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Why is the Universe so homogeneous and isotropic? We summarize a general study
of a γ-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with

homogeneous gradient) in anisotropic spaces with General Relativity. The anisotropic
matter sector is implemented as a j-form (field-strength level), where j ∈ {1, 3}, and
the spaces studied are Bianchi space-times of solvable type. Wald’s no-hair theorem is
extended to include the j-form case. We highlight three new self-similar space-times:
the Edge, the Rope and Wonderland. The latter solution is so far found to exist in the
physical state space of types I,II, IV, VI0, VIh, VII0 and VIIh, and is a global attractor
in I and V. The stability analysis of the other types has not yet been performed. This
paper is a summary of [1], with some remarks towards new results which will be further
laid out in upcoming work.

Keywords: p-form gauge fields, anisotropic space-times, Bianchi models, inflation, dy-
namical system, orthonormal frame.

1. Introduction

Why does the Universe seem so isotropic on large scales [2, 3, 4]? Standard

cosmology invokes this observation as a principle, as it is hard to solve the Einstein

equations without symmetry requirements [5]. In order to understand this high

degree of isotropy within the paradigm of GR, it is necessary to relive the theory

of such assumption, seeking to replace it instead by an explanation. To this end we

have softened the isotropy requirement of the cosmological principle by studying

the Bianchi models of solvable type (types I-VIIh).

A natural generalization of massless scalar fields to the anisotropic case, is the p-

form fielda with p = 1 or 3. Collectively, we shall refer to this form field as a j-form

field, since the equations will be the same in either case (as explained in Section 3).

The connection to massless scalar fields may be drawn from Eq. (4). In this study

we summarize some results we have obtained in our study so far, and mention a

few results to be further reported on in upcoming work(s)(Normann’s Ph.D. thesis).

We would like to refer the reader to [1] for further references to previous works on

related topics. Also, note the recent works [6, 7] and many interesting references

therein.

aWe here and throughout reference the form field on the field strength level.
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2. The general p-form action

A natural candidate for anisotropic matter sourcing is the one stemming from the

general p-form action [8]

Sf = −1

2

∫
P ∧ �P , (1)

where P is a p -form constructed by the exterior derivative of a (p− 1)-form K.

The equations of motion and the Bianchi identity, both obtained from the action,

Eq. (1), may now be given as

dP = 0 → ∇[α0
Pα1···αp] = 0 Bianchi Identity. (2)

d�P = 0 → ∇α1Pα1···αp = 0 Equations of motion. (3)

Here Pμ1···μp are the components of P in a general basis. As evident from the above

equationsb, our study assume that there is no source to the j-form field.

General properties of the p-form action: Note that the theories derived

from the general p-form action Eq. (1) respect the following properties: (i) gauge

invariance L → L under K → K + dU , where U is a (p − 2) -form; (ii) only up

to second order derivatives in equations of motion; (iii) Lagrangian is up to second

order in field strength P ; (iv) constructed by exterior derivative of a p-form and (v)

minimally coupled to gravity.

3. The j-form fluid

In our study, P is required homogeneous: P(t,x) ⇒ P(t). However, generally, the

underlying gauge field K(t,x) is allowed to vary both with space and time. Hence

we study a j-form fieldstrength with an underlying inhomogenous gauge field. This

is different from [9], where the gauge potential is a function of time only. In order

to classify the possible cases of p-form matter fields that can be constructed from

the exterior derivative of a (p− 1)-form, the following notation is introduced: {a, b}
where a denotes the rank of the p-form P and b the rank of its Hodge dual �P . In

four dimensional space-time (a + b = 4) there are three distinct cases to consider:

(i){2, 2}, (ii) {3, 1} or {1, 3} and (iii) {4, 0}. The degeneracy in (ii) is due to the

symmetry of the equations Eq. (2) and Eq. (3)c. This symmetry can also be seen

in the action Eq. (1), up to a prefactor. Since these two cases yield the same set of

equations, we effectively study both cases, by studying one of them.

In the following analysis the cases {1, 3} and {3, 1} will be taken into account. In

order to include both scenarios, notation shall here, and throughout the rest of the

paper, be such that J denotes either (i) the Hodge dual of a 3-form field strength

bThe Hodge dual �P is closed.
cThe reason why this degeneracy is not found in the case (iii) is because P �= dK in the case
{0, 4}. Hence one is left only with {4, 0}.
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C(t) = dB (where B(t,x) is a 2-form) or (ii) the 1-form field strength A(t) = dφ

(where φ(t,x) is a scalar field). That both cases give rise to the same equations is

evident.

Energy-momentum tensor: The energy-momentum tensor of the j-form fluid

can be shown to be

Ljf = −1

2
JμJ μ → T jf

μν = JμJν − 1

2
gμνJγJ γ . (4)

Equations Eq. (2) and Eq. (3) now take the component forms

dJ = 0 → ∇[μJν] = 0, (5)

d�J = 0 → ∇μJ μ = 0. (6)

These are the equations for a massless scalar field. Hence, our study can be viewed

as a study of an inhomogeneous, massless scalar field with a homogeneous gradient.

State parameter The field strength Jα may be decomposed according to

Jα = −wuα + vα , (7)

where the 4-velocity uα is time-like (uαu
α < 0), whereas vα is defined to be or-

thogonal to uα and therefore space-like (vαv
α > 0). The range of the equation of

state parameter ξ defined through pf = (ξ− 1)ρf
d comes as no surprise. Performing

the calculations, one finds

ξ =
w2 − v2/3
w2 + v2

+ 1 → 2

3
≤ ξ ≤ 2 . (8)

The range of ξ follows directly from requiring that Jα ∈ R. Note that Eq. (8) is a

dynamical equation of state, since the components of J in general change with time.

The lower bound (ξ = 2/3) is found for w = 0 and the upper bound (ξ = 2) is found

for v = 0. Note also that w = v gives ξ = 4/3, as in the case of electromagnetic

radiation.

4. Sourcing anisotropy with a j-form in General Relativity

We take the evolution to be governed by the Einstein Field Equations. In particular

Rμν − 1

2
Rgμν = T pf

μν + T f
μν + T 4f

μν , (9)

where Rμν is the Ricci tensor components, R = Rμμ is the Ricci scalar and T pf
μν

and T f
μν the perfect fluid and form fluid energy-momentum tensor components,

respectively. The constants 8πG and c are fixed to 1. Note that a 4-form is also

added, playing the role of a cosmological constant.

It is, for simplicity, assumed that the three fluids do not interact.

dIn a standard irreducible notation where p denotes pressure and ρ is the energy density.
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4.1. Bianchi models and choice of frame

In dimension three there are nine different (classes of) Lie algebras – these are the

nine different Bianchi types I-IX. The line element of the Bianchi models can be

written as

ds2 = −dt2 + δab ω
aωb where dωa = −1

2
γabcω

b ∧ ωc − γa0cdt ∧ ωc. (10)

{ωa} is here a triad of 1-forms, and γabc are the spatial structure coefficients of the

Lie algebra characterizing the corresponding Bianchi type. The tetrad {ωα} is dual

to the vector basis {eα}, which must satisfy the relation [eμ, eν ] = γρμν eρ. Refer to

([10], Chapter 15) for details. The time direction is chosen orthogonal to the orbits

of the isometry subgroup (i.e.: orthogonal to the three-dimensional hypersurfaces

of homogeneity), and the fundamental observer’s 4-velocity is aligned with this

direction. It is given by u = ∂
∂t where t is the cosmological time. We also define

a dimensionless time quantity τ such that dt/dτ = 1/H , where H is the Hubble

parameter. The deceleration parameter q is now such that dH/dt = −(1 + q)H2.

A convenient frame in which to conduct the analysis is the orthonormal frame.

Such a frame will give first order evolution equations alongside a set of constraints

which are useful to simplify the analysis. The Bianchi space-times analyzed in the

present paper (I-VIIh) admit an Abelian G2 subgroup. This allows for a 1 + 1 + 2

split of the four dimensional space-time. As will become clear later, this translates

into a 1+1+2 decomposition of the Einstein Field Equations, as well as the Jacobi

and the Bianchi identities. When the orthonormal frame approach is applied to G2

cosmologies, it is common to choose a group-invariant orbit-aligned frame, i.e. an

orthonormal frame which is invariant under the action of G2 [11].

5. No-hair theorems for the j-form

No-hair theorems that in previous literature has been established for the Bianchi

space-times in the presence of a cosmological constant and a perfect fluid are in this

section extended to the presence of the j-form in the equations. In particular, it is

found that the cosmic no-hair theorem [12] is valid also in this casee. Refer to [1]

for proofs.

Theorem 5.1 (First no-hair theorem). All Bianchi space-times I-VIIh with a

j-form, a non-phantom perfect fluidf and a positive cosmological constant will be

asymptotically de Sitter with ΩΛ = 1 in the case where γ > 0 (and similarly

ΩΛ + Ωpf = 1 in the case where γ = 0).

A similar but less general theorem holds also in the case of a perfect fluid with

0 ≤ γ < 2/3:

eNote that an anisotropic fluid may sustain an inflationary phase of expansion if it violates the
strong or dominant energy condition [13]. A j-form respects these energy conditions.
fA perfect fluid is said to be phantom if γ < 0.
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Theorem 5.2 (Second no-hair theorem). All Bianchi space-times I-VIIh with

a j-form, a non-phantom perfect fluid Ωpf with equation of state parameter 0 ≤
γ < 2/3 will be asymptotically quasi de Sitter with q = 3

2γ − 1 < 0.

6. New stable, anisotropic, self-similar space-times

We have also performed a dynamical systems analysis of certain Bianchi types with

a γ-law perfect fluid and a j-form fluid. Due to the no-hair theorems, we necessarily

remove the cosmological constant in the further study. Among extensions of known

self-similar space-times, we interestingly find three new anisotropic space-times;

Wonderland, The Edge and The Rope in Bianchi type I. Their global stability has

been determined by monotone functions. Extensions to these into other Bianchi

types are found, as summarized in the following.

Type I: Type I splits into two further invariant subspaces; a temporal and a

spatial part (as referred to the components of the j-form fluid). All of the three

new solutions presented below are in the subspace where the j-form fluid is purely

spatial.

Wonderland is an LRS solution containing both a non-rotating vector and the

perfect fluid. The field strength is aligned with the LRS axis and the expansion

asymmetry is of prolate type. Its range of existence is the open interval γ ∈ (2/3, 2).

It approaches the flat FLRW solution Ωpf when γ → 2/3 and the Kasner solution

(Σ+ = −1) when γ → 2. Interestingly, it has a deceleration parameter q = −1+3γ/2

identical to the flat FLRW solution. The line element of Wonderland is

ds2 = −dt2 + t2dx2 + t
2−γ
γ (dy2 + dz2). (11)

Global attractor for the Bianchi type I state space for γ ∈ (2/3, 6/5].

The Rope contains a rotating vector and the perfect fluid. Its range of existence is

the open interval γ ∈ (6/5, 4/3). It approaches Wonderland in the limit γ → 6/5 and

the Edge in the limit γ → 4/3. Like Wonderland, it has a deceleration parameter

q = −1 + 3γ/2 identical to the flat FLRW solution. The Rope is not an LRS

solution, although it is “almost LRS” close to Wonderland. The line element of the

Rope is

ds2 = −dt2 + t2

(
dx+

√
2(5γ − 6)

(2− γ)
t1−

2
γ dz

)2

+ t
2(4−3γ)

γ dy2 + t
4(γ−1)

γ dz2. (12)

Global attractor for the Bianchi type I state space for γ ∈ (6/5, 4/3).

The Edge contains only a rotating vector and has deceleration parameter q = 1,

similar to a radiation dominated universe. Since Ωpf = 0, it exists in the entire

range of models, γ ∈ [0, 2]. The line element of the Edge is

ds2 = −dt2 + t2
(

dx+
√

2t−1/2dz
)2

+ dy2 + tdz2. (13)

Global attractor for the Bianchi type I state space for γ ∈ [4/3, 2).
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Type V: In the type V subspace, we find a one-parameter extension of the Wonder-

land equilibrium set. Generally, in this one-parameter family, the j−form may have

both temporal and spatial components. We also find Plane Waves. For γ ∈ (2/3, 2)

these two are the only attractors.

Types II, IV, VI0, VIh, VII0 and VIIh: In an upcoming paper (part of

Normann’s Ph.D. thesis, due in October), we intend to study at least the types I,

II, IV, VII0 and VIIh in depth. Here we only report a few preliminary results.

Wonderland. This solution (alongside one parameter extensions) are found in

the physical state space of the types II, IV, VI0, VIh, VII0 and VIIh. This is promis-

ing in the sense that this solution might not be sensitive to choices of background

geometry. There remains, however, some work in order to pin down its stability.

Edge and Rope. These two solutions show up also in the physical state space of

type II.

Plane Waves. In type IV we find a two parameter extension of the plane wave

solution. In type VIIh, the plane waves is a three parameter family of solutions.

References

1. B. D. Normann, S. Hervik, A. Ricciardone and M. Thorsrud, Class. Quantum

Grav. 35, 9 (2018) doi:10.1088/1361-6382/aab3a7

2. P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571 (2014) A23

[arXiv:1303.5083 [astro-ph.CO]].

3. P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594 (2016) A16

[arXiv:1506.07135 [astro-ph.CO]].

4. D. Saadeh, S. M. Feeney, A. Pontzen, H. V. Peiris and J. D. McEwen, Phys.

Rev. Lett. 117 (2016) no.13, 131302 [arXiv:1605.07178 [astro-ph.CO]].

5. J. Barrow, Some Generalities About Generality. In The Philosophy

of Cosmology (pp. 85-108). Cambridge: Cambridge University Press.

doi:10.1017/9781316535783.006 (2017)

6. J. Almeida et al., arXiv:1810.05301 [astro-ph.CO] PI/UAN-2018-640FT (2018).

7. J. Almeida et al., JCAP 03 025 (2019).

8. M. Thorsrud, Class. Quantum Grav. 35 095011 [arXiv:1712.02778 [gr-qc]].

9. J. D. Barrow and K. E. Kunze, Phys. Rev. D 55 (1997) 623 [hep-th/9608045].

10. Grøn Ø and Hervik S 2007 Einstein’s General Theory of Relativity (Springer).

11. 1997 Dynamical Systems in Cosmology ed J Wainwright and G F R Ellis (Cam-

bridge: Cambridge University Press).

12. R. M. Wald, Phys. Rev. D 28 (1983) 2118.

13. A. Maleknejad and M. M. Sheikh-Jabbari, Phys. Rev. D 85, 123508 (2012)

[arXiv:1203.0219 [hep-th]].

 T
he

 F
if

te
en

th
 M

ar
ce

l G
ro

ss
m

an
n 

M
ee

tin
g 

D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

ST
A

V
A

N
G

E
R

 L
IB

R
A

R
Y

 o
n 

03
/3

0/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.




