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a b s t r a c t 

The Carleman bilinearization is an approach that performs an exact conversion of a finite-dimensional 

nonlinear system into an infinite-dimensional bilinear system. A finite-dimensional system is later ob- 

tained through a truncation for analysis and control purposes. This paper investigates the linear matrix 

inequality (LMI)-based design of a switched state-feedback control law for the model obtained via Carle- 

man bilinearization of a first-order nonlinear system. It is shown that in order to obtain feasible design 

conditions, the performance requirements must be relaxed in a neighborhood of the zero equilibrium 

point, so that problems arising from the uncontrollability of the linear part of the model can be avoided. 

The effectiveness of the proposed approach is shown using a numerical example and experimental results 

using a multi-input tank system. 
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. Introduction 

Real-world systems are nonlinear [29] , so designing a controller 

or nonlinear systems is a challenging yet fundamental problem 

f control theory. The simplest method to perform such design is 

hrough a first-order Taylor approximation of the nonlinear equa- 

ions, thus obtaining a linear model that, in spite of being valid 

nly locally about the linearization point, allows applying robust 

nd optimal design techniques developed for linear systems [17] . 

An alternative approach that has attracted some interest by the 

ontrol community is the Carleman linearization [10] (bilineariza- 

ion in the case of non-autonomous systems), which converts a 

nite-dimensional nonlinear system into an infinite-dimensional 

inear system (bilinear in the case of non-autonomous systems) 

22] . The conversion is exact, in the sense of perfect equivalence 

etween the two systems, although a truncation is performed for 

nalysis and control purposes [4] . 

In recent years, there have been several applications of the 

arleman (bi)linearization to control problems. For instance, Rauh 

t al. [26] used this approach for the design of controllers and 

oint state and disturbance estimators for a linear axis driven by 

neumatic muscle actuators. [31] designed a control law that en- 

ured local asymptotic stability inside a domain of attraction that 
∗ Corresponding author. 

E-mail address: damiano.rotondo@uis.no (D. Rotondo) . 
1 Both of these authors contributed equally to this work. 
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as shown to become bigger as the order of the truncation be- 

ame higher. Mavelli and Palumbo [24] considered the optimal lin- 

ar quadratic control of stochastic discrete-time systems affected 

y disturbances generated by a nonlinear stochastic exosystem and 

roposed a solution based on the Carleman approximation of the 

xosystem. The work [13] investigated the use of a bilinear Carle- 

an approximation-based model predictive control. On the other 

and, Bhatt and Sharma [8] proposed a novel estimation technique 

or noise influenced circuits that considers the Carleman linearisa- 

ion with the Fokker-Planck equation for the Ito stochastic differ- 

ntial equations. Some recent literature has reported applications 

elated to consensus problems [30] , near-optimal control [5] and 

oving horizon estimation [14] . 

Another line of research that has been investigated in the last 

ears is the control of nonlinear quadratic systems. Although the 

rst results date back to the early 1980s, when Koditschek, Gene- 

io, and their coauthors investigated the stability of second-order 

ystems containing quadratic terms [15,21] , this field experienced 

 revival two decades later, when it was shown that the determi- 

ation of the region of stability of the zero equilibrium point could 

e performed by solving a linear matrix inequalities (LMIs) fea- 

ibility problem [2] . Since then, nonlinear quadratic systems have 

een investigated in the context of state-feedback control [1] , state 

stimation [3] , parameter-varying techniques [28] and fault estima- 

ion [27] . The structure of the model arising from the Carleman bi- 

inearization would make the techniques developed for nonlinear 
l Association. This is an open access article under the CC BY license 
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uadratic systems a natural fit. However, by looking at the scien- 

ific literature, this does not seem to be the case. 

The class of systems considered in this paper is that of multi- 

nput nonlinear systems affine to the control vector. It is known 

hat for this class of systems, exact feedback linearization can be 

pplied to transform the nonlinear systems into equivalent lin- 

ar systems via a change of variables and a suitable control input 

20] . However, such a transformation involves solving a partial dif- 

erential equation to find a suitable diffeomorphism between the 

riginal and the transformed state coordinates, which in general 

s difficult to do. Moreover, drawbacks of the feedback lineariza- 

ion technique are that it is based on an exact cancellation of the 

onlinearity, which can be achieved only under perfect model as- 

umption, and that the controller design is performed in a nonlin- 

arly transformed state-space, so that any physical meaning of the 

tate variables is loss. Some of these issues are partially mitigated 

y approaches like those investigated in [16,19] , where neural net- 

orks are trained to achieve an approximate linearization. How- 

ver, when it comes to approaches that design a controller in the 

riginal state coordinates, the results in the literature are scarce. 

ne can mention [11] , which proposed the design of a controller 

ia LMIs, under the assumption that the nonlinearities could be 

escribed via affine matrix functions of the state variables, or [7] , 

hat proposed a continuous switching adaptive controller which 

chieves robust stabilization with prescribed performance guaran- 

ees. 

Motivated by the above discussion, the goal of this paper is to 

nvestigate the LMI-based design of a control law in the original 

tate coordinates for a nonlinear first-order system affine to the 

ontrol input, which is transformed into a suitable bilinear model 

ia the Carleman approach. It is discussed that the uncontrollabil- 

ty of the linear part can lead to infeasibility of the design. For this 

eason, the performance requirements (in this paper, the rate of 

onvergence of the Lyapunov function) are relaxed in a neighbor- 

ood of the zero equilibrium point, which can lead to the feasible 

esign of a switched controller gain. 

The paper is structured as follows. Section 2 recalls the 

ain concepts related to the Taylor-Carleman bilinearization. 

ection 3 describes the proposed state-feedback controller design 

rocedure. Section 4 shows some simulation results obtained us- 

ng a nonlinear system for which the origin is an open-loop unsta- 

le equilibrium point. Section 5 shows experimental results using 

 multi-input tank system. Finally, Section 6 provides the conclu- 

ions and discusses possible future work. 

Notation: The notation used in this paper is quite standard. 

 , R 

n , R 

m ×n , S n ×n denote the set of real numbers, real vectors of

ength n , real matrices with m rows and n columns, and symmetric 

atrices of order n , respectively. R > 0 ( R < 0 ) denotes the set of pos-

tive (negative) real numbers. Given a matrix A , He { A } is a short- 

and notation for A + A 

T . 

. Taylor-Carleman bilinearization 

Let us consider the following first-order nonlinear system, as- 

umed to be affine to the control input u ∈ R 

m : 

˙ 
 (t) = h ( x (t ) , u (t ) ) = f ( x (t) ) + g ( x (t) ) 

T 
u (t) (1) 

here x ∈ R is the state, f : R → R and g : R → R 

m are appropriate

unctions with f (0) = 0 , so that x̄ = 0 is an equilibrium state when

he input has a constant value ū = 0 . 

The Carleman bilinearization [10] allows converting (1) into a 

ilinear system through its expansion in the corresponding Taylor 

eries [31] . In fact, under the assumption that f (x ) and g(x ) are
2 
nalytic in R , the following holds: 

f (x ) = 

+ ∞ ∑ 

j=1 

1 

j! 

d j f 

dx j 
(0) x j (2) 

(x ) T u = g(0) T u + 

+ ∞ ∑ 

j=1 

1 

j! 

[
d j g 

dx j 
(0) 

]T 

x j u (3) 

y truncating the series at j = k , and computing d { x 2 } /d t , d { x 3 } /d t ,

.., d { x k } /d t while neglecting terms of order larger than k , i.e., x k +1 ,

 

k +2 , etc., the resulting approximated system can be reshaped into 

 bilinear form (if k = 1 , the standard Taylor-based linearization is 

chieved): 

˙ 
 (t) = Az(t) + [ B + N ( z(t) ) ] u (t) (4) 

here: 

(t) = 

[
x (t) x 2 (t) · · · x k (t) 

]T ∈ R 

k (5) 

he function N(z) has the following structure: 

(z) = 

⎡ 

⎢ ⎢ ⎣ 

z T N 1 

z T N 2 

. . . 

z T N k 

⎤ 

⎥ ⎥ ⎦ 

(6) 

nd A, B, N 1 , N 2 , . . . , N k are matrices of appropriate dimensions that

an be computed from the Taylor series: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

df 
dx 

(0) 1 
2! 

d 2 f 
dx 2 

(0) 1 
3! 

d 3 f 
dx 3 

(0) · · · 1 
(k −1)! 

d k −1 f 

dx k −1 (0) 1 
k ! 

d k f 

dx k 
(0) 

0 2 df 
dx 

(0) 2 
2! 

d 2 f 
dx 2 

(0) · · · 2 
(k −2)! 

d k −2 f 

dx k −2 (0) 2 
(k −1)! 

d k −1 f 

dx k −1 (0) 

0 0 3 df 
dx 

(0) · · · 3 
(k −3)! 

d k −3 f 

dx k −3 (0) 3 
(k −2)! 

d k −2 f 

dx k −2 (0) 

. 

. 

. 
. 
. 
. 

. 

. 

. 
. . . 

. 

. 

. 
. 
. 
. 

0 0 0 · · · (k − 1) df 
dx 

(0) k −1 
2! 

d 2 f 
dx 2 

(0) 

0 0 0 · · · 0 k df 
dx 

(0) 

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7) 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

g(0) T 

0 

0 

. . . 
0 

0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

N 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

[
dg 
dx 

(0) 
]T 

1 
2! 

[ 
d 2 g 
dx 2 

(0) 
] T 

1 
3! 

[ 
d 3 g 
dx 3 

(0) 
] T 

. . . 

1 
(k −1)! 

[ 
d k −1 g 

dx k −1 (0) 
] T 

1 
k ! 

[ 
d k g 

dx k 
(0) 
] T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(8) 

 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

2 g(0) T 

2 

[
dg 
dx 

(0) 
]T 

2 
2! 

[ 
d 2 g 
dx 2 

(0) 
] T 

. . . 

2 
(k −2)! 

[ 
d k −2 g 

dx k −2 (0) 
] T 

2 
(k −1)! 

[ 
d k −1 g 

dx k −1 (0) 
] T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

· · · N k = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 

0 

0 

. . . 

kg(0) T 

k 
[

dg 
dx 

(0) 
]T 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(8) 

. State-feedback controller design 

First of all, let us recall a result from the literature [1] about the

esign of state-feedback controllers for nonlinear quadratic sys- 

ems. 
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heorem 1. Given a system in the form (4) and a polytope P ⊂ R 

k :

 = conv { z (1) , z (2) , . . . , z (p) } = { z ∈ R 

k : a T j z ≤ 1 , j = 1 , . . . , q } (9) 

here p and q are suitable integers, z (i ) denotes the i -th vertex of 

he polytope P , a j ∈ R 

k and conv {·} denotes the operation of taking 

he convex hull of the argument, with 0 ∈ P , a linear state-feedback 

ontroller in the form: 

 (t) = Kz(t) (10) 

ith K ∈ R 

m ×k exists such that the closed-loop system given by the 

nterconnection of (4) and (10) is asymptotically stable and P belongs 

o the domain of attraction of the zero equilibrium point if there exist 

 scalar 0 < γ < 1 , a positive definite matrix P ∈ S 
k ×k and a matrix

 ∈ R 

m ×k such that: 

1 γ a T 
j 
P 

P a j γ P 

]
� 0 (11) 

1 z T 
(i ) 

z (i ) P 

]
� 0 (12) 

e 

⎧ ⎨ 

⎩ 

γ ( AP + BL ) + 

⎡ 

⎣ 

z T 
(i ) ( N 1 L ) 

· · ·
z T 
(i ) ( N k L ) 

⎤ 

⎦ 

⎫ ⎬ 

⎭ 

≺ 0 (13) 

or j = 1 , 2 , . . . , q and i = 1 , 2 , . . . , p. In this case, the controller gain

s given by K = LP −1 . 

roof. See [1] . �

The above theorem ensures closed-loop stability of the zero 

quilibrium point, but it does not provide any information about 

he rate of convergence. In order to enforce such design specifi- 

ation, [1] proposed to guarantee that the poles of the linearized 

ystem belongs to the half-plane Re (s ) < −α, by adding the addi- 

ional matrix inequality: 

 αP + He { AP + BL } ≺ 0 (14) 

However, an issue with this idea is that enforcing the rate of 

onvergence design specification by means of a pole constraint 

easoning makes the specification valid only under linear assump- 

ion, i.e., when the effect of the quadratic term in (4) can be ne-

lected. Constraining the rate of convergence of the Lyapunov func- 

ion V ( z(t) ) which is used to prove stability, which means: 

˙ 
 ( z(t) ) < −2 αV ( z(t) ) (15) 

ould lead to a closed-loop system where the rate of convergence 

pecification holds even when the quadratic term is non-negligible. 

n the following, we will say that (15) holds in the strong sense 

hen it is indeed satisfied by the function V ( z(t) ) , and in the 

eak sense when it is satisfied by an approximation of the func- 

ion V ( z(t) ) instead. 

Another issue that impedes the direct application of 

heorem 1 for the design of a controller for the model aris- 

ng from the Taylor-Carleman bilinearization, and described in the 

revious section, is the uncontrollability of the linear part of the 

ystem (4) with matrices as in (6) - (8) . In fact, due to the structure

f A and B , the controllability matrix is given by: 

 = 

[
B AB · · · A 

k −1 B 

]

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

g(0) T df 
dx 

(0) g(0) T · · ·
[

df (x ) 
dx 

(0) 
]k −1 

g(0) T 

0 0 · · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · 0 

⎤ 

⎥ ⎥ ⎥ ⎦ 

(16) 
3 
hich is clearly not full rank, so that according to the algebraic 

ontrollability theorem, the pair (A, B ) is not controllable. A conse- 

uence of this fact is that if the matrix A has unstable eigenvalues, 

hen the matrix inequality (13) is necessarily infeasible, as it can- 

ot hold for at least one point inside the polytope P (i.e., the point 

 ∈ P). 

Motivated by the above discussion, the goal of this section is 

o provide a state-feedback controller design procedure that can 

e applied to a quadratic model obtained via the Taylor-Carleman 

ilinearization and that constrains the rate of convergence of the 

yapunov function used to assess stability of the zero equilibrium 

oint. 

heorem 2. Given a small enough ε > 0 , a scalar τ >> 1 , a desired

ate of convergence α > 0 and an interval I ⊂ R , define I 0 , I 0 + , I ε+ ,
 ε− as the following intervals: 

 0 = [ −ε, ε] (17) 

 0 + = [0 , ε] (18) 

 ε+ = (I \ I 0 ) ∩ R > 0 (19) 

 ε− = (I \ I 0 ) ∩ R < 0 (20) 

s P ε+ ⊂ R 

k and P ε− ⊂ R 

k the polytopes containing the sets of all the 

alues taken by z(t) defined as in (5) when x (t) ∈ I ε+ and x (t) ∈ I ε− ,

espectively: 

 ε+ = conv 
{

z + 
(1) 

, z + 
(2) 

, . . . , z + 
(p) 

}
(21) 

 ε− = conv 
{

z −
(1) 

, z −
(2) 

, . . . , z −
(p) 

}
(22) 

nd as P 0 the polytope containing the sets of all the values taken by 

x 2 (t) · · · x k (t) 
]T 

when x (t) ∈ I 0 + : 

 0 = conv 
{

z 0 (1) , z 
0 
(2) , . . . , z 

0 
(p 0 ) 

}
(23) 

A switched linear state-feedback control law in the form: 

 (t) = 

{
K 

+ z(t ) if x (t ) ≥ 0 

K 

−z(t ) if x (t ) < 0 

(24) 

ith K 

+ , K 

− ∈ R 

m ×k structured as follows: 

 

± = 

[
K 

±
1 

K 

±
2 

· · · K 

±
k 

]
(25) 

ith ± ∈ { + , −} existing such that: 

1. x = 0 is an asymptotically stable equilibrium point for the closed- 

loop system given by the interconnection of (4) and (24) 

2. there exists a Lyapunov function V ( z(t) ) for which (15) holds in 

the strong sense ∀ x ∈ I ε+ ∪ I ε− and in the weak sense ∀ x ∈ I 0 

if there exist a matrix P ∈ S 
k ×k and matrices L + , L − ∈ R 

m ×k struc-

ured as follows: 

 = 

[
P 1 0 

0 P z 

]
(26) 

 

± = 

[
L ±

1 
L ±z 
]

(27) 

ith P 1 ∈ R , P z ∈ S 
(k −1) ×(k −1) , L ±

1 
∈ R 

m ×1 , L ±z ∈ R 

m ×(k −1) , ± ∈ { + , −} ,
uch that P � 0 and ∀ i ∈ { 1 , . . . , p } , ∀ j ∈ { 1 , . . . , p 0 } , ∀± ∈ { + , −} : 

e 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

AP ± + BL ± + 

⎡ 

⎢ ⎢ ⎢ ⎣ 

z ±T 
(i ) 

N 1 L 
±

z ±T 
(i ) 

N 2 L 
±

. . . 

z ±T 
(i ) 

N n L 
±

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎫ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎭ 

+ 2 αP ± ≺ 0 (28) 
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p  

s

P  

c  

v

R

(

s

f

d

t

ε

4

x

f  

B

z 0 
( j) , 1 

P 1 P 1 (z 0 
( j) 

) T 

z 0 
( j) 

P 1 P z /τ

]
� 0 (29) 

e 

{
df 

dx 
(0) P 1 + g(0) L ±1 

}
+ 2 αP 1 ≺ 0 (30) 

here z 0 
( j) , 1 

denotes the first element of z 0 
( j) 

, P + = P and P − = T P T 

ith T = diag 
(
(−1) 0 , (−1) 1 , (−1) 2 , . . . , (−1) k −1 

)
. Then, the con- 

roller gains K 

+ and K 

− to be used in (24) are given by K 

+ = L + P −1 

nd K 

− = L −T P −1 T , respectively. 

roof. The interconnection of (4) and (24) yields: 

˙ 
 (t) = 

(
A + BK 

±)z(t) + 

⎡ 

⎢ ⎢ ⎣ 

z(t) T N 1 K 

±

z(t) T N 2 K 

±

. . . 

z(t) T N k K 

±

⎤ 

⎥ ⎥ ⎦ 

z(t) (31) 

here ± is either + or - depending on the sign of x (t) . 

We will consider a Lyapunov candidate function as follows: 

 ( x (t) ) = 

k ∑ 

j=1 

a 2 j x (t) 2 j + 

k −2 ∑ 

j=1 

a 3+2 j | x (t) | 3+2 j (32) 

here a 2 , a 4 , a 5 , . . . , a 2 k are coefficients to be determined. Given 

5) , the function V ( x (t) ) can be reshaped in terms of the variable 

(t) as follows: 

 ( z(t) ) = 

{
z(t) T P −1 z(t) if x (t) ≥ 0 

z(t) T T P −1 T z(t) if x (t) < 0 

(33) 

ith P structured as in (26) . 

Then, taking into account (31) , the time derivative is computed 

s: 

˙ 
 ( z(t) ) = 

˙ z (t) T (P ±) −1 z(t) + z(t) T (P ±) −1 ˙ z (t) 

= He 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

z(t) T (P ±) −1 

⎛ 

⎜ ⎜ ⎝ 

A + BK 

± + 

⎡ 

⎢ ⎢ ⎣ 

z(t) T N 1 K 

±

z(t) T N 2 K 

±

. . . 

z(t) T N k K 

±

⎤ 

⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎠ 

z( t) 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

(34) 

hich means that (15) is satisfied if: 

e 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(P ±) −1 

⎛ 

⎜ ⎜ ⎝ 

A + BK 

± + 

⎡ 

⎢ ⎢ ⎣ 

z(t) T N 1 K 

±

z(t) T N 2 K 

±

. . . 

z(t) T N k K 

±

⎤ 

⎥ ⎥ ⎦ 

⎞ 

⎟ ⎟ ⎠ 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

+ 2 α(P ±) −1 ≺ 0 (35) 

y pre- and post-multiplying (35) by P ±, while defining L ± = K 

±P ±,

e obtain: 

e 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

AP ± + BL ± + 

⎡ 

⎢ ⎢ ⎣ 

z(t) T N 1 L 
±

z(t) T N 2 L 
±

. . . 

z(t) T N k L 
±

⎤ 

⎥ ⎥ ⎦ 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

+ 2 αP ± ≺ 0 (36) 

hen, (28) is sufficient for (36) to hold ∀ z ∈ P ε+ ∪ P ε− , and in turn

 x ∈ I ε+ ∪ I ε− , since the matrix function appearing in (35) is an

ffine function of the state variables in z(t) , so that negative def- 

niteness on the polytope vertices implies negative definiteness 

ver the whole polytope [18] . 

Due to the structure of P in (26) , the Lyapunov function V ( z(t) )
an be approximated as: 

 ( z(t) ) ≈ V 1 ( x (t) ) = P −1 
1 x (t) 2 (37) 

hen x ∈ I 0 if the following holds: 

 

−1 
1 x 2 ≥ τ

[
x 2 · · · x k 

]
P −1 

z 

[
x 2 · · · x k 

]T 
(38) 
4 
ith τ >> 1 . The condition (38) is equivalent via Schur comple- 

ent to: 

P −1 
1 

x 2 
[
x 2 · · · x k 

][
x 2 · · · x k 

]T 
P z 

]
� 0 (39) 

hich, by pre- and post-multiplication by diag (P 1 , I) , is shown to 

old if (29) holds. 

Given a small enough ε, (31) can be approximated by the fol- 

owing state equation: 

˙ 
 (t) = 

(
df 

dx 
(0) + g(0) K 

±
1 

)
x (t) (40) 

hich corresponds to controlling the first-order approximation of 

1) by means of the switched linear state-feedback control law: 

 (t) = 

{
K 

+ 
1 

x (t ) if x (t ) ≥ 0 

K 

−
1 

x (t ) if x (t ) < 0 

(41) 

hen, computing the time derivative of (37) , taking into account 

40) : 

˙ 
 ( x (t) ) = 

˙ x (t) P −1 
1 x (t) + x (t) T P −1 

1 
˙ x (t) 

= He 

{
x (t) T P −1 

1 

(
df 

dx 
(0) + g(0) K 

±
1 

)
x ( t) 

}
(42) 

o that ˙ V ( x (t) ) < −2 αV ( x (t) ) leads, after some manipulations, to 

30) . Since α > 0 , by virtue of Lyapunov’s direct method, the in-

quality (30) enforces asymptotical stability of the equilibrium 

oint x = 0 , which completes the proof. �

emark 1. The presence of the scalar γ in Theorem 1 comes from 

he requirement that ˙ V < 0 holds in an enlarged version of the 

olytope P that contains a level curve of the Lyapunov function 

hat contains the polytope of interest P . This is necessary to en- 

ure convergence to the origin for any initial condition x (0) ∈ P , 

therwise it could happen that the state x (t) reaches regions of 

he state-space which are outside P , and where ˙ V > 0 . The reader 

ight have noticed that such a reasoning is not included in the 

roof of Theorem 2 , due to the special structure of the augmented 

tate vector z(t) (see Eq. (5) ) that ensures that if ˙ V ( z(t) ) holds, 

hen each element of z(t) will decrease in absolute value, thus 

oving simultaneously towards the origin, i.e., towards x = 0 . 

emark 2. The statement of Theorem 2 contains the standard re- 

uirement that P � 0 . However, given the interpretation of the Lya- 

unov function V ( z(t) ) in terms of x (t) , as given in (32) , it is pos-

ible to replace P � 0 with the elementwise inequalities P 1 > 0 and 

 z,i j > 0 ∀ i, j ∈ { 1 , . . . , k − 1 } , thus allowing for non-definite matri-

es P for which negative quadratic forms z T P z < 0 are obtained for

alues of z that do not correspond to any value of x . 

emark 3. The proof of Theorem 2 relies on the approximation 

37) holding true due to the small ε assumption. The value of ε
hould be selected small enough that the linear model (40) arising 

rom the Taylor-series-based linearization describes the nonlinear 

ynamics well enough. To this end, nonlinearity measures such as 

he gap metric [9,12,25] can be used to decide whether a value of 

is acceptable or not. 

. Numerical example 

Consider the following nonlinear system: 

˙ 
 (t) = x (t ) 3 + ( x (t ) + 1 ) 

2 
u 1 (t ) + ( x (t) − 1 ) 

2 
u 2 (t) (43) 

or which ū = 0 is an unstable equilibrium point when ū 1 = ū 2 = 0 .

y means of the procedure described in Section 2 , we can define 
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Fig. 1. Values of z(t) (blue dots) and enclosing polytopes (red circles/dots). (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 2. Simulation results with initial conditions x (0) = 1 and x (0) = −1 . 

t  

t

A

N

F  

s  

t

o

[

a

P

K

he augmented state vector z(t) = [ x (t ) , x (t ) 2 , x (t ) 3 ] T and describe

he system in a structure as in (4) with matrices: 

 = 

[ 

0 0 1 

0 0 0 

0 0 0 

] 

B = 

[ 

1 1 

0 0 

0 0 

] 

 1 = 

[ 

2 −2 

2 2 

0 0 

] 

N 2 = 

[ 

2 2 

4 −4 

4 4 

] 

N 3 = 

[ 

0 0 

3 3 

6 −6 

] 

or design purpose, the interval I = [ −2 , 2] with ε = 1 will be con-

idered. For the sake of computing P + , P − and P in (21) - (23) ,
ε ε 0 

5 
he singular value decomposition (SVD) boxing [6] has been used, 

btaining the enclosing polytopes shown in Fig. 1 . 

Then, using the YALMIP toolbox [23] with the SeDuMi solver 

32] , the LMIs in Theorem 2 have been solved for a required guar- 

nteed convergence rate α = 0 . 1 , providing the following results: 

 = 

[ 

0 . 0 0 06 0 0 

0 0 . 5992 0 . 3309 

0 0 . 3309 0 . 2124 

] 

 

+ = 

[
−23 . 329 0 . 0479 −0 . 1493 

−37 . 546 −0 . 8096 1 . 2848 

]
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Fig. 3. Water level and input signals. 
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− = 

[
−37 . 546 0 . 8096 1 . 2848 

−23 . 329 −0 . 0479 −0 . 1493 

]
urthermore, a different solution with a bigger guaranteed conver- 

ence rate α = 1 has been obtained as follows: 

 = 

[ 

9 . 4 · 10 

−6 0 0 

0 0 . 2106 0 . 1680 

0 0 . 1680 0 . 1346 

] 

 

+ = 

[
−942 . 04 1 . 3866 −1 . 951 

−464 . 81 −17 . 115 21 . 389 

]

 

− = 

[
−464 . 81 17 . 115 21 . 389 

−942 . 04 −1 . 3866 −1 . 951 

]
In order to compare the designed controllers, the closed-loop 

esponses from initial conditions x (0) = 2 and x (0) = −2 are plot-

ed together with the corresponding open-loop responses (see 

ig. 2 ). The simulation results show that the designed controllers 

tabilize the nonlinear system, and that the choice of the parame- 

er α affects the convergence rate of the state variable x (t) . 

. Application to a multi-input tank system 

The design procedure described in Section 3 has been tested 

sing a process plant available at the University of Stavanger, con- 

isting of a rectangular tank. The tank has a pump that takes water 

rom a collection vessel (input signal u 1 (t) ) and a valve through 

hich water can be drained out of the tank (input signal u 2 (t) ). 

The nonlinear model of the tank can be obtained from a bal- 

nce law as follows: 

dh (t) 

dt 
= 

1 

A 

( 

f 1 (u 1 (t)) − K v f 2 (u 2 (t)) 

3600 

√ 

ρg ( h (t) + h v ) 

10 0 0 0 0 

) 

(44) 

here h (t) denotes the water level in the tank, A = 0 . 0096 m 

2 is

he area of the tank, K v = 11 . 25 m 

3 / ( hour ·
√ 

bar ) is the valve con-

tant, ρ = 10 0 0 kg / m 

3 is the density of water, g = 9 . 81 m / s 2 is the
6

ravity acceleration, h v = 0 . 05 m is the height from the bottom of

he tank down to the valve, and f 1 (·) , f 2 (·) are two nonlinear func-

ions representing the pump/valve characteristic curve, which are 

ssumed to be known. 

The nonlinear model (44) is approximated around the equi- 

ibrium point of interest ( ̄h = 0 . 25 m , obtained by applying con-

tant inputs ū 1 = 0 . 65 and ū 2 = 0 . 52 ), by performing the change of

ariables: δh (t) � h (t) − 0 . 25 , δu 1 (t) � u 1 (t) − 0 . 65 , and δu 2 (t) =
 2 (t) − 0 . 52 . Then, a bilinear model in a structure as in (4) is ob-

ained by defining: x (t) � δh (t ) , z(t ) � 

[
x (t ) , x (t ) 2 

]T 
and u (t) �

 

δu 1 (t) , δu 2 (t) ] 
T 

, in which case the numerical values of the ma- 

rices A , B , N 1 , N 2 are as follows: 

A = 

[
−0 . 0297 0 . 0248 

0 −0 . 0594 

]
B = 

[
−0 . 0525 0 . 052 

0 0 

]

N 1 = 

[
−0 . 0876 0 

0 . 073 0 

]
N 2 = 

[
−0 . 1051 0 . 1040 

−0 . 1751 0 

]
or design purpose, the interval I = [ −0 . 25 , 0 . 25] with ε = 0 . 05 has

een considered, and the ensemble of possible values of the aug- 

ented state vector z(t) has been bounded using triangles with 

ertices (±ε, ε2 ) , (±0 . 25 , ε2 ) , (±0 . 25 , 0 . 25 2 ) . The LMIs have re-

urned the following Lyapunov matrix and controller gains: 

 = 

[
0 . 0147 0 

0 0 . 0835 

]

 

+ = 

[
3 . 0226 0 . 3199 

−1 . 0976 −0 . 1744 

]
K 

− = 

[
2 . 5795 −0 . 8682 

−0 . 7284 −0 . 7877 

]
ig. 3 shows experimental results in which the tank has been 

riven first to an initial condition x (t 0 ) = 0 . 5 m (in open-loop),

hich corresponds to one of the extremes of the interval I . Then, 

tarting at approx. t = 35 s , the designed augmented state-feedback 

ontroller has been activated. As shown in Fig. 4 , the closed-loop 

peration of the system after the controller’s activation generally 

atisfies the design constraint (15) during the transient (it is worth 

emarking that the presence of measurement noise affects the 

omputed behavior of ˙ V (z(t)) ). 
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Fig. 4. Comparison between −2 αV (z(t)) and ˙ V (z(t)) . 
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. Conclusions and future work 

This paper has described an LMI-based approach to the de- 

ign of nonlinear controllers for a class of systems which can been 

eshaped in a quadratic structure via the Taylor-Carleman bilin- 

arization. Although restricted to first-order systems, thus some- 

hat limited in the scope of application, this paper has discussed 

everal theoretical challenges and proposed a set of LMIs that can 

rovide a feasible design. The simulation results obtained with an 

pen-loop unstable nonlinear system and the experimental results 

btained with a water tank have illustrated the application and 

erformance of the proposed approach. Our hope is that the re- 

ults contained in this paper will act as a foundation stone for a 

ore general LMI-based design procedure that can be applied to 

igher-order systems, which will be the subject of future research 

n the area. 
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