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Featured Application: This manuscript deals with the generation of turbulence wind histories
with spatio-temporal characteristics suitable for the calculation of skewed wind dynamic load on
slender structures. Such simulations may become essential for the design of future long-span
bridges and high-rise buildings. The results presented are considered valuable in the field of
structural engineering, boundary layer meteorology and computational wind engineering.

Abstract: The paper introduces an algorithm to generate a three-variate four-dimensional wind
turbulence field suited for yawed wind dynamic load simulation. At large yaw angles, a relaxation
of Taylor’s hypothesis of frozen turbulence becomes relevant as well as the flow phase lag in the
along-wind direction, which modulates the real and imaginary parts of the coherence. To capture
such a general wind action on a structure, a modified spectral representation method is used where
the coherence of turbulence is described as a complex-valued function. The one-point and two-point
co-spectra are implemented in the simulation setup using a square-root-free Cholesky decomposition
of the spectral matrix. The numerical procedure is illustrated based on turbulence characteristics
derived from data collected during storm Aina (2017) on the Norwegian coast by three-dimensional
sonic anemometers. During this event, a remarkable 3-hour stationary time series with a mean wind
speed of 24 m s−1 at a height of 49 m above ground was recorded. Since no computational grid is
needed, the velocity fluctuations with representative spatio-temporal characteristics can be directly
simulated on structural elements of slender structures. Such an algorithm may be essential for the
design of super-long span bridges in coastal areas.

Keywords: turbulence; bridge; yaw angle; Taylor’s hypothesis; synthetic turbulence generation

1. Introduction

In wind engineering, the yaw angle defines the angle between the wind direction and
the line normal to the bridge deck in a horizontal plane. Flows associated with non-zero
yaw angles are described as “skewed” and can influence the buffeting response of long-span
bridges [1,2]. Wind tunnel tests on full aeroelastic models suggest that the largest turbulent
load is not always associated with a zero yaw angle [2–4]. The aerodynamic characteristics
of a bridge deck depend indeed on both the yaw angle and the angle of attack [5,6]. At
large yaw angles, the mean wind velocity component normal to the main span is reduced,
while the eddies no longer impinge the structure in multiple locations simultaneously but
at different times. This leads to a modification of the spatial distribution of the oncoming
gusts along the deck and thus a modification of the span-wise correlation of the turbulent
loading. Therefore, for slender decks, the so-called strip assumption [7,8], which assumes
that the along-span correlation of the wind-induced surface pressure fluctuations is not
affected by the structure, may have to be reassessed even more carefully. Also, the turbulent
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flow characteristics in the along-wind and cross-wind direction differ significantly [9,10]
such that their projection onto a bridge-based coordinate system will result in different
fluctuating loadings, depending on the yaw angle.

Although some authors (e.g., [11,12]) discussed different approaches to model the
buffeting load for a non-zero yaw angle, few studies describe the two-point turbulence
characteristics in skewed flow conditions, especially for load computations in the time
domain. Yet, such a description may become crucial to model the dynamic wind loading on
slender structures such as long-span bridges, inclined stay cables [13,14] or wind turbines,
which are sensitive to yaw errors [15]. Whereas the wind direction along a bridge is largely
governed by the topography, the variability of the wind direction due to earth rotation,
i.e., the direction shear, concerns the design of tall vertical structures. Recent studies have
highlighted the influence of the direction shear on wind turbine performances [16] but also
on the wind loading on high-rise buildings [17,18].

The coherence of turbulence is a correlation function in the frequency space that
reflects the spatial distributions of eddies. At a given distance, larger eddies are more
correlated than smaller ones. Therefore, the coherence decreases when the distance or the
wavenumber increases. The coherence is at the heart of the dynamic wind load modelling
for the design of structures.

The so-called root-coherence is the normalized cross-spectral density of turbulence
fluctuations and is a complex-valued function. In the frequency space, the turbulent
characteristics of skewed flows are addressed in the ESDU 86010 standard [19], where
the imaginary part of the root-coherence becomes non-negligible. This reflects the fact
that eddies impinge on different parts of a structure at different times (Figure 1). Taylor’s
hypothesis of frozen turbulence [20] assumes that the same eddy moving in the streamwise
direction at a speed u will be characterized by no loss of correlation except due to the time
lag ∆t = dx/u, where dx is the streamwise separation (Figure 1). Turbulence may no longer
be considered frozen if the streamwise distance becomes large compared to a typical length
scale of turbulence. ESDU [19] relaxes Taylor’s hypothesis by modelling the root-coherence
in the along-wind direction, albeit with parameters that can deviate substantially from
those found in the literature [10,21,22].
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Bridge deck (top view)
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Figure 1. Time delay ∆t(ys1 , ys2 ) between points located at p1 and p2 for a incoming frozen turbulent
flow with a yaw angle β and a mean wind speed u. The x and y axis are the horizontal axes and z is
the positive vertical axis.

The present study introduces an algorithm to generate a three-variate four-dimensional
correlated wind field in the time domain, which accounts for non-zero yaw angles and
non-frozen turbulence. The turbulence generator relies on a spectral representation ap-
proach [23], i.e., it requires knowledge of the one-point and two-point power spectral
densities (PSDs) of the velocity fluctuations. The term three-variate refers to three velocity
components of the wind field, whereas the term four-dimensional refers here to the three
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spatial dimensions plus the temporal one. To further ensure a realistic flow simulation, the
correlation between the vertical and along-wind components is modelled using a negative
cross-spectral density. The suitability of the algorithm is illustrated by simulations, based
on the turbulence characteristics derived from velocity records from storm Aina (2017). The
measurement data were collected by three sonic anemometers mounted on a 50-m high
mast in the Bjørnafjord on the Norwegian coast. According to the E39 Coastal Highway
Route project, the fjord will be crossed by a 5-km floating pontoon bridge [24], motivating
the development of a more realistic flow simulation for improved wind load calculation. In
particular, recent wind tunnel tests for this bridge have shown that accounting for skewed
wind conditions is highly valuable [25].

The dataset used in the present study illustrates the feasibility of the turbulence
generator as well as the use of surface layer scaling to parametrize the flow conditions. The
study of the dynamic response of a large structure to a skewed turbulent field is, however,
clearly beyond the scope of the present paper and will not be addressed hereinafter. Finally,
it should be noted that spectral methods to simulate random processes with phase delays
between different locations have been used in the past for ground acceleration records
(e.g., [26,27]). However, the time scales involved in earthquake simulations are around
30 s against 600 s to 3600 s for atmospheric turbulence simulation, i.e., one to two orders
of magnitude smaller. Therefore, the method presented herein is hardly comparable with
those used in earthquake engineering.

The present paper is organised as follows: Section 2 describes the spectral flow char-
acteristics and scaling laws adopted to simulate a skewed turbulent field with unfrozen
turbulence relevant to wind load modelling on a long-span floating bridge. Section 3 intro-
duces the algorithm to generate wind turbulence with a complex-valued root-coherence
function, reflecting the phase lag of the wind velocity fluctuations. Section 4.1 illustrates
the suitability of the selected spectral flow characteristics by using them to characterize
the turbulent flow field recorded during storm Aina. The fitted turbulence parameters
are adopted in Section 5.1 to illustrate the performances of the proposed algorithm by
generating a realistic turbulent wind field for a simplified geometry.

2. Materials and Methods
2.1. Surface Layer Turbulence Modelling

The flow characteristics are modelled using surface-layer scaling as described by
Monin and Obukhov [28] and Kaimal et al. [29], where the scaling velocity is the friction
velocity u∗ and the controlling length scale is the height z above the surface. This approach
is appropriate for a fjord-crossing bridge, for which the deck is located within the first
80 m above ground or sea surface. The three velocity components are denoted u, v and w
and refer to the along-wind (x-axis), the cross-wind (y-axis) and the vertical components
(positive z-axis), respectively. One shall assume that each velocity component i = {u, v, w}
can be decomposed into a mean component i and a fluctuating component i′ with zero
mean, which is a stationary, ergodic and Gaussian random process. The standard deviation
of the u, v and w components are denoted σu, σv and σw, respectively. The associated
turbulence intensities are Iu = σu/u, Iv = σv/u and Iw = σw/u.

Surface-layer scaling allows the generation of a turbulent wind field knowing the
friction velocity u∗, the roughness length z0, the reference mean wind speed ure f at a
reference height zre f , the normalized velocity spectra f Sij/u2∗, where (i, j) = {u, v, w} and
the root-coherence of turbulence. To generate a four-dimensional flow, the root-coherence
needs to be characterized for the along-wind, cross-wind and vertical directions. The
values of σu, σv and σw are not explicitly required as they are governed by the terrain
roughness z0 and can be retrieved by integrating the velocity spectra over the frequencies.
The present approach does not need the integral turbulence length scales either, which is
in general advantageous for studies relying on measurements in the natural wind. The
integral turbulence length scales are significantly affected by the low-frequency velocity
fluctuations which can be predominant in an outdoor environment. Therefore, the integral
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turbulence length scales are commonly estimated with large uncertainties. Panofsky and
Dutton [30] (pp. 175–176) even recommend avoiding them in studying the properties of
atmospheric turbulence.

2.2. One-Point Velocity Spectra

The spectral characteristics of turbulence are described herein for a neutral atmosphere,
which is dominating under strong wind conditions (see e.g., [31]). The one-point power
spectral densities of the velocity fluctuations Si( f , x, y, z), (i) = {u, v, w} are functions of
both the frequency f and the location (x, y, z). For the sake of brevity, only the dependency
on f is explicitly shown herein. The target power spectral densities for the horizontal and
vertical wind components are modelled using the so-called “blunt” and “pointed” models,
respectively [32,33]

f Su( f )
u2∗

=
au fr

(1 + bu fr)
5/3 (1)

f Sv( f )
u2∗

=
av fr

(1 + bv fr)
5/3 (2)

f Sw( f )
u2∗

=
aw fr

1 + bw f 5/3
r

(3)

where fr = f z/u is a reduced frequency; ai and bi, with i = {u, v, w}, are coefficients
empirically estimated. For a neutral atmosphere, the hypothesis of local isotropy in the
inertial subrange [34] can be used to reduce the number of parameters in Equations (1)
to (3). The assumption, already exploited by Kaimal et al. [29], means that f Su( f )/u2∗ '
0.3 f−2/3

r , f Sv( f )/u2∗ ' 0.4 f−2/3
r and f Sw( f )/u2∗ ' 0.4 f−2/3

r at fr � 1. This implies that
bu = (au/0.3)3/5, bv = (av/0.4)3/5 and bw = aw/0.4. As a result, the following relation is
obtained [34]:

Sw

Su
' Sv

Su
∼ 4

3
at fr � 1 (4)

The above relationship is generally observed for the neutral atmosphere and is a
necessary condition for realistic 3D flow simulation in the near-neutral atmospheric surface
layer [29,35,36]. Another interesting property of Equation (1) is that the maximal value of
the normalized spectrum Su is reached at a frequency fk such that

fkSu( fk)

u2∗
≈ 1 (5)

To account properly for the covariance between the u and w components, the co-
spectrum between the longitudinal and vertical velocity components needs to be modelled.
The co-spectrum, which is the real part of the cross-spectrum, is denoted Couw. Defining
the friction velocity as

u∗ =
√
−u′w′, (6)

the co-spectrum can be modelled using a similar expression as that used by Kaimal et al. [29]:

f Couw( f )
u2∗

= − auw fr

(1 + buw fr)
7/3 (7)

where auw and buw are two constants to be determined empirically. The above definition of
the friction velocity implies that v′w′ ≈ 0 and thus Svw ≈ 0. Although this may not always
be observed in full-scale [37], it is a reasonable approximation for modelling purposes.
Similarly, it is generally assumed that the co-spectral estimate Suv has negligible values
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such that turbulent momentum fluxes are driven by the vertical wind component only.
If the friction velocity is defined as in Equation (6), the integration of Equation (7) over
the frequencies should be equal to u2∗, which implies that buw = 3/4auw. Kaimal et al. [29]
studied the friction velocity based on the work of Haugen et al. [38], which defined u∗ as in
Equation (6). However, they obtained auw = 14.0 and buw = 9.6, i.e., buw ≈ 0.69auw. There-
fore, to simulate correlated turbulent wind histories with consistent values between the
target and computed friction velocity, the co-spectrum proposed by Kaimal et al. [29] was
not used directly. Instead a modified co-spectrum formulation with buw = 3/4auw is chosen.
The coefficient auw can be obtained by modifying the value used by Kaimal et al. [29] or by
fitting Equation (7) to the co-spectrum estimated using measurement data.

For a structure above the sea surface, the surface friction velocity (u∗)0 can be esti-
mated using Charnock’s wind stress formula [39]. Onshore, in flat terrain, (u∗)0 can be
derived from the logarithmic profile in the neutral atmospheric surface layer:

(u∗)0 =
ure f κ

log(zre f /z0)
(8)

where κ ≈ 0.40 is the von Kármán constant [40]; ure f is the mean wind speed at a reference
height zre f , which is typically a few meters above the surface. For the sake of simplicity,
the surface friction velocity is here assumed constant with the height in the surface layer,
i.e., the first 10% of the atmospheric boundary layer, such that u∗ ≈ (u∗)0. The classical
logarithmic mean wind speed profile can then be retrieved as

u(z) =
(u∗)0

κ
log(z/z0) (9)

Equation (9) is applicable if the boundary layer is in equilibrium near the surface,
which is not always the case for natural flows. Depending on the terrain uniformity, the
mean flow characteristics can be derived from micro-scale numerical models (e.g., [41]).
When appropriate, the mean wind speed profile from state-of-the-art open-access wind
atlases [42,43] can also be used.

Although the content of the present section is well established in micro-meteorology,
many wind field simulations used for engineering applications do not verify Equation (4).
To the author’s knowledge, Equation (7) is usually included for frequency-domain anal-
ysis (e.g., [44]) but not time-domain analysis, where the wind loading can be non-linear.
Finally, it should be noted that the use of u∗ as scaling velocity implies that σw/σu or
σv/σu are height-dependant, as recommended by ESDU [45], whereas it is not the case in
EN 1991-1-4 [46] or in the Handbook N400 [47]. Although this height-dependency is rather
small at altitudes between 30 m and 100 m above the surface, it may not be negligible
for floating pontoon bridges, the deck height of which is between 10 m and 20 m above
the surface.

2.3. Taylor’s Hypothesis of Frozen Turbulence

Taylor’s hypothesis of frozen turbulence [20] assumes that eddies are unchanged as
they are advected in the mean flow direction. This hypothesis is generally applicable if
the along-wind component is characterized by a low turbulence intensity. In practice, this
hypothesis is used to relate temporal averaging and spatial averaging [48]. The applicability
of Taylor’s hypothesis is, however, scale-dependent [49] and is generally adequate for large
eddies, i.e., at low wave-numbers only [50,51].

The limit of Taylor’s hypothesis needs to be accounted for in modelling skewed
wind loads, if the flow field stretches over large distances, e.g., 2 km for existing cable-
suspended bridges. At such large separations, the eddies impinging the structure are
not only characterized by a phase difference (Figure 1) but also a loss of correlation in
the streamwise direction. This loss of correlation can be conveniently modelled using a
root-coherence model for along-wind separation, also called longitudinal distances [30,52].
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Although this approach relaxes Taylor’s hypothesis without fully correcting it, it is a
convenient tool for wind engineering applications and has also been previously used in
fundamental science [53]. Besides, recent progress in pulsed lidar remote sensing of wind
has also given new opportunities to study and model the along-wind root-coherence based
on the simultaneous flow recordings in multiple positions [22,54–57].

In the present wind field simulation procedure, we first and foremost aim to account
for the out-of-phase velocity fluctuations due to skewed wind direction. The relaxation
of Taylor’s hypothesis is a further refinement toward a more realistic flow simulation.
As a limit case, frozen turbulence can be recovered by simply forcing the longitudinal
root-coherence to be equal to one at every frequency.

2.4. Coherence Modelling

The root-coherence between two velocity components i and j, where i, j = {u, v, w}
and between two points located at coordinates (x1, y1, z1) and (x2, y2, z2) is defined as

cohij( f , x1, y1, z1, x2, y2, z2) =
Sij( f , x1, y1, z1, x2, y2, z2)√

Si( f , x1, y1, z1)Sj( f , x2, y2, z2)
, (10)

where Sij( f , x1, y1, z1, x2, y2, z2) is the two-point cross-spectral density between the i and
j components; Si( f , x1, y1, z1) and Sj( f , x2, y2, z2) are the one-point spectra estimated at
coordinates (x1, y1, z1) and (x2, y2, z2), respectively. For the sake of simplicity, the root-
coherence is assumed to be a function of the spatial separations rather than the measurement
locations, i.e.,

cohij( f , x1, y1, z1, x2, y2, z2) ≈ cohij( f , dx, dy, dz), (11)

where dx = |x1 − x2|, dy = |y1 − y2|, and dz = |z1 − z2|. Although this assumption is
widely used in structural design, its validity is questionable at large and/or vertical sep-
arations [22,58,59]. Equations (10) and (11) require a fairly homogeneous turbulent field,
which is compatible with the turbulence generation considered herein but such a condition
is not always achievable in full-scale. Small inhomogeneities due to a wind direction shear
or a vertical mean wind shear are known to be handled properly by turbulence generators,
which is the reason why they are widely applied for the simulation of surface-layer turbu-
lence in flat and uniform terrain. However, abrupt changes in the wind direction or the
mean wind speed due to local topographic effects may not be adequately captured by the
coherence of turbulence. Similarly, flow separation and recirculation areas downstream
of hills are not meant to be described in detail by turbulence generators. In such a situa-
tion, it is recommended to study the wind loading using, if possible, wind tunnel tests,
computational flow dynamic simulations and site-specific measurements.

The root-coherence is a complex-valued function, the real part of which is often named
co-coherence and denoted γij. Its imaginary part, called quad-coherence, is denoted ρij

cohij( f , dx, dy, dz) = γij( f , dx, dy, dz) + iρij( f , dx, dy, dz) (12)

In the present study, the root-coherence of each velocity component is inspired by the
Davenport model, which is a positive real-valued exponential function [60] and extended
to three spatial dimensions. This model was introduced in the 1960s to model the turbulent
wind loading on structures. The Davenport model was later generalized to any velocity
component and any direction (e.g., [52,61]). Although the Davenport model is purely
empirical, it is widely used in wind engineering, wind energy and micro-meteorology for
its simplicity and ability to characterize the coherence of turbulence at relatively small
separation, in general under 50 m. When the separation distance is no longer negligible
compared to a typical turbulence length scale, the root-coherence becomes lower than
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unity at zero frequency [9]. In this case, an additional parameter can be introduced in the
Davenport model, leading to

cohjj( f , dx, dy, dz) ≈ exp
{
− 1

u

√
Cx + Cy + Cz

}
(13)

Cx = (cj
x1 f dx)

2 (14)

Cy = (cj
y1 f dy)

2 +
(

cj
y2dy

)2
(15)

Cz = (cj
z1 f dz)

2 +
(

cj
z2dz

)2
(16)

where j = {u, v, w}; dx, dy and dz are the longitudinal, lateral and vertical spatial separation,

respectively. The coefficients Cx, Cy and Cz are decay parameters. The coefficients cj
y2, cj

z2

are proportional to the inverse of a time scale of turbulence [22,62]. Conversely, cj
x1, cj

y1, cj
z1

are dimensionless and directly related to the Davenport decay coefficients. The introduction
of the time delay into eq. (13) to model a skewed flow (Section 3) requires that the only
frozen eddy is the one in the longitudinal direction, at a zero frequency. Said differently,
the mean wind speed in the along-wind direction is assumed uniform. For this reason, the
coefficient cj

x2 is zero and not shown in Equation (14). It should be noted that if cj
y2 and cj

z2
are set to zero, Equation (13) reduces to the traditional Davenport model.

The root-coherence between the u and w wind components is assumed real-valued for
the sake of simplicity. As the one-point cross-spectra Suv and Svw are assumed to be zero,
their associated root-coherence cohuv and cohvw are not modelled. Following the study by
Minh et al. [63], the root-coherence cohuw can be empirically approximated as:

cohuw( f , dx, dy, dz) ≈ Γ

√
Couw( f )Couw( f )ᵀ

Su( f )Sw( f )ᵀ
(17)

where Su( f )ᵀ refers to the transpose of Su( f ) and Γ is defined as

Γ = −1
2
[
cohuu( f , dx, dy, dz) + cohww( f , dx, dy, dz)

]
(18)

3. Computation of Turbulent Time-Histories

The generation of turbulent wind histories is based on the spectral representation
method (e.g., [23,64–66]). The wind histories are generated in Np scattered points. Since
the present algorithm does not rely on a computational grid to achieve convergence,
wind histories can be conveniently computed directly at the integration points of a 5 km
long floating bridge. Popular turbulence generators for wind loading modelling, e.g.,
TurbSim [67] or those relying on stochastic wave-based models (e.g., [68]) typically use
gridded data points, which can lead to a prohibitive computational cost if the structure
studied has a size of several kilometres as in the case previously mentioned.

On the other hand, stochastic wave-based models may be better suited than Cholesky-
based models for structures with dimensions smaller than a few hundred meters or when
the focus is on dynamic characteristics associated with higher modes of vibrations. Indeed,
following Benowitz and Deodatis [69], Cholesky-based models may produce large numeri-
cal errors when the separation distances become close to zero, due to the high correlation
between neighbour locations. However, in the present case, the roundoff error associated
with the Cholesky decomposition was found to be negligible, even for densely gridded
data points. It can also be noted that in Benowitz and Deodatis [69], an analytical solution
of the frequency–wavenumber spectrum was used, which can significantly reduce the com-
putational costs, although at the expense of some realistic turbulence characteristics, which
are accounted for by e.g., the uniform shear model [68]. The uniform shear model can also
be modified to relax Taylor’s hypothesis with possible applications for wind turbine wake
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modelling or wind-turbine control [70]. In summary, the use of the spectral representation
method was adopted in the present study as it suits well the spatial and temporal scales
investigated, which are of the order of 1 km and 1 h (or more), respectively.

At each frequency step, the cross-spectral density matrix S is

S =

Suu Suv Suw
Svu Svv Svw
Swu Swv Sww

 (19)

where Suu, Svv, Sww and Suw are Np by Np matrices defined as

Suu =
√

Su( fk)Su( fk)ᵀcohuu( fk, dx, dy, dz) (20)

Svv =
√

Sv( fk)Sv( fk)ᵀcohvv( fk, dx, dy, dz) (21)

Sww =
√

Sw( fk)Sw( fk)ᵀcohww( fk, dx, dy, dz) (22)

Suw =
√

Couw( fk)Couw( fk)ᵀcohuw( fk, dx, dy, dz) (23)

where fk is the discretized frequency with k = {1, 2, ..., N} and N a natural number power
of two. As mentioned before, the matrices Suv, Svu, Swv and Svw are assumed to contain
only zeros. It implies that the covariances between the u and v components and v and w
components are negligible. While this assumption may not be true in mountainous terrain,
it is adopted here for the sake of simplicity and will be further addressed in Section 4.1.

In Equation (19), the root-coherence cohuw can be numerically implemented as pro-
posed by Hémon and Santi [71]

cohuw( f , dx, dy, dz) = −
√

cohuu( f , dx, dy, dz) · cohww( f , dx, dy, dz) (24)

or as

cohuw( f , dx, dy, dz) = −0.5
[
cohuu( f , dx, dy, dz) + cohww( f , dx, dy, dz)

]
(25)

Equation (25) was found more appropriate for the case at hand. Therefore, in Section 5.1,
only Equation (25) is used for the generation of the turbulent wind field. Expressing cohuw
as a function of the root-coherence of the u and w components avoids the parametrization
of cohuw using an empirically defined function, which may overcomplicate the simulation.

Because Suw has non-zero values, S may not be positive definite any longer. In this
case, the Cholesky decomposition cannot be applied to the spectral matrix S. For this reason,
the square-root-free Cholesky decomposition, denoted herein LDL decomposition [72,73]
is used:

S = LDL∗ (26)

G = L
√

D (27)

where L∗ is the conjugate transpose of L; G is a 3Np by 3Np complex-valued lower-
triangular matrix. The construction of matrix S (Equation (19)) at each frequency step
is the most time-consuming step in the algorithm, especially when the wind histories are
generated in thousands of locations.

At each frequency step, 3Np by N matrix, arbitrarily denoted A, is computed as:

A( fk, x, y, z) = G exp[2πiΦ] exp
[
−2πi fkdx

u

]
(28)
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where Φ is a 3Np by N matrix of uncorrelated random phases with a uniform probability
distribution between 0 and 2π. The second complex exponential term introduces the
time-lag related to the skew wind action, assuming that it is equal to the advection time
∆t = dx/u (Figure 1). Some turbulence spectral models (e.g., [74]) account for a phase
difference in the vertical direction due to the mean wind shear, which reflects the fact that
eddies are advected at a lower speed near the surface than far away from it. In ESDU [19],
the phase angle for vertical separations is provided based on empirical data [59]. To include
this additional phase difference, the matrix A( f , x, y, z) can be written as

A( fk, x, y, z) = G exp[2πiΦ] exp
[
−2πi fkdx

u

]
exp

[
−2πi fkdz

u
si

]
(29)

where si (i = {u, v, w}) is the so-called eddy-slope [59]. According to ESDU [19], the
eddy-slope is negligible for the along-wind and vertical components, but not for the lateral
velocity component, which is consistent with the findings by Chougule et al. [75]. Following,
Bowen et al. [59], the eddy slope for the cross-wind component, which is herein denoted sv,
is approximated as

sv ≈ 3
dz

z
(30)

ESDU [19] provides a minor improvement of Equation (30), but at the cost of increased
complexity. For simplicity, the eddy slope is modelled herein using Equation (30).

One of the properties of the Fourier transform F of a random process u is

F [u(t− dt)] = F [u(t)] exp(−2iπ f dt) (31)

Therefore, if dx 6= 0, the turbulent flow will also be characterized by a non-zero quad-
coherence. The real part γjj and imaginary part ρij of the modified Davenport model
(Equation (13)) are thus:

γjj( f , dx, dy, dz) = cohjj( f , dx, dy, dz) cos
(

2π
f dx

u
+ 2π

sj f dz

u

)
(32)

ρjj( f , dx, dy, dz) = cohjj( f , dx, dy, dz) sin
(

2π
f dx

u
+ 2π

sj f dz

u

)
(33)

Denoting the complex conjugate by ∗, the matrix corresponding to the Fourier trans-
form of the turbulent wind field is a 2N by 3Np matrix named R( f , x, y, z):

R( f , x, y, z) =
[
A( f1:N , x, y, z) XN+1 A∗( fN:2, x, y, z)

]ᵀ (34)

Following the definition of the discrete Fourier transform, the term XN+1 is real-valued:

XN+1 =
N

∑
n=1

(−1)n[u(tn, x, y, z) v(tn, x, y, z) w(tn, x, y, z)
]ᵀ (35)

In Shinozuka and Deodatis [23], the term XN+1 is set to zero. However, Equation (35)
does not converge toward zero. Therefore, XN+1 is here set equal to Re{A(y, fN)}. Nev-
ertheless, this term has a negligible influence on the simulated time series. Finally, the
turbulent wind field is generated using the real part of the inverse fast Fourier transform,
denoted by F−1:

[
u(t, x, y, z) v(t, x, y, z) w(t, x, y, z)

]
=

√
N
dt
· Re

[
F−1{R( f , x, y, z)}

]
(36)
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where dt is the sampling time; u(t, x, y, z), v(t, x, y, z) and w(t, x, y, z) are 2N by Np matrices
corresponding to the simulated time histories of the along-wind, cross-wind and vertical
velocity components, respectively. Both u(t, x, y, z), v(t, x, y, z) and w(t, x, y, z) are matrices
of stationary Gaussian random processes.

4. Results
4.1. Flow Characteristics of Wind Storm Aina (2017)

The Bjørnafjord is a 5-km wide and 500-m deep fjord connecting some of the largest
export regions of south-western Norway. To strengthen the economy of this area, the new
E39 Coastal Highway Route [24] plans to replace the ferries crossing the Bjørnafjord with a
5-km long bridge. The adopted design concept is a floating pontoon bridge, the dimensions
of which make it highly sensitive to environmental loading, especially wind turbulence.
The homogeneity of the mean and turbulence flow characteristics is a topic of ongoing
research in the Bjørnafjord. This fjord is rather flat and open to the sea, such that spatial
variations of the flow characteristics remain smooth [76]. This allows for the application of
the proposed wind field simulation algorithm. Nevertheless, the southern part of the bridge
joining the sea and land will require a dedicated study. Indeed, this part will comprise a
long-span cable-stayed bridge in the vicinity of a hill, where turbulence is unusually high
and the flow is non-horizontal.

The crossing location is in an open fjord characterized by islands and hills (Figure 2).
Therefore, the flow is likely to be skewed along the deck, with a yaw angle up to 45°. Also,
the horizontal curvature of the future bridge deck implies that the yaw angle will vary
along the bridge span. This motivates the adequate modelling of yawed turbulent flow
conditions. Furthermore, the assumption of frozen turbulence may no longer be applicable
for the range of frequencies associated with the dynamic motion of such a long bridge.

BridgeMW1

m

m

Figure 2. Topography of the Bjørnafjord sketching the future bridge crossing and the mast MW1 used
in the analysis of the velocity data.

Since 2015, four 50-m met-masts have been deployed in the Bjørnafjord. Among them,
the mast MW1 (Figure 2) was installed 23 m above sea level, on the west side of the fjord,
on a small island with low vegetation. It was instrumented with three Gill WindMaster Pro
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3-axis 3D sonic anemometers, mounted on 4-m long booms oriented with an angle of −2°
from North. Two of the anemometers were located at 49 m above ground but 8 m apart from
each other. The third anemometer was 33 m above ground. The masts, supported by guyed
wires, have a tubular structure with a diameter of ca. 25 cm to minimize flow distortion.
The anemometers recorded the three velocity components at a sampling frequency of 10 Hz
but the sonic temperature was not available. The influence of the local topography on the
flow characteristics recorded on the mast MW1 under moderate wind conditions is given
in Cheynet et al. [76].

Generally, northerly or southerly wind directions prevail along the Norwegian coast.
However, a westerly wind was recorded on the second day of storm Aina, which hit the
southwestern coast of Norway on 7th and 8th December 2017 [77]. On that day, from
2:00 a.m. to 5:00 am, three hours of stationary records with a mean wind speed of 24 m s−1

at 49 m above ground were recorded on MW1 (Figure 3). The velocity data did not show
any clear trend and the mean wind direction increased by only 20° from 2:00 a.m. to
5:00 am. The flow was thus fairly stationary because the storm was moving toward the
coast instead of along it. The dataset collected that day combines strong wind speed,
stationary fluctuations and a duration of at least three hours. Therefore, it is a highly
valuable record for the design of the Bjørnafjord bridge.
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Figure 3. One-minute moving average time series corresponding to storm Aina (December 2017)
from 2:00 a.m. to 5:00 a.m. on 8 December 2017 using one of two anemometers mounted 49 m above
ground on MW1.

During storm Aina, two of the three sonic anemometers on MW1 displayed a higher-
than-usual measurement noise in the high-frequency range, partly due to aliasing resulting
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from the use of a 10-Hz sampling frequency without an adequate anti-aliasing filter. In
general, a value of 25 Hz is recommended [78]. An additional source of noise may be
probe-induced flow distortion due to the geometry of the transducer. Although high-
frequency anemometer noise has a limited impact on the study of the root-coherence, it
can affect the estimation of the normalized one-point velocity spectra. In particular, this
noise can challenge the identification of the inertial subrange. For this reason, the one-point
turbulence spectra were studied using one of the two anemometers located 49 m above
ground, that was least affected by aliasing and/or flow distortion.

The 3-h event displayed in Figure 3 was characterized by a mean wind direction of
293°, an angle of attack (AoA) of 2.3° and a mean wind speed of 24 m s−1. The turbulence
characteristics were studied after removing the linear trend in the time series. Using the
double rotation technique, the flow was studied in a coordinate system where the vertical
mean wind speed is zero. The one-point velocity spectra and cross-spectra were estimated
using Welch’s algorithm [79] with a Hamming window, six segments of 30 min and 50 %
overlapping. Further smoothing was applied by bin averaging the spectral estimates
on logarithmically-spaced bins. The root-coherence was also estimated using Welch’s
algorithm but with segments of 90 s and 50 % overlapping.

The estimated turbulence intensities are summarized in Table 1. In this table, the
friction velocity was computed as by Weber [37]. An identical friction velocity was found
using the method by Klipp [80], indicating that the double rotation technique is here
appropriate. This comparison also suggests that the flow is not substantially affected by
lateral shear stress, which can become important in mountainous terrain [81]. The integral
flow characteristics identified during this event are consistent with those observed in
uniform terrain with moderate roughness length. However, these values differ from those
reported in Cheynet et al. [76], collected in May 2016 for a wind direction between 320° and
340°, which were more representative of flow in complex topography. Table 2 summarizes
the skewness µi and kurtosis estimates κi (i = u, v, w). Although the distribution of the w
component is slightly skewed toward negative values, the third and fourth-order statistical
moments indicate fairly Gaussian fluctuations. Velocity records from the anemometer
located 33 m above ground provided similar skewness and kurtosis values as reported in
Table 2. Therefore, the turbulence generation scheme described in Section 3 is applicable
for the case at hand.

Table 1. Second-order integral turbulence characteristics recorded at 49 m above ground on MW1
(Bjørnafjord) on 8 December 2017 from from 2:00 a.m. to 5:00 am.

Characteristics Iu Iv Iw u∗ (m s−1) σu/u∗ σv/u∗ σw/u∗ Iv/Iu Iw/Iu

0.14 0.11 0.08 1.36 2.43 1.96 1.34 0.81 0.55

Table 2. Third and fourth-order integral turbulence characteristics recorded at 49 m above ground on
MW1 (Bjørnafjord) on 8 December 2017 from from 2:00 a.m. to 5:00 am. For i = u, v, w, the skewness
estimates are denoted µi whereas the kurtosis estimates are named κi.

Characteristics µu µv µw κu κv κq

0.05 0.07 0.15 2.7 3.2 3.3

4.2. One-Point Velocity Spectra

Figure 4 shows an excellent agreement between the estimated and fitted power spectral
density (PSDs). The least-square fit procedure was applied using Equations (1)–(3) and
(7). To better capture the low-frequency fluctuations, only frequencies under 1 Hz were
selected. Table 3 shows the values of the coefficients au, av and aw (Equations (1)–(3) and
(7)) identified for storm Aina. It should be noted that au = 118 and aw = 3.6 are close to the
values found by Kaimal and Finnigan [78] and Busch and Panofsky [82], respectively. Even
though the terrain is hilly, the good agreement between fitted and estimated PSDs indicates
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that, in the present study, surface layer scaling seems to be applicable at a height of 49 m
above ground. The friction velocity can be computed based on the covariance term u′w′
only or by combining u′w′ and v′w′. For the event selected, u′w′ contributes to more than
95 % of the friction velocity. Therefore, the term v′w′ and the associated cross-spectrum are
disregarded hereinafter.
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Figure 4. Estimated (scatter) and fitted (solid lines) one-point auto- and cross-power spectral estimates
at z = 49 m above ground from 2:00 a.m. to 5:00 a.m. on 8 December 2017.

Table 3. Spectral parameters from Equations (1)–(3) and (7) estimated using wind data recorded
from 2:00 a.m. to 5:00 a.m. on 8 December 2017 on MW1.

Coefficients au av aw auw buw

Values 118 24 3.6 12 9

Some discrepancies are visible between the fitted and estimated co-spectrum Re{Suw}.
The cross-spectrum is forced to follow the −7/3 slope in the inertial subrange, whereas
the estimated co-spectrum does not follow it at fr > 1. The imaginary part of the cross-
spectrum, denoted Im{Suw}, reflects the blocking by the ground [74] and is not negligible
in the present case, which may partly explain these discrepancies. An in-depth study of
Im{Suw}may be valuable for an improved design on slender low-rise structures, such as
future floating pontoon bridges, but is out of the scope of the present work.

4.3. Coherence Estimates

The co-coherence and quad-coherence estimates obtained using the record collected
from 2:00 a.m. to 5:00 a.m. on 8 December 2017 are displayed in Figure 5. They are
superposed to the fitted functions γii (Equation (32)) and ρii (Equation (33)). The vertical
root-coherence was studied using the sensors located on the same side of the mast and their
horizontal separation was thus zero. Similarly, the horizontal root-coherence was studied
using only the sensors at the top of the masts, which were both at 49 m above ground. It
should be noted that only frequencies up to 1 Hz were considered for the least-square fit of
Equations (32) and (33) since the co-coherence is close to zero at higher frequencies.

Table 4 displays the decay coefficients obtained by least-square fit of Equation (32).
For lateral separations, the coefficients are slightly smaller than observed by Kristensen
and Jensen [9] on the Sotra bridge, located north of the Bjørnafjord. The parameter cw

y1 is,
however, relatively close to the value estimated in the Lysefjord [36]. For vertical separa-
tions, the decay coefficients are similar to those estimated above the sea [83], suggesting
that the flow incorporates combined characteristics from both offshore and hilly environ-
ments. Overall, the identified decay coefficients are within the range of values found by
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Midjiyawa et al. [84] from multiple masts in three other Norwegian fjords. The along-wind
decay coefficients cj

x1 (j = u, v, w) are equal to 1, which is also within the range of values
derived from the data recorded in the Bjørnafjord with long-range Doppler Wind lidar
instruments [22]. A value cj

x1 ≤ 1 suggests that Taylor’s hypothesis of frozen turbulence is

suitable, at least for the largest eddies. In reality, as soon as cj
x1 > 0, there exists a range

of eddies that cannot be considered frozen any longer and this range increases with the
along-wind separation. Finally, it should be noted that the possible dependency of the
Davenport decay coefficients on the separation distance (e.g., [58,59]), cannot be explored
in the present study because the separation distances are less than 20 m.

Table 4. Decay coefficients estimated on 8 December 2017 from 2:00 to 5:00 on MW1. These
coefficients are eastimated by least-square fit of Equation (13).

Component i cj
x1 cj

y1 cj
y2 cj

z1 cj
z2

u 1 8 0.01 11 0.03
v 1 4 0.01 9 0.30
w 1 5 0.36 4 0.24

Figure 5 shows that the quad-coherence of the u and w component is nearly zero for
vertical separations, contrary to the v component. This result supports thus the recommen-
dation provided by ESDU [19]. The solid line used to approximate ρvv( f , dz) is computed
using the eddy slope value described in Equation (30), which shows that the low-frequency
range is only partly portrayed by the empirical model described in Bowen et al. [59]. On
the other hand, the eddy slope has no visible influence on γvv( f , dz). A more in-depth
investigation is required to establish the relevance of the eddy slope when modelling the
dynamic wind loading.
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Figure 5. Co-coherence and quad-coherence of the three velocity components estimated for a wind
direction of 293°, u = 24 m s−1 at z = 49 m above ground and a yaw angle of 31° (dx = 4.1 m,
dy = 6.9 m, and dz = 16 m). The data were recorded on 8 December 2017 from 02:00 to 05:00. The
solid lines correspond to the best fit of Equation (32) for the co-coherence and Equation (33) for the
quad-coherence.
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The mean yaw angle is here defined with respect to the horizontal line connecting the
two sonic anemometers. On 8 December 2017 from 2:00 a.m. to 5:00 am, the mean yaw
angle was ca. 31° but the co-coherence did not display strongly negative values. To better
illustrate the modelling of the negative co-coherence by Equation (32), another sample
from storm Aina is selected in Figure 6. In this figure, the record on 8 December 2017, from
20:00 to 23:00 was associated with a stationary mean wind speed and mean wind direction
as well as a mean yaw angle of 69°. The sample was, however, less Gaussian and more
turbulent than the first sample selected with Iu ≈ 0.20 as the wind was flowing above
rough terrain. Nevertheless, the estimated decay coefficients show only minor differences
between the two data samples. The large yaw angle leads to a co-coherence estimate with
values as low as −0.6 for the vertical velocity component. The good agreement between the
estimated and modelled quad-coherence indicates also that Equation (33) is appropriate for
modelling purposes. Finally, Figure 6 shows that the eddy slope is also fairly well captured
by Equation (30) for the quad-coherence but not necessarily for the co-coherence, where the
eddy slope is not clearly distinguishable.
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Figure 6. Co-coherence and quad-coherence of the three velocity components estimated for a wind
direction of 331°, u = 18 m s−1 at z = 49 m above ground and a yaw angle of 69° (dx = 7.5 m,
dy = 2.9 m, and dz = 16 m). The data were recorded on 8 December 2017 from 20:00 to 23:00. The
solid lines correspond to the best fit of Equation (32) for the co-coherence and Equation (33) for the
quad-coherence.

5. Discussions and Conclusions
5.1. Skewed Turbulence Generation on a Diamond Geometry

To illustrate the performances of the turbulence generator, ten realizations of a wind
field with the same statistical characteristics as for storm Aina are computed. Their statis-
tical properties are estimated for each time series and ensemble-averaged to reduce the
random error. The flow field is computed in the middle of the elements of a diamond
geometry (Figure 7), denoted e1, e2, e3 and e4, which has the advantage of including both
along-wind and cross-wind separations. The diamond geometry is located in a horizontal
plane and does not intend to represent a real structure. Instead, it is used to demonstrate
that the turbulent field is properly generated for both along-wind and cross-wind distances.
The wind field is generated with a sampling frequency of 4 Hz and 214 data points, leading
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to time series with a duration of ca. 1 h. The reference mean wind speed is set as 24 m s−1

at a reference height of 49 m above ground with a roughness length z0 of 0.05 m which is
within the range of values found in fjord-like topographies [36,85]. In the following exam-
ple, the time series are generated at the same height, so there is no need to prescribe a mean
wind speed profile. The target velocity spectra are computed based on Equations (1)–(3)
and (7) with the parameters estimated in Table 3. Similarly, the target co-coherence model
is from Equation (13) with the parameters estimated in Table 4.

−20 0 20

−20

0

20

e1

e2e3

e4

X (m)

Y
(m

)

u
vn
va

Figure 7. Diamond geometry used to validate the skewed turbulence generation algorithm. The flow
is simulated in the middle of elements 1 to 4 with a northern wind direction. For each structural
element ei (i = 1, 2, 3, 4), the axial and normal velocity components are denoted va and vn, respectively.

In Figure 7, the axes X and Y correspond to the longitude and latitude of the vertices,
such that the (X, Y) plane is horizontal. The line joining e1 and e2 is aligned with the
wind direction. Therefore, the along-wind and cross-wind distance between e2 and e1
are dx = 20 m and dy = 0 m, respectively. On the other hand, the line joining e1 and
e4 is perpendicular to the flow, such that dx = 0 m and dy = 20 m. Finally, the line
joining e1 and e3 combines both cross-wind and along-wind separations, with dx = 20 m
and dy = 20 m. Figure 8 displays the time series of the u velocity component on e1 and
e2. The normalized cross-correlation function Ru(e1, e2) in the bottom panel of Figure 8
reaches its maximum near 0.80 s, which correspond to the advection time between e1 and
e2. The largest value of Ru(e1, e2) is below 1, which underlines the loss of correlation in the
along-wind direction due to the along-wind root-coherence introduced to relax Taylor’s
hypothesis of frozen turbulence.
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Figure 8. First five minutes of the time series of the fluctuating along-wind velocity components
generated on e1 and e2 (top panel) and associated cross-correlation function (bottom panel).

The co-coherence estimates between the different elements are shown as a scatter plot
in Figure 9. In this figure, the solid lines correspond to Equation (32) for the co-coherence
and to Equation (17) for the cross-coherence. We remind that Equation (17) is only used here
for comparison with the simulated cross-coherence, which was numerically implemented
using Equation (25). The excellent agreement between target and estimated co-coherence
values indicates that the method adopted to generate a yawed flow field with a lower-
than-unity co-coherence in the along-wind direction is appropriate. The one-point velocity
spectra and co-spectra (Figure 10) show also that the LDL decomposition can be used to
model the negative correlation between the u and w components.

The introduction of a time lag in the time series is also reflected by the imaginary part
of the root-coherence, which becomes different from zero as soon as dx 6= 0. In Figure 11,
the estimated quad-coherence compares well with the expected one ρii. Note that the
quad-coherence between the centre of elements 1 and 4 is zero because the local value of
the yaw angle is zero. A recent paper by Nybø et al. [86] suggested studying the impact
of different quad-coherence formulations on the turbulent load. Following Equation (33),
the quad-coherence can be directly derived from the root-coherence combined with the
phase lag for longitudinal separations and/or vertical separations. Note that for the case at
hand, the quad-coherence did not reflect the phase lag for vertical separations because the
elements of the diamond geometry used to compute the flow field were located at the same
height above ground.
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Figure 9. Target co-coherence (solid lines) and estimated one (markers) between elements 1 and
2 (top panels), elements 1 and 4 (middle panels) and elements 1 and 3 (bottom panels) of the
diamond geometry.
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Figure 11. Target quad-coherence (solid lines) and estimated one (markers) between elements 1
and 2 (top panels), elements 1 and 4 (middle panels) and elements 1 and 3 (bottom panels) of the
diamond geometry.

5.2. Conclusions

The present paper introduces an algorithm to generate a three-variate four-dimensional
correlated stationary Gaussian wind field which accounts for non-zero yaw angles and re-
laxes Taylor’s hypothesis of frozen turbulence. This approach is suitable to model the wind
load on slender structures, such as future super-long span bridges crossing Norwegian
fjords, which can span from one to five-kilometre distances.

For a structure located mainly in the atmospheric surface layer, the flow field is
modelled using surface layer scaling. Turbulence is here governed by the roughness length,
the reference wind speed at a reference height, and the one-point and two-point auto-
and cross-spectral densities of the velocity fluctuations. Due to the non-zero values of
the single-point cross-spectrum for the along-wind and vertical turbulence components,
the spectral matrix is not necessarily positive definite. Therefore, the traditional Cholesky
decomposition is replaced with the more general LDL factorization. To model non-frozen
turbulence, a 3D root-coherence function that accounts for longitudinal separations in
addition to the lateral and vertical ones was used.

To illustrate the relevancy of the turbulence parameters selected, measurement data
from three 3D sonic anemometers mounted on a meteorological mast on the west coast of
Norway were used. The full-scale records were taken from storm Aina (2017), which was
characterized by a 3-h mean wind speed of 24 m s−1 at 49 m above ground. The exception-
ally long duration and stationarity of the records allowed an in-depth characterization of
the spectral characteristics of turbulence.

The capability of the algorithm to simulate skewed flow conditions is illustrated for
a diamond geometry. The time lag was modelled using a complex exponential in the
frequency space, which is reflected by the co-coherence and quad-coherence estimates.
Although the quad-coherence may not directly participate in the linearised wind load
calculation in the frequency domain, it is required for time-domain simulations.

For a 5-km floating pontoon bridge, the proximity of the deck to the sea surface
means that appropriate root-coherence and one-point power spectral densities should be
used in the wind load modelling. This information could be provided by the algorithm
presented herein.
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