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1 Introduction

During the last decades, many efforts have been made to obtain convincing evidence of the
existence of a new form of matter, the so-called quark-gluon plasma (QGP), in relativistic
heavy-ion experiments. As a sensitive probe to study the hot and dense medium [1, 2],
the nuclear modification factor RAA of heavy quarkonium states, such as J/Ψ and Υ has
been widely discussed in various systems at RHIC and LHC. Having RAA < 1 indicates
that the formation of bound states is suppressed in nucleus-nucleus collisions, relative to
that in proton-proton collisions [3–5]. It is expected that the successive dissociation of
heavy quarkonia, from the weakly bound excited states to the low-lying ones, can serve as
a versatile probe of static and dynamic QGP properties (for reviews see e.g. [6, 7]).
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Due to the fact the heavy-quark relative velocities are small (v � 1) studies on quarkonia
can be carried out in the nonrelativistic limit. As a consequence, many in-medium properties,
such as in-medium masses and decay rates of the heavy-quark (HQ) bound states can be
obtained by solving the quantum mechanical Schrödinger equation with a complex HQ
potential. Besides a real part that determines the binding energy, the potential also acquires
an imaginary part, which is induced by Landau damping of the low-frequency gauge fields
together with color singlet-octet transitions. This imaginary part provides information on
the decay of a quarkonium state [8–14] via wavefunction decoherence. It is obvious that
establishing a HQ potential, which accurately describes the interactions between the quark
and anti-quark, is key to ensuring the success of the Schrödinger equation based approach.
The HQ potential at short distances can be obtained by employing the hard-thermal-
loop (HTL) resummed perturbation theory in the weak-coupling limit, while the commonly
used way to study the non-perturbative contributions is to construct phenomenological
potential models. Recently, important progress has been made on the measurements of the
complex HQ potential using first principle lattice simulations [15–19] and several attempts to
develop complex-valued potential models have been put forward for quantitatively capturing
the in-medium properties of quarkonia [20–28].

While most of the above applications have focussed on an equilibrium QGP where
Fermi-Dirac and Bose-Einstein statistical distributions were used, during the last decade
much attention has been focused on exploring quarkonium physics beyond the equilibrium
limit by incorporating momentum-space anisotropies generated by longitudinal expansion
into the parton distribution function [24, 29, 30]. In general, an anisotropic plasma can
be either in equilibrium or out of equilibrium. The state of equilibrium, being static and
homogeneous, is sometimes anisotropic due to external fields, for example, in a magnetized
plasma. Anisotropic states are also common for systems which are out of equilibrium. One
example is the QGP generated in the early stages of ultra-relativistic heavy ion collisions. In
this case, a momentum-space anisotropy naturally arises due to the different expansion rates
in the transverse and longitudinal directions which is a universal feature emerging in both
the weak and strong coupling limits. In this work, we will focus on the expansion-induced
anisotropies.

Generally speaking, in the high temperature limit one can construct an effective
kinetic theory which governs the time evolution of the one-particle quark/gluon distribution
functions. An important step towards a realistic phenomenology in heavy-ion collisions
can be achieved by adopting the following anisotropic distribution function of Romatschke-
Strickland form [31]

fLRF
aniso(k) ≡ fiso

( 1
λ

√
k2 + ξ(k · n)2

)
. (1.1)

It takes into account the rapid longitudinal expansion of the QGP, and thus represents a
tractable way to introduce pressure anisotropies in the local rest frame (LRF) in a kinetic
theory approach [32, 33]. In eq. (1.1), fiso is an arbitrary isotropic distribution function
and the anisotropic distribution can be obtained by stretching or squeezing fiso along the
direction of anisotropy denoted by the unit vector n. In addition, λ is a temperature-like
scale which, only in the thermal equilibrium limit, should be understood as the temperature
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T of the system.1 An adjustable parameter ξ in the range −1 < ξ <∞ is used to quantify
the degree of momentum-space anisotropy

ξ = 1
2
〈k2
⊥〉
〈k2
z〉
− 1 , (1.2)

where kz ≡ k · n and k⊥ ≡ k − n(k · n) correspond to the particle momenta along and
perpendicular to the direction of anisotropy, respectively. By assuming n to be parallel to
the beam-line direction, ξ > 0 corresponds to a contraction of the isotropic distribution in
the n direction, which is the case relevant to high-energy heavy-ion experiments.

Numerous work has been devoted to investigate new phenomena arising in the presence
of a momentum-space anisotropy. The relevant studies cover a very wide range, from
collective modes [31, 34–38] and quarkonium physics [20, 21, 24, 27–29], to jet energy
loss [39–42] and transport coefficients [43–46], as well as the development of an anisotropic
hydrodynamics [32, 47]. Some of them have already suggested experimentally detectable
signals for the evidence of a non-zero anisotropy [29]. As is universally accepted, almost all
of the above mentioned works adopted eq. (1.1) as a starting point. It should be pointed
out that unlike the equilibrium distribution functions, the explicit form of the distribution
function in a non-equilibrium setting is not universal. Here, and in many previous works
eq. (1.1) is used without any justification other than its simplicity, it captures the most
important features of an anisotropic QGP which are the emergence of large pressure
anisotropies and the appearance of the so-called chromo-Weibel instabilities [48, 49]

In the present work, we are interested in the quarkonium physics in an anisotropic
QGP where the parton distribution is described by eq. (1.1). Due to the existence of a
preferred direction n, the spherical symmetry in the HQ potential is explicitly broken.
Consequently, an angular dependence emerges in the anisotropic HQ potential denoted
by V (r, θ, ξ) where θ is the angle of the quark pair alignment r with respect to n. As
one significant part of this work, we aim to construct an accurate model for V (r, θ, ξ)
which includes both the real and imaginary part and can be used as a basic input for
quarkonium studies in a non-equilibrium QGP. However, this is challenging because first
principle measurements of this quantity are not available at present. One may instead
attempt to incorporate momentum-anisotropy effects through a generalization of the well
established isotropic potential models with the fewest possible extra assumptions. On the
other hand, solving the Schrödinger equation with an angle-dependent potential turns into
a genuinely three-dimensional (3D) problem which certainly involves increased numerical
cost. In practice, to investigate the evolution of the reduced density matrix of in-medium
quarkonium, one must solve a 3D stochastic Schrödinger equation or corresponding Lindblad
equation [50–55], which is as of yet numerically prohibitive. Whether it is possible to have
an effectively isotropic potential model that reproduces the full 3D results on the binding
energies and decay widths of different bound states turns out to be very crucial when one
attempts to include the effect of momentum anisotropies on quarkonium evolution using
real-time solution of the Schrödinger equation. Previous work has assessed this conjecture

1However, we still call λ temperature for simplicity in the rest of the paper.
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for a real-valued potential model [56]. However, to do it properly one must demonstrate
that the same logic can be applied to the imaginary part as well.

Based on the above discussions, in this paper we develop a complex HQ potential model
for non-zero momentum-space anisotropy which can be further reduced to an effectively
isotropic model to simplify the numerical treatment. The rest of the paper is organized as
follows. In section 2, we consider an isotropic HQ potential model proposed in previous
work, which can be taken as an effective form for the corresponding anisotropic potential.
In section 3, we determine the angle-dependent anisotropic screening masses through which
the non-perturbative string contributions in the anisotropic potential model are obtained
by implementing the so-called “minimal” extension. With the potential model in hand,
we study quarkonium states with extremely large quark masses by means of perturbation
theory in quantum mechanics in section 4. The binding energies and decay widths of
charmonia and bottomonia are evaluated in section 5, where a focus is put on the effects
of the momentum anisotropies. Furthermore, with the angle-averaged effective screening
masses, we also demonstrate that the resulting 1D effective potential model can reproduce
the full 3D results for low-lying quarkonium bound state eigenenergies to high accuracy. In
section 6, we consider the real-time solution of the Schrödinger equation and investigate the
time evolution of the vacuum overlaps for bottomonium states, comparing results obtained
using both the 3D anisotropic potential model and the 1D effective potential model. A
brief summary and outlook is given in section 7. In addition, we discuss the uncertainties in
the energy splitting of the p-wave states induced by the model dependence in appendix A.
In appendix B, the numerical results of the complex eigenenergies obtained by solving the
Schrödinger equation are listed for different quarkonium states. Finally, the time evolution
of the vacuum overlaps for charmonium states are provided in appendix C.

2 The complex HQ potential model in an isotropic QCD plasma

As proposed in ref. [25], the complex HQ potential model in an isotropic QCD plasma is
defined by a Fourier transform of the real time resummed gluon propagator in the static
limit. Such a gluon propagator includes both a perturbative contribution, which is calculable
in the HTL resummed perturbation theory, and a non-perturbative string contribution
originating from the dimension two gluon condensate. Explicitly, the potential model can
be formulated as

V (λ, r) = −g2CF

∫
d3p

(2π)3 (eip·r − 1)D00(p0 = 0,p, λ) . (2.1)

For the perturbative contribution, besides a Debye screened potential as its real part, it also
possesses an imaginary part which determines the decay width of a quarkonium state [8].
The results are given by

ReVpt(λ, r) = −g2CF

∫
d3p

(2π)3 (eip·r − 1)
(

1
p2 +m2

D

− 1
p2

)
≡ αmD(I1(r̂)− 1) , (2.2)

ImVpt(λ, r) = −g2CF

∫
d3p

(2π)3 (eip·r − 1) −πλm2
D

p(p2 +m2
D)2 ≡ αλ(I2(r̂)− 1) , (2.3)
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where I1(r̂) and I2(r̂) are given by the following integrals

I1(r̂) = 4π
∫

d3p̂
(2π)3 e

ip̂·r̂ 1
p̂2(p̂2 + 1) = 1− e−r̂

r̂
,

I2(r̂) = 4π2
∫

d3p̂
(2π)3 e

ip̂·r̂ 1
p̂(p̂2 + 1)2 = φ2(r̂) , (2.4)

with
φn(r̂) = 2

∫ ∞
0

dz
sin(zr̂)
zr̂

z

(z2 + 1)n . (2.5)

Here, we define p̂ ≡ p/mD and r̂ ≡ rmD. In addition, the strong coupling is given by
α = g2CF /(4π). Notice that we have subtracted a term 1/p2 in eq. (2.2) which makes the
r-independent part finite and shifts the r-dependent part by a Coulombic term −α/r.2

The perturbative HQ potential is only applicable to bound states with extremely large
quark mass so that the separation r between the quark and antiquark is very small. For
quarkonium states that have been extensively studied in heavy-ion experiments, such as
charmonia and bottomonia, the string contribution in the resummed gluon propagator plays
an important role in the determination of their in-medium properties. Its Fourier transform
determines the non-perturbative contributions to the HQ potential. Explicitly, we have

ReVnpt(λ, r) = −g2CFm
2
G

∫
d3p

(2π)3 (eip·r − 1) p
2 + 5m2

D

(p2 +m2
D)3 ≡ −

2σ
mD

(I3(r̂)− 1) , (2.6)

ImVnpt(λ, r) = −g2CFm
2
G

∫
d3p

(2π)3 (eip·r− 1)4πλm2
D(p2 − 2m2

D)
p(p2 +m2

D)4 ≡ 4σλ
m2
D

(I4(r̂)− 1) , (2.7)

where σ = αm2
G/2 with m2

G being a dimensionful constant related to the dimension two
gluon condensate [25] and

I3(r̂) = 4π
∫

d3p̂
(2π)3 e

ip̂·r̂ p̂2 + 5
(p̂2 + 1)3 = (1 + r̂/2)e−r̂ ,

I4(r̂) = 8π2
∫

d3p̂
(2π)3 e

ip̂·r̂ 2− p̂2

p̂(p̂2 + 1)4 = −2φ3(r̂) + 6φ4(r̂) . (2.8)

In the potential model as discussed above, the r̂-dependence appears only in the
four dimensionless functions Ii(r̂) with i = 1, 2, 3 and 4, all of which vanish when r is
infinitely large. Therefore, the asymptotic behavior at r →∞ is entirely determined by the
r-independent part in the Fourier transform, namely,

V (λ, r →∞) = g2CF

∫
d3p

(2π)3D
00(p0 = 0,p, λ) =

(
−αmD + 2σ

mD

)
− i

(
αλ+ 4σλ

m2
D

)
.

(2.9)
On the other hand, the four dimensionless functions become identical at the origin and
Ii(r̂ → 0) = 1 leads to a vacuum Coulomb potential with a vanishing imaginary part when
r → 0. This is to be expected since no medium effect can be probed in this limit.

2The r-dependent part is related to the factor eip·r in the Fourier transform. The contribution associated
with the factor 1 in the Fourier transform results in an r-independent part.

– 5 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
0

3 The anisotropic screening mass and HQ potential model in a medium
with small anisotropy

Exhibiting a relatively simple form, the potential model discussed above has been shown to
agree well with the simulation data in Lattice QCD [25]. Obviously, generalizing such a
model to an anisotropic medium is an important step towards shedding light on the physics
of quarkonium beyond the equilibrium approximation. In fact, the anisotropic HQ potential
has been calculated within the HTL resummed perturbation theory [57–59]. The resulting
real part takes a much more complicated form as compared to the Debye screened potential
in equilibrium and an analytical expression becomes available only for small anisotropies.
On the other hand, the imaginary part is well defined near the equilibrium where ξ < 1,
while its determination for arbitrary ξ is still an open question due to the presence of a
pinch singularity in the static gluon propagator [60, 61].

Let us focus on small anisotropies. Although the perturbative HQ potential Vpt(r, θ, ξ)
can be fully studied in a model-independent way, it appears quite useful to use an effective
form to describe Vpt(r, θ, ξ). Such an effective form is obtained by replacing the Debye
masses in eqs. (2.2) and (2.3) with the corresponding anisotropic screening masses, which is
formally analogous to its isotropic counterpart. The advantage of doing so lies in two aspects.
First, the rather complicated expression of Vpt(r, θ, ξ), as derived in the perturbation theory,
can be significantly simplified. More importantly, the introduced anisotropic screening
masses which contain all the effects induced by momentum anisotropies, could provide key
information to model the non-perturbative HQ potential in the anisotropic QGP.

The first attempt to develop an anisotropic potential model was carried out in ref. [29],
where a basic assumption was put forward that the very same screening scale as appears in
the Debye screened contributions also shows up in the non-perturbative string contributions.
Thus, the “minimal” extension of an isotropic potential model to non-zero anisotropy
consists of replacing the Debye mass mD, in both the perturbative and non-perturbative
part, by the anisotropic screening masses extracted from the effective form of Vpt(r, θ, ξ).
Although previous works limited their considerations to the real part of the HQ potential,
the same idea could also be applied to ImV (r, θ, ξ). In the following, with the derivation
of the anisotropic screening masses, we develop a complex HQ potential model under
the aforementioned basic assumption. Because of the ill-defined ImVpt(r, θ, ξ) at large
anisotropies, extracting an anisotropic screening mass for arbitrary ξ turns out to be beyond
the scope of this study and we only concentrate on the small ξ region in the current work.

3.1 The real part of the HQ potential model for small anisotropy ξ

In a medium with small anisotropy, up to linear order in ξ, the real part of the HTL
resummed gluon propagator reads [59]

ReD00(p0 = 0,p, ξ) = 1
p2 +m2

D

+ ξm2
D

2
3 − (p · n)2/p2

(p2 +m2
D)2 . (3.1)

According to eq. (2.1), the perturbative HQ potential has the following analytical form

ReVpt(r, θ, ξ) = −αe
−r̂

r

[
1− ξf0(r̂)− ξf1(r̂) cos(2θ)

]
− αmD(1− ξ/6) , (3.2)
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with

f0(r̂) = 6(1− er̂) + r̂[6− r̂(r̂ − 3)]
12r̂2 = − r̂6 −

r̂2

48 + · · · ,

f1(r̂) = 6(1− er̂) + r̂[6 + r̂(r̂ + 3)]
4r̂2 = − r̂

2

16 + · · · . (3.3)

As r → 0, the above equation reduces to the vacuum Coulomb potential as expected.
On the other hand, at infinitely large r, ReVpt(r → ∞, ξ) is given by −αmD(1 − ξ/6)
which originates from the r-independent part in the Fourier transform. Comparing with the
corresponding isotropic result, we find that the effect of small anisotropies amounts to a
modification of the Debye mass, i.e., mD → mD(1− ξ/6). Given the asymptotic behavior,
an effective form for the anisotropic HQ potential based on eq. (2.2) can be formulated as

ReVpt(r, θ, ξ) = αmD(1− ξ/6)(I1(rm̃D(λ, ξ, θ))− 1) , (3.4)

where the θ-dependence only appears in the dimensionless function I1(r̂) via the replacement
mD → m̃D(λ, ξ, θ). The above effective form has the desired asymptotic behaviors since
I1(r →∞) = 0 and I1(r → 0) = 1.

The effective form eq. (3.4) satisfies the requirements in the limiting cases where r → 0
and r → ∞. At a finite separation distance between the quark and anti-quark, it is the
explicit form of the anisotropic screening mass m̃D(λ, ξ, θ) which must be determined to
reproduce the exact result given in eq. (3.2).

In particular, as a unique feature arising in an anisotropic medium, the energy splitting
of quarkonium states with non-zero angular momentum needs to be realized through a
proper θ-dependence in the screening mass. The determination of m̃D(λ, ξ, θ) can be carried
out by matching the effective form of ReVpt(r, θ, ξ) to the exact result,3 then we arrive at

m̃D

mD
= 1 + ξ

(
−1

6 + 6(1− er̂) + r̂(6 + 3r̂ + r̂2)
12r̂2(1 + r̂ − er̂) (1 + 3 cos(2θ))

)
+O(ξ2)

= 1 + ξ

(
−1

8(1− cos(2θ))− 1
180(1 + 3 cos(2θ))r̂

)
+O(ξr̂2, ξ2) . (3.5)

To obtain the above equation, we implicitly assumed that in the presence of a small
anisotropy, the induced modification of the Debye mass mD is also small, so that the
difference (m̃D −mD) is linearly proportional to ξ. Consequently, contributions beyond
linear order in ξ in eq. (3.4) have been dropped. Given the fact that HTL resummed
perturbation theory applies when r̂ ≤ 1, we also Taylor expand the result with respect to r̂
which is given by the second line in eq. (3.5).

As a function of r̂, both eq. (3.2) and eq. (3.4) reduce to the vacuum Coulomb potential
at leading order in r̂. Consequently, eq. (3.4) becomes identical to the exact result of
ReVpt(r, θ, ξ) independent on the explicit form of m̃D(λ, ξ, θ). The next-to-leading order
contribution is linearly proportional to r̂ and the matching between the two equations at
this order leads to

m̃D/mD = 1− ξ(1− cos(2θ))/8 = 1− ξ(0.125− 0.125 cos(2θ)) , for r̂ � 1 . (3.6)
3A Coulombic term −α/r should be added to the effective form when matching it to the exact result.
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Figure 1. The real part of the perturbative heavy-quark potential as a function of r evaluated
at ξ = 0.7 for θ = 0 (left plot) and θ = π/2 (right plot). The solid curves correspond to
the exact result while the dash-dotted curves correspond to the effective form eq. (3.4) with
m̃D/mD = 1− ξ(1− cos(2θ))/8. We take α = 0.272 and mD = 0.4 GeV. In this figure, a Coulombic
term −α/r has been subtracted, therefore, all the curves vanish at the origin.
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Figure 2. The real part of the perturbative heavy-quark potential as a function of r evaluated
at ξ = 0.7 for θ = 0 (left plot) and θ = π/2 (right plot). The solid curves correspond to
the exact result while the dash-dotted curves correspond to the effective form eq. (3.4) with
m̃D/mD ≈ 1 − ξ(0.131 − 0.108 cos(2θ)). We take α = 0.272 and mD = 0.4 GeV. In this figure, a
Coulombic term −α/r has been subtracted, therefore, all the curves vanish at the origin.

On the other hand, evaluating eq. (3.5) at r̂ = 1 which can be taken as an upper limit
where the perturbation theory works, we obtain

m̃D/mD = 1− ξ 6− 2e− (9e− 24) cos(2θ)
6e− 12 ≈ 1− ξ(0.131− 0.108 cos(2θ)) , for r̂ = 1 .

(3.7)
In fact, eq. (3.5) clearly shows that up to linear order in ξ, the exact matching unavoidably
requires a r̂-dependence introduced in the anisotropic screening mass. However, it turns out
that the determination of m̃D(λ, ξ, θ) only weakly depends on the specific values of r̂. More
importantly, such a r̂-dependence is not necessary for phenomenological purposes because
eq. (3.4) is only considered as an approximation to the exact result. As shown in figures 1
and 2, a rather good agreement can be achieved by using either eq. (3.6) or eq. (3.7) for
m̃D(λ, ξ, θ).
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Given the isotropic ReVpt(λ, r) in eq. (2.2), the above generalization to the anisotropic
QGP involves modifications on the Debye mass. It’s worth noting that mD’s in the
dimensionless function I1(r̂) are treated differently from those associated with the r-
independent part in the Fourier transform because the θ-dependence is only imposed on the
former. This is actually consistent with the perturbative HQ potential in eq. (3.2) where
the angle disappears as r →∞.

Furthermore, we can generalize the isotropic ReVnpt(λ, r) to non-zero ξ by following the
idea of “minimal” extension. According to eq. (2.6), ReVnpt(λ, r) reduces to −2σ/mD at
asymptotically large r where, in the presence of a small anisotropy, a ξ-dependent screening
scale mD(1 − ξ/6) needs to be employed, namely ReVnpt(r → ∞, ξ) = −2σ/(mD(1 −
ξ/6)). For finite separation r, a θ-dependence emerges and the anisotropic screening mass
m̃D(λ, ξ, θ) as determined above needs to be used to replace the Debye mass mD in the
dimensionless function I3(r̂). Thus, we obtain the following model for the real part of the
anisotropic HQ potential

ReV (r, θ, ξ) = −α
r

+ αmD(1− ξ/6)(I1(rm̃D(λ, ξ, θ))− 1)− 2σI3(rm̃D(λ, ξ, θ))− 1
mD(1− ξ/6)

= −α
r

+ αmD(1− ξ/6)1− e−rm̃D

rm̃D
− αmD(1− ξ/6)

− 2σ
mD(1− ξ/6)e

−rm̃D

(
1 + rm̃D

2

)
+ 2σ
mD(1− ξ/6) . (3.8)

When solving the Schrödinger equation for charmonia and bottomonia, we also include a
relativistic correction in the potential model which is given by −0.8σ/(m2

b/cr) [29]. The
masses of the charm and bottom quarks are taken to be mc = 1.3 GeV and mb = 4.7 GeV,
respectively.

As r → 0, the vacuum Coulomb potential can be reproduced from eq. (3.8) which
indicates a vanishing non-perturbative contribution in this limit. Indeed, this is guaranteed
by construction since I3(r → 0) = 1. On the other hand, at infinitely large r, we get

ReV (r →∞, ξ) = −αmD(1− ξ/6) + 2σ
mD(1− ξ/6) . (3.9)

This result suggests that either increasing ξ or decreasing mD makes the value of ReV (r →
∞, ξ) larger.

3.2 The imaginary part of the HQ potential model for small anisotropy ξ

For small anisotropies, the imaginary part of the HTL resummed gluon propagator is
given by

ImD00(p0 = 0,p, ξ) = −πλm2
D

p(p2 +m2
D)2 + ξπλm2

D

 3 sin2 θn
4p(p2 +m2

D)2 −
2m2

D

(
sin2 θn − 1

3

)
p(p2 +m2

D)3

 ,
(3.10)

where θn denotes the angle between p and the direction of anisotropy n. Fourier transforming
ImD00(p0 = 0,p, ξ) into coordinate space, the resulting HQ potential can be obtained as

ImVpt(r, θ, ξ) = αλ[φ2(r̂) + ξ(ψ1(r̂, θ) + ψ2(r̂, θ))]− αλ(1− ξ/6) , (3.11)
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where

ψ1(r̂, θ) = −3
2

∫ ∞
0

dz z

(z2 + 1)2

(
sin2 θ

sin(zr̂)
zr̂

+ (1− 3 cos2 θ)G(r̂, z)
)
,

ψ2(r̂, θ) = 4
∫ ∞

0
dz z

(z2 + 1)3

((2
3 − cos2 θ

)sin(zr̂)
zr̂

+ (1− 3 cos2 θ)G(r̂, z)
)
, (3.12)

with
G(r̂, z) = r̂z cos(r̂z)− sin(r̂z)

(r̂z)3 . (3.13)

As previously discussed, since no medium effect exists at the origin, one expects a vanishing
imaginary part of the HQ potential in the limit r → 0. This is actually ensured in eq. (3.11)
by the fact that ψ1(r → 0) = −1/2 and ψ2(r → 0) = 1/3. On the other hand, neither ψ1(r̂, θ)
nor ψ2(r̂, θ) contributes at infinitely large r. Therefore, ImVpt(r →∞, ξ) = −αλ(1− ξ/6)
depends entirely on the r-independent part in the Fourier transform, which can be simply
obtained by implementing the replacement λ→ λ(1− ξ/6) in the corresponding isotropic
result, as given in eq. (2.9).

Following the same strategy that has been adopted in section 3.1, an effective expression
based on eq. (2.3) for ImVpt(r, θ, ξ) is obtained

ImVpt(r, θ, ξ) = αλ(1− ξ/6)(I2(rm̂D(λ, ξ, θ))− 1) . (3.14)

Obviously, this effective expression has the desired asymptotic behavior, as discussed above,
because I2(r → 0) = 1 and I2(r →∞) = 0. As we will show later, for the imaginary part
of the HQ potential, the anisotropic screening mass is different from that for the real part
and therefore is denoted by a different symbol m̂D(λ, ξ, θ) in eq. (3.14).

In the above effective expression, we assume a small modification of the isotropic Debye
mass, namely, (m̂D −mD) ∼ ξ and we discard contributions beyond linear order in ξ. The
matching to the exact result eq. (3.11) then determines the anisotropic screening mass
m̂D(λ, ξ, θ) as follows

m̂D

mD
= 1 + ξ

I2(r̂)/6 + ψ1(r̂, θ) + ψ2(r̂, θ)
I ′2(r̂) r̂ +O(ξ2)

= 1− ξ 17− 9 cos(2θ)
120 , when r̂ → 0 , (3.15)

where I ′2(r̂) is the derivative of I2(r̂), which is related to the Meijer’s G-function. Clearly,
the matching also shows an r̂-dependence and, by construction, becomes irrelevant to the
explicit form of m̂D(λ, ξ, θ) in the limiting case when r → 0 or r →∞, where the effective
expression eq. (3.14) is independent on m̂D(λ, ξ, θ).

When expanding the imaginary part of the perturbative HQ potential in terms of r̂,
the leading order contributions appear as ∼ r̂2 ln r̂. If the matching between eq. (3.11) and
eq. (3.14) is performed at this order, one obtains

m̃D/mD = 1− ξ(17− 9 cos(2θ))/120 ≈ 1− ξ(0.142− 0.075 cos(2θ)) , for r̂ � 1 . (3.16)
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Figure 3. The imaginary part of the perturbative heavy-quark potential as a function of r evaluated
at ξ = 0.7 and θ = 0 (left plot), and θ = π/2 (right plot). The solid curves correspond to
the exact result while the dash-dotted curves correspond to the effective form eq. (3.14) with
m̂D/mD = 1− ξ(17− 9 cos(2θ))/120. We take α = 0.272, λ = 0.2 GeV and mD = 0.4 GeV. In this
figure, all curves vanish at the origin.
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Figure 4. The imaginary part of the perturbative heavy-quark potential as a function of r evaluated
at ξ = 0.7 and θ = 0 (left plot), and θ = π/2 (right plot). The solid curves correspond to
the exact result while the dash-dotted curves correspond to the effective form eq. (3.14) with
m̂D/mD ≈ 1 − ξ(0.158 − 0.026 cos(2θ)). We take α = 0.272, λ = 0.2 GeV and mD = 0.4 GeV. In
this figure, all curves vanish at the origin.

On the other hand, if we evaluate eq. (3.15) at r̂ = 1, it leads to4

m̂D/mD ≈ 1− ξ(0.158− 0.026 cos(2θ)) , for r̂ = 1 . (3.17)

Unlike the anisotropic screening mass for the real part of the potential, the determination of
m̂D(λ, ξ, θ) exhibits a strong dependence on r̂ since the coefficient of cos(2θ) dramatically
decreases when increasing the value of r̂. As shown in figures 3 and 4, when m̂D(λ, ξ, θ) is
given by eq. (3.16), a less satisfactory reproduction of the exact result is found for θ = 0.
In order to determine the anisotropic screening masses uniformly for both the real and
imaginary part, it turns out that an optimal way is to match the effective expression to the
exact perturbative result at r̂ = 1.

Given the above discussions, generalizing the isotropic ImVnpt(λ, r) in eq. (2.7) to the
anisotropic QGP is straightforward. Following the same method used to derive eq. (3.8),

4An exact expression can be found, which is quite complicated and, therefore, omitted here.
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we arrive at

ImV (r, θ, ξ) = αλ(1− ξ/6)(I2(rm̂D(λ, ξ, θ))− 1) + 4σλI4(rm̂D(λ, ξ, θ))− 1
m2
D(1− ξ/6)

= αλ(1− ξ/6)φ2(rm̂D)− αλ(1− ξ/6)− 8σλ
m2
D(1− ξ/6)φ3(rm̂D)

+ 24σλ
m2
D(1− ξ/6)φ4(rm̂D)− 4σλ

m2
D(1− ξ/6) . (3.18)

In the above equation, to generalize ImVnpt(λ, r →∞) = −4σλ/m2
D to nonzero anisotropy,

mD is assumed to be proportional to λ. This is obviously true in hard-loop perturbation
theory where mD =

√
Nc/3 +Nf/6 gλ [31]. However, in the HQ potential model, mD

should be considered as a non-perturbative quantity for consistency. Following ref. [29], we
introduce a constant A ≈ 1.4 to account for all possible non-perturbative effects, namely,
mD = A

√
Nc/3 +Nf/6 gλ.5 Therefore, using the replacement λ→ λ(1−ξ/6) when r →∞,

we obtain
ImV (r →∞, ξ) = −αλ(1− ξ/6)− 4σλ

m2
D(1− ξ/6) . (3.19)

Finally, it should be noted that there are three distinguishable screening scales existing
in the anisotropic HQ potential model as given by eqs. (3.8) and (3.18). The θ-independent
one mD(1 − ξ/6) corresponds to the screening scale at infinitely large r. According to
eq. (2.9), the asymptotic behavior as r →∞ is determined by the r-independent part in
the Fourier transform, therefore, there is no way to introduce any angular dependence
even if an anisotropic gluon propagator D00(p0 = 0,p, ξ) is considered. In addition, the
angle-independent screening mass is equal for both the real and imaginary part of the
HQ potential.

The other two anisotropic screening masses depend on the angle θ and are denoted
by m̃D(λ, ξ, θ) and m̂D(λ, ξ, θ) for the real and imaginary part, respectively. An obvious
difference between them lies in the coefficients of the cos(2θ) term which indicates a less
accented angular dependence in the imaginary part. Although the corresponding effective
expressions with the two θ-dependent screening masses as given in eqs. (3.7) and (3.17) can
quantitatively reproduce the exact results of the perturbative HQ potential, one may still
envisage the possibility of having only one θ-dependent screening scale for both ReV (r, θ, ξ)
and ImV (r, θ, ξ) which would certainly simplify the potential model. Naively, such a
realization might be expected because the determination of the two screening masses
depends on r̂ and there is no fundamental reason to choose any specific r̂ as long as its
value doesn’t exceed 1. However, as already mentioned before, although an increase of the
coefficient of cos(2θ) in m̂D(λ, ξ, θ) can be achieved at smaller r̂, even the upper limit 9/120
cannot reach the value that appears in m̃D(λ, ξ, θ), which is larger than ∼ 0.1.

Based on the above discussion, it turns out to be necessary to introduce different
angle-dependent screening masses for the real and imaginary part of the HQ potential. It is
interesting to note that the angle-independent screening mass mD(1− ξ/6) can be obtained

5We take Nc = 3, Nf = 2 and g = 1.72 when numerically solving the Schrödinger equation in sections 5
and 6.
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from the angle-dependent ones after performing an average over the solid angle, namely,
the following relation holds.∫

dΩ
4π m̃D(λ, ξ, θ) =

∫
dΩ
4π m̂D(λ, ξ, θ) = mD(1− ξ/6) . (3.20)

The above result is independent on the value of r̂ at which m̃D(λ, ξ, θ) and m̂D(λ, ξ, θ)
are determined. In fact, the ratio between the anisotropic screening mass and mD can
be uniformly expressed as 1 − ξ[1/6 + g(r̂)(1 + 3 cos(2θ))] where g(r̂) contains all the
r̂-dependence as shown in eqs. (3.5) and (3.15).6 Since

∫
dΩ(1 + 3 cos(2θ)) vanishes, the

explicit form of g(r̂) has no influence on the integral in eq. (3.20).

4 Extremely heavy quarkonia in the anisotropic QGP

To obtain some insight into the anisotropic potential model proposed above, we consider the
binding energy for a quarkonium state with extremely large quark mass M . As M →∞, it
is essentially a Coulombic state and the medium effect can be taken as a perturbation. For
small r̂, eq. (3.8) can be expanded as

ReV (r, θ, ξ) = −α
r

+
[
−α2mD(1− ξ/6) + σ

mD(1− ξ/6)

]
rm̃D(λ, ξ, θ) + · · · . (4.1)

For the ground state (1S), at leading order in the above Taylor series, the eigenenergy
of the bound state can be written as E = −α2M/4. After taking into account eq. (3.9), the
binding energy reads

|Ebind|(1S) = α2M

4 + 2σ
mD
− αmD + ξ

6

(
αmD + 2σ

mD

)
, (4.2)

where contributions beyond linear order in ξ have been neglected. The above result clearly
indicates that at finite temperature, the binding of the bound state is weakened, compared
to the vacuum case which is a consequence of a decreased ReV (r →∞) in-medium. Notice
that the vacuum potential at infinity should be considered as a large constant due to string
breaking. On the other hand, after taking into account the anisotropy effect, an increasing
binding is found. We note that the result in eq. (4.2) does not depend on m̃D(λ, ξ, θ)
because it appears at higher order in the small r̂ expansion as shown in eq. (4.1).

In the anisotropic QGP, the energy splitting of quarkonium states with non-zero angular
momentum can be explored by using the perturbation theory in quantum mechanics to
compute the leading order correction to the vacuum energy. For this purpose, we can focus
on the 1P states. The one with angular momentum Lz = 0 is denoted as 1P0, while 1P±1
refers to the state with Lz = ±1. Given the anisotropic potential model, the binding energy
splitting between 1P0 and 1P±1 is caused entirely by the difference in their eigenenergies
because the potential at infinitely large distance is the same for both states. Therefore, it

6For eq. (3.15), g(r̂) = − 1
4I′

2(r̂) r̂

∫∞
0 dz z3−5z/3

(z2+1)3

( sin(zr̂)
zr̂

+ 3G(r̂, z)
)
.

– 13 –



J
H
E
P
0
9
(
2
0
2
2
)
2
0
0

can be shown that perturbative corrections to the eigenenergy at order ∼ r̂ or ∼ mD/(αM)
lead to a binding energy splitting as the following,

∆Ebind = |Ebind|(1P0)− |Ebind|(1P±1) = 4ξcαm
2
D − 2σ
αM

. (4.3)

In the above equation, the number c is defined by m̃D/mD = 1 + ξ(c cos(2θ) + d) with
2c− 6d = 1 according to the discussion below eq. (3.20). At phenomenologically relevant
temperatures, αm2

D < 2σ can be satisfied.7 Thus, the 1P±1 state is bound more tightly
than the 1P0 state because c is always positive in our potential model. It is worth noting
that without the string contribution, a different conclusion can be drawn, namely, the
(absolute value of the) binding energy of 1P0 state is larger than that of 1P±1 state. Clearly,
the anisotropy correction from the string contribution influences the binding of the two
1P states in the opposite way as compared to that from the perturbative Debye screened
contribution. However, one has to be very careful to make such a statement because it
could be model-dependent. A more detailed discussion on the model dependence can be
found in appendix A.

Similarly, for small r̂ the imaginary part of the HQ potential model as given in eq. (3.18)
can be expanded as

ImV (r, θ, ξ) = 1
3αλr̂

2 ln r̂ + ξ
2
3αλr̂

2 ln r̂
(
c′ cos(2θ) + d′ − 1

12

)
+ · · · , (4.4)

where we assume r̂2 � ξ � 1 and neglect contributions beyond ∼ ξr̂2 ln r̂. The numbers c′
and d′ are defined by m̂D/mD = 1 + ξ(c′ cos(2θ) + d′) and satisfy 2c′ − 6d′ = 1.

Treating the imaginary part as a perturbation of the vacuum Coulomb potential, we
can also estimate a decay width for the heavy bound state.8 The result for the ground state
is given by

Γ(1S) = 4λm2
D

αM2

[
1− ξ

6(1 + 4c′ − 12d′)
]

ln αM

2mD

= 4λm2
D

αM2

(
1− ξ

2

)
ln αM

2mD
, (4.5)

where the string contribution in the imaginary part of the potential appears at higher
order in the small r̂ expansion and, therefore, does not show up in the leading order decay
width. The above equation suggests that a reduced decay width can be expected when the
medium is anisotropic. Unlike the binding energy in eq. (4.2), the anisotropic screening mass
m̂D(λ, ξ, θ) which shows up at leading order in the small r̂ expansion has been involved
in the determination of the perturbative decay width. However, due to the condition
2c′ − 6d′ = 1, the above result doesn’t depend on the details of m̂D(λ, ξ, θ). In other words,
no matter at which values of r̂ we determine m̂D(λ, ξ, θ), eq. (4.5) is unchanged and also
identical to the result obtained by using the exact perturbative HQ potential in eq. (3.11).

7For Nf = 2, the highest temperature that meets this requirement is about 450 MeV. In general, it
becomes irrelevant for quarkonium bound states when considering even higher temperatures.

8Since the imaginary part of the HQ potential is negative, we use the absolute values of ImV (r, θ, ξ) in
the Schrödinger equation.
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Furthermore, the splitting of the decay width between the 1P0 and 1P±1 states reads

∆Γ = Γ(1P0)− Γ(1P±1) = 16ξc′ 4λm
2
D

αM2 ln αM

2mD
. (4.6)

Because c′ is positive,9 the 1P0 state has a larger decay width than the 1P±1 state. Together
with eq. (4.3), we find that the bound state with Lz = ±1 has a higher dissociation
temperature as compared to that with Lz = 0. Obviously, the corresponding results on
the energy splitting of the p-wave state depend on the details of the anisotropic screening
masses m̃D(λ, ξ, θ) and m̂D(λ, ξ, θ) because of the c- or c′-dependence. Interestingly, we
find that when the two screening masses are given by eqs. (3.6) and (3.16), eqs. (4.3)
and (4.6) with vanishing string tension become identical to those obtained by using the
exact perturbative HQ potential. However, our qualitative conclusions do not change if the
anisotropic screening masses are determined at r̂ = 1. In fact, this is easy to understand.
Being essentially a Coulombic state, the properties of the extremely heavy quarkonium
is only sensitive to the short distance behavior of the potential which is more accurately
reproduced by the effective expression when the matching happens at smaller r̂. For the
same reason, a more reliable result can be expected for quarkonium states with a relatively
large size when eqs. (3.7) and (3.17) are used for m̃D(λ, ξ, θ) and m̂D(λ, ξ, θ), respectively.

5 Static in-medium properties of charmonia and bottomonia based on
the anisotropic HQ potential model

To understand the properties of charmonia and bottomonia in an anisotropic medium,
one needs to numerically solve a 3D Schrödinger equation with the anisotropic potential
model as given in eqs. (3.8) and (3.18). To do so, a previously developed code called
quantumFDTD will be adopted as the equation solver [62, 63]. The obtained eigen/binding
energies and decay widths of low-lying quarkonium bound states can be found in appendix B
where we used the anisotropic screening masses as determined by eqs. (3.7) and (3.17) and
the anisotropy parameter is set to be 1. In particular, we consider the ground states J/Ψ
and Υ(1S) and also the low-lying p-wave states of bottomonia denoted by χb0(1P ) and
χb±1(1P ) for Lz = 0 and Lz = ±1, respectively.

Compared to the isotropic case, our numerical results show that the magnitudes of the
binding energies increase for all the bound states under consideration, which, together with
the decreased decay widths, leads to higher dissociation temperatures in the anisotropic QGP.
In addition, the removal of the degeneracy of p-wave states gives rise to a larger binding
energy in magnitude as well as a smaller decay width for the χb±1(1P ), which therefore
is more bound than the χb0(1P ). This is actually consistent with our previous analysis of
extremely heavy bound states. Explicitly, the dissociation temperatures determined by
requiring the absolute values of the binding energy equaling twice the decay width are
given in table 1. We point out that although the difference in the dissociation temperatures
between the two polarized p-wave states is subtle at ξ = 1, it could increase for larger
ξ. However, such an increase is not monotonous with the anisotropy since the two states

9The positivity of c′ can be guaranteed in the perturbative region where r̂ ≤ 1.
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ξ = 0 ξ = 1
Υ(1S) 338 405

χb±1(1P ) 217 263
χb0(1P ) 217 255
J/Ψ 221 265

Table 1. The dissociation temperatures given in units of MeV for different quarkonium states at
ξ = 0 and ξ = 1.

become degenerate as ξ →∞ where the medium density vanishes and the vacuum potential
should be used.

As mentioned before, the angular dependence in the potential model requires solving a
3D Schrödinger equation which makes the numerical determination of the binding energies
and decay widths of the quarkonium states rather time consuming and much more com-
plicated, compared to the case where a spherically symmetric HQ potential can be used.
This is indeed the main obstacle to developing phenomenological applications which include
momentum-anisotropy effects. As proposed in our previous work, one possible solution to
this difficulty is to employ an angle-averaged effective screening mass Mlm(λ, ξ) which by
definition reads [56]

Mlm(λ, ξ) = 〈Ylm(θ, φ)|m̃D(λ, ξ, θ)|Ylm(θ, φ)〉 ,

=
∫ 1

−1
d cos θ

∫ 2π

0
dφYlm(θ, φ)m̃D(λ, ξ, θ)Y∗lm(θ, φ) , (5.1)

and where Ylm(θ, φ) refers to the spherical harmonics with azimuthal quantum number l and
magnetic quantum number m. The idea is to replace the anisotropic screening mass with
Mlm(λ, ξ) which recovers the spherical symmetry in the potential model, thus significantly
simplifying the numerics. As a result, physical properties of quarkonia in an anisotropic
plasma can be obtained by analyzing the bound states in an “isotropic” medium where
the screening scales only depend on λ and ξ. Notice that although no angular dependence
appears in the effective screening mass, the quantum numbers l and m still need to be
specified in practical applications. With the concept of the “most similar state” introduced
in ref. [56],Mlm(λ, ξ) is not universal for all the quarkonium states. In particular, for the
s-wave states, the anisotropic screening mass should be replaced by M00(λ, ξ), while for
the p-wave states,M10(λ, ξ) andM11(λ, ξ) are used for P0 and P±1, respectively.

In ref. [56], a comprehensive analysis of the validity of using such an effective screening
mass is provided where only the real part of the HQ potential is discussed. In this work,
we apply the same idea to the imaginary part and the corresponding Mre

lm(λ, ξ) (which
replaces m̃D(λ, ξ, θ) in eq. (3.8)) andMim

lm(λ, ξ) (which replaces m̂D(λ, ξ, θ) in eq. (3.18))
are given by

Mre
lm(λ,ξ) = 〈Yl,m(θ,φ)|m̃D(λ,ξ, θ)|Yl,m(θ,φ)〉 ≈mD

[
1+ ξ

6
(
0.4312(3Klm−1)−1

)]
,

Mim
lm(λ,ξ) = 〈Yl,m(θ,φ)|m̂D(λ,ξ, θ)|Yl,m(θ,φ)〉 ≈mD

[
1+ ξ

6
(
0.1048(3Klm−1)−1

)]
, (5.2)
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with
Klm = 2l(l + 1)− 2m2 − 1

4l(l + 1)− 3 . (5.3)

Explicitly, the effective screening masses relevant in our studies are the following,

Mre
lm(λ, ξ) = mD


(1− 0.1667ξ) lm = 00
(1− 0.1092ξ) lm = 10
(1− 0.1954ξ) lm = 11

,

Mim
lm(λ, ξ) = mD


(1− 0.1667ξ) lm = 00
(1− 0.1527ξ) lm = 10
(1− 0.1737ξ) lm = 11

. (5.4)

With an effectively isotropic potential model built by replacing the anisotropic screening
masses with the above angle-averaged ones, we solve a 1D Schrödinger equation and
reproduce both the eigenenergies and decay widths obtained from a direct numerical
solution of the 3D Schrödinger equation for the same underlying anisotropic potential. In a
temperature region relevant for quarkonium studies, our results in appendix B demonstrate
that at ξ = 1 the differences in the eigenenergies are within ∼ 2 MeV while the decay widths
can be reproduced to within fractions of an MeV. Both results amount to an error of less
than ∼ 0.5%. Thus, besides the results given in ref. [56], with the inclusion of an imaginary
part in the potential, our work further confirms that the 1D effective potential model could
provide an efficient method for including momentum-anisotropy effects.

It is also shown that with a fixed anisotropy, the eigenenergy of a quarkonium state
increases with decreasing temperature which is in accordance with the fact that the HQ
potential is getting closer and closer to the vacuum Cornell potential as we decrease the
temperature. For the same reason, one can also expect that at a given temperature, the
anisotropic potential overshoots the isotropic one, in other words, the former is closer to
the Cornell potential because the eigenenergy increases when an anisotropy is present. In
addition, the eigenenergy of χb0(1P ) is found to be larger than that of χb±1(1P ) which
also suggests that the interaction between the quark and anti-quark that make up the
P0 state should be described by a potential closer to the vacuum Cornell potential. As a
consequence, the P0 state is less bound than the P±1 state because by construction the
potential at infinitely large distance is the same for these two states. These statements
can be understood more clearly when we look at the 1D effective potential models with
different quantum numbers l and m in the angle-averaged massMre

lm(λ, ξ) which are plotted
in figure 5. A similar conclusion also applies for the imaginary part of the potential. As
shown in figure 6, it decreases in magnitude when non-zero anisotropy is present and the
potential corresponding to χb±1(1P ) is deeper than that for χb0(1P ).

6 Real-time solution to the Schrödinger equation

In this section we consider the real-time solution of the Schrödinger equation. To model
the real-time evolution with the angle-dependent heavy-quark potential (3.8) and (3.18)
we solve the 3D Schrödinger equation on a lattice with N = 128 points in each direction.
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Figure 5. The real part of the 1D effective potential model as a function of r evaluated at ξ = 1.
The solid curve corresponds to the Cornell potential and the dotted curve is the isotropic potential
model as introduced in section 2. We take α = 0.272, σ = 0.215 GeV2 and mD = 0.5 GeV. Left:
the dash-dotted curve corresponds to the 1D effective potential model with Mre
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Figure 6. The imaginary part of the 1D effective potential model as a function of r evaluated at
ξ = 1. The solid curve corresponds to the isotropic potential model as introduced in section 2. We
take α = 0.272, σ = 0.215 GeV2 and λ = 0.2 GeV which also determines the Debye mass via the
relation mD = A

√
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For bottomonium states we take the box size to be L = 2.56 fm and use mb = 4.7GeV.10

To evolve the 3D wave function for a given potential we use a split-step pseudo-spectral
splitting method [64, 65] with temporal step size ∆t = 0.001 fm/c. In all results presented
in this section we evolve the wave function from τ = 0 fm/c to τ = 0.25 fm/c in the
vacuum (T = 0) heavy-quark potential which corresponds to a Cornell potential. Starting
at τ = τ0 = 0.25 fm/c, we assume a fixed anisotropy parameter ξ = 1 and boost-invariant
Bjorken evolution for the hard scale

λ(τ) = λ0

(
τ0
τ

)1/3
. (6.1)

10We report results for charmonium in appendix C.
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We take the initial hard scale to be λ0 = 630MeV, which corresponds to initial temperatures
achieved in central 5.02TeV Pb-Pb collisions at the LHC [66].

6.1 Numerical method

To obtain the split-step update rule for the wave function, one decomposes the Hamiltonian
into kinetic and potential contributions, H = T + V , and makes use of the Baker-Campbell-
Hausdorff theorem to obtain

exp [−iH∆t] ' exp
[
−iV ∆t

2

]
exp [−iT∆t] exp

[
−iV ∆t

2

]
+O((∆t)2) . (6.2)

Since the kinetic energy only depends on momentum and the potential only depends on
position, one can perform the corresponding updates directly in momentum or position
space. Based on this understanding, the 3D wave function can be updated a single step ∆t
forward in time as follows

• Update the wave function in configuration space using a half-step: ψ1 = exp
[
−iV ∆t

2

]
ψ0.

• Fourier transform the wave function: ψ̃1 = Fs[ψ1].

• Update the wave function in momentum space using: ψ̃2 = exp[−iT∆t] ψ̃1.

• Apply an inverse Fourier transform: ψ2 = F−1
s [ψ̃2].

• Finally, update the wave function in configuration space using a half-step: ψ3 =
exp

[
−iV ∆t

2

]
ψ2.

For real-valued potentials, this method is manifestly unitary. In order to optimize code speed
we make use of GPU-acceleration provided by the CUDA parallel computing platform and
parallelize the necessary 3D Fast Fourier Transforms using the CUDA cuFFT package [67].
Use of massive parallelization allows us to simulate large 3D lattices more efficiently than
MPI-based implementations. For the results presented here we used a single Tesla K20m
with 2496 cores, which allows for lattice sizes of up to 2563 using double precision.

To set the initial condition for the real-time evolution, we consider two possibilities:
(1) initializing with an eigenstate of the vacuum Hamiltonian or (2) initializing with a
localized Gaussian wave function. For the first case we determine the 3D vacuum eigenstates
by discretizing the Hamiltonian in the coordinate basis on a 3D lattice that matches the
one used for the 3D real-time evolution. For this purpose we implemented an MPI-based
CPU code, which uses the PETSC and SLEPC libraries to determine the eigenvalues
and eigenstates [68, 69]. The standard Krylov-Schur method of SLEPC is used with a
tolerance of ∆ = 10−15, allocating twice the number of workspace memory as eigenvectors
requested. No preconditioning was found to be necessary. The 3D eigenstates are saved to
disk in binary format and then read into the CUDA-based real-time solver s3d-cuda. We
note that, to match the discretization of the derivative used in the vacuum eigensolver, in
s3d-cuda we use a kinetic term T = 2[1− cos(pa)]/(ma2) with a being the lattice spacing,
which corresponds to using the standard second order accurate discrete second derivative
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approximation. In order to monitor the evolution of the wave function, we report the time
evolution of the probability of the system being in a particular vacuum eigenstate. This is
determined by computing the “overlap” integral

pi =
∣∣∣∣∫ d3xψ∗i (x)ψ(t,x)

∣∣∣∣2 , (6.3)

where i indexes the vacuum eigenstates.

6.2 Results — Eigenstate initialization

In figure 7 we present results for the time evolution of the Υ(1S), Υ(2S), and Υ(3S) overlaps
for bottomonium states obtained by using pure vacuum eigenstates as the initial condition.
In the top, middle, and bottom rows we initialized the wave function as pure Υ(1S), Υ(2S),
and Υ(3S) eigenstates, respectively. The left panels correspond to the diagonal overlaps and
the right panels correspond to the off-diagonal s-wave overlaps. In each panel there are three
line types: dotted lines were obtained with an isotropic 1D thermal potential, T (τ) = λ(τ)
and ξ = 0; solid lines were obtained with the full angle-dependent 3D potential; and, finally,
dashed lines were obtained using the 1D effective potential. In all cases we find that the 1D
effective potential provides an excellent approximation to the full 3D anisotropic evolution
and that ignoring the momentum anisotropy results in much worse results, particularly for
the diagonal overlaps shown in the left panels. For the diagonal Υ(1S) overlap we find, in
particular, that the maximum difference between 3D and 1D effective potential evolution
is 0.05%. In the case of the Υ(2S) and Υ(3S) diagonal overlaps and Υ(1S), Υ(2S), and
Υ(3S) off-diagonal overlaps somewhat larger differences between the 3D and effective 1D
evolutions are seen, however, we still find that the 1D effective potential evolution provides
an excellent approximation to the full 3D evolution.

Turning to p-wave initial conditions, in figure 8 we present the time evolution of the p-
wave overlaps resulting from initialization with different p-wave polarizations corresponding
to l = 1 and m = 0,±1 labeled as χb0(1P ) and χb±1(1P ), respectively, in the figure. The
solid black and orange lines correspond to the full 3D evolution with χb0(1P ) and χb±1(1P )
initial conditions. The orange dotted and purple dot dashed lines correspond to the 1D
effective evolution with the same initial conditions. In this figure we also include the result
obtained when ignoring the l and m dependence of the effective masses Mre

lm and Mim
lm

as the “matched isotropic” case. In this case we use the effective masses corresponding
to l = 0 and m = 0, in which case Klm = 1/3 and Mre

lm = Mim
lm = mD(1 − ξ/6). At

leading order in ξ this mass prescription is equivalent to Landau matching the effective
isotropic and underlying anisotropic energy density, ε(Teff) = ε(λ, ξ) [30] which results in
Teff = λ(1− ξ/6).

As can be seen from figure 8, the 1D effective evolution of the polarized p-wave overlaps
agrees well with the result obtained using the full 3D anisotropic potential. This includes
the splitting between the m = 0 and |m| = 1 initial conditions due to the presence of
momentum anisotropy in the system. We note that the matched isotropic result cannot
describe this splitting since it ignores the l and m dependence of the effective masses.
Taking into account the l and m dependence using the 1D effective potential therefore
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Figure 7. Υ(1S), Υ(2S), and Υ(3S) overlaps resulting from real-time solution of the Schrödinger
equation. In the top, middle, and bottom rows we initialized the wave function as pure Υ(1S),
Υ(2S), and Υ(3S) eigenstates, respectively. The left panels correspond to diagonal overlaps and the
right panels correspond to off-diagonal s-wave overlaps. In each panel there are three line types:
dotted lines were obtained with an isotropic 1D thermal potential, T (τ) = λ(τ) and ξ = 0; solid lines
were obtained with the full angle-dependent 3D potential; and, finally, dashed lines were obtained
using the 1D effective potential.
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Figure 8. Time evolution of the bottomonium p-wave overlaps resulting from initialization with
different p-wave polarizations corresponding to l = 1 andm = 0,±1 labeled as χb0(1P ) and χb±1(1P ),
respectively. The solid black and orange lines correspond to the full 3D evolution with χb0(1P ) and
χb±1(1P ) initial conditions and the orange dotted and purple dot dashed lines correspond to the 1D
effective potential evolution with the same initial conditions. The dashed blue line corresponds to
the isotropic matching scheme detailed in the text.

represents a substantial improvement in our description of the time evolution of higher
angular momentum states.

6.3 Results — Gaussian initialization

In practice one does not expect the initial condition for quarkonium to be a pure eigenstate.
In the large quark mass limit one expects to have local production of quarkonium states
which maps to a delta function in coordinate space [53, 70]. Finite mass effects result in a
broadening of this delta function with a width on the order of 1/M . In order to model this
we use a Gaussian-smeared delta function of the form

ψ(τ0,x) = N exp(−x2/2ς2) , (6.4)

where ς = 0.354 fm and N is the normalization which is determined numerically. This initial
condition is a quantum superposition of both bound (Ebind < 0) and unbound (Ebind > 0)
states. Here we will report on the time evolution of the bound state overlaps. In figure 9
we present the time evolution of the Υ(1S), Υ(2S), and Υ(3S) overlaps. The dotted, solid,
and dashed lines correspond to using the 1D isotropic, 3D anisotropic, and 1D effective
potentials, respectively. The red, blue, and green colors correspond to the Υ(1S), Υ(2S),
and Υ(3S) overlaps, respectively. As can be seen from this figure the 1D effective model
describes the evolution obtained using this initial condition quite well, whereas ignoring
the anisotropy fails to provide a good description of the overlaps, in particular for the 1S
overlap. We note that one can also initialize different polarized p-wave Gaussian initial
conditions by multiplying eq. (6.4) by x, y, and z, finding similar results, namely that the
1D effective potential provides an accurate approximation to the full 3D evolution.
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lines correspond to using the 1D isotropic, 3D anisotropic, and 1D effective potentials, respectively.
The red, blue, and green colors correspond to the Υ(1S), Υ(2S), and Υ(3S) overlaps, respectively.

7 Conclusions

In this work, we generalized a complex HQ potential model proposed in ref. [25] from an
equilibrium QGP setting to a non-equilibrium QGP with small momentum-space anisotropy.
The non-equilibrium effects were incorporated into the potential model by utilizing an
anisotropic screening mass, which depends on the quark pair alignment with respect to the
direction of anisotropy. In practice, this generalization consists of replacing the isotropic
Debye mass mD with the anisotropic screening mass, which we consider as a “minimal”
extension to non-zero anisotropy. By assuming that the very same screening scale appearing
in the perturbative contributions also shows up in the non-perturbative string part, the
anisotropic screening mass can be determined based solely on the information of the Debye-
screened HQ potential which is calculable within hard-thermal-loop perturbation theory
even in the non-equilibrium case.

We applied the above idea to both the real and imaginary part of the HQ potential to
derive the anisotropic screening masses, which required matching the effective expressions
given by eqs. (3.4) and (3.14) to the exact results from a first-principles calculation. These
effective expressions were chosen such that the desired asymptotic behavior is automatically
guaranteed. The resulting angle-dependent anisotropic screening masses, as determined,
had an ambiguity due to the r̂-dependence and numerical results showed that matching
at r̂ = 1 turned out to be an optimal method which can nearly perfectly reproduce the
exact perturbative results with the effective forms. Given the “minimal” extension, this
clearly demonstrated the validity of the key ingredients, namely, the anisotropic screening
masses, in our model construction. In addition, we found that it was necessary to introduce
different anisotropic screening masses m̃D(λ, ξ, θ) and m̂D(λ, ξ, θ) for the real and imaginary
part, respectively, because the angular dependence was much less pronounced in m̂D(λ, ξ, θ)
when compared to that obtained for the real part of the potential.
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An important advantage of the anisotropic HQ potential model developed in this work
is that it is realized by employing an angle-averaged effective screening mass as defined
by eq. (5.1). Replacing the anisotropic screening mass with the angle-averaged one, the
numerical solution of the Schrödinger equation with a 3D anisotropic HQ potential reduces
to a much simpler 1D problem. This in turn allows us to overcome one central obstacle in
phenomenological applications, where momentum-anisotropy effects need to be considered.
Due to the absence of first principle lattice simulations of the anisotropic HQ potential, it
needs to be pointed out that the focus should not be on the validity of the potential model
based on eq. (1.1) itself, but on the method for reduction from 3D to 1D. The success
of using such a 1D effective screening mass has been demonstrated rather conclusively in
both static and dynamic cases. We reproduced the full 3D results for the binding energies
and decay widths of low-lying quarkonium bound states to very high accuracy, i.e., with
an error of less than ∼ 0.5%. For the latter case, by assuming a boost-invariant Bjorken
evolution of the medium, we studied the time-dependent probability of the system being
in a particular vacuum eigenstate. With different initial conditions for the wave function,
all the obtained “overlaps” from the 1D effective potential were in very good agreement
with the full 3D evolution. It is worth noting that in both cases, the splitting of the p-wave
states with different polarizations, which emerged as a unique feature in the anisotropic
QGP, was also well described by our method.

Although our discussions herein were limited to quarkonium physics, the modeling
proposed in this work is expected to have application in many other areas which involve a
momentum-space anisotropy in the distribution function. In fact, with the inclusion of a
string contribution, the full gluon propagator by which we defined the complex HQ potential
encodes essential information on the screening and damping of the anisotropic QGP through
the effectively 1D mass scales as given in eq. (5.2). From the phenomenological point
of view, such a propagator resums the gluon self-energy in a non-perturbative manner
according to the Dyson-Schwinger equation. As is well known, both the gluon self-energy
and the propagator are key ingredients in computing many physical processes including
those mentioned in the introduction. Therefore, the current work can offer an efficient
strategy to non-perturbatively investigate new phenomena associated with momentum-space
anisotropy, which in turn could further verify the validity of our modeling.

Finally, we emphasize that it is important to take into account the time evolution of
the anisotropy parameter ξ which may become large during the expansion of the fireball
created in the heavy ion collisions. Therefore, to fully understand the in-medium dynamics
of heavy quarkonium, it is necessary to solve a 3D stochastic Schrödinger equation beyond
the small ξ approximation. To do so, one needs to construct a complex HQ potential
model for arbitrary anisotropies and assess the applicability of the angle-averaged effective
screening masses at large ξ, especially for the imaginary part. These lines of inquiry provide
interesting paths forward for future work.
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A Model dependence of the splitting of p-wave states in the anisotropic
QGP

The complex HQ potential model for non-zero anisotropy as proposed in this work consists
of two contributions. The validity of the Debye screened contribution can be assessed by a
direct comparison with the exact perturbative computations. However, due to a lack of
information from first principle calculations, there exist ambiguities with regard to modeling
the string contribution. The “minimal” extension based on an isotropic potential model
strongly depends on one basic assumption, as already mentioned in section 3. Even so,
there exist alternative ways to model the anisotropic HQ potential, which may lead to a
different conclusion on the splitting of the p-wave states.

Considering the r-independent contribution in the HQ potential, the generalization to
nonzero anisotropy is merely a replacement mD → mD(1− ξ/6). As for the r-dependent
contribution αmD I1(r̂) in eq. (2.2), a new effective expression given by −αe−rm̃D(λ,ξ,θ)/r

may also be considered. Here, all the mD’s are treated equivalently and a θ-dependence is
introduced in the screening mass when ξ 6= 0. In contrast, only those mD’s in I1(r̂) have
been replaced by m̃D(λ, ξ, θ) in the effective expression eq. (3.4). At first glance, there
seems to exist a better justification, if the perturbative potential remains of Debye screened
form, even in an anisotropic medium so that the anisotropic screening mass m̃D(λ, ξ, θ) has
a clear physical meaning. However, further investigation shows that when the r-independent
contribution is included, the resulting ReVpt(r, θ, ξ) does not reproduce the vacuum Coulomb
potential when r → 0, because an extra r-independent term α(m̃D −mD(1− ξ/6)) emerges
in this limit.

Despite the above mentioned defects, we can also determine the anisotropic screening
mass m̃D(λ, ξ, θ) in the same way as before which gives

m̃D

mD
= 1 + ξ

(
−1

6 + 6(1− er̂) + r̂(6 + 3r̂ + r̂2)
12r̂3 (1 + 3 cos(2θ))

)

= 1 + ξ

(
−1

6 −
1
48(1 + 3 cos(2θ))r̂ + · · ·

)
. (A.1)

The above equation becomes m̃D/mD = 1− ξ/6 at r̂ = 0 which indicates the reproduction
of the vacuum Coulomb potential as r → 0 due to the vanishing of the above mentioned
term. However, without a θ-dependence in the anisotropic screening mass, the resulting
effective expression fails to describe the central and unique feature of the anisotropic HQ
potential, namely, V (r, θ, ξ) is dependent on the alignment of the quark pair. In addition,
when evaluating the expanded result at r̂ = 1, we find m̃D/mD = 1 − ξ(3 + cos(2θ))/16
which is identical to that originally obtained in ref. [29]. As compared to eq. (3.7), the
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most notable difference is the sign change of the coefficient of cos(2θ). Even without further
analysis, one can conclude that the new effective form of ReVpt(r, θ, ξ) results in a more
bound P0 state because as compared to the case where θ = π/2, a reduced screening mass
is found when the quark pair is aligned along the direction of the anisotropy.11

According to the above discussion, the “minimal” extension leads to a new form of the
anisotropic HQ potential model as the following,

ReV (r, θ, ξ) = −αe
−rm̃D

r
− αmD(1− ξ/6)− 2σ

m̃D
e−rm̃D

(
1 + rm̃D

2

)
+ 2σ
mD(1− ξ/6)

= −α
r

+ αm̃D − αmD(1− ξ/6)− 2σ
m̃D

+ 2σ
mD(1− ξ/6) + · · · . (A.2)

In the second line of the above equation, we expand the result for small r̂ which can be
used to study the binding energies for a quarkonium state with extremely large quark mass
M . For the ground state, including contributions at order ∼ r̂0, we find that

|Ebind|(1S) = α2M

4 + 2σ
mD
− αmD + ξ

6

(
αmD + 2σ

mD

)
(2c− 6d)

= α2M

4 + 2σ
mD
− αmD + ξ

6

(
αmD + 2σ

mD

)
, (A.3)

where the numbers c and d are defined by m̃D/mD = 1 + ξ(c cos(2θ) + d). Different from
eq. (4.2), the calculation of eq. (A.3) depends on m̃D(λ, ξ, θ). However, due to the fact that
2c− 6d = 1 which can be obtained from eq. (A.1), the above result is identical to eq. (4.2).

As for the binding energy splitting between the 1P0 and 1P±1 states, it can be shown
that

∆Ebind = |Ebind|(1P0)− |Ebind|(1P±1) = −4αm
2
D + 2σ

5mD
ξc . (A.4)

As long as m̃D(λ, ξ, θ) is not determined at the origin where no θ-dependence exists, the
number c is always negative as indicated by eq. (A.1). As a result, the conclusion that 1P0
state is bound more tightly than 1P±1 can be drawn which is opposite to what has been
obtained based on eq. (3.8). With the new potential model as given in eq. (A.2), both the
perturbative and non-perturbation terms make the binding of 1P0 stronger than 1P±1. In
addition, different from eq. (4.3), the splitting appears at order ∼ r̂0 in eq. (A.4), therefore,
terms linear in r̂ are not listed in the expansion in eq. (A.2).

Proposed by the same reasoning as the real part, a new form of the imaginary part of
the anisotropic HQ potential model can be expressed as

ImV (r, θ, ξ) = αλ̂φ2(rm̂D)− αλ(1− ξ/6)− 4σλ
m2
D(1− ξ/6)

− 8σλ̂
m̂2
D

(
φ3(rm̂D)− 3φ4(rm̂D)

)
= 1

3αλr̂
2 ln r̂ + ξλ

αm2
D − 4σ
m2
D

(1
6 + c′ cos(2θ) + d′

)
+ αξλr̂2 ln r̂(c′ cos(2θ) + d′) + · · · . (A.5)

11Although the same conclusion holds, one cannot apply the discussion equally to the effective form
eq. (3.7) because it doesn’t have a standard Debye screened form.
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It is easy to show that the above form of ImV (r, θ, ξ) does not vanish at the origin which
is obviously an undesired behavior. In the above equation, we also expand ImV (r, θ, ξ) for
small r̂ and ξ and keep only the first three terms under the hierarchy r̂2 � ξ � r̂2 ln r̂ � 1.
As before, m̂D/mD = 1 + ξ(c′ cos(2θ) + d′) with m̂D(λ, ξ, θ) = A

√
Nc/3 +Nf/6 gλ̂(ξ, θ).

We have checked that matching the perturbative part in eq. (A.5) to the exact anisotropic
potential leads to the same condition 2c′ − 6d′ = 1 and c′ is negative in the perturbative
region where r̂ ≤ 1.

Considering the decay width for the ground state, a similar calculation leads to the
following result

Γ(1S) = 4λm2
D

αM2 ln αM

2mD
− ξ λ6

[
αm2

D − 4σ
m2
D

(1− 2c′ + 6d′) + 12m2
D

αM2 ln αM

2mD
(2c′ − 6d′)

]

= 4λm2
D

αM2

(
1− ξ

2

)
ln αM

2mD
. (A.6)

As compared to eq. (4.5), in both cases the medium correction at zero anisotropy arises
at order ∼ r̂2 ln r̂. However, in eq. (4.5) the anisotropy effect comes in at order ∼ ξr̂2 ln r̂
which becomes sub-leading in the above equation as the leading order contribution with
non-zero anisotropy shows up at order ∼ ξr̂0. On the other hand, thanks to the condition
2c′ − 6d′ = 1, the contribution ∼ ξr̂0 vanishes and the above result is actually identical to
eq. (4.5).

As for the splitting of the decay width between the 1P0 and 1P±1 states, based on the
potential model in eq. (A.5), we find that

∆Γ = Γ(1P0)− Γ(1P±1) = −4
5ξλc

′αm
2
D − 4σ
m2
D

. (A.7)

Notice that the term ∼ ξr̂2 ln r̂ in the expansion in eq. (A.5) gives sub-leading contribution
to ∆Γ which is neglected in the above equation. As compared to eq. (4.6), the above
splitting appears at a different order in the small r̂ expansion. Since αm2

D < 4σ can be well
satisfied, eq. (A.7) indicates that 1P0 state has a smaller decay width than 1P±1 due to the
negative c′. Given the result in eq. (A.4), we can conclude that 1P states with Lz = 0 have
a higher dissociation temperature as compared to those with Lz = ±1. This is opposite to
the result obtained by using the potential model discussed in section 3.

Although the same asymptotic limit when r →∞ can be observed in both anisotropic
HQ potential models, only the one discussed in section 3 shows the desired behavior as r → 0.
Furthermore, using the perturbative terms in eqs. (A.2) and (A.5) and setting m̃D/mD =
1− ξ(3 + cos(2θ))/16 and λ̂(ξ, θ)/λ = m̂D(λ, ξ, θ)/mD ≈ 1− ξ(0.175 + 0.026 cos(2θ)) which
corresponds to a matching at r̂ = 1, a considerable discrepancy at small r̂ is found when
compared with the exact result. Therefore, it appears to be more reasonable to use
eqs. (3.8) and (3.18) to model the HQ potential in the anisotropic QGP. We emphasize that
uncertainties in the non-perturbative part of the potential models, especially in the energy
splitting between the p-wave states can not be settled at present. Although it seems very
difficult, an experimental measurement on the polarization of χb(1P ) state could provide a
way to assess the correctness of these models.
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B The eigen/binding energies and decay widths of the heavy-quarkonium
bound states

With the complex HQ potential model given in eqs. (3.8) and (3.18) where the anisotropic
screening masses are determined by eqs. (3.7) and (3.17) for the real and imaginary part,
respectively, we numerically solve the three-dimensional Schrödinger equation by using a
previously developed code called quantumFDTD [62, 63]. In table 2, we list the exact results
of the eigenenergies (ReE), decay widths (ImE) as well as the binding energies (Ebind)
with the anisotropy parameter ξ = 1 for several low-lying heavy-quarkonium bound states,
including Υ(1S), χb0(1P ), χb±1(1P ), and J/Ψ. We consider various temperatures up to the
dissociation temperature where the magnitude of the binding energy equals twice the decay
width. Comparing with the results obtained using the 1D effective potential model with
effective screening masses, the corresponding differences as denoted by Re δE and Im δE

are also listed for directly testing our method. In addition, the results in the isotropic limit
with ξ = 0 are provided in table 3 for demonstrating the momentum-anisotropy effects.

In the numerical evaluations, we took α = 0.272 and σ = 0.215 GeV2. For the Υ(1S)
state, we used a lattice size of N3 = 5123 with a lattice spacing of a = 0.020 GeV−1 ≈
0.004 fm giving a lattice size of L = Na ≈ 2.05 fm. While for other three quarkonium states
which have comparable root-mean-square radii, we used a lattice size of N3 = 2563 with
a lattice spacing of a = 0.085 GeV−1 ≈ 0.017 fm giving a lattice size of L = Na ≈ 4.35 fm.
We have verified that, with the above lattice configurations, for real-valued isotropic
potentials one can perfectly reproduce the eigenenergies obtained by using a one-dimensional
Mathematica eigensolver (see, e.g., ref. [71]).

C Charmonium real-time evolution

In this appendix we present results of the real time evolution of the vacuum overlaps for
charmonium states obtained using the 1D effective potential and the full 3D anisotropic
potential. For charmonium states we take L = 5.12 fm, mc = 1.3GeV, and use N = 128
lattice points in each direction. We use the same temporal lattice spacing ∆t as in the
case of bottomonium. As with bottomonium, we solve for the vacuum eigenstates and then
either initialize with pure eigenstates or a Gaussian form. In figure 10, we present the
time evolution of the J/ψ, ψ(2S), and ψ(3S) vacuum overlaps obtained with eigenstate
initial conditions. The dotted, solid, and dashed lines correspond to using the 1D isotropic,
3D anisotropic, and 1D effective potentials, respectively. The red, blue, and green colors
correspond to the J/ψ, ψ(2S), and ψ(3S) overlaps, respectively. As can be seen from this
figure, similar to bottomonium, the one dimensional effective potential model can accurately
describe the results obtained with the anisotropic three-dimensional potential, while the
isotropic model fails to describe the full 3D evolution well. We see slightly larger differences
between the 1D effective and 3D evolutions for charmonium than seen for bottomonium
due to the fact that the one-dimensional effective potential model is optimized for small to
medium r and hence states with small 〈r〉; however, the method also works quite well for
the charmonium overlap evolution despite this.
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Υ(1S) ReE δReE Ebind ImE δImE
To 182.869 0.611 −662.669 11.838 0.027

1.1To 174.957 0.593 −570.612 14.830 0.031
1.2To 166.556 0.573 −493.689 18.190 0.034
1.4To 148.439 0.531 −372.540 26.004 0.039
1.6To 128.807 0.484 −281.672 35.245 0.041
1.8To 107.915 0.435 −211.240 45.833 0.040
2.0To 85.978 0.384 −155.279 57.659 0.036
2.1To 74.670 0.359 −131.473 63.998 0.033
2.2To 63.160 0.333 −109.961 70.597 0.029

χb0(1P ) ReE δReE Ebind ImE δImE
To 492.974 1.444 −352.564 35.872 0.132

1.1To 475.762 1.345 −269.808 44.749 0.131
1.2To 457.998 1.246 −202.248 54.566 0.123
1.3To 439.822 1.149 −146.364 65.232 0.107
1.4To 421.347 1.057 −99.632 76.643 0.085

χb±1(1P ) ReE δReE Ebind ImE δImE
To 461.960 0.997 −383.578 34.996 0.097

1.1To 446.761 0.935 −298.809 43.448 0.099
1.2To 431.014 0.872 −229.231 52.752 0.097
1.3To 414.833 0.810 −171.353 62.831 0.090
1.4To 398.307 0.750 −122.672 73.599 0.079

J/Ψ ReE δReE Ebind ImE δImE
To 439.336 1.230 −406.202 41.980 0.107

1.1To 422.207 1.163 −323.362 51.467 0.105
1.2To 404.597 1.095 −255.648 61.698 0.098
1.3To 386.604 1.028 −199.583 72.564 0.086
1.4To 368.301 0.963 −152.678 83.958 0.070

Table 2. The exact results of the complex eigenenergies (E) and binding energies (Ebind) for different
quarkonium states at various temperatures with ξ = 1. Comparing with the results obtained based
on the 1D potential model with effective screening masses, the corresponding differences as denoted
by δE are also listed. The reference temperature To is 192 MeV and all the results are given in the
units of MeV.
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Υ(1S) ReE Ebind ImE
To 167.137 −493.108 18.157

1.1To 156.439 −416.062 22.668
1.2To 145.154 −351.807 27.702
1.4To 121.059 −250.972 39.285
1.6To 95.276 −175.798 52.753
1.7To 81.859 −145.082 60.131
1.8To 68.135 −117.962 67.900

χb(1P ) ReE Ebind ImE
To 441.244 −219.002 53.216

1.1To 420.901 −151.600 65.639
1.2To 400.106 −96.855 79.060

J/Ψ ReE Ebind ImE
To 405.703 −254.542 61.604

1.1To 383.991 −188.510 74.726
1.2To 361.851 −135.109 88.583

Table 3. The results of the complex eigenenergies (E) and binding energies (Ebind) for different
quarkonium states at various temperatures with ξ = 0. The reference temperature To is 192 MeV
and all the results are given in the units of MeV.

Turning to p-wave initial conditions, in figure 11 we present the time evolution of the
charmonium p-wave overlaps resulting from initialization with different p-wave polarizations
corresponding to l = 1 and m = 0,±1 labeled as χc0(1P ) and χc±1(1P ), respectively. The
solid black and orange lines correspond to the full 3D evolution with χc0(1P ) and χc±1(1P )
initial conditions and the orange dotted and purple dot dashed lines correspond to the
1D effective potential evolution with the same initial conditions. The dashed blue line
corresponds to the isotropic matching scheme detailed in the main body of the text. This
figure demonstrates that, similar to bottomonium, the 1D effective model can well describe
the time evolution of the splitting between different p-wave polarizations. We note that
due to the lower mass of the charmonium states, the observed p-wave splitting is larger
and, as a result, the matched isotropic approximation does more poorly in describing the
time evolution of the vacuum overlaps than in the case of bottomonium.

Finally, in figure 12 we present a comparison of the 1D and 3D real-time evolution
obtained using a Gaussian initial condition of the form given in eq. (6.4). In this figure the
dotted, solid, and dashed lines correspond to using the 1D isotropic, 3D anisotropic, and
1D effective potentials, respectively. The red, blue, and green colors correspond to the J/ψ,
ψ(2S), and ψ(3S) overlaps, respectively. As can be seen from this figure, the 1D effective
potential model once again provides an excellent approximation to the full 3D potential
evolution, while the isotropic model fails to describe the full 3D evolution.
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Figure 10. Time evolution of the J/ψ, ψ(2S), and ψ(3S) overlaps. The dotted, solid, and dashed
lines correspond to using the 1D isotropic, 3D anisotropic, and 1D effective potentials, respectively.
The red, blue, and green colors correspond to the J/ψ, ψ(2S), and ψ(3S) overlaps, respectively.
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Figure 11. Time evolution of the charmonium p-wave overlaps resulting from initialization with
different p-wave polarizations corresponding to l = 1 andm = 0,±1 labeled as χc0(1P ) and χc±1(1P ),
respectively. The solid black and orange lines correspond to the full 3D evolution with χc0(1P ) and
χc±1(1P ) initial conditions and the orange dotted and purple dot dashed lines correspond to the 1D
effective potential evolution with the same initial conditions. The dashed blue line corresponds to
the isotropic matching scheme detailed in the main body of the text.
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