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ABSTRACT
Correct environmental perception of objects on the road is vital for the safety of autonomous
driving. Making appropriate decisions by the autonomous driving algorithm could be hindered
by data perturbations and more recently, by adversarial attacks. We propose an adversarial test
input generation approach based on uncertainty to make the machine learning (ML) model more
robust against data perturbations and adversarial attacks. Adversarial attacks and uncertain in-
puts can affect the ML model’s performance, which can have severe consequences such as the
misclassification of objects on the road by autonomous vehicles, leading to incorrect decision-
making. We show that we can obtain more robust MLmodels for autonomous driving by making
a dataset that includes highly-uncertain adversarial test inputs during the re-training phase. We
demonstrate an improvement in the accuracy of the robust model by more than 12%, with a no-
table drop in the uncertainty of the decisions returned by the model. We believe our approach
will assist in further developing risk-aware autonomous systems.

roduction
r the past decade, Deep Learning (DL) succeeded in a wide range of applications, partly due to the use of pow-
rning algorithms that can learn complex relationships from large-scale datasets. More recently, DL schemes
plied successfully in various tasks related to autonomous driving, such as perception, prediction, planning,
-making, and control. Developing robust DL schemes continues to attract more attention to safety-critical
ion domains. Despite the success of DL[1], there are still challenges in applying DL to many real-world ap-
s. One of the biggest obstacles to using DL in many applications is the lack of explainability of how and why
orks work.
me cases, e.g., in medical applications, the neural network function must be explained to the user [2]. Another
issue is that Deep Neural Networks (DNNs) are very sensitive to the change in the distribution of inputs. For
, the image classification network trained on the ImageNet dataset [3] can not be directly used to classify images
ent domains, such as medical images. If we want to use a model trained on a large dataset, e.g., ImageNet [4],
fy images in other domains, the model will not work well. The main challenge here, is to train a model that
s on all different data types and in real-life circumstances with high uncertainty and noise.
n deploying a model to a new environment, it is critical to test the model to ensure accurate results. However,
many ways to test a model. Traditional testing methods, including statistical testing, modeling, and validation,
roduce a robust enough test set that can cover all possible scenarios. Instead, to build DL models ready for
al applications, we need to follow software test engineering methodologies [5] to develop and validate robust
dels. There are many different testing methodologies in software testing, such as white-box testing, black-box
and grey-box testing [6]. The grey-box testing is a methodology that combines white-box testing and black-box
Grey-box testing involves both the internal structure of the system and the environment in which the system
. The system’s internal structure is used to generate test data, and the environment is used to validate the test.
x testing is a robust testing methodology that can test the system from different perspectives.
is paper, we propose a grey-box testing methodology that can test the system from the internal structure of
em, the environment, and the user. The proposed method uses a system model to generate test data, a test
o validate the test, i.e., prediction performance, and a user model to evaluate the system, i.e., DNN model.
e different approaches to developing robust DL schemes, such as modifying the data, the model itself, adding
y models, and adversarial test input generation. In this work, our focus is the test input generation-based robust
me development in autonomous driving systems. Two significant gaps in recent works are the interpretability
odels and training robust models in the presence of different training and test distributions [7]. This paper
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Towards robust autonomous driving systems through adversarial test set generation

s both of these gaps by introducing a well-defined adversarial test set generation that reduces the uncertainty
duces more robust models that perform better in the presence of uncertain inputs.
consider the two main types of uncertainty: epistemic (model) and aleatoric (data) uncertainty. When au-
us driving is considered, DL models are generally multi-output regression models. Classical means of dealing
certainty generally do not apply to DL. There is a need for novel methods for measuring uncertainty in multi-
egression models. According to Wickramasinghe’s recent work [8], many DNN solutions for Cyber-Physical
(CPS) data only create outputs for the input instances. They do not measure uncertainty in the prediction phase,
ould ultimately result in a lack of trust in these approaches and could lead to unexpected and dangerous CPS
rs. DNN models trained on data from CPS will require an uncertainty quantification framework to quantify
el uncertainty correctly. Next, the researchers should develop procedures to deal with this uncertainty.
of the open problems for training robust models against uncertainty is generating relevant testing data to
e the models. For this purpose, we use existing autonomous driving data sets, including sensor data, e.g.,
and GPS, and video recording data. We generate highly uncertain test inputs from these data sets to train
odels against perturbations and adversarial attacks. The generated test data will help reduce the uncertainty

ecision-making process of an autonomous driving system. To evaluate the robustness of the produced models,
the generated test data to test the trained models. We also compare the results with the models which are
ed with the generated test data. Our recent work [9] presented a new metric for uncertainty quantification for
etectionDNNmodels, where the experiments were conducted on theNEXET, BerkeleyDeepDrive, KITTI, and
datasets, together with SSD300, SSD512, and YoLo DNN models, to quantify prediction-time uncertainty.
study [10] proposed a robust model training method (NIRVANA). NIRVANA seeks to compare the accuracy
model predictions with another model and to enhance DNN model predictions using results of generated
nty quantification.
nected and Autonomous Vehicles (CAVs) are subjected to cyber-attacks, particularly, zero-day attacks [11].
ited computational power of Engine Control Units (ECU) in cars prohibits them from processing robust secu-
tocols. Furthermore, cyber-attacks put the privacy and security of passenger data at risk. CAVs differ from
al software in several ways including their cyber-physical nature, which comprises hardware, software, and
The complex operating environment of CAVs includes people, and communication platforms [12]. The de-
nt and operation of CAVs are also fraught with uncertainty due to the inherent uncertainty of the DL models,
rally unpredictable nature of the environment, the unpredictable nature of human behavior, and the unreliable
communications among CAV parts [13, 14]. The building and use of CAVs are challenging because of such
nty sources. Therefore, the data generated during the operation of CAVs can be used with DLmodels to under-
AV behaviors’ uncertainties better, improve future generations of CAVs, and build novel test cases. We focus
AV data generated during their operation to achieve this.
re are many studies in the literature on detecting and preventing poisoning and trojan attacks; however, these
ainly require using powerful computing resources and the cloud. Our study is different from others becausewe
test data set generation for robust ML/AI models for autonomous driving, including the development of low-
low-latency, and low-complexity methods that can easily integrate into the training and inference algorithms
affecting their performance.
main contributions of this article are as follows:
e propose a method for generating highly uncertain test input data for a given DL model for autonomous
iving systems. The generated test data are used to verify the robustness of DL models.
e adopted an adversarial training mitigation method for the highly uncertain test inputs to increase the robust-
ss of the DL models.
e compare the results of our proposed method with the state-of-the-art testing method and show that our
proach achieves better performance.
rest of the paper is organized as follows. In Section 2, we present the related work. Section 3 presents the
model including the uncertainty-based test set generation and the adversarial re-training algorithm. Section 4
the experiments on generating test inputs based on uncertainty maximization. In Section 5, we present the
nd discuss the outcomes. We conclude with Section 6, where we also give ideas on future research tracks.

thor et al.: Preprint submitted to Elsevier Page 2 of 15
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Towards robust autonomous driving systems through adversarial test set generation

ated Work
recently gained popularity in autonomous driving and intelligent transportation system-related problems, with
ty to conduct feature selection during the learning process [15]. Some popular DL algorithms include Convo-
Neural Network (CNN), Feedforward Deep Network (FDN), Long-Short Term Memory (LSTM), Recurrent
etwork (RNN), and Generative Adversarial Network (GAN) [15]. Boukerche et al. [16] discuss the appli-
f DL to vision-based autonomous vehicle recognition. Various use cases include vehicle detection, vehicle
d model recognition, and vehicle re-identification. Khan et al. present [17] an LSTM-based intrusion detec-
tem for the Internet of vehicles. Jebamikyous and Kashef [18] discuss the two prominent use cases of DL for
on in autonomous vehicles; semantic segmentation and object detection. These tasks require precise data for
rformance classification results. However, uncertainty is a factor that reduces the classification performance
lgorithms.
ous research works addressed the uncertainty in autonomous systems and proposed multiple methods to in-
he performance of ML/DL algorithms in the presence of uncertainty. In [19], the authors analyze various
of uncertainty in autonomous systems, such as execution uncertainty, timing uncertainty, adversarial attacks,
ertainty of the behavior of Neural Networks (NNs). The authors propose a cross-layer weakly-hard design
rk to tackle the execution uncertainty problem and safety verification of NNs through reachability analysis.
study [20] addresses safe and adaptive autonomous navigation in uncertainty. The common shortcoming of
oaches mentioned above is that they require knowledge of the NN architecture to improve performance. In our
d work, test-set generation based on uncertain inputs and subsequent re-training is utilized for this purpose,
ious knowledge of the NN architecture is not needed.
ertainty quantification is amethod to rank the generated inputs based on their corresponding uncertaintymetrics
variance, maximum probability), re-training the model with the highly uncertain new generated inputs. In [21],
ors apply the Monte-Carlo (MC) dropout method to measure uncertainty in inputs for autonomous driving.
p ensemble is a non-Bayesian uncertainty quantification method [22]. Adversarial ML methods are based on
ng challenging and misleading inputs using attacks and then adding generated data or images to the original
In [23], Ma et al. use various adversarial training methods, such as the DeepFool, Basic Iterative Method,
Wagner (CW), Fast Gradient Sign Method (FGSM), and the Jacobian-Based Saliency Map Attack. The main
his study is to increase the uncertainty in the re-training phase to improve the model prediction performance.
eepXplore, new metrics such as Network Coverage (NC) and the number of activated neurons in the predic-
e been used [24]. DeepTest generates new inputs for autonomous driving DL models where different image
mations lead to different NC values [25]. DeepMutation uses mutation score, a parameter used in traditional
engineering for testing DNNmodels. Their proposed method creates multiple new mutant DNNmodels from
model using additional methods like neuron switch or layer removal [26]. DeepCT is a test coverage metric
g that within a given DNN layer, all tuples of neurons in that DNN layer must be covered by at least one test
27]. DeepHunter is a fuzzing-based test generation algorithm to hunt defects in DL models. The coverage
guide the fuzzing [28]. Ma et al. [29] define uncertainty-based metrics for test case generation in DL systems.
hors argue that the most critical test inputs are those with high uncertainty, a principle we adopt in this paper
rating more realistic autonomous driving test sets.
ouri et al. proposed an accurate object detection model by adopting the Granular Region Convolution Neural
(GRCNN) to process vehicle image data to reduce accidents through a smart road system [30]. Mekala et

lighted the importance and feasibility of DL techniques for autonomous vehicles to accomplish an intelligent
system without human interaction [31]. They have reviewed the Lidar-based DL strategies to address the
challenges in autonomous driving through a comprehensive analysis of Semantic Segmentation, Data Rep-
ion, Feature Extraction, Dynamic Object Detection, Data Fusion, and Autonomous Driving-Multi-Objective
mechanisms.
existing literature addresses uncertainty quantification and various methods to train better-performing ML/AI
in the presence of uncertainty. The current literature lacks the issue of training robust models against uncer-
generating relevant testing data to optimize themodels. There is no systematic approach to test data generation

n adjustable parameters that can be measured which represents the uncertainty of the test data, and evaluates
t of changing these parameters on the performance.
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Towards robust autonomous driving systems through adversarial test set generation

Bayesian Methods Non-Bayesian Methods

Probabilistic - Variational Inference (VI)
- Markov Chain Monte Carlo (MCMC)

- Monte Carlo Dropout (MCD)
- Bootstrap Ensemble

Non-Probabilistic - None
- Confidence Interval (CI)
- Importance Weighting (IW)

Table 1
An overview of methods for measuring output uncertainty.

ertainty Types and Quantification in DL
itigate the overconfidence problem in DL models, we need to train the model to be uncertain about its predic-
his section introduces methods from the literature used to measure the output uncertainty of DL models. Table
the two main types of methods for measuring the output uncertainty of DL models. Bayesian methods are

n Bayesian inference, whereas non-Bayesian methods are based on other methods such as Monte Carlo sam-
portance sampling, and bootstrap sampling. Bayesian methods are usually more accurate but require more
e training data and are computationally expensive compared to non-Bayesian methods. For these reasons,
esian methods are more prevalent in practice.
present our view of the taxonomy of uncertainty types in Fig. 1. This taxonomy is motivated by the notion
mic and aleatoric uncertainty in the statistical literature and the recent work on DL uncertainty in [32]. The
the diagram show various sources of uncertainty, while the arrows indicate how they propagate through the
el. The middle region shows the sources of uncertainty considered in this paper.
temic uncertainty, also known as model uncertainty, arises from the fact that the model has been trained on an
ct dataset and in an imperfect environment. It corresponds to the model’s inherent uncertainty, which one can
uring training by providing more data. Aleatoric uncertainty, or data uncertainty, stems from imperfect and
ete data. Whereas Classical uncertainty, or label uncertainty, arises from the fact that the ground truth labels
erfect and incomplete. Classical uncertainty corresponds to the inherent uncertainty in the labels, which can
ed by providing more data. Prediction uncertainty, or output uncertainty, arises from the fact that the model
trained on an imperfect dataset and in an imperfect environment. It corresponds to the inherent uncertainty
odel, which can be reduced during training by providing more data.
el, prediction, and data uncertainty can all be exploited to improve the quality of predictions made by the
Epistemic and Prediction uncertainty are the reducible components of the total uncertainty. While Classical
atoric uncertainty can be considered as the irreducible component of the total uncertainty.

logit(x) = log
(

x
1−x

)

: Illustration of the different sources of uncertainty and how they affect the performance of a DL model.

models are often trained using a maximum likelihood ML criterion, i.e., the model parameters are learned to

thor et al.: Preprint submitted to Elsevier Page 4 of 15
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Towards robust autonomous driving systems through adversarial test set generation

ze the likelihood of the training data. However, the ML criterion is known to be the Maximum a Posteriori
estimate in the Bayesian setting [33]. Thus, the ML criterion can be viewed as a special case of the MAP
when the prior is uniform and can be used to learn the model parameters of a DL model. However, the MAP
does not account for the uncertainty in the model parameters. Instead, it is accounted for by using the MAP
. The MAP criterion is given by

∗ = argmax
�

log p( ∣ �) + log p(�) (1)

is the training data, � are the model parameters, p( ∣ �) is the likelihood of the training data given the model
ers, and p(�) is the prior over the model parameters.
uncertainty in the training data can be accounted for by using the maximum a posteriori with data uncertainty
U) criterion defined as

∗ = argmax
�

log p( ∣ �) + log p(� ∣ ) (2)

is the training data, � are the model parameters, p( ∣ �) is the likelihood of the training data given the model
ers, and p(� ∣ ) is the posterior over the model parameters given the training data.
MAP-DU criterion can be used to learn the model parameters of a DL model. However, it does not account
ncertainty in the labels. The label uncertainty can be accounted for by using the maximum a posteriori with
certainty (MAP-LU) criterion defined as
∗ = argmax

�
log p( ∣ �,) + log p(� ∣ ,) (3)

is the training data,  are the labels, � are the model parameters, p( ∣ �,) is the likelihood of the training
en the model parameters and labels, and p(� ∣ ,) is the posterior over the model parameters given the
data and labels.
MAP-LU criterion does not account for the uncertainty in the test data. Hence, the uncertainty in the test data
ccounted for by using the maximum a posteriori with the test data uncertainty (MAP-TDU) criterion given by
∗ = argmax

�
log p(test ∣ �,) + log p(� ∣ ,test) (4)

is the training data, test is the test data, � are the model parameters, p(test ∣ �,) is the likelihood of the
given the model parameters and training data, and p(� ∣ ,test) is the posterior over the model parameters
e training data and test data.
models are trained to optimize a loss function, making them susceptible to the data used to train the model.
endence on the training data may significantly impact the model’s generalization performance on unseen data
esting because DL models can extrapolate the underlying relationships in the data and generalize them to
ata. However, a model trained on a dataset sampled from a different distribution from the testing one will not
ze well.
re 1 shows the three sources of uncertainty and how they affect the performance of a DL model. Data un-
y comes from the fact that the dataset is sampled from an underlying distribution. Irreducible uncertainty is
nty that one can not remove. In contrast, model uncertainty is the uncertainty that comes from the fact that the
s not trained on the entire population. Figure 1 shows how the three sources of uncertainty propagate through
el. The data uncertainty affects the model uncertainty, which affects the irreducible uncertainty. A model
n a dataset generalizes better if the dataset is larger. This is because a model trained on a larger dataset is more
, which reduces the model’s uncertainty. Data uncertainty comes from the fact that the dataset is sampled from
rlying distribution. The data uncertainty affects the model uncertainty, which in turn affects the irreducible
nty. The model uncertainty is the primary source of uncertainty that we focus on in this work.
odel with a high uncertainty has low performance on unseen data. In this work, we focus on the aleatoric
nty. There are two main ways to quantify aleatoric uncertainty, the mean-variance approach, and the predictive
approach. The mean-variance method quantifies the aleatoric uncertainty by the model’s predictions’ mean
iance. The predictive entropy approach quantifies the aleatoric uncertainty by the entropy of the model’s
ons. In this article, we use the mean-variance approach.

thor et al.: Preprint submitted to Elsevier Page 5 of 15
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Towards robust autonomous driving systems through adversarial test set generation

e mean-variance approach, the mean is the expected value of the model’s predictions, and the variance is the
d value of the squared difference between the model’s predictions and the mean. The mean and the variance
stimated using the Monte Carlo method [34]. The Monte Carlo method generates samples from the model’s
ons. The mean and the variance are then estimated using the generated samples.

tem Model
main goal of this work is to build a robust DL model for Cyber-Physical Systems (CPSs), based on model
ng creating highly uncertain inputs. The proposed highly uncertain instance generation mainly consists of the
g three phases: (I) is the dataset generation; (II) is the building of a dropout-based neural network at prediction
I) is the re-training of the model with the generated highly uncertain inputs (see Figure 2).

: System overview.

st Input Generation based on the Non-dominated Sorting Genetic Algorithm
A-II (Non-dominated Sorting Genetic Algorithm-II) follows the general outline of a genetic algorithm with a
d mating and survival selection. In this algorithm individuals are chosen frontwise, leading to a situation where
eeds to be split because not all individuals are permitted to survive. This splitting front selects solutions based
ding distance [35]. The main advantages of NSGA-II are that it can deal with mixed constraints, it is elitist, is
ikely to converge prematurely to a local optimum, and is computationally efficient. Elitist algorithms, a type of
nary algorithm, work by making sure that the best individuals in one epoch are not discarded, and transferred
into the next generation. The algorithm is implemented in Python through the Pymoo module. Algorithm 1
he steps in NSGA-II. The algorithm’s inputs are; the population size P , the number of generations G, the
e function fi(xi), the lower and upper bounds li, ui of decision variables xi. The output of NSGA-II is the setominated solutions S∗.
hm 1 NSGA-II
: P , G, fi(xi), li, ui
: S∗

ialize the population P ;
i = 1 to G do
alculate the fitness of each individual xi;ort the population P frontwise;
elect the non-dominated individuals S∗;
alculate the crowding distance of S∗;
elect the best individuals with the smallest crowding distance;
enerate the new population Pnew;
∶= Pnew
for RETURN S∗

re 2 demonstrates the training dataset is collected from CAVs in Phase I. In this study the inputs are LIDAR,
output is a robust model that is trained to classify the objects in the LIDAR. The algorithm’s primary output is
thor et al.: Preprint submitted to Elsevier Page 6 of 15
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Towards robust autonomous driving systems through adversarial test set generation

ration of a robust model that is not tricked by an adversarial test input injection. Data preparation is conducted
II andDNNmodel trainingwith the input datasetwhich is carried out from the previous phase. Conventional
ining is executed at this phase to find the optimal weights. The primary output is the base DNN model, which
NN model with the best prediction performance and lowest loss value over the complete training data. The
cial contrast between the base DNN model and a conventional DNN is the prediction time activated dropouts.
ast, a standard DNN model has no dropouts in the prediction time.
hase III, the model is re-trained using highly uncertain training instances to improve the DNN model’s pre-
performance. In this our approach, we use the training dataset and model with the NSGA-II optimization
m to generate new and highly uncertain instances. Then, we merge the training dataset with newly generated
s. Finally, we re-train the DNN model with the new training dataset to improve the prediction performance.
versarial Training
is research, we use the adversarial training method to improve the robustness of the DLmodel. The adversarial
mitigation method re-trains a DNN model to be robust against a specific type of perturbation. In this work,
a model on a training set, where the inputs are perturbed by adding a small amount of noise generated by
A-II optimization-based perturbation method to increase the uncertainty of the test input for the DL model.
m 2 shows the proposed method for adversarial training. The algorithm’s input is the dataset D, the number
ions I , the learning rate �, the model F , and the loss function L. The output of the algorithm is the robust
′.
hm 2 Adversarial Training
: D, I , �, F , L
: F ′

ialize the parameters of F ;
ialize the parameters of F ′;
i = 1 to I do
andomly select an input xi from D;
unc ∶= xi + � ⋅NSGA − II(xi, yi, F );pdate the model F by minimizing L(xunc , yi, F );pdate the model F ′ by minimizing L(xadv, yi, F ′);
for
rn F ′

erimental Evaluation
aim of our experiments is to assess the effectiveness of our approach in minimizing the effect of uncertainty
rediction results. The experimental setup and conditions are chosen to ensure that the results are as close
orld conditions as possible. The results are then used to improve the model, and the process is repeated
desired level of accuracy is achieved. We determined the best hyper-parameters for the DNN models for the
used in the experiments using a simple grid search. We found that the best hyper-parameters are the ADAM
ation with a learning rate of 0.001. Figure 3 shows the DNN model. Dropout layers have been used during the
training against adversarial test input injection. ReLu activation is used in the input and all the hidden layers;
ut layer is activated by the Sigmoid function with the loss given by categorical cross-entropy. We perform the
ation using the Adam optimizer. The data is available from 1. We present information about the dataset we
d in the experiments in Section 5.2, followed by the training process description.
eneration of Challenging Inputs Based on Uncertainty Maximization
approach is based on generating challenging inputs based on uncertainty maximization. Our method is similar
ethods utilized for defending against adversarial ML attacks. Here, we try to increase the prediction uncertainty
odel by adding a small perturbation to the input. In adversarial ML attacks, the objective is to fool the model
e loss maximization approach. We extend this approach by maximizing the prediction uncertainty in the
ps://level-5.global/data/perception/

thor et al.: Preprint submitted to Elsevier Page 7 of 15
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Towards robust autonomous driving systems through adversarial test set generation

: Architecture of the deep neural network.

prediction. We depict the overview of our methodology in Fig. 4. In the first step, the data is pre-processed
g imbalance correction and train-test split. The second step trains the deep neural network model is trained
ain set. Once the model has sufficient performance, an adversarial test input generation is used to modify the
dataset. In the third step, the model is re-trained on the adversarial dataset. The model becomes more robust
pe of adversarial attack based on our approach.
enerate challenging inputs, i.e., highly uncertain inputs, we used an optimization method to find the best
tion points on the input to increase the uncertainty. The objective function of the optimization method is
mize the prediction uncertainty. There are three parts to the objective function, increase uncertainty, lower
tion amount, and increase wrong prediction amount. The objective function combines the hyper-parameters
) to find the optimal solution. The optimization objective is to create new instances based on training data
following optimization function given in Eq. 5. Eq. 5 is constrained by the noise budget �: ||noise|| < �. We
igned � as 30% of the training dataset.

oise = arg min
noise

(
�

U(ℎ(x))
+ ||noise|| + � ⋅ 1(y == ŷ)

)
, ||noise|| < � (5)

re:
ℎ(x)) is the prediction uncertainty
s the input instance
s the DL model
oise|| is the norm (i.e. magnitude) value of the noise
s the Noise budget (i.e. the maximum distance between x and x + noise)
ℝm and noise ∈ ℝm

ise has the same number of columns as the input instance x
s the multiplication factor of uncertainty quantification metrics value
s the multiplication factor of the number of incorrect predictions
thor et al.: Preprint submitted to Elsevier Page 8 of 15
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Towards robust autonomous driving systems through adversarial test set generation

ideal noise would have the following properties:
ximize the prediction uncertainty: �

U(x)nimize the noise magnitude (norm value): ||noise||
ange the prediction class: 1(y == ŷ)
use the generated data to train the model to increase its robustness.

Class Imbalance 

Correction

Adversarial Test Set 

Generation

Step 1

Step 2

Step 3

Dataset. 

9 Classes.

Balanced Data

Train set: 67%. Test set: 33%.

Train set

Test set

Train set + Noise TestRetraining DNN 

Classifier

DNN Multi-Class 

Classifier

Performance Metrics

Train set

Performance 

Score

Performance 

Score

Performance 

Score

Performance 

Score Performance 

Score

Performance 

Score

Extract & 

Undersample

Car Class

Oversample Minority 

Classes

Oversample Minority 

Classes

ii. Train-Test Split iii. Choose Evaluation Metrics

Accuracy

F1-score

Precision

Recall

i. Preprocessing

Tune

Hyperparameters

i. Train Deep Neural Network ii. Validation

Optimizer: NSGA-II

Parameters: α, β

Optimizer: NSGA-II

Parameters: α, β

ii. Validationii. Train on Adversarial Test Seti. Initialize once

Iterative process

: Steps of the uncertainty-based test input generation and DL model training.

taset
use the LIDAR data in this study published by Woven Planet Holdings [36]. The data is available from
evel-5.global/data/perception. The LIDAR dataset size is about 37GB. The dataset is collected as cloud points
n in Fig. 5. The cloud points are represented as 3D-coordinate points such as (x, y, z) where x, y, and z are
n this dataset, a LIDAR scene corresponds to 4 images. However, we do not consider images in this study. The
or using LIDAR data as opposed to images is that LIDAR sensors, unlike cameras, function independently of
lighting. LIDAR can achieve great results both day and night without any loss of performance due to distur-
such as headlight glare, sunlight, shadows, or lack of ambient lighting. The LIDAR sensors use an eye-safe
emit light pulses that light up the region of interest.
dataset was initially released for regression models. However, we modified the dataset for training classifi-
odels. Since the dataset is too large, we down-sampled to 10% of the original dataset. The LIDAR dataset
labels of the objects. We cropped the dataset and obtained the objects and their labels. The new dataset con-

only LIDAR data of the objects and their labels. There are 9 types of objects: animals (anml), bicycle (bcycl),
, emergency vehicle (EV), motorcycle (MC), other vehicle (OV), pedestrian (pdstrn), and truck (trck). Only
thor et al.: Preprint submitted to Elsevier Page 9 of 15
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Towards robust autonomous driving systems through adversarial test set generation

jects are extracted to prepare the train and test sets. There is a class imbalance issue as there are more cars
lists or emergency vehicles. Therefore, we also applied class imbalance correction. The minority classes are
pled through imbalance correction and the majority (car) class is undersampled. The training dataset is 67%
testing dataset is 33%. The ML training is initiated by training on LIDAR data and labels. The model outputs

ax classification of the objects. Then, using the uncertainty formula and NSGA-II algorithm, the dataset is
d with noise and sent to the ML models again for re-training.
aining
defining the models and visualizing the analysis using Python, the following packages are used: TensorFlow,
nty wizard, Pandas, NumPy, Sci-Kit learn, SciPy, Keras, Seaborn, Pymoo, CleverHans, Tqdm, andMatplotlib.
model is defined as a Stochastic Sequential Keras model with dense and dropout layers. ReLu activations
for input and hidden layers with softmax activation in the final output. The neurons in the dense layers
200, and 100, respectively. The dropout layers use 9% dropout. Adam optimizer is used with the loss function
orical cross-entropy. The model is executed and trained with early callbacks enabled.
fferent type of neural network, Pointnet, is also used for validating our approach. Pointnet is a neural network
d to work directly with point clouds while considering the permutation in-variance. [37].

: In this figure, (a) shows a LIDAR output, and its corresponding image in visible light is shown in (b). (c) is the
utput of a different scene, and the corresponding visible light image is shown in (d).

ults and Discussions
performance of theMLmodel is evaluated using accuracy (defined in Eq. 6), F-1 score (defined in Eq. 9), recall,
ision. These metrics are determined using True Positives (TP), False Positives (FP), True Negatives (TN), and
egatives (FN). The F1-score is calculated based on precision and recall and a value of the F1-score close to 1
s that the model performs well in both precision (see Eq. 7) and recall (see Eq. 8).

ccuracy = TP + TN
TP + TN + FP + FN

(6)

recision = TP
TP + FP

(7)

ecall = TP
TP + FN

(8)

1–score = 2 ⋅ Precision ⋅ Recall
P recision + Recall

(9)

thor et al.: Preprint submitted to Elsevier Page 10 of 15
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Towards robust autonomous driving systems through adversarial test set generation

6 plots losses and accuracy as the model is trained against the adversarial test input injection dataset. We see
uracy is improving with a reduction in losses. Fig. 7 shows the accuracy, precision, recall, and F1 score during
rsarial training. The performance metrics are improving with every training iteration. Fig. 8 shows the drop
tainty before and after training with the adversarial inputs.

: Loss plot training

model is made more robust with adversarial ML-based test input generation. After we append the dataset with
rsarial inputs by the allocated percentage of the noise budget, we re-train our model. In Fig. 7 we observe the
erformance drops initially but improves again and becomes more robust with subsequent training iterations.
hows the drop in uncertainty after training with adversarial test inputs. Fig. 9 shows the improvement of the
cross all the performance metrics after training using the adversarial test input set. The Pointnet performs
an the typical dense neural network as the architecture of this neural network is specially designed to directly
oint clouds.

: Accuracy, precision, and recall with adversarial test input injection training. Model performance improves with
s.

e 2 shows the influence of � and � hyper-parameters on the performance of the DNN during the training
adversarial test input injection. � is the multiplication factor of uncertainty quantification metrics value. We
an variance as the uncertainty quantification metric. � is the multiplication factor of the number of incorrect
ons. Varying these hyper-parameters will determine how much of the noise originates from the magnitude of
iction error, or the number of wrong predictions. The hyperparameter values depend on the type of data and
sification task. Our optimization function uses these two hyper-parameters to penalize the classifier and train
el to become robust to adversarial test input injection. The best value for � and � is 0.6. The model showed
thor et al.: Preprint submitted to Elsevier Page 11 of 15
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le shows the values of the � and � parameters and the resulting model performance, the % improvement compared
ase model, and the average performance metrics

� � Accuracy Precision Recall F1-score �∕� Acc. Improved
0.9 0.9 0.68 0.69 0.68 0.68 1 7.3
0.9 0.6 0.67 0.67 0.68 0.67 1.5 5.9
0.9 0.3 0.69 0.70 0.68 0.69 3 8
0.9 0.1 0.62 0.61 0.63 0.62 9 1.53
0.6 0.9 0.68 0.69 0.67 0.68 0.67 7.33
0.6 0.6 0.73 0.76 0.73 0.74 1 12
0.6 0.3 0.61 0.59 0.61 0.60 2 -0.27
0.6 0.1 0.65 0.66 0.64 0.65 6 4.06
0.3 0.9 0.60 0.62 0.61 0.61 0.33 -0.59
0.3 0.6 0.71 0.71 0.70 0.70 0.5 9.74
0.3 0.3 0.60 0.60 0.61 0.60 1 -0.64
0.3 0.1 0.69 0.70 0.68 0.69 3 8.16
0.1 0.9 0.72 0.71 0.70 0.70 0.11 11
0.1 0.6 0.63 0.62 0.61 0.61 0.17 2.01
0.1 0.3 0.52 0.52 0.51 0.51 0.33 -9.36
0.1 0.1 0.61 0.60 0.61 0.60 1 0.08

ely optimal performance using this value which yields an average accuracy of 0.73, i.e., a 12% improvement
e base model. The accuracy of the base model is 0.62.

1.45

1.55
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Average Uncertainty of the Neural Network Predictions Before 
and After Training with the Adversarial Test Input Dataset

: Average uncertainty of the Neural Network predictions before and after training on the dataset with the adversarial
ts. Average uncertainty drops after training on the adversarial dataset.

e 3 shows the class-wise prediction performance scores for the robust model. The accuracy, precision, recall,
score of the model show modest performance in absolute terms. The robust model exhibits relatively better
ance than the base model and is resistant to adversarial test input attacks.
e context of autonomous driving, these results indicate that robust models would be better at correctly clas-
the objects and will be secure against adversarial attacks with test input generation when compared against a
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0

0.2

0.4

0.6

0.8

1

Accuracy Precision Recall F1-score

x
 1

0
0

%

Performance Metrics

Performance Metrics Before After Training with Adversarial Test Inputs

NN Before Training

NN After Training

PN Before Training

PN After Training

: The performance of the model improves across all metrics after training with adversarial test inputs. NN=dense
etwork, PN=Pointnet

s-wise performance metrics of the DL model with the optimal � and � trained against adversarial test input
dataset

animal bcycl bus car EV MC OV pdstrn trck
Accuracy 0.76 0.74 0.73 0.72 0.73 0.73 0.71 0.70 0.64
Precision 0.74 0.73 0.74 0.71 0.73 0.74 0.71 0.70 0.61
Recall 0.77 0.74 0.75 0.72 0.71 0.75 0.73 0.68 0.62
F1-score 0.75 0.73 0.74 0.71 0.72 0.74 0.72 0.69 0.61

del that has not been trained likewise. The results also show that there is room for improvement across all
rics. Nevertheless, the robust model is already performing better than the base model by a margin of 12%.
t is used to classify point cloud data for the purpose of testing the adversarial test input injection training with
suited model. The resulting model without the input injection the model had an accuracy of around 85%; after
tion, the accuracy and other metrics reached around 96%. The improvement of 11% indicated that the method
ork on diverse model types. The performance of the trained robust Pointnet model across various metrics is
n Fig 10.
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0: Accuracy, precision, and recall with adversarial test input injection training. the Pointnet Model, performance
s with iterations.

clusion and Future Works
ersarial attacks are used maliciously to confuse ML models. Uncertainty, which is inherent in the training
arising from the training process, has a similar effect on the performance of ML models. This can have
onsequences in the case of autonomous vehicles where correct identification of objects in the surroundings
d is critical. In this work, we used an adversarial test input generation approach for making the ML model
bust against uncertainty and adversarial attacks. We demonstrated that adversarial test inputs can affect the
ance of the ML model, which can have severe consequences, such as the mis-classification of objects on the
autonomous vehicles. However, by building a dataset that contains adversarial test inputs and re-training, we
e the ML model more robust to adversarial attacks. The accuracy of the robust model can reach higher than
he base model by up to 12%, with a scalar reduction of 0.25 in uncertainty.
main contribution is a new method based on the NGSA-II algorithm for generating highly uncertain test input
a given DL model for autonomous driving systems. We increased the robustness of the DL models against
ertainty using the adversarial trainingmitigationmethod. The presented approach performs better in producing
L models against similar works in the literature.
ture work, we plan to address data uncertainty problems in addition to themodel uncertainty problem addressed
rticle. For this purpose, we aim to investigate Kernel Density Estimation (KDE) based methods for moving the
tances in a training set into low-density regions, thus increasing the uncertainty of the training data. Another
ment to the current approach of generating uncertain test data is looking at a DL loss function-based method
rating data instances with high uncertainty. The NGSA-II based optimization used in this work exhibits good
ance. However, NGSA-II takes a long time to generate highly uncertain examples. The DL loss function-based
nty maximization method has a similar performance with lower execution times. Therefore, we will investigate
hod in our future works.
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ABSTRACT
Correct environmental perception of objects on the road is vital for the safety of autonomous
driving. Making appropriate decisions by the autonomous driving algorithm could be hindered
by data perturbations and more recently, by adversarial attacks. We propose an adversarial test
input generation approach based on uncertainty to make the machine learning (ML) model more
robust against data perturbations and adversarial attacks. Adversarial attacks and uncertain in-
puts can affect the ML model’s performance, which can have severe consequences such as the
misclassification of objects on the road by autonomous vehicles, leading to incorrect decision-
making. We show that we can obtain more robust MLmodels for autonomous driving by making
a dataset that includes highly-uncertain adversarial test inputs during the re-training phase. We
demonstrate an improvement in the accuracy of the robust model by more than 12%, with a no-
table drop in the uncertainty of the decisions returned by the model. We believe our approach
will assist in further developing risk-aware autonomous systems.
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