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Politècnica de Catalunya (UPC), Rambla Sant Nebridi, 22, 08222 Terrassa,
Spain. e-mails: adrian.ruiz.royo@upc.edu & bernardo.morcego@upc.edu
∗∗Department of Electrical and Computer Engineering (IDE), University of

Stavanger (UiS), Kristine Bonnevies vei 22, 4021 Stavanger, Norway. e-mail:
damiano.rotondo@uis.no

Abstract: This paper considers the problem of designing a shifting output-feedback controller for
polytopic linear parameter-varying (LPV) systems subject to time-varying saturations. By means of the
LPV framework and the use of the Lyapunov theory, the shifting paradigm concept, and the ellipsoidal
invariant theory, a linear matrix inequality (LMI)-based methodology for the controller’s design is
proposed. The resulting gain-scheduled controller holds the control action in the linearity region of
the actuators and regulates online the closed-loop convergence taking into account the instantaneous
saturation limit values. The proposed approach is validated by means of an illustrative example.

Keywords: Linear parameter-varying (LPV), Saturation, Linear matrix inequalities (LMIs)

1. INTRODUCTION

The saturation phenomenon is always present in all real-world
systems due to the actuators’ inherent physical limitations. It
is widely known that the saturation phenomenon can produce
significant performance degradation or even destabilize the
closed-loop system if it is not taken into account properly in
the controller’s design stage. Due to the importance of the
saturation phenomenon, several researchers have investigated
the design of nonlinear controllers for a long time through
the application of two main popular approaches: anti-windup
compensation (da Silva and Tarbouriech, 2005; Ungurán et al.,
2019), where a pre-designed controller is combined with a
compensator to handle the saturation; and direct control design
(Kapila et al., 2001; Cao et al., 2002), in which saturation
nonlinearities are directly considered in the controller design
stage. Previous works in the literature have addressed, mostly,
the saturation phenomenon under the common assumption of
considering constant saturation limits, see e.g. Wu et al. (2000);
Scorletti et al. (2001); Nguyen et al. (2018); de Souza et al.
(2021).

Nevertheless, the presence of time-varying saturations in real-
world systems should be considered during the controller de-
sign stage as a consequence of the natural wear of actuators
or the existence of time-varying conditions. For example, in
autonomous aerial vehicles, the progressive lack of energy
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availability can affect the available actuator action (Hoffmann
et al., 2007; Faessler et al., 2017; Abdilla et al., 2015). In recent
years, a few theoretical works have proposed a design method-
ology of gain-scheduled state-feedback controllers for linear
parameter-varying (LPV) systems subject to time-varying sat-
urations through the use of linear matrix inequalities (LMIs)
and the use of the shifting paradigm concept presented in Ro-
tondo et al. (2015). For instance, a shifting feedback controller
has been developed for an N-DoF robotic manipulator in San-
Miguel et al. (2021), where the closed-loop response was mod-
ified through the placement of closed-loop poles in order to
avoid the actuator saturation when actively compensated effects
tend to the input limits. Furthermore, a shifting state-feedback
controller has been designed for polytopic LPV systems sub-
ject to time-varying saturation via parameter-independent and
parameter-dependent quadratic Lyapunov functions (QLFs) in
Ruiz et al. (2019) and Ruiz et al. (2021), respectively, with
the ability to regulate online the closed-loop convergence speed
according to the instantaneous saturation limit values.

It should be noted that all referenced works based on the shift-
ing paradigm concept were developed using a gain-scheduled
state-feedback controller. However, in some cases, the full state
is not available, thus requiring the use of some other techniques,
e.g., output-feedback control. The main goal of this work is to
propose an LMI-based methodology for designing a shifting
output-feedback controller for polytopic LPV systems subject
to time-varying saturations, thus extending the methodology
proposed in Ruiz et al. (2019) to the output-feedback case. The
overall design approach is developed without considering the
use of parameter-dependent QLF and the presence of exter-
nal disturbances in order to keep the mathematical complexity
somehow limited, and such extension will be addressed in fu-
ture works.

The rest of the paper is organized as follows. Notation and
some mathematical background is provided in Section 2. The



problem statement is formulated in Section 3. In Section 4, the
LMI-based methodology for the controller design is given. In
Section 5, simulation results are presented using a nonlinear
quadrotor model. Finally, the main conclusions and perspec-
tives on future research are outlined in Section 6.

2. NOTATION AND MATHEMATICAL BACKGROUND

This section presents the notation and relevant mathematical
background to the rest of this paper.

2.1 Notation

The notations R and R+ stand for the set of real and non-
negative real numbers, respectively. N corresponds to the set
of natural numbers. The set of n×m real matrices is denoted
as Rn×m and the set of n× n symmetric real matrices is ex-
pressed as Sn. For M ∈ Sn, the notation M � 0 (M � 0) and
M ≺ 0 (M � 0) stand for a positive (semi-)definite matrix and
for a negative (semi-)definite matrix, respectively. M ∈ Sn

+ is
used as a shorthand for positive-definite symmetric matrices
in situations with limited space. The symbols In, diag{. . .}, ?
and • represent the n−dimensional identity matrix, a block-
diagonal matrix, the symmetric block in the LMIs and an el-
ement that has no influence on development, respectively. The
transpose of a matrix M is denoted by MT and the shorthand
He{·} = (·)+(·)T is used in situations with limited space. An
element-wise inequality is represented by ≤. The subscripts ai,
A{i} and A[i] indicate the ith position of a vector, the ith vertex
matrix and the ith row of the corresponding matrix, respectively.
Finally, in some cases, the time dependency of time-varying
variables is dropped to lighten the notation.

2.2 Polytopic representation

The polytopic representation of parameter-dependent matrices
is used throughout this paper (Briat, 2014), where generic
matrices such as F(ϑ(t)), G(ϕ(t)) and H(ϑ(t),ϕ(t)) with
dependence on scheduling parameter vectors ϑ(t) ∈ Θ ⊂ Rnϑ

and ϕ(t)∈Φ⊂Rnϕ , with Θ and Φ known, bounded and closed
polytopic sets, are defined as the convex combination of a finite
set of NΘ, NΦ and NΘ×NΦ known vertex matrices F{i}, G{ j}
and H{i, j}, respectively, ∀i = 1, . . . ,NΘ and ∀ j = 1, . . . ,NΦ:

F(ϑ),
NΘ

∑
i=1

µi(ϑ)F{i}, G(ϕ),
NΦ

∑
j=1

η j(ϕ)G{ j},

H(ϑ ,ϕ),
NΘ

∑
i=1

µi(ϑ)H{i}(ϕ) =
NΘ

∑
i=1

NΦ

∑
j=1

µi(ϑ)η j(ϕ)H{i, j},

(1)

where NΘ and NΦ denote the known number of vertices of
the respective polytopes. µ(ϑ) ∈ SΘ and η(ϕ) ∈ SΦ are the
known polytopic weight vectors fulfilling ∀ϑ ∈Θ and ∀ϕ ∈Φ,
respectively, the unitary simplexes:

SΘ ,

{
µ(ϑ) ∈ RNΘ :

NΘ

∑
i=1

µi(ϑ) = 1, µi(ϑ)≥ 0

}
, (2)

SΦ ,

{
η(ϕ) ∈ RNΦ :

NΦ

∑
j=1

η j(ϕ) = 1, η j(ϕ)≥ 0

}
. (3)

2.3 Application of Pólya’s relaxation theorem

Following Sala and Arino (2007), let us define i = (i1, . . . , ip) ∈
Np, for denoting a p−dimensional multi-index, and the sets
I(p, NΘ) and I+

(p, NΘ)
as:

I(p, NΘ) , {i ∈ Np : 1≤ ik ≤ NΘ, ∀k = 1, . . . , p} , (4a)

I+(p, NΘ)
,
{

i ∈ I(p, NΘ) : ik ≤ ik+1, k = 1, . . . , p−1
}
. (4b)

Then, the following result holds.
Lemma 1. (Pólya’s relaxation theorem). Consider the LMI:

NΘ

∑
i1=1

NΘ

∑
i2=1
· · ·

NΘ

∑
ip=1

µi1(ϑ)µi2(ϑ) · · ·µip(ϑ) xT Q{i1,...,ip}x > 0,

≡ ∑
i∈I(p, NΘ)

µi(ϑ)xT Q{i}x > 0,

(5)
and a chosen Pólya’s relaxation degree d ∈N, with d ≥ 0, such
that the following set of LMIs is satisfied:

∑
k∈P(i)

Q{k} � 0, ∀i ∈ I+(p+d, NΘ) (6)

where P(i)⊂ I(p+d, NΘ) corresponds to the set of permutations,
with possible repeated elements, of the multi-index i. Then,
positive-definiteness of (5) is guaranteed with necessary con-
ditions for large values of d, thus increasing the computational
burden at the cost of reducing the overall conservatism.

3. PROBLEM STATEMENT

Let us consider the following continuous-time LPV system:{
ẋp(t) = A(ϑ(t))xp(t)+B(ϑ(t))sat(u(t),σ(t)),
y(t) =C(ϑ(t))xp(t),

(7)

where xp(t) ∈ Rnx is the plant state, u(t) ∈ Rnu denotes the
control input and y(t) ∈ Rny stands for the measured output.
A(ϑ(t)) ∈ Rnx×nx , B(ϑ(t)) ∈ Rnx×nu and C(ϑ(t)) ∈ Rny×nx

correspond to the state, input and output parameter-dependent
matrices, respectively.

The input u(t) in (7) is affected by a symmetric saturation
function sat(u(t),σ(t)) : Rnu → Rnu , defined as:

sat(u(t),σ(t)) = sign(u(t))min(|u(t)|,σ(t)) , (8)
where σ(t) ∈ Rnu

+ is a given vector that contains each instanta-
neous limit value σh(t) ∈ R+ ∀h = 1, . . . ,nu. σh(t) belongs to
the interval [σh, σh], with σh and σh as the lowest and highest
possible saturation limits for each uh(t), respectively.

3.1 Shifting output-feedback controller structure

Following Ruiz et al. (2019), the controller’s performance reg-
ulation is achieved by decreasing/increasing the convergence
speed of the closed-loop system response through the schedul-
ing vector ϕ(t), for which a mapping with the possible instan-
taneous values of σ(t) is established. Then, the fastest con-
vergence speed of the closed-loop response is ensured when
σ(t)→ σ and the slowest response when σ(t)→ σ .

Let us define the structure of a shifting output-feedback con-
troller as follows:{

ẋc(t) = Ac(ϑ(t),ϕ(t))xc(t)+Bc(ϑ(t),ϕ(t))y(t),
uc(t) =Cc(ϑ(t),ϕ(t))xc(t)+Dc(ϑ(t),ϕ(t))y(t),

(9)

where xc(t) ∈ Rnc is the control state and uc(t) ∈ Rnu de-
notes the controller’s output. Ac(ϑ(t),ϕ(t)), Bc(ϑ(t),ϕ(t)),



Cc(ϑ(t),ϕ(t)) and Dc(ϑ(t),ϕ(t)) correspond to the parameter-
dependent controller matrices, with appropriate dimensions, to
be designed.

3.2 Closed-loop performance criterion

Consider the augmented state x =
[
xT

p ,x
T
c
]T and the intercon-

nection of (7) and (9) with u = uc, thus defining the closed-loop
LPV system dynamics as:

ẋ = A(ϑ ,ϕ)x+B(ϑ)sat (K (ϑ ,ϕ)x) , (10)
with

A(ϑ ,ϕ),

[
A(ϑ) 0

Bc(ϑ ,ϕ)C(ϑ) Ac(ϑ ,ϕ)

]
,B(ϑ),

[
B(ϑ)

0

]
and

K (ϑ ,ϕ), [Dc(ϑ ,ϕ)C(ϑ) Cc(ϑ ,ϕ)] .

Let us consider the following quadratic Lyapunov function
(QLF):

V (x), xT P−1x, (11)
with P ∈ Sn

+ as a Lyapunov matrix with dimension n = nx +nc.
Thereupon, let us define the closed-loop performance criterion
considered throughout this work based on the shifting paradigm
concept, the closed-loop LPV system dynamics (10) and the
above defined QLF (11), as follows:

Definition 1. (Guaranteed shifting decay rate). The LPV sys-
tem (7) with the shifting output-feedback controller (9) is said
to have a guaranteed shifting decay rate λ (ϑ ,ϕ) ∈ R+ if:

V̇ (x)≤−2λ (ϑ ,ϕ)V (x) , (12)
where V (x) is a positive definite function.

3.3 Region constraints

The control input u(t) is still affected by the nonlinear satu-
ration function (8), complicating the obtention of computation-
ally applicable design conditions. For this reason, it is important
to ensure that u(t) is within the linear region of the actuators
RL(t) ⊂ Rnu ∀t ≥ 0, as defined by the symmetrical polyhedral
set:

RL(t), {u(t) ∈ Rnu :−σ(t)≤ u(t)≤ σ(t)} , (13)
which can be mapped onto the state-domain through the rela-
tionship u(t) = K (ϑ(t),ϕ(t))x(t), thus obtaining:

RL(ϑ ,ϕ),
{

x ∈ Rn : |K [h](ϑ ,ϕ)x| ≤ σh
}
, (14)

where K [h](ϑ ,ϕ)=
[
Dc[h](ϑ ,ϕ)C(ϑ)Cc[h](ϑ ,ϕ)

]
∀h= 1, . . . ,nu.

Let us represent the square of the saturation limit varia-
tions σ(t)2 using a given parameter-dependent vector function
σ̂(ϕ(t)) ∈ Rnu

+ . Then, by following a procedure akin to the one
proposed by Tarbouriech et al. (2011), the region RL(ϑ ,ϕ) can
be rewritten ∀h = 1, . . . ,nu as:

RL(ϑ ,ϕ),

{
x ∈ Rn : xT K [h](ϑ ,ϕ)T K [h](ϑ ,ϕ)

σ̂h(ϕ)
x≤ 1

}
.

(15)

Thereupon, with the objective of guaranteeing u(t) ∈ RL(t), the
following set of inclusions is established:

E (X)⊂ E (P), (16a)
E (P)⊂ RL(ϑ ,ϕ), (16b)

where E (X) and E (P) are hyper-ellipsoidal regions that corre-
spond to the region of the state-space domain which contains

the initial conditions of interest x(0) and the unit level curve of
Lyapunov delimited by the QLF (11), respectively, and they are
defined as follows:

E (X),
{

x ∈ Rn : xT X−1x≤ 1
}
, (17)

E (P),
{

x ∈ Rn : xT P−1x≤ 1
}
, (18)

where X ∈ Sn
+ is a chosen matrix that contains the information

about where the initial states x(0) are expected to lie.

Hence, u(t) ∈ RL(t) can be guaranteed ∀t > 0 if the initial state
x(0) ∈ E (X) and (16) is satisfied. As a consequence, u(t) does
not saturate ∀t ≥ 0 and the closed-loop LPV system (10) can be
reduced to:

ẋ = (A(ϑ ,ϕ)+B(ϑ)K (ϑ ,ϕ))x = Acl(ϑ ,ϕ)x (19)
for design purposes.

3.4 Problem definition

Finally, on the basis of the closed-loop performance criterion
(Definition 1) and the region constraints established in (16), the
problem considered in this work can be formulated as follows:
Problem 1. Given the LPV system (7) subject to the time-
varying saturation (8), a shifting output-feedback controller (9),
a guaranteed shifting decay rate λ (ϑ ,ϕ), and the regions (15)-
(18), find P and the parameter-dependent controller matrices
Ac(ϑ ,ϕ), Bc(ϑ ,ϕ), Cc(ϑ ,ϕ) and Dc(ϑ ,ϕ) such that for any
x(0) ∈ E (X) the closed-loop LPV system dynamics (10) satis-
fies (12).

4. SHIFTING OUTPUT-FEEDBACK CONTROLLER
SYNTHESIS

Let us introduce the conditions for designing a dynamic output-
feedback controller that ensures some desired guaranteed shift-
ing decay rate. According to Chilali and Gahinet (1996);
Scherer et al. (1997) and Tarbouriech et al. (2011), a change of
control variables is needed, which is achieved by partitioning
the Lyapunov matrices P and P−1, as follows:

P ,

[
R M

MT •

]
, P−1 ,

[
S N

NT •

]
, (20)

with R,S∈ Snx
+ and N,M ∈Rnx×nc . Thereupon, from the identity

PP−1 = In the following relationship:

P
[

In S
0 NT

]
︸ ︷︷ ︸

ΠS

=

[
R In

MT 0

]
︸ ︷︷ ︸

ΠR

(21)

is obtained with the congruence matrices ΠS and ΠR.

Using the given criterion in Definition 1, the following set
of parameter-dependent LMIs and decision variables R, S,
Âc(ϑ ,ϕ) ∈ Rnc×nc , B̂c(ϑ ,ϕ) ∈ Rnc×ny , Ĉc(ϑ ,ϕ) ∈ Rnu×nc and
D̂c(ϑ ,ϕ) ∈ Rnu×ny are derived by considering the closed-loop
LPV system (19), the shifting output-feedback (9), the QLF
(11) with a given guaranteed shifting decay rate λ (ϑ ,ϕ) ∈ R+

and the relationship (21):[
R In
In S

]
� 0, (22)

He
{[

ϒ11(ϑ ,ϕ) ϒ12(ϑ ,ϕ)
ϒ21(ϑ ,ϕ) ϒ22(ϑ ,ϕ)

]}
+2λ (ϑ ,ϕ)

[
R In
In S

]
≺ 0, (23)



where the block elements of ϒ(ϑ ,ϕ) are defined as:

ϒ11(ϑ ,ϕ), A(ϑ)R+B(ϑ)Ĉc(ϑ ,ϕ),

ϒ12(ϑ ,ϕ), A(ϑ)+B(ϑ)D̂c(ϑ ,ϕ)C(ϑ),

ϒ21(ϑ ,ϕ), Âc(ϑ ,ϕ),

ϒ22(ϑ ,ϕ), SA(ϑ)+ B̂c(ϑ ,ϕ)C(ϑ),

(24)

with:[
Âc(ϑ ,ϕ) B̂c(ϑ ,ϕ)
Ĉc(ϑ ,ϕ) D̂c(ϑ ,ϕ)

]
=

[
SA(ϑ)R 0

0 0

]
+

[
N SB(ϑ)
0 In

]
×
[

Ac(ϑ ,ϕ) Bc(ϑ ,ϕ)
Cc(ϑ ,ϕ) Dc(ϑ ,ϕ)

][
MT 0

C(ϑ)R In

]
.

(25)

Then, if constraints (22) and (23) are satisfied, the closed-
loop LPV response (19) guarantees (12). Furthermore, the
parameter-dependent controller matrices in (9) can be com-
puted from the decision variables (25) subject to the condition
MNT = In−RS.
Remark 1. If matrices M and N have full row rank, then the
computation of Ac(ϑ ,ϕ), Bc(ϑ ,ϕ), Cc(ϑ ,ϕ) and Dc(ϑ ,ϕ)
through the decision matrices appearing in (25) is always pos-
sible (Chilali and Gahinet, 1996). Furthermore, the parameter-
dependent controller matrices in (9) are uniquely determined
if nx = nc, thus implying that N and M are nonsingular square
matrices.

Let us provide the conditions that ensure the convergence to
zero of any state trajectory x(t) starting in the region E (P).
The set of inclusions (16) forces the state trajectory to remain
in RL(ϑ ,ϕ) where the nonlinear saturation function (8) is not
triggered. By defining the region:

E (X0),
{

xp ∈ Rnx : xp
T X−1

0 xp ≤ 1
}
, (26)

where X0 ∈ Snx
+ is a chosen matrix that contains the information

about where the initial states xp(0) are expected to lie, xp(0) ∈
E (X0) ensures that any state trajectory x(t)∈ E (P) ∀t ≥ 0 under
the assumption that xc(0) = 0, which is introduced to avoid that
the matrices M and N appear as decision variables in the LMIs.
Hence, the inclusion (16a) is modified as:

E (X0)⊂ E (P)|(x(0),0). (27)

By considering the partition of P−1 in (20), the inclusion (27),
and the regions mentioned in (18) and (26) with a given matrix
X0, the following LMI is generated:

X−1
0 −S� 0. (28)

Furthermore, the parameter-dependent LMI (29) is obtained
∀h = 1, . . . ,nu from the inclusion (16b), the relationship (21),
the regions (15) and (18), and a given parameter-dependent
vector function σ̂(ϕ) ∈ Rnu

+ :σ̂h(ϕ) Ĉc[h](ϑ ,ϕ) D̂c[h](ϑ ,ϕ)C(ϑ)
? R In
? ? S

� 0. (29)

Then, if constraints (22), (23), (28) and (29) are fulfilled, the
convergence of x(t) → 0 when t → ∞ is guaranteed for any
xp(0) ∈ E (X0). Furthermore, u(t) ∈ RL(t).

Note that conditions (23) and (29) represent an infinite number
of constraints. To this end, the polytopic representation (1)-(3)
and Lemma 1 are applied to (23) and (29), respectively, thus
obtaining a finite number of LMIs ∀ j = 1, . . . ,NΦ:

∑
k∈P(i)

Ξ{k, j} ≺ 0, ∀i ∈ I+(3+d1,NΘ)
, (30)

and ∀h = 1, . . . ,nu, ∀l ∈ I+
(2+d2,NΘ)

:

∑
m∈P(l)

(σ̂h{ j} Ĉc[h],{m1, j} D̂c[h],{m1, j}C{m2}
? R In
? ? S

)� 0, (31)

where d1,d2 ∈ N≥0 and Ξ{k, j} is defined as:

He

{[
A{k1}R+B{k1}Ĉc,{k2, j} A{k1}+B{k1}D̂c,{k2, j}C{k3}

Âc,{k1, j} SA{k1}+ B̂c,{k1, j}C{k2}

]}

+2λ{k1, j}

[
R In
In S

]
.

Then, (12) holds for all parameter-dependent matrices given in
(7), (9) and the parameter-dependent vector in (15).

5. ILLUSTRATIVE EXAMPLE

Consider the attitude model of a quadrotor taken from Trapiello
et al. (2019) with parameters as described in Rubı́ et al. (2019),
and under the assumption of negectable gyroscopic effect.
Then, the system (7) is characterized by the parameters in
Table 1, xp(t) = [φ̇(t), θ̇(t), ψ̇(t),φ(t),θ(t),ψ(t)]T and the mo-
ments produced by the rotors u(t), as follows:

u(t) =

[u1(t)
u2(t)
u3(t)

]
=

lkT (Ω4(t)2−Ω2(t)2)
lkT (Ω3(t)2−Ω1(t)2)
kQ ∑

4
i=1(−1)iΩi(t)2

 . (32)

The selected scheduling vector is ϑ(t) = [φ̇(t), θ̇(t)] with
φ̇(t), θ̇(t) ∈ [−1,1], thus defining the polytope with NΘ = 4
vertices that contains the following parameter-dependent sys-
tem matrices (7):

A(ϑ(t)) =

 0 0 a13(·)
0 0 a23(·)

a31(·) a32(·) 0
03×3

I3 03×3


B(ϑ(t)) =

[
J−1

03×3

]
, C(ϑ(t)) = [03×3 I3] ,

(33)

where a13(ϑ2(t)) = ϑ2(t)
J22−J33

J11
, a13(ϑ2(t)) = ϑ1(t)

J33−J11
J22

,

a31(ϑ2(t)) = ϑ2(t)
J11−J22

2 J33
, a32(ϑ1(t)) = ϑ1(t)

J11−J22
2 J33

and J =

diag{J11,J22,J33}.

Table 1. Parameter symbol descriptions.

Symbol Description Units
φ(t),θ(t),ψ(t) Euler angles. rad
φ̇(t), θ̇(t), ψ̇(t) Euler angle rates. rads−1

l Distance from the rotor to the CoG. m
kT Thrust coefficient. Nrpm−2

kQ Torque coefficient. Nmrpm−2

Ωi Angular speed of the i− th propeller. rpm
Ω0 Fixed minimum propeller speed. rpm
J Body moment of inertia matrix. kgm2

5.1 Time-varying input saturations

Under the assumption that all rotors share the same behaviour
regarding saturation, let us consider ∀i = 1, . . . ,4 that Ωi ∈
[Ω0, ∆Ω(t)] where Ω0 is fixed to 1075 (rpm) and ∆Ω(t) is
a known function that describes the instantaneous maximum
propeller speed, which varies due to the discharge of the battery.
Then, it is also assumed that ∆Ω(t) varies within the interval



[∆Ω, ∆
Ω
] with Ω0 < ∆Ω < ∆

Ω
, ∆Ω = 5000 (rpm) and ∆

Ω
=

8600 (rpm), respectively.

In order to handle the propeller speed limitation, let us define
the largest available positive control action through Eq. (32) as
follows:

σ1(t) = σ2(t) = lkT (∆Ω(t)2−Ω
2
0),

σ3(t) = 2kQ(∆Ω(t)2−Ω
2
0),

(34)

where σ1(t),σ2(t) ∈ lkT [(∆
2
Ω
−Ω2

0),(∆
2
Ω
−Ω2

0)] and σ3(t) ∈
2kQ[(∆

2
Ω
−Ω2

0),(∆
2
Ω
−Ω2

0)].

Then, let us introduce the performance scheduling parameter
ϕ(t) ∈ [0, 1], which is linked to the time-varying saturation
function (8) and the limits described in (34) for the inputs u1(t),
u2(t) and u3(t), respectively, as follows:

ϕ(t) =
σ

2
1−σ1(t)2

σ
2
1−σ2

1
=

σ
2
2−σ2(t)2

σ
2
2−σ2

2
=

σ
2
3−σ3(t)2

σ
2
3−σ2

3
. (35)

Note that ϕ(t) is a unique scheduling parameter due to the fact
that σh(t)→ σh and σh(t)→ σh ∀h = 1,2,3 when the function
∆Ω(t)→ ∆Ω and ∆Ω(t)→ ∆

Ω
, respectively. Thus, allowing to

establish the following mapping:
σh(t)2 , σ̂h(ϕ(t)) = σ

2
h +ϕ(t)

(
σ

2
h−σ

2
h
)
, (36)

and, hence, NΦ = 2 and the corresponding vertices of σ̂(ϕ):

σ̂{1} =
[
σ

2
1, σ

2
2, σ

2
3
]T

, σ̂{2} =
[
σ2

1, σ2
2, σ2

3

]T
. (37)

5.2 Design specifications

Consider that the initial attitude of the vehicle φ(0), θ(0) and
ψ(0) belongs to the interval [−0.0873,0.0873] (rad) and each
Euler angle rate φ̇(0), θ̇(0) and ψ̇(0) is expected to lie in
[−0.0017,0.0017] (rads−1), thus determining:

X−1
0 ,

1
nx

diag
{

φ̇(0), θ̇(0), ψ̇(0),φ(0),θ(0),ψ(0)
}−2

. (38)

Then, let us define the desired decay rate values of λ (ϑ ,ϕ)
taking into account the polytopic representation (1)-(3) with the
purpose of regulating the convergence speed of (19) online:

λi,1 = 3.18, λi,2 = 0, ∀i = 1, . . . ,4. (39)
Remark 2. Note that values of λi,1 in (39) can be obtained by
using, e.g., linear search techniques or the bisection algorithm
until Problem 1 becomes unfeasible.

Once the design specifications are defined, two Pólya’s relax-
ation degree d1 = 1 and d2 = 2 are chosen and Problem 1
is solved through (22), (28), (30) and (31) using the SeDuMi
solver (Sturm, 1999) and the YALMIP toolbox (Löfberg, 2004).

5.3 Performance illustration

The closed-loop performance of the designed controller is
tested in a scenario without the presence of external dis-
turbances and under three different saturation limits that re-
main constant during the simulation for illustrative purposes.
To this end, each instantaneous saturation limit is fixed to
σh(t)2 =

{
σ

2
h,0.5(σ

2
h +σ2

h),σ
2
h

}
∀h = 1,2,3 leading to the

frozen values of ϕ = {0,0.5,1} through the relationship (35).
Furthermore, the controlled system is simulated with x(0) =
[0,0,0,0.0524,−0.0349,0.0175]T and xc(0) = 0.

Figs. 1-2 show the closed-loop response of the Euler angles
and the controller states, respectively. Note that in both cases

the fastest closed-loop convergence speed, denoted by a red
line, corresponds to σh(t) = σh implying ϕ = 0. Conversely, it
can be seen that the slowest closed-loop response occurs when
σh(t)→σh, which corresponds to ϕ = 1. This demonstrates the
adaptability of the designed shifting output-feedback controller
regarding the closed-loop convergence speed. Furthermore, it is
also shown that the controller achieves the closed-loop system
stabilization.

Fig. 1. Closed-loop Euler angle responses. (φ = 0 ( ), φ = 0.5
( ) and φ = 1( ).)

Fig. 2. Controller states behaviour. (φ = 0 ( ), φ = 0.5 ( )
and φ = 1( ).)

Finally, Fig. 3 shows the evolution of the control actions over
time for the three frozen values of ϕ where, for illustrative
purposes, the instantaneous saturation limits of each control
signal uh(t) ∀h = 1,2,3 are not plotted. Furthermore, it can be
seen that u(t) remains inside the boundaries established by all
the mentioned values of σ(t).

6. CONCLUSIONS

In this paper, the problem of designing a shifting output-
feedback controller for polytopic LPV systems subject to time-



Fig. 3. Evolution of the control inputs. (φ = 0 ( ), φ = 0.5
( ), φ = 1( ), σ1 = σ2 = {0.885,0.659,0.29}(Nm)
and σ3 = {0.147,0.109,0.048}(Nm).)

varying saturations has been investigated. The design proce-
dure proposed in Ruiz et al. (2019) has been extended to the
output-feedback case through the use of a QLF, the invariant
ellipsoidal theory and the use of the shifting paradigm concept,
thus obtaining a suitable set of LMIs that can be solved via
the available solvers. Furthermore, due to the appearance of
multiple polytopic summations, the Pólya’s relaxation theorem
has been used to reduce the complexity in the design stage.

The results obtained in the illustrative example show that the
guaranteed shifting decay rate performance criterion is satis-
fied by the controller. This controller adapts online the closed-
loop response in sense of convergence speed according to the
saturation limit values of the actuators. Future work will in-
corporate into the proposed method the quadratic boundedness
framework, parameter-dependent QLFs, and robust techniques.
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control: Applications of Pólya’s theorem. Fuzzy Sets and
Systems, 158(24), 2671–2686.

San-Miguel, A., Puig, V., and Alenyà, G. (2021). Distur-
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