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ARTICLE INFO ABSTRACT

Keywords: Correct environmental perception of objects on the road is vital for the safety of autonomous
risk-aware autonomous systems driving. Making appropriate decisions by the autonomous driving algorithm could be hindered
DL by data perturbations and more recently, by adversarial attacks. We propose an adversarial test
test set generation input generation approach based on uncertainty to make the machine learning (ML) model more
uncertainty robust against data perturbations and adversarial attacks. Adversarial attacks and uncertain in-

puts can affect the ML model’s performance, which can have severe consequences such as the
misclassification of objects on the road by autonomous vehicles, leading to incorrect decision-
making. We show that we can obtain more robust ML models for autonomous driving by making
a dataset that includes highly-uncertain adversarial test inputs during the re-training phase. We
demonstrate an improvement in the accuracy of the robust model by more than 12%, with a no-
table drop in the uncertainty of the decisions returned by the model. We believe our approach
will assist in further developing risk-aware autonomous systems.

1. Introduction

Over the past decade, Deep Learning (DL) succeeded in a wide range of applications, partly due to the use of pow-
erful learning algorithms that can learn complex relationships from large-scale datasets. More recently, DL schemes
were applied successfully in various tasks related to autonomous driving, such as perception, prediction, planning,
decision-making, and control. Developing robust DL schemes continues to attract more attention to safety-critical
application domains. Despite the success of DL[1], there are still challenges in applying DL to many real-world ap-
plications. One of the biggest obstacles to using DL in many applications is the lack of explainability of how and why
DL networks work.

In some cases, e.g., in medical applications, the neural network function must be explained to the user [2]. Another
critical issue is that Deep Neural Networks (DNNs) are very sensitive to the change in the distribution of inputs. For
example, the image classification network trained on the ImageNet dataset [3] can not be directly used to classify images
of different domains, such as medical images. If we want to use a model trained on a large dataset, e.g., ImageNet [4],
to classify images in other domains, the model will not work well. The main challenge here, is to train a model that
performs on all different data types and in real-life circumstances with high uncertainty and noise.

When deploying a model to a new environment, it is critical to test the model to ensure accurate results. However,
there are many ways to test a model. Traditional testing methods, including statistical testing, modeling, and validation,
do not produce a robust enough test set that can cover all possible scenarios. Instead, to build DL models ready for
industrial applications, we need to follow software test engineering methodologies [5] to develop and validate robust
ML models. There are many different testing methodologies in software testing, such as white-box testing, black-box
testing, and grey-box testing [6]. The grey-box testing is a methodology that combines white-box testing and black-box
testing. Grey-box testing involves both the internal structure of the system and the environment in which the system
operates. The system’s internal structure is used to generate test data, and the environment is used to validate the test.
Grey-box testing is a robust testing methodology that can test the system from different perspectives.

In this paper, we propose a grey-box testing methodology that can test the system from the internal structure of
the system, the environment, and the user. The proposed method uses a system model to generate test data, a test
oracle to validate the test, i.e., prediction performance, and a user model to evaluate the system, i.e., DNN model.
There are different approaches to developing robust DL schemes, such as modifying the data, the model itself, adding
auxiliary models, and adversarial test input generation. In this work, our focus is the test input generation-based robust
DL scheme development in autonomous driving systems. Two significant gaps in recent works are the interpretability
of DL models and training robust models in the presence of different training and test distributions [7]. This paper
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Towards robust autonomous driving systems through adversarial test set generation

addresses both of these gaps by introducing a well-defined adversarial test set generation that reduces the uncertainty
and produces more robust models that perform better in the presence of uncertain inputs.

We consider the two main types of uncertainty: epistemic (model) and aleatoric (data) uncertainty. When au-
tonomous driving is considered, DL models are generally multi-output regression models. Classical means of dealing
with uncertainty generally do not apply to DL. There is a need for novel methods for measuring uncertainty in multi-
output regression models. According to Wickramasinghe’s recent work [8], many DNN solutions for Cyber-Physical
System (CPS) data only create outputs for the input instances. They do not measure uncertainty in the prediction phase,
which could ultimately result in a lack of trust in these approaches and could lead to unexpected and dangerous CPS
behaviors. DNN models trained on data from CPS will require an uncertainty quantification framework to quantify
the model uncertainty correctly. Next, the researchers should develop procedures to deal with this uncertainty.

One of the open problems for training robust models against uncertainty is generating relevant testing data to
optimize the models. For this purpose, we use existing autonomous driving data sets, including sensor data, e.g.,
LIDAR and GPS, and video recording data. We generate highly uncertain test inputs from these data sets to train
robust models against perturbations and adversarial attacks. The generated test data will help reduce the uncertainty
of the decision-making process of an autonomous driving system. To evaluate the robustness of the produced models,
we use the generated test data to test the trained models. We also compare the results with the models which are
not trained with the generated test data. Our recent work [9] presented a new metric for uncertainty quantification for
object detection DNN models, where the experiments were conducted on the NEXET, Berkeley DeepDrive, KITTI, and
Stanford datasets, together with SSD300, SSD512, and YoLo DNN models, to quantify prediction-time uncertainty.
Another study [10] proposed a robust model training method (NIRVANA). NIRVANA seeks to compare the accuracy
of DNN model predictions with another model and to enhance DNN model predictions using results of generated
uncertainty quantification.

Connected and Autonomous Vehicles (CAVs) are subjected to cyber-attacks, particularly, zero-day attacks [11].
The limited computational power of Engine Control Units (ECU) in cars prohibits them from processing robust secu-
rity protocols. Furthermore, cyber-attacks put the privacy and security of passenger data at risk. CAVs differ from
traditional software in several ways including their cyber-physical nature, which comprises hardware, software, and
physics. The complex operating environment of CAVs includes people, and communication platforms [12]. The de-
velopment and operation of CAVs are also fraught with uncertainty due to the inherent uncertainty of the DL models,
the naturally unpredictable nature of the environment, the unpredictable nature of human behavior, and the unreliable
network communications among CAV parts [13, 14]. The building and use of CAVs are challenging because of such
uncertainty sources. Therefore, the data generated during the operation of CAVs can be used with DL models to under-
stand CAV behaviors’ uncertainties better, improve future generations of CAVs, and build novel test cases. We focus
on the CAV data generated during their operation to achieve this.

There are many studies in the literature on detecting and preventing poisoning and trojan attacks; however, these
studies mainly require using powerful computing resources and the cloud. Our study is different from others because we
focus on test data set generation for robust ML/AI models for autonomous driving, including the development of low-
energy, low-latency, and low-complexity methods that can easily integrate into the training and inference algorithms
without affecting their performance.

The main contributions of this article are as follows:

1. We propose a method for generating highly uncertain test input data for a given DL model for autonomous
driving systems. The generated test data are used to verify the robustness of DL models.

2. We adopted an adversarial training mitigation method for the highly uncertain test inputs to increase the robust-
ness of the DL models.

3. We compare the results of our proposed method with the state-of-the-art testing method and show that our
approach achieves better performance.

The rest of the paper is organized as follows. In Section 2, we present the related work. Section 3 presents the
system model including the uncertainty-based test set generation and the adversarial re-training algorithm. Section 4
presents the experiments on generating test inputs based on uncertainty maximization. In Section 5, we present the
results and discuss the outcomes. We conclude with Section 6, where we also give ideas on future research tracks.
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2. Related Work

DL recently gained popularity in autonomous driving and intelligent transportation system-related problems, with
the ability to conduct feature selection during the learning process [15]. Some popular DL algorithms include Convo-
Iutional Neural Network (CNN), Feedforward Deep Network (FDN), Long-Short Term Memory (LSTM), Recurrent
Neural Network (RNN), and Generative Adversarial Network (GAN) [15]. Boukerche et al. [16] discuss the appli-
cation of DL to vision-based autonomous vehicle recognition. Various use cases include vehicle detection, vehicle
make and model recognition, and vehicle re-identification. Khan et al. present [17] an LSTM-based intrusion detec-
tion system for the Internet of vehicles. Jebamikyous and Kashef [18] discuss the two prominent use cases of DL for
perception in autonomous vehicles; semantic segmentation and object detection. These tasks require precise data for
high-performance classification results. However, uncertainty is a factor that reduces the classification performance
of DL algorithms.

Various research works addressed the uncertainty in autonomous systems and proposed multiple methods to in-
crease the performance of ML/DL algorithms in the presence of uncertainty. In [19], the authors analyze various
sources of uncertainty in autonomous systems, such as execution uncertainty, timing uncertainty, adversarial attacks,
and uncertainty of the behavior of Neural Networks (NNs). The authors propose a cross-layer weakly-hard design
framework to tackle the execution uncertainty problem and safety verification of NNs through reachability analysis.
Another study [20] addresses safe and adaptive autonomous navigation in uncertainty. The common shortcoming of
the approaches mentioned above is that they require knowledge of the NN architecture to improve performance. In our
proposed work, test-set generation based on uncertain inputs and subsequent re-training is utilized for this purpose,
and previous knowledge of the NN architecture is not needed.

Uncertainty quantification is a method to rank the generated inputs based on their corresponding uncertainty metrics
values (variance, maximum probability), re-training the model with the highly uncertain new generated inputs. In [21],
the authors apply the Monte-Carlo (MC) dropout method to measure uncertainty in inputs for autonomous driving.
The deep ensemble is a non-Bayesian uncertainty quantification method [22]. Adversarial ML methods are based on
generating challenging and misleading inputs using attacks and then adding generated data or images to the original
test set. In [23], Ma et al. use various adversarial training methods, such as the DeepFool, Basic Iterative Method,
Carlini-Wagner (CW), Fast Gradient Sign Method (FGSM), and the Jacobian-Based Saliency Map Attack. The main
aim of this study is to increase the uncertainty in the re-training phase to improve the model prediction performance.

In DeepXplore, new metrics such as Network Coverage (NC) and the number of activated neurons in the predic-
tion have been used [24]. DeepTest generates new inputs for autonomous driving DL models where different image
transformations lead to different NC values [25]. DeepMutation uses mutation score, a parameter used in traditional
software engineering for testing DNN models. Their proposed method creates multiple new mutant DNN models from
a given model using additional methods like neuron switch or layer removal [26]. DeepCT is a test coverage metric
indicating that within a given DNN layer, all tuples of neurons in that DNN layer must be covered by at least one test
image [27]. DeepHunter is a fuzzing-based test generation algorithm to hunt defects in DL models. The coverage
metrics guide the fuzzing [28]. Ma et al. [29] define uncertainty-based metrics for test case generation in DL systems.
The authors argue that the most critical test inputs are those with high uncertainty, a principle we adopt in this paper
for generating more realistic autonomous driving test sets.

Djenouri et al. proposed an accurate object detection model by adopting the Granular Region Convolution Neural
Network (GRCNN) to process vehicle image data to reduce accidents through a smart road system [30]. Mekala et
al. highlighted the importance and feasibility of DL techniques for autonomous vehicles to accomplish an intelligent
driving system without human interaction [31]. They have reviewed the Lidar-based DL strategies to address the
research challenges in autonomous driving through a comprehensive analysis of Semantic Segmentation, Data Rep-
resentation, Feature Extraction, Dynamic Object Detection, Data Fusion, and Autonomous Driving-Multi-Objective
tracking mechanisms.

The existing literature addresses uncertainty quantification and various methods to train better-performing ML/AI
models in the presence of uncertainty. The current literature lacks the issue of training robust models against uncer-
tainty by generating relevant testing data to optimize the models. There is no systematic approach to test data generation
based on adjustable parameters that can be measured which represents the uncertainty of the test data, and evaluates
the effect of changing these parameters on the performance.
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Bayesian Methods Non-Bayesian Methods
- Variational Inference (VI) - Monte Carlo Dropout (MCD)
- Markov Chain Monte Carlo (MCMC) - Bootstrap Ensemble
- Confidence Interval (ClI)
- Importance Weighting (IW)

Probabilistic

Non-Probabilistic - None

Table 1
An overview of methods for measuring output uncertainty.

3. Uncertainty Types and Quantification in DL

To mitigate the overconfidence problem in DL models, we need to train the model to be uncertain about its predic-
tions. This section introduces methods from the literature used to measure the output uncertainty of DL models. Table
1 shows the two main types of methods for measuring the output uncertainty of DL models. Bayesian methods are
based on Bayesian inference, whereas non-Bayesian methods are based on other methods such as Monte Carlo sam-
pling, importance sampling, and bootstrap sampling. Bayesian methods are usually more accurate but require more
extensive training data and are computationally expensive compared to non-Bayesian methods. For these reasons,
non-Bayesian methods are more prevalent in practice.

We present our view of the taxonomy of uncertainty types in Fig. 1. This taxonomy is motivated by the notion
of epistemic and aleatoric uncertainty in the statistical literature and the recent work on DL uncertainty in [32]. The
boxes in the diagram show various sources of uncertainty, while the arrows indicate how they propagate through the
DL model. The middle region shows the sources of uncertainty considered in this paper.

Epistemic uncertainty, also known as model uncertainty, arises from the fact that the model has been trained on an
imperfect dataset and in an imperfect environment. It corresponds to the model’s inherent uncertainty, which one can
reduce during training by providing more data. Aleatoric uncertainty, or data uncertainty, stems from imperfect and
incomplete data. Whereas Classical uncertainty, or label uncertainty, arises from the fact that the ground truth labels
are imperfect and incomplete. Classical uncertainty corresponds to the inherent uncertainty in the labels, which can
be reduced by providing more data. Prediction uncertainty, or output uncertainty, arises from the fact that the model
has been trained on an imperfect dataset and in an imperfect environment. It corresponds to the inherent uncertainty
in the model, which can be reduced during training by providing more data.

Model, prediction, and data uncertainty can all be exploited to improve the quality of predictions made by the
model. Epistemic and Prediction uncertainty are the reducible components of the total uncertainty. While Classical
and Aleatoric uncertainty can be considered as the irreducible component of the total uncertainty.
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Figure 1: lllustration of the different sources of uncertainty and how they affect the performance of a DL model.

DL models are often trained using a maximum likelihood ML criterion, i.e., the model parameters are learned to
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maximize the likelihood of the training data. However, the ML criterion is known to be the Maximum a Posteriori
(MAP) estimate in the Bayesian setting [33]. Thus, the ML criterion can be viewed as a special case of the MAP
criterion when the prior is uniform and can be used to learn the model parameters of a DL model. However, the MAP
criterion does not account for the uncertainty in the model parameters. Instead, it is accounted for by using the MAP
criterion. The MAP criterion is given by

0" = arg max log p(D | ) + log p(0) )

where D is the training data,  are the model parameters, p(D | 0) is the likelihood of the training data given the model
parameters, and p(0) is the prior over the model parameters.

The uncertainty in the training data can be accounted for by using the maximum a posteriori with data uncertainty
(MAP-DU) criterion defined as

0" = arg max log p(D | 8) + log p(6 | D) ?2)

where D is the training data,  are the model parameters, p(D | 0) is the likelihood of the training data given the model
parameters, and p(@ | D) is the posterior over the model parameters given the training data.

The MAP-DU criterion can be used to learn the model parameters of a DL model. However, it does not account
for the uncertainty in the labels. The label uncertainty can be accounted for by using the maximum a posteriori with
label uncertainty (MAP-LU) criterion defined as

0" = arg mglx logp(D | 6,L)+1ogp@ | D, L) 3)

where D is the training data, £ are the labels, 6 are the model parameters, p(D | 6, L) is the likelihood of the training
data given the model parameters and labels, and p(6 | D, L) is the posterior over the model parameters given the
training data and labels.

The MAP-LU criterion does not account for the uncertainty in the test data. Hence, the uncertainty in the test data
can be accounted for by using the maximum a posteriori with the test data uncertainty (MAP-TDU) criterion given by

0* = arg meax log p(Dy; | 6, D) +1log p(0 | D, D) “4)

where D is the training data, D, is the test data, 8 are the model parameters, p(D,. | 0, D) is the likelihood of the
test data given the model parameters and training data, and p(6 | D, D) is the posterior over the model parameters
given the training data and test data.

DL models are trained to optimize a loss function, making them susceptible to the data used to train the model.
The dependence on the training data may significantly impact the model’s generalization performance on unseen data
during testing because DL models can extrapolate the underlying relationships in the data and generalize them to
unseen data. However, a model trained on a dataset sampled from a different distribution from the testing one will not
generalize well.

Figure 1 shows the three sources of uncertainty and how they affect the performance of a DL model. Data un-
certainty comes from the fact that the dataset is sampled from an underlying distribution. Irreducible uncertainty is
uncertainty that one can not remove. In contrast, model uncertainty is the uncertainty that comes from the fact that the
model is not trained on the entire population. Figure 1 shows how the three sources of uncertainty propagate through
the model. The data uncertainty affects the model uncertainty, which affects the irreducible uncertainty. A model
trained on a dataset generalizes better if the dataset is larger. This is because a model trained on a larger dataset is more
accurate, which reduces the model’s uncertainty. Data uncertainty comes from the fact that the dataset is sampled from
an underlying distribution. The data uncertainty affects the model uncertainty, which in turn affects the irreducible
uncertainty. The model uncertainty is the primary source of uncertainty that we focus on in this work.

A model with a high uncertainty has low performance on unseen data. In this work, we focus on the aleatoric
uncertainty. There are two main ways to quantify aleatoric uncertainty, the mean-variance approach, and the predictive
entropy approach. The mean-variance method quantifies the aleatoric uncertainty by the model’s predictions’ mean
and variance. The predictive entropy approach quantifies the aleatoric uncertainty by the entropy of the model’s
predictions. In this article, we use the mean-variance approach.
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In the mean-variance approach, the mean is the expected value of the model’s predictions, and the variance is the
expected value of the squared difference between the model’s predictions and the mean. The mean and the variance
can be estimated using the Monte Carlo method [34]. The Monte Carlo method generates samples from the model’s
predictions. The mean and the variance are then estimated using the generated samples.

4. System Model

The main goal of this work is to build a robust DL. model for Cyber-Physical Systems (CPSs), based on model
re-training creating highly uncertain inputs. The proposed highly uncertain instance generation mainly consists of the
following three phases: (I) is the dataset generation; (II) is the building of a dropout-based neural network at prediction
time; (III) is the re-training of the model with the generated highly uncertain inputs (see Figure 2).

MC Dropout Based Model Training Uncertainty Based Re-Training
e e s s s N Model Re-Training
Autonomous Car " M N sl
u ] %
et T o \ 81— gyo— : @ Qe
‘ J.,T‘.\ ! 00| 1
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Figure 2: System overview.

4.1. Test Input Generation based on the Non-dominated Sorting Genetic Algorithm

NSGA-II (Non-dominated Sorting Genetic Algorithm-II) follows the general outline of a genetic algorithm with a
modified mating and survival selection. In this algorithm individuals are chosen frontwise, leading to a situation where
a front needs to be split because not all individuals are permitted to survive. This splitting front selects solutions based
on crowding distance [35]. The main advantages of NSGA-II are that it can deal with mixed constraints, it is elitist, is
very unlikely to converge prematurely to a local optimum, and is computationally efficient. Elitist algorithms, a type of
evolutionary algorithm, work by making sure that the best individuals in one epoch are not discarded, and transferred
directly into the next generation. The algorithm is implemented in Python through the Pymoo module. Algorithm 1
shows the steps in NSGA-II. The algorithm’s inputs are; the population size P, the number of generations G, the
objective function f;(x;), the lower and upper bounds /;, u; of decision variables x;. The output of NSGA-II is the set
of non-dominated solutions S*.

Algorithm 1 NSGA-II
Require: P, G, f;(x)),1;, u
Ensure: S*
1: Initialize the population P;
2: fori=1to Gdo
Calculate the fitness of each individual x;;
Sort the population P frontwise;
Select the non-dominated individuals S*;
Calculate the crowding distance of S™*;
Select the best individuals with the smallest crowding distance;
Generate the new population P,,,,;
9: P:=P

new

10: end for RETURN S*

e AR

Figure 2 demonstrates the training dataset D is collected from CAVs in Phase I. In this study the inputs are LIDAR,
and the output is a robust model that is trained to classify the objects in the LIDAR. The algorithm’s primary output is
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the generation of a robust model that is not tricked by an adversarial test input injection. Data preparation is conducted
in Phase I and DNN model training with the input dataset D which is carried out from the previous phase. Conventional
DNN training is executed at this phase to find the optimal weights. The primary output is the base DNN model, which
is the DNN model with the best prediction performance and lowest loss value over the complete training data. The
most crucial contrast between the base DNN model and a conventional DNN is the prediction time activated dropouts.
In contrast, a standard DNN model has no dropouts in the prediction time.

In Phase III, the model is re-trained using highly uncertain training instances to improve the DNN model’s pre-
diction performance. In this our approach, we use the training dataset and model with the NSGA-II optimization
algorithm to generate new and highly uncertain instances. Then, we merge the training dataset with newly generated
instances. Finally, we re-train the DNN model with the new training dataset to improve the prediction performance.

4.2. Adversarial Training

In this research, we use the adversarial training method to improve the robustness of the DL. model. The adversarial
training mitigation method re-trains a DNN model to be robust against a specific type of perturbation. In this work,
we train a model on a training set, where the inputs are perturbed by adding a small amount of noise generated by
the NSGA-II optimization-based perturbation method to increase the uncertainty of the test input for the DL model.
Algorithm 2 shows the proposed method for adversarial training. The algorithm’s input is the dataset D, the number
of iterations I, the learning rate @, the model F, and the loss function L. The output of the algorithm is the robust
model F'.

Algorithm 2 Adversarial Training
Require: D, I, a, F, L
Ensure: F’

1: Initialize the parameters of F;

2: Initialize the parameters of F';

3: fori=1to I do
4:  Randomly select an input x; from D;
50 Xy =X +a-NSGA-11(x;,y;, F);
6
7
8
9

Update the model F by minimizing L(x,,,.., y;, F);
Update the model F’ by minimizing L(x,4,, ¥;» F');
: end for

: return F’

5. Experimental Evaluation

The aim of our experiments is to assess the effectiveness of our approach in minimizing the effect of uncertainty
in the prediction results. The experimental setup and conditions are chosen to ensure that the results are as close
to real-world conditions as possible. The results are then used to improve the model, and the process is repeated
until the desired level of accuracy is achieved. We determined the best hyper-parameters for the DNN models for the
datasets used in the experiments using a simple grid search. We found that the best hyper-parameters are the ADAM
optimization with a learning rate of 0.001. Figure 3 shows the DNN model. Dropout layers have been used during the
model’s training against adversarial test input injection. ReLu activation is used in the input and all the hidden layers;
the output layer is activated by the Sigmoid function with the loss given by categorical cross-entropy. We perform the
optimization using the Adam optimizer. The data is available from !. We present information about the dataset we
employed in the experiments in Section 5.2, followed by the training process description.

5.1. Generation of Challenging Inputs Based on Uncertainty Maximization

Our approach is based on generating challenging inputs based on uncertainty maximization. Our method is similar
to the methods utilized for defending against adversarial ML attacks. Here, we try to increase the prediction uncertainty
of the model by adding a small perturbation to the input. In adversarial ML attacks, the objective is to fool the model
using the loss maximization approach. We extend this approach by maximizing the prediction uncertainty in the

'https://level-5.global/data/perception/
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input: | [(None, 999)]
output: | [(None, 999)]

dense_input | InputLayer

|

input: | (None, 999)
output: | (None, 100)

l

mput: | (None, 100)
output: | (None, 100)

l

mput: | None, 100)
output: | (None, 200)

dense | Dense

dropout | Dropout

denge 1 | Denge

y

input: | (None, 200)
output: | (None, 200)

dropout_1 | Dropout

input: | (None, 200)
output: | (None, 100)

|

input: {(None, 100)

output: (None, 9)

dense 2 | Dense

dense_3 | Dense

Figure 3: Architecture of the deep neural network.

model’s prediction. We depict the overview of our methodology in Fig. 4. In the first step, the data is pre-processed
including imbalance correction and train-test split. The second step trains the deep neural network model is trained
on the train set. Once the model has sufficient performance, an adversarial test input generation is used to modify the
training dataset. In the third step, the model is re-trained on the adversarial dataset. The model becomes more robust
to this type of adversarial attack based on our approach.

To generate challenging inputs, i.e., highly uncertain inputs, we used an optimization method to find the best
perturbation points on the input to increase the uncertainty. The objective function of the optimization method is
to maximize the prediction uncertainty. There are three parts to the objective function, increase uncertainty, lower
perturbation amount, and increase wrong prediction amount. The objective function combines the hyper-parameters
(a and p) to find the optimal solution. The optimization objective is to create new instances based on training data
with the following optimization function given in Eq. 5. Eq. 5 is constrained by the noise budget e: ||noise|| < e. We
have assigned ¢ as 30% of the training dataset.

noise = arg min

g m (m + |Inoise|| + g - 1(y == ﬁ)) , ||noise|| < € 5)

where:

- U(h(x)) is the prediction uncertainty

- x is the input instance

- h is the DL model

- ||noise|| is the norm (i.e. magnitude) value of the noise

- € is the Noise budget (i.e. the maximum distance between x and x + noise)
- x € R™ and noise € R"”

- noise has the same number of columns as the input instance x

- a is the multiplication factor of uncertainty quantification metrics value

- f is the multiplication factor of the number of incorrect predictions
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The ideal noise would have the following properties:

- Maximize the prediction uncertainty: ﬁ

- Minimize the noise magnitude (norm value): ||noise||

- Change the prediction class: 1(y == )

We use the generated data to train the model to increase its robustness.

Step 1 i. Preprocessing ii. Train-Test Split iii. Choose Evaluation Metrics
@ Class Imbalance @
. Accuracy
Correction
Balanced Data Fl-scorg
Dataset. Extract & Precision
9 Classes. Undersample Train set: 67%. Test set: 33%. Recall Performance Metrics
Car Class

ﬁ Oversample Minority
Classes
Step 2 i. Train Deep Neural Network ii. Validation

Performance
Tune - Score
Hyperparameters -
—>
Train set

Test set
DNN Multi-Class

Step 3 Classifier

i. Initialize once ii. Train on Adversarial Test Set ii. Validation
Performance —>
Score . - Performance
Adversarial Test Set - Score
Generation
Train set + Noise ~ Retraining DNN Test
Classifier
L/l Iterative process
Train set Optimizer: NSGA-II

Parameters: a, B

Figure 4: Steps of the uncertainty-based test input generation and DL model training.

5.2. Dataset

We use the LIDAR data in this study published by Woven Planet Holdings [36]. The data is available from
https://level-5.global/data/perception. The LIDAR dataset size is about 37GB. The dataset is collected as cloud points
as shown in Fig. 5. The cloud points are represented as 3D-coordinate points such as (x, y, z) where x, y, and z are
floats. In this dataset, a LIDAR scene corresponds to 4 images. However, we do not consider images in this study. The
reason for using LIDAR data as opposed to images is that LIDAR sensors, unlike cameras, function independently of
ambient lighting. LIDAR can achieve great results both day and night without any loss of performance due to distur-
bances such as headlight glare, sunlight, shadows, or lack of ambient lighting. The LIDAR sensors use an eye-safe
laser to emit light pulses that light up the region of interest.

This dataset was initially released for regression models. However, we modified the dataset for training classifi-
cation models. Since the dataset is too large, we down-sampled to 10% of the original dataset. The LIDAR dataset
contains labels of the objects. We cropped the dataset and obtained the objects and their labels. The new dataset con-
sists of only LIDAR data of the objects and their labels. There are 9 types of objects: animals (anml), bicycle (bcycl),
bus, car, emergency vehicle (EV), motorcycle (MC), other vehicle (OV), pedestrian (pdstrn), and truck (trck). Only
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these objects are extracted to prepare the train and test sets. There is a class imbalance issue as there are more cars
than cyclists or emergency vehicles. Therefore, we also applied class imbalance correction. The minority classes are
oversampled through imbalance correction and the majority (car) class is undersampled. The training dataset is 67%
and the testing dataset is 33%. The ML training is initiated by training on LIDAR data and labels. The model outputs
the softmax classification of the objects. Then, using the uncertainty formula and NSGA-II algorithm, the dataset is
modified with noise and sent to the ML models again for re-training.

5.3. Training

For defining the models and visualizing the analysis using Python, the following packages are used: TensorFlow,
uncertainty wizard, Pandas, NumPy, Sci-Kit learn, SciPy, Keras, Seaborn, Pymoo, CleverHans, Tqdm, and Matplotlib.

The model is defined as a Stochastic Sequential Keras model with dense and dropout layers. ReLu activations
are used for input and hidden layers with softmax activation in the final output. The neurons in the dense layers
are 100, 200, and 100, respectively. The dropout layers use 9% dropout. Adam optimizer is used with the loss function
as categorical cross-entropy. The model is executed and trained with early callbacks enabled.

A different type of neural network, Pointnet, is also used for validating our approach. Pointnet is a neural network
designed to work directly with point clouds while considering the permutation in-variance. [37].

Figure 5: In this figure, (a) shows a LIDAR output, and its corresponding image in visible light is shown in (b). (c) is the
LIDAR output of a different scene, and the corresponding visible light image is shown in (d).

6. Results and Discussions

The performance of the ML model is evaluated using accuracy (defined in Eq. 6), F-1 score (defined in Eq. 9), recall,
and precision. These metrics are determined using True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN). The F1-score is calculated based on precision and recall and a value of the F1-score close to 1
indicates that the model performs well in both precision (see Eq. 7) and recall (see Eq. 8).

TP+TN
Accuracy = 6)
TP+TN+ FP+ FN

Precision = L (@)
TP+ FP
Recall = — 1P ®)
TP+ FN

Floscore = 2- Pre?c'fszon - Recall ©)
Precision + Recall
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323

Fig. 6 plots losses and accuracy as the model is trained against the adversarial test input injection dataset. We see
324

that accuracy is improving with a reduction in losses. Fig. 7 shows the accuracy, precision, recall, and F1 score during

the adversarial training. The performance metrics are improving with every training iteration. Fig. 8 shows the drop
in uncertainty before and after training with the adversarial inputs.

325
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Figure 6: Loss plot training

The model is made more robust with adversarial ML-based test input generation. After we append the dataset with
the adversarial inputs by the allocated percentage of the noise budget, we re-train our model. In Fig. 7 we observe the
model performance drops initially but improves again and becomes more robust with subsequent training iterations.
Fig. 8 shows the drop in uncertainty after training with adversarial test inputs. Fig. 9 shows the improvement of the

model across all the performance metrics after training using the adversarial test input set. The Pointnet performs
better than the typical dense neural network as the architecture of this neural network is specially designed to directly

handle point clouds.

0.7 0.7 0.7 0.7
0.5 0.5 0.5 0.5
0.3 0.3

0 20 40 0 20 40 0 20 40 0 20 40

iterations.

Figure 7: Accuracy, precision, and recall with adversarial test input injection training. Model performance improves with

Table 2 shows the influence of a and f hyper-parameters on the performance of the DNN during the training
against adversarial test input injection. « is the multiplication factor of uncertainty quantification metrics value. We
used mean variance as the uncertainty quantification metric. f is the multiplication factor of the number of incorrect
predictions. Varying these hyper-parameters will determine how much of the noise originates from the magnitude of
the prediction error, or the number of wrong predictions. The hyperparameter values depend on the type of data and
the classification task. Our optimization function uses these two hyper-parameters to penalize the classifier and train
the model to become robust to adversarial test input injection. The best value for @ and g is 0.6. The model showed
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Table 2
The table shows the values of the @ and § parameters and the resulting model performance, the % improvement compared
to the base model, and the average performance metrics

a B Accuracy Precision Recall Fl-score a/f Acc. Improved
0.9 09 0.68 0.69 0.68 0.68 1 7.3
09 06 0.67 0.67 0.68 0.67 1.5 5.9
09 03 0.69 0.70 0.68 0.69 3 8
09 0.1 0.62 0.61 0.63 0.62 9 1.53
0.6 0.9 0.68 0.69 0.67 0.68 0.67 7.33
0.6 0.6 0.73 0.76 0.73 0.74 1 12
0.6 0.3 0.61 0.59 0.61 0.60 2 -0.27
0.6 0.1 0.65 0.66 0.64 0.65 6 4.06
0.3 09 0.60 0.62 0.61 0.61 0.33 -0.59
0.3 0.6 0.71 0.71 0.70 0.70 0.5 9.74
0.3 03 0.60 0.60 0.61 0.60 1 -0.64
03 0.1 0.69 0.70 0.68 0.69 3 8.16
0.1 09 0.72 0.71 0.70 0.70 0.11 11
0.1 0.6 0.63 0.62 0.61 0.61 0.17 2.01
01 03 0.52 0.52 0.51 0.51 0.33 -9.36
0.1 0.1 0.61 0.60 0.61 0.60 1 0.08

a relatively optimal performance using this value which yields an average accuracy of 0.73, i.e., a 12% improvement
upon the base model. The accuracy of the base model is 0.62.

Average Uncertainty of the Neural Network Predictions Before
and After Training with the Adversarial Test Input Dataset

..

Train Test Adversarial Train Adversarial Test

- -
(o2} ~
a o

Average Uncertainty (Monte Carlo)
n
(3,1

-
~
a

Figure 8: Average uncertainty of the Neural Network predictions before and after training on the dataset with the adversarial
test inputs. Average uncertainty drops after training on the adversarial dataset.

Table 3 shows the class-wise prediction performance scores for the robust model. The accuracy, precision, recall,
and F1-score of the model show modest performance in absolute terms. The robust model exhibits relatively better
performance than the base model and is resistant to adversarial test input attacks.

In the context of autonomous driving, these results indicate that robust models would be better at correctly clas-
sifying the objects and will be secure against adversarial attacks with test input generation when compared against a
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®PN After Training

Figure 9: The performance of the model improves across all metrics after training with adversarial test inputs. NN=dense

neural network, PN=Pointnet

Table 3

The class-wise performance metrics of the DL model with the optimal a and f trained against adversarial test input

injection dataset

animal  bcycl bus  car EV  MC OV pdstrn  trck

Accuracy 0.76 0.74 073 072 073 073 071 0.70 0.64
Precision 0.74 073 074 071 073 074 0.71 0.70 0.61
Recall 0.77 0.74 075 0.72 0.71 075 0.73 0.68 0.62
F1-score 0.75 0.73 074 071 0.72 074 0.72 0.69 0.61

base model that has not been trained likewise.

shown in Fig 10.

The results also show that there is room for improvement across all
the metrics. Nevertheless, the robust model is already performing better than the base model by a margin of 12%.
Pointnet is used to classify point cloud data for the purpose of testing the adversarial test input injection training with
a better-suited model. The resulting model without the input injection the model had an accuracy of around 85%; after
the injection, the accuracy and other metrics reached around 96%. The improvement of 11% indicated that the method
could work on diverse model types. The performance of the trained robust Pointnet model across various metrics is
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Figure 10: Accuracy, precision, and recall with adversarial test input injection training. the Pointnet Model, performance
improves with iterations.

7. Conclusion and Future Works

Adversarial attacks are used maliciously to confuse ML models. Uncertainty, which is inherent in the training
data, or arising from the training process, has a similar effect on the performance of ML models. This can have
severe consequences in the case of autonomous vehicles where correct identification of objects in the surroundings
and road is critical. In this work, we used an adversarial test input generation approach for making the ML model
more robust against uncertainty and adversarial attacks. We demonstrated that adversarial test inputs can affect the
performance of the ML model, which can have severe consequences, such as the mis-classification of objects on the
road by autonomous vehicles. However, by building a dataset that contains adversarial test inputs and re-training, we
can make the ML model more robust to adversarial attacks. The accuracy of the robust model can reach higher than
that of the base model by up to 12%, with a scalar reduction of 0.25 in uncertainty.

Our main contribution is a new method based on the NGSA-II algorithm for generating highly uncertain test input
data for a given DL model for autonomous driving systems. We increased the robustness of the DL models against
high uncertainty using the adversarial training mitigation method. The presented approach performs better in producing
robust DL models against similar works in the literature.

In future work, we plan to address data uncertainty problems in addition to the model uncertainty problem addressed
in this article. For this purpose, we aim to investigate Kernel Density Estimation (KDE) based methods for moving the
data instances in a training set into low-density regions, thus increasing the uncertainty of the training data. Another
improvement to the current approach of generating uncertain test data is looking at a DL loss function-based method
for generating data instances with high uncertainty. The NGSA-II based optimization used in this work exhibits good
performance. However, NGSA-II takes a long time to generate highly uncertain examples. The DL loss function-based
uncertainty maximization method has a similar performance with lower execution times. Therefore, we will investigate
this method in our future works.
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