS 

space. This method depends on a proper pre-alignment and is computationally 

expensive because PNS has to fit sequential high dimensional sub-spheres to 
3 1

p
n 

.  

2.2.3 Mean LP-ds-rep 

To formalize the estimation of LP-ds-rep mean, first we define a metric for the 

product space 
L P

S . Assume metric spaces 
2

( , ) , ( , )
l g

d d


 and 
( (3), )

R
SO d

, 

where 
( , ) | ln ln |

l
d x y x y 

 is the Euclidean distance of log-scaled values, 
1

( , ) co s ( )
T

g
d


x y y x

 is the geodesic distance on the unit sphere (Jung 

et al., 2012), and 
1 2 1 2

1
( , ) || lo g ( ) ||

2

T

R F
d F F F F

 is the Riemannian distance on 

SO(3) where 
| | . ||

F  is the Frobenius norm (Moakher, 2002). The distance between 

two scaled LP-ds-reps 
L P

1 1 1 1 1 1 , ,
( , , , , )

i i j k k i j k
s F 

  
 u v

 and 
L P

2 2 2 2 2 2 , ,
( , , , , )

i i j k k i j k
s F 

  
 u v

 

is given by  

L P L P 2 2 2

1 2 1 2 1 2 1 2

1 1 1

1

2

2 2

1 2 1 2

1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) .

ps s

c c

nn n

s g i i l i i R j j

i i j

n n

g k k l k k

k k

d s s d d d F F

d d

 

 

   

  

 

 


   








  

 

u u

v v

 (2)  

Remark 1. LP-ds-rep space 
L P

S  is a metric space equipped by 
(.)

s
d

 (see the 

proof in SUP).  

If 
L P L P

1
, . . . ,

N
s s

 be a population of scaled LP-ds-reps then mean LP-ds-rep is  
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L P L P

L P 2 L P L P

1

a rg m in ( , ) .

N

s ms

m

s d s s




 S
 (3)  

Assume 
L P

, ,
( , , , , )i ki j k i j k

s F 
 


 u v

 and , ,i j k  let  

2

2

2 2 2

( 3 )

1 1 1

2 2

1 1

a rg m in ( , ) , a rg m in ( , ) , a rg m in ( , ) ,

a rg m in ( , ) , a rg m in ( , ) .

N N N

i g im i l im j F S O R jm

m m m

N N

k g km k l km

m m

d d F d F F

d d





  

  






  

 

  




 

 

  

 

  

 

u

v

u u u

v v v

 (4)  

By assuming the existence of unique solutions for optimization problems (4), i



u  

and k



v  can be estimated as the Fréchet or PNS mean of 1
{ }

N

im m




u

 and 1
{ }

N

km m




v

, 

respectively. Obviously, i


 and k


 represent the geometric means of 1
{ }

N

im m


  and 

1
{ }

N

km m


 , respectively. Further, we can calculate the mean frame j
F



 of 1
{ }

N

jm m
F



  as 

discussed by Moakher (2002).  

Result 2. If 
L P

s  be the mean of a population of scaled LP-ds-reps, then LP-size of 
L P

s  is equal to one (see the proof in SUP).  

2.3 Converting LP-ds-rep to GP-ds-rep 

Section 2.1.3 and Section 2.1.4 discuss how to obtain an LP-ds-rep from a GP-

ds-rep. For several reasons, e.g., for visualization, we may need to reverse the 

procedure. For GP-ds-rep visualization, it is sufficient to draw spokes individually. 

To visualize an LP-ds-rep, we convert it to a GP-ds-rep. We start from I  as the 

s-centroid frame. Then, we reconstruct frames by finding the position and 

orientation of the frame’s children based on I . Afterward, we find the information 

of grandchildren frames based on their parents and so on.  

Let frame F


 be in the coordinate system of its parent 
†

F . To find F


 based on 

GCS, we rotate 
†

F  by 2 1
R R

 such that 
†

2 1
R R F I

. Then 
1

2 1
[ ]R R F

 

 is the 
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representation of F


 in GCS. Similarly, we find the direction of connections and 

spokes in GCS.  

Finding the mean shape of a set of objects’ boundaries without an alignment is 

almost impossible. But we can use LP-ds-reps to estimate the mean boundary 

without alignment. First, we calculate the mean LP-ds-rep. Then, we convert the 

mean LP-ds-rep to a GP-ds-rep. Finally, we generate the implied boundary from 

the GP-ds-rep as demonstrated in (Liu et al., 2021). Therefore, it is possible to 

approximate the mean boundary without alignment, which shows the power of 

LP-ds-reps.  

2.4 Deformation 

In statistical shape analysis generating random shapes is a matter of interest. 

Designing simulations based on GP-ds-reps is challenging as we usually need to 

identify a local frame to bend or twist the object locally. It turned out that LP-ds-

reps support naturally skeletal deformations. We can stretch, shrink, bend, and 

twist the skeletal by manipulating the frames’ orientations and vectors’ lengths. 

Then, we convert the LP-ds-rep to a GP-ds-rep to generate the boundary. 

Consequently, we can add variation to a set of deformed LP-ds-reps’ GOPs to 

simulate random ds-reps. Figure 7 shows a deformed hippocampus including 

bending and twisting. The deformation is based on the rotation of spinal frames.  

3 Hypothesis testing 

For LP-ds-rep hypothesis testing, we consider frames as unit quaternions (i.e., 
L P

, ,
( , , , , )

i i j k k i j k
s  

  
 u q v

). In this sense, euclideanization of the frames based on 

their unit quaternion representation is the same as other spherical data as we 

discussed in Section 2.2.  

Let 
1

1
{ }

N

A m m
A s




 and 
2

1
{ }

N

B m m
B s




 be two groups of either GP-ds-reps or LP-ds-

reps of sizes N1 and N2. Let nGOP be the total number of GOPs. To test GOPs’ 

mean difference, we design nGOP partial tests. Let 
( )

A
s n

 and 
( )

B
s n

 be the 
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observed sample mean of the nth GOP from A and B respectively. The partial 

test is 0
: ( ) ( )

k A B
H s n s n

 versus 1
: ( ) ( )

k A B
H s n s n

. Note that for GP-ds-rep, LP-

ds-rep, and EDM of the skeletal PDM, nGOP is 
( 2 1), ( 2 2 1)

p s s p c
n n n n n    

, and 

( 1)
( 1)

2

p p
n n



, respectively.  

To test mean differences, we adapted a non-parametric permutation test with 

minimal assumptions similar to Styner’s approach (Styner et al., 2006). For the 

univariate data i.e., vectors’ lengths and shapes’ sizes, the test statistic is t-

statistic 1 2

1 1

p

x y
T

S
N N






 where Sp is the pooled standard deviation. For the 

multivariate data i.e., euclideanized directions and GP-ds-rep skeletal positions, 

the test statistic is Hotelling’s T2 metric 
2 1ˆ( ) ( )

T
T


   x y x y , where ̂  is an 

unbiased estimate of common covariance matrix (Mardia et al., 1982, ch.3). 

Given the pooled group {A, B}, the permutation method randomly partitions B 

times the pooled group into two paired groups of sizes N1 and N2 without 

replacement, where usually we consider 
4

1 0B  . Afterward, it measures the test 

statistic between the paired groups. The empirical p-value for the nth GOP is 

1

1 ( | | )

1

B

E n h n o

h

n

T T

B






 






, where Tno is the nth observed test statistics, Tnh is the 

hth permutation test statistic, and χE is the indicator function i.e., 
( ) 1

E
  

 if   is 

true, otherwise 
( ) 0

E
  

. Note that if we have normally distributed data, it is 

reasonable to apply Hotelling’s T2 test (with normality assumption) instead of the 

permutation test as it is much faster.  

In order to account for the problem of multiple hypothesis testing, one could use 

the method of Bonferroni (1936). Bonferroni’s method tests each hypothesis at 

level 
/

G O P
n

 and guarantees the probability of at least one type I error ( 1)P v   

be less than the significance level  . Since the method is highly conservative we 

Acc
ep

te
d 

M
an

us
cr

ipt



prefer to use Benjamini and Hochberg (1995) (BH) method as a more moderate 

approach.  

4 Evaluation 

4.1 Data 

To test our method, we study the hippocampal difference between early 

Parkinson’s disease (PD) and CG at baseline. Data are provided by ParkWest 

(http://parkvest.no), in cooperation with Stavanger University Hospital 

(https://helse-stavanger.no). At the baseline, we have 182 magnetic resonance 

images for PD and 108 for CG with corresponding segmentation of hippocampi. 

As described in Section 2, GP-ds-reps are fitted to left hippocampi by SlicerSALT 

toolkit (http://salt.slicer.org) and re-parametrize into LP-ds-reps. For the model 

fitting, we used GP-ds-reps with 122 spokes consisting of 51 up, 51 down, and 

20 crest spokes. As up and down spokes share the same tail positions, we have 

in total 71 tail positions. The generated LP-ds-reps have 122 spokes, 71 local 

frames, and 70 connections. Before analyzing the Parkinson data, we first study 

our method based on simulations.  

4.2 Simulation 

For the simulation study, we select a LP-ds-rep close to the mean LP-ds-rep of 

CG as a template. Based on the template, we generate two groups of LP-ds-reps 

each of size 150 with different amount of tail bending, i.e. bending in a local 

region. Such bending was observed for example in (Pizer et al., 2003) between 

schizophrenics and controls. Let 
( , )

d
μ

 denotes von Mises-Fisher distribution 

with mean μ  and concentration parameter κ on 
1d 

 (Dhillon and Sra, 2003). For 

the special case d = 2 we assume the distribution in radian i.e., , [ 0 , 2 )    if 

2
~ ( , )  

. Given a random rotation angle of bending 2
~ ( 0, 1 0 0 )   

 for 

the first group and 
2

~ ( , 1 0 0 )
1 5


  


 

 for the second group, we simulate the 

orientation of three spinal frames by successively rotating them about their 


b -
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axis with 
1

2 1 3
[ ] ( , (c o s , 0 , s in ) )

T
R R R I 


e

. This means the tails in the second group 

are successively bent on average 1 2


 downward for three consecutive spinal 

frames. Chosen frames are the closest ones on the hippocampus tail to the s-

centroid. Thus, in total, we have a slight downward bending about 3 6


 at the 

hippocampus tail. Finally, by preserving frame orthogonality, we add noise to all 

directions by 3
( , )μ

, where κ for frames’ vectors, spokes, and connections is 

equal to 600, 250, and 5000, respectively. Further additional noise is added to 

vectors’ lengths by the truncated normal distribution ( , , 0 , )a b       where μ 

is the vector length of the template, and parameters σ, a, and b are heuristically 

chosen. As a result, we have two groups of random LP-ds-reps, which are 

approximately similar in most of their GOPs but only different in the orientation of 

three frames. Figure 8 illustrates twenty samples of each group. Note that LP-ds-

reps are not aligned, but since we reconstruct them from the s-centroid frame, 

shapes have Bookstein’s alignment (Dryden and Mardia, 2016, Ch.2) because 

the s-centroid frames are perfectly aligned.  

As depicted in Figure 8(Right), hypothesis test on LP-ds-rep from Section 3 

correctly detects significant frame directions and label almost all other GOPs as 

statistically non-significant given a significance level 0 .0 5  . On the contrary, as 

depicted in Figure 9, the test on GP-ds-reps indicates a large number of false 

positives, i.e., almost all of the positions and directions are statistically significant. 

Also, from EDMA on the skeletal PDM we can see that about half of the 

distances are significant. This example confirms our observation from Figure 1 in 

Section 1, and highlights the fact that noninvariant GP-ds-rep analysis is biased 

and invariant EDMA could be misleading. The power of LP-ds-rep is further 

highlighted by additional simulation examples provided in SUP.  

4.3 Real data analysis 

The Parkinson data set described in Section 4.1 was studied earlier by 

(Apostolova et al., 2012) based on radial distance analysis and parallel slicing 

and showed some regional atrophy. Since shape correspondence in noninvariant 
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parallel slicing method is controversial, we attempt to reanalyze data by utilizing 

LP-ds-reps.  

First let us compare the shape sizes from Table 1. The volume measurement 

confirms the LP-size is more compatible with the object volume because both, 

the mean object volume and the LP-size of CG, are greater than PD. In opposite 

the mean GP-size and EDM-size of CG are smaller than PD. Also, tests on 

shape size indicate significant difference in LP-size.  

Figure 10 illustrates significant LP-ds-rep and GP-ds-rep GOPs before and after 

BH adjustment. In LP-ds-rep, all the spokes directions are insignificant. In 

contrast, about 40% of GP-ds-rep spokes’ directions are significant. Also, in LP-

ds-rep, there are a few significant connection and frame directions after the 

adjustment. Based on the LP-ds-rep analysis, it seems the main difference 

comes from connections’ lengths on the spine. Figure 11 shows sorted p-values 

before and after adjustment of the applied methods. Based on Bonferroni 

adjustment, PD and CG are similar because almost all adjusted p-values are 

greater than 0.05. Based on BH adjustment, all GOPs in EDMA are not 

significant but about 30% of them are significant before BH adjustment. The 

reason is the sensitivity of BH to the number of tests, i.e., by increasing the 

number of tests, BH becomes conservative. In GP-ds-rep half of the GOPs are 

significant even after the BH adjustment. In contrast, LP-ds-rep shows a small 

portion of significant GOPs before and after the adjustment. In addition, we 

analyzed the shapes without scaling to show the sensitivity of GP-ds-rep to the 

scaling and the superiority of LP-ds-rep compared to GP-ds-rep and EDMA. 

Detailed results are available in SUP.  

5 Conclusion 

Generally, it is common to detect locational dissimilarity between two groups of 

objects based on the alignment. As discussed, noninvariant (i.e., alignment-

dependent) methods such as GP-ds-rep analysis could be highly biased, and 
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invariant methods based on extrinsic object properties like EDMA could be 

misleading. Thus, we propose an invariant shape representation called LP-ds-rep 

by putting a partial order on the skeletal positions of a GP-ds-rep and 

constructing local frames at each skeletal position. Such partial order exists on 

any tree structure, by considering the flow away from a chosen basepoint. 

Therefore, the proposed idea is not limited to ellipsoidal objects, neither to 

skeletal models, as long as a tree structure can be established for a shape model 

that ensures good correspondence between objects. Further, we compared LP-

ds-rep analysis with GP-ds-rep analysis and EDMA to show the power and the 

advantages of LP-ds-reps. For comparison, we applied simulation and real data 

analysis. The simulation confirmed that even if two populations of ds-reps differ 

only in a small local region, the hypothesis tests based on GP-ds-reps and EDMs 

results in a large number of significant GOPs while LP-ds-rep indeed detected 

the differences. We studied left hippocampi of PD vs. CG for real data analysis. 

Although hypothesis tests on GP-ds-reps and EDMs indicated many significant 

GOPs, tests on LP-ds-reps showed only a few, which seems medically more 

reasonable. We concluded that PD and CG groups are very similar, but the main 

difference comes from the spin length.  
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1 The required energy to deform one object to the other one is negligible, e.g., 

see (Sorkine, 2006).  
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3 Slab refers to a 3D object such that its medial locus is a sheet.  

4 See (Van Kaick et al., 2011) for a comprehensive discussion about meaningful 
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Fig. 1 Problem of false positives due to alignment. (a) Two ellipsoidals are 

depicted by line and dashed line. Circles and crosses show corresponding 

boundary points. Bold points are shapes’ centroids. (b) Two populations of 

simulated PDMs. (c,d,e) Separation of corresponding local distributions. 
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Fig. 2 Skeletal structure of ellipsoidal objects. (a) 2D m-reps. s and s  are 

corresponding spokes with unit directions u and u . (b) A fitted ds-rep to a left 

hippocampus’s mesh including up, down, crest spokes, and the skeletal sheet. 
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Fig. 3 (a) Illustration of a 2D-ellipsoidal (left) approximated by a perfect 2D-

ellipsoidal (right). The solid curve and the bold dot (right) depict the medial curve 

and medial centroid, respectively. (b) Left: A mandible (without coronoid 

processes) as an example of a 3D-ellipsoidal with slicing planes. The solid curve 

is the center curve. Right: A cross-section as a 2D-ellipsoidal including its medial 

curve. 
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Fig. 4 Skeletal sheet. Left: Ellipsoid’s medial locus. Right: s-rep skeletal sheet of 

a 3D-ellipsoidal. 
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Fig. 5 Illustration of a local frames. n is normal of tangent planes 
( )T M

p  and 

( )T M
p . (a) 1

s
 and 2

s
 are equal-length spokes with unit directions 1

u
 and 2

u
, 

and 

1 2

1 2
| | | |






u u
b

u u
 (b) c is a smooth curve on M. 1

 p
 and 2

p
 are the projection 

of 1
p

 and 2
p

 on 
( )T M

p . 

1 2

1 2

1 2

,
| | | | | | | |

   
   

   

p p p p
v v

p p p p
, and 

2 1

2 1
| | | |

  


  

v v
b

v v
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Fig. 6 LP-ds-rep. Top: Hierarchical structure of the ellipsoid’s medial locus. 

Arrows are connections. The dot is the medial centroid. Bottom: A fitted LP-ds-

rep to a hippocampus. Arrows indicate spokes, connections, and frames. The 

magnified image depicts a spinal frame. The dot is the s-centroid. 
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Fig. 7 Skeletal deformation by LP-ds-rep. Left: A ds-rep with its implied boundary 

in two angles. Middle: Shape bending by spinal frame rotation about n and 


b  

axes. Right: Shape twisting by spinal frames rotation about b axis. 
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Fig. 8 Simulation. Left: Two groups of simulated ds-reps. Middle: Overlaid mean 

LP-ds-reps. Right: Illustration of local frames. Bold frames are statistically 

significant. 
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Fig. 9 Sorted raw and adjusted p-values. The horizontal line indicates 

significance level 0 .0 5  . 
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Fig. 10 ds-rep significant GOPs. Bold indicate significant GOPs. FDR=0.05 for 

BH adjustment. 
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Fig. 11 Test on real data. Sorted raw and adjusted p-values. The horizontal line 

indicates significance level 0.05.
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Table 1 T-test on shape size. 

 Mean CG Mean PD SD CG SD PD p-value 

Object volume (mm3) 3352.23  3271.44  563.39  616.68 0.26  

textLP-size  2.37  2.33  0.17  0.18  0.04  

GP-size of spokes’ tips  161.05  162.51  8.97  8.62  0.17  

EDM-size of skeletal PDM  12.66  12.76  0.83  0.84  0.36  
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