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Abstract
Ostwald ripening of gas bubbles is a thermodynamic process for mass transfer, which is 
important for both foam enhanced oil recovery and geological CO2 storage. We present a 
methodology for simulating Ostwald ripening of gas ganglia surrounded by liquid in arbi-
trary pore geometries. The method couples a conservative level set model for capillary-
controlled displacement and a ghost-bubble technique that calculates mass transfer based 
on difference in chemical potentials. The methodology is implemented in a software frame-
work for parallel computations. As a validation of the model, we show that simulations of 
bubble ripening in a pore throat connecting two pore bodies are consistent with previously 
reported trends in similar geometries. Then we investigate the impact of gas type, com-
pressibility factor, and local capillary pressure on gas-bubble ripening in various water-
wet pore geometries. The results confirm that gas solubility and compressibility factor are 
proportional to the rate of mass transfer. Our simulations suggest that Ostwald ripening has 
largest impact in heterogeneous or fractured porous structures where differences in gas-
bubble potentials are high. However, if the liquid separating the gas bubbles is also a dis-
connected phase, which can happen in intermediate-wet porous media, the resulting local 
capillary pressure can limit the coarsening and stabilise smaller bubbles. Finally, we simu-
lated Ostwald ripening on a 3-D pore-space image of sandstone containing a residual gas/
water configuration after imbibition. Characterization of gas-bubble morphology during 
the coarsening shows that large ganglia get more ramified at the expense of small spherical 
ganglia that cease to exist.

Article highlights

•	 A level set approach to Ostwald ripening that handles arbitrary pore geometries and 
gas-ganglia configurations.

•	 The role of a disconnected liquid phase in Ostwald ripening is to stabilize more bubbles 
and prolong bubble lifetime.
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•	 During coarsening in sandstone spherical bubbles dissolve while large ganglia grow 
and develop a more ramified structure.

Keywords  Ostwald ripening · Ghost bubble method · Multiphase level set method · 
Residual trapping · Pore-scale model

1  Introduction

The occurrence of a disconnected gas phase dispersed as bubbles or ganglia surrounded 
by liquid in a confined pore space is inevitable in many natural and engineered multiphase 
flow processes in porous media, such as geologic CO2 storage, underground gas storage, 
and foam injection for enhanced oil recovery (EOR). Safe, permanent CO2 storage seeks 
to maximize the amount of CO2 trapped as ganglia (e.g., Andrew et al. 2014; Niu et al. 
2015), while short-term gas storage benefits from minimal residual gas trapping at the stor-
age site (Pan et al. 2021). Further, the efficiency of foam injection in a reservoir depends 
on gas-bubble-size distribution or foam texture (Hematpur et  al. 2018; Farajzadeh et  al. 
2012). Hence, for all these applications it is of great importance to investigate mechanisms 
that may impact the longevity of spatial gas-bubble configurations in porous media. One 
such mechanism is Ostwald ripening where mass transfer occurs between gas bubbles to 
minimize their pressure differences (e.g., Xu et al. 2017; Garing et al. 2017). In this work, 
we explore various aspects of this phenomenon at the pore scale by coupling a previously 
developed multiphase level set (MLS) method for capillary-controlled displacement (Hel-
land et al. 2019; Jettestuen et al. 2021) with a method to handle gas-bubble interactions at 
reservoir conditions in arbitrary pore geometries.

Ostwald ripening is a phase separation process in which a second phase exists as a dis-
persed phase in a saturated solution where the first phase acts as a solvent (Greenwood 
1956). The driving force for mass transfer is the reduction in interfacial energy. The ripen-
ing process, which was first described for solid–liquid mixtures (Voorhees 1992), tends to 
dissolve smaller units and promote the growth of larger units. Later, many studies on coars-
ening of liquid foams have confirmed that mass transfer occurs from gas bubbles with high 
pressure to bubbles with low pressure (Clark and Blackman 1948; Lemlich 1978; Ranadive 
and Lemlich 1979; Smet et al. 1997; Stevenson 2010). Young–Laplace’s equation, which 
states that the capillary pressure (that is, the pressure difference between a gas bubble 
and surrounding liquid) is inversely proportional to bubble radius, provides a monotonic 
relation between gas-bubble pressure and volume. Thus, variations in gas-bubble pres-
sures lead to growth of large bubbles and shrinkage of small bubbles until they dissolve 
completely.

While Ostwald ripening is well understood for bubbles in bulk liquids, the process is 
more complex in porous media. Challenges are that capillary pressure-volume relations 
for gas ganglia confined by pore walls are non-monotonic and not known a priori, and 
they also depend on the wetting state of the rock (Xu et al. 2017; Mehmani and Xu 2022). 
Therefore, Ostwald ripening in porous media typically leads to stable states with multiple 
ganglia, caused by both bubble coarsening and “anti-coarsening” (that is, growth of small 
bubbles at the expense of large bubbles) (de Chalendar et al. 2017; Xu et al. 2017). Further, 
the mass transfer follows tortuous paths through the pore space, and trapped gas ganglia 
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may also render the surrounding liquid a discontinuous phase which will affect the bubble 
pressures and bubble interactions.

Recent studies have explored implications of Ostwald ripening on the permanency 
of CO2 ganglia in residual (or, capillary) trapping as a mechanism for CO2 storage (de 
Chalendar et  al. 2017; Li et  al. 2020, 2022). Such disconnected ganglia can take many 
irregular shapes and span multiple pores. If Ostwald ripening causes large ganglia to grow 
further, they can get more susceptible to capillary instabilities (e.g., coalescence and split-
ting) and remobilization by viscous pressure differences or gravitational/buoyant effects, 
which ultimately may lead to less CO2 stored by residual trapping. Capillary pressures for 
disconnected gas ganglia, obtained from calculation of interface curvatures on segmented 
microtomography images of two-phase gas/water configurations in porous rocks, generally 
show a wide distribution (Garing et al. 2017; Herring et al. 2017; Li et al. 2018), provid-
ing prime condition for Ostwald ripening. At larger scales and in sandstones with signifi-
cant laminations and sorting difference, the capillary pressure distribution could be even 
broader, and thus the potential for remobilisation by Ostwald ripening could be even more 
significant (Garing et al. 2017). Li et al. (2020) proposed a mathematical model to com-
pare mass transfer through diffusion and mass transfer through Ostwald ripening. They 
concluded that even though gas redistribution by Ostwald ripening is a prolonged process 
at reservoir scale, at millimetre scales, the phenomena can occur at a timescale of days to 
years.

Only a few pore-scale models have been developed to explore Ostwald ripening of two-
phase fluid systems in porous media. de Chalendar et  al. (2017) and Mehmani and Xu 
(2022) presented pore-network models that approximate the pore space as a network of 
interconnected pores with idealized geometry. de Chalendar et  al. (2017) constructed an 
algorithm based on identified diffusion paths between interacting bubbles, while Mehmani 
and Xu (2022) solved a set of mass balance equations for every pore and validated their 
model with micromodel experiments (Xu et al. 2017). Apart from the idealization of pore 
geometry, these studies make a number of assumptions: First, each gas bubble occupies 
only one pore. While this assumption allows calculation of pressure-volume relations for 
the gas bubbles in the pertinent pore geometry as input to the simulations, it excludes pos-
sible capillary instabilities arising from further bubble growth. Second, the liquid phase 
surrounding the gas bubbles is assumed to be continuous and assigned a fixed, uniform 
pressure, and hence all interfaces of a gas bubble will have the same capillary pressure. 
This assumption eradicates pressure interactions with neighbouring phases from the cal-
culations of gas bubble pressures. Such interactions are important when both the gas and 
liquid form disconnected ganglia with different pressures: Mass transfer between two gas 
ganglia is an outcome of their pressure difference, which in turn depend on the pressures of 
surrounding liquid ganglia.

In this work, we propose a new methodology to study Ostwald ripening which couples a 
previously developed multiphase level set (MLS) model for direct simulation of quasi-static, 
capillary-controlled displacement on arbitrary pore geometries (Helland et al. 2019; Jettestuen 
et al. 2021) with a “ghost-bubble” (GB) method that describes mass transfer between gas bub-
bles based on differences in chemical potential. We refer to the coupled approach as the GB-
MLS model. Advantages with level set methods are their natural ability to handle interface 
redistribution and topological changes due to capillary instabilities. Hence, we do not impose 
any constraints on either the pore geometry or the gas/water configuration and allow scenar-
ios where gas ganglia occupy multiple pores. Further, unlike standard level set methods, the 
MLS model has the option to conserve volumes of disconnected ganglia of either one or both 
phases and predict their pressures (Jettestuen et al. 2021). As such, pressure-volume relations 
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for gas bubbles are calculated naturally during interface evolution, accounting for scenarios 
where the presence of surrounding liquid ganglia with different pressures impacts the gas bub-
ble pressures. Finally, we have implemented three equation of states (EoS) to assess the effect 
of gas type and gas compressibility factor on coarsening in porous media at reservoir condi-
tions. Based on gas bubble pressures, the model computes the gas compressibility factor of 
each isolated gas bubble during evolution.

The paper is organized as follows: Sect.  2 provides a brief description of fundamentals 
required to study Ostwald ripening, and Sect. 3 describes the GB-MLS method and algorithm. 
Section 4 applies the GB-MLS model to different porous geometries and fluid configurations. 
First, we show that the model captures the expected behavior for bubble coarsening in bulk 
liquids in the absence of porous media. Second, we show that ripening simulations in a pore 
throat connecting two pore bodies occupied by gas bubbles are consistent with the results de 
Chalendar et al. (2017) obtained in a similar geometry. Third, we use our model to investigate 
the impact of EoS, gas type, and gas compressibility factor, on simulations of ripening in a 2D 
micromodel with a pore-scale heterogeneity. Then, we perform simulations on a gas-bubble 
configuration in a sinusoidal pore channel to demonstrate how coarsening behavior changes 
when the surrounding liquid is modelled as a disconnected phase rather than as a connected 
phase. Finally, we apply the GB-MLS model directly on a segmented microtomography image 
of water-wet sandstone to explore the significance of Ostwald ripening on a residual gas/water 
configuration after imbibition. Section 5 gives the conclusions from our work.

2 � Theory

In bulk gas-liquid systems, Ostwald ripening is a diffusive interaction mechanism that leads 
to the growth of larger clusters at the expense of smaller clusters based on their pressure dif-
ference. The rate of the diffusive mass transfer depends on the properties of both gas and liq-
uid. For example, the diffusive transfer rate is higher for a lighter gas molecule than for a 
heavier gas molecule (as follows from Graham’s law). Alternatively, higher solubility can lead 
to faster mass transfer by providing a higher concentration gradient for a similar capillary pres-
sure difference. The (partial) pressure in a gas bubble, Pg [Pa], affects the mass fraction X of 
gas species dissolved in the continuous phase next to the bubble, according to Henry’s law:

where H [Pa m3 mol−1 ] is Henry’s constant.
Capillary pressure Pc , which is the pressure difference between gas (g) and liquid (l), is 

related to interface curvature by Young–Laplace’s equation:

Here, Pg and Pl are the phase pressures, �gl is the gas/liquid interfacial tension, rgl,1 and rgl,2 
are the principal radii of curvature, and �gl is the interface curvature. Thus, for known Pl 
and Pc we can calculate gas bubble pressure Pg.

Instead of being regarded as a direct bubble-to-bubble interaction, the mass transfer pro-
cess can be considered as a two-step process (Lemlich 1978): First, gas diffuses from the 
bubbles into the surrounding liquid, followed by the second step of mass transfer from the 

(1)X =
Pg

H
,

(2)Pc = Pg − Pl = �gl

(
1

rgl,1
+

1

rgl,2

)
= �gl�gl .
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liquid to the gas. The mass transfer rate is then derived from a general rate equation (Lem-
lich 1978):

where n is the number of moles of gas in a bubble, t (s) is time, J (mol s kg−1 m −1 ) is the 
effective permeability for the mass transfer, A (m2) is the gas/liquid interfacial area through 
which the mass transfer occurs, and ΔP  (Pa) is the pressure difference between the gas 
bubble and a fictitious gas bubble (or, ghost bubble) representing the surrounding liquid 
region. The ghost bubble pressure is related to gas concentration in liquid through Henry’s 
law. The pressure difference ΔP can be derived from the Young–Laplace equation and is 
given as

where � is the ghost bubble radius and r is the gas bubble radius.
In literature, Ostwald ripening for gas bubble systems is generally studied as a process 

driven by the bubble pressure difference (Lemlich 1978; de Chalendar et al. 2017; Xu et al. 
2017; Li et al. 2020; Mehmani and Xu 2022). It is described as an effort by the system to 
decrease its internal energy (Voorhees 1992). In the absence of elastic stress, the total inter-
face area must be reduced spontaneously to reach thermodynamic equilibrium. At constant 
pressure P and temperature T, spontaneous changes to reach thermodynamic equilibrium 
reduce Gibbs free energy (Castellan 1983). The change in Gibbs free energy, G, per unit 
mole of substance i, ni , defines chemical potential, �i:

Chemical potential is an intensive property of a system. In case of potential difference 
between two gas bubbles, the spontaneous process will lead to the transfer of matter from 
higher potential to lower potential (Castellan 1983). The chemical potential in a system 
containing only one chemical species is given by the molar Gibbs free energy,

For real gases, the chemical potential is calculated as Castellan (1983)

where μstd is the chemical potential of the pure gas at standard pressure (typically 
Pstd ∼ 101, 325 Pa), R (8.314 J mol−1 K −1 ) is the universal gas constant, and f is the fugac-
ity. The methodology for calculating fugacity using Soave–Redlich–Kwong (SRK) and 
Van der Waals’ (VdW) equation of state is described in Supplementary information. In the 
case of ideal gases, fugacity is replaced by pressure P (Castellan 1983):

(3)
dn

dt
= −JAΔP,

(4)ΔP = 2�gl

(
1

�
−

1

r

)
,

(5)�i =

(
�G

�ni

)

T ,P,nj≠i
.

(6)� =
G

n
.

(7)� = �std + RT ln f ,

(8)� = �std + RT ln
P

Pstd

.
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3 � Methodology

3.1 � Ghost bubble method

de Vries (1958) carried out experimental investigations on foam to study the effect of gas 
diffusion on foam stability. Lemlich (1978) used this data to formulate an Ostwald ripening 
model using the concept of an imaginary ghost bubble to represent the liquid in its interac-
tion with the gas bubbles. Here, we adopt a similar approach that we refer to as the “ghost 
bubble” (GB) method. We describe the GB method for a real gas; however, the method can 
be used for an ideal gas by replacing fugacity with pressure. The GB approach quantifies 
the relative net mass transfer between gas bubbles at different chemical potentials toward a 
state of thermodynamic equilibrium. The purpose of a ghost bubble is to provide a relative 
measure of net mass transfer from a bubble with high chemical potential to one with lower 
chemical potential through a liquid region. The ghost bubble (denoted by subscript 0) is 
defined so that its pressure P0 and chemical potential μ0 represent the stable state for the 
gas bubbles connected to the liquid region at a particular time step.

The GB method makes the following assumptions: (i) The interface readjustment is 
instantaneous in comparison to the diffusive transfer. This is similar to the assumption 
made by de Chalendar et al. (2017). (ii) If a liquid droplet (or region) contacts only one 
gas bubble, they are in mutual equilibrium with equal chemical potentials. In case of any 
changes in the chemical potentials of neighbouring ganglia, the chemical potential of the 
liquid droplet changes spontaneously to adapt to the new chemical potential equilibrium 
(Castellan 1983). (iii) The mass transfer occurs due to chemical potential difference across 
the liquid region boundary. Here, we consider mass transfer only through bulk liquid 
regions. (iv) Two gas bubbles interact with each other only if a path can be found between 
them that does not include another gas bubble (de Chalendar et al. 2017). (v) There is no 
mass accumulation or loss (dissolution) from gas bubbles to the liquid during Ostwald rip-
ening, instead the liquid region acts as a path for mass transfer between two or more bub-
bles. (vi) Reservoir temperature is above the critical temperature of the gas. This assump-
tion ensures that the chemical species is in one phase, i.e., gas or supercritical fluid, and 
prevents phase change calculations.

Regarding assumption (v), experimental studies on CO2 solubility in water over tem-
peratures ranging from 4.5 to 175 ◦ C and pressures ranging from 1.5 to 18 MPa suggest 
that the binary fluid system reaches solubility equilibrium in a timescale of orders of hours 
(Ma et al. 2017; Hou et al. 2013; Prutton and Savage 1945; Wiebe and Gaddy 1939). Simi-
larly, studies with CH4 and water also reported a solubility equilibrium timescale of hours 
to weeks (Serra et al. 2006; Blount and Price 1982). Generally, the contact area to volume 
ratio at the pore scale is higher than in the aforementioned experiments. So, a smaller time 
interval should be expected at the pore scale in the subsurface environment for the water 
surrounded by gas bubbles to get saturated with the gas phase and for assumption (v) to be 
valid.

We begin by writing the general rate equation of Lemlich (1978) (Eq. (3)) in terms of 
chemical potential difference between a gas bubble and ghost bubble, Δ� = �i − �0 . The 
molar flow rate from neighbouring gas bubbles to bubble i through a liquid region l is

(9)
�ni,l

�t
= −J�AΔ� = klΔ� ,
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where kl is the proportionality parameter, J′ the effective phase permeability, and A is the 
gas/liquid interfacial area through which mass transfer takes place. The negative sign in 
Eq.  (9) indicates mass transfer direction from higher to lower potential. Now, in case of 
only two bubbles, this mass transfer rate is equal to the mass loss rate from one bubble j 
and mass gain rate by the other bubble i:

As there is no mass accumulation in the liquid, ni,l = −nj,l is the mass transferred from bub-
ble j to bubble i through the liquid region l. Using Eq. (7), the potential difference between 
gas bubble i and the ghost bubble is

Combining Eqs. (10) and (11) gives

For an intermediate liquid region in direct contact with N gas bubbles, the total mass trans-
fer at any time instance t′ is zero. Hence,

The above equation leads to the following expressions for the ghost bubble parameters (see 
derivations in “Appendix 1”). Ghost-bubble fugacity (in case of real gas) is

whereas ghost-bubble pressure (in case of ideal gas) is

In the case of mass accumulation in the liquid, the right-hand side of Eq. (13) will not be 
zero. Instead, it will equal the average rate at which the gas concentration in the liquid 
increases due to gas dissolution from bubbles surrounding it. The ghost bubble fugacity (or 
pressure) predicted from Eq. (14) (or Eq. (15)) will need to be reduced to accommodate the 
additional dissolution of gas in the liquid phase.

The effective phase permeability, J′ , sets the timescale of our simulations, and it can 
be determined from experiments. We have derived a value through dimensional analysis 
for our model. Micromodel experiments from Xu et al. (2017) suggest that the timescale 
of ripening at the pore scale is in hours. The effective phase permeability coefficient 
used in this work is (see dimensional analysis in “Appendix 2”):

(10)
�ni,l

�t
= kl,i(�i − �0) = kl,j(�0 − �j).

(11)(�i − �0) = (�std + RT ln fi) − (�std + RT ln f0) = RT ln
fi

f0
.

(12)
�ni,l

�t
= kl × (RT)

(
ln

fi

f0

)
.

(13)
N∑

i=1

(
�ni,l

�t

)

t�

=

N∑

i=1

(
kl
(
�i − �0

))
t�
= 0.

(14)f0 =

N�

i=1

�
f

Ai∑
Ai

i

�

t�

,

(15)P0 =

N�

i=1

�
P

Ai∑
Ai

i

�

t�

.
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where s (mol m −3 ) is the solubility of the gas in the liquid phase, H (Pa m 3 mol−1 ) is Hen-
ry’s constant, and M (kg mol−1 ) is the molar mass.

For real gases, Eqs. (12), (14), and (16) describe the mass transfer at each time step. In 
the case of ideal gas, we replace fugacity with pressure in Eq. (12) and use Eq. (15) instead 
of Eq. (14). The change in gas/water configuration caused by the mass transfer, including 
phase pressures of disconnected ganglia, is calculated using the MLS model (Helland et al. 
2019; Jettestuen et al. 2021), which we describe in the next section.

3.2 � Multiphase level set method

The level set method is a subgrid-scale interface tracking method in which the zero contour 
of a signed distance function � describes the fluid/fluid interfaces implicitly (Osher and 
Fedkiw 2003). The method has previously been used to simulate curvature-driven flows 
like two-phase capillary-controlled displacement in porous media at different wetting states 
(Prodanović and Bryant 2006; Jettestuen et  al. 2013). The multiphase level set (MLS) 
method (Helland et al. 2019; Jettestuen et al. 2021) extends this approach further to handle 
interactions in porous media between two or more fluids, using one level set function �� for 
each fluid phase � . Another static level set function � describes the pore/solid geometry, 
so that � = 0 represents the pore walls. Then, the pore space occupied by the fluids (in our 
case, a two-phase gas/liquid system) is defined as:

where Ω is the computational domain. While it is sufficient to use a single level set func-
tion to describe interfaces in two-phase systems, imposing local volume conservation on 
isolated ganglia of both phases still requires a phase-by-phase approach (Jettestuen et al. 
2021). Therefore, in this work we proceed with the MLS method for Ostwald ripening 
investigations in the gas/liquid system. This also allows for further development to investi-
gate ripening in the presence of a third phase which is a planned future work.

In the MLS method, each fluid phase has its surface tension �� , phase pressure P� , and 
solid/fluid interaction angle �� (see Fig. 1). The surface tensions are defined from the inter-
facial tension as

The effect of rock wettability is handled by the solid/fluid interaction angles �� and the sur-
face tensions �� , which Young’s equation relates to the contact angle �gl (measured through 
the liquid phase) as follows Helland et al. (2019):

Here, ��⃗�l = ∇𝜙l∕|∇𝜙l| and ��⃗�s = ∇𝜓∕|∇𝜓| are unit normal vectors of the liquid and pore/
solid level sets, respectively, see Fig. 1.

The evolution equations for the MLS method are derived by energy minimization and 
then parameterising the solutions in a fictitious iteration time � (Helland et al. 2019):

(16)J� = s

√
H

M
,

(17)Ω𝛼 = {x⃗ ∈ Ω ∶ 𝜙𝛼(x⃗) < 0 and 𝜓(x⃗) > 0}, 𝛼 = g, l,

(18)�gl = �g + �l.

(19)cos 𝜃gl = ��⃗�l ⋅ ��⃗�s =
𝛾l cos 𝛽l − 𝛾g cos 𝛽g

𝛾l + 𝛾g
.
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In Eq.  (20), a sharp Heaviside function H separates the velocity for capillary-controlled 
displacement in the pore space from the velocity which forms the contact angle on the pore 
walls and in solid. Further, �� = ∇ ⋅

(
∇��∕|∇��|

)
 is a scalar curvature field for the level 

sets �� , Δx is grid spacing, and S(�) is a sign function given by

Note that the level set Eq. (20) for the gas and liquid phases are uncoupled. Hence, during 
evolution, the zero contours of �g and �l may develop overlap or void regions. We solve 
this problem by performing the projection step from Losasso et  al. (2006) at the end of 
each iteration step Δ� . In our two-phase system, the projection step simply updates the 
level set functions everywhere as 𝜙̄g = (𝜙g − 𝜙l)∕2 and 𝜙̄l = −𝜙̄g . This sews the level sets 
together (see Fig. 1) and ensures that the steady-state solution for capillary equilibrium sat-
isfies Young–Laplace’s Eq. (2) (where �gl = �g = −�l ) and Young’s Eq. (19) for the con-
tact angle (Helland et al. 2019).

A drawback with level set methods is their need for explicit conservation, which is espe-
cially important when dealing with fluid flow in porous media. Jettestuen et  al. (2021) 
included volume conservation of isolated fluid ganglia (accounting for splitting and merging) 
in the MLS method by updating their pressures in Eq. (20) to prevent volume changes. The 
pressure of an isolated ganglion i of phase � at iteration time � , subjected to local volume con-
servation, is calculated as Saye and Sethian (2011):

Here, V�,i(0) is the initial or original ganglion volume, while V (�)

�,i
 and A(�)

�,i
 are the calculated 

ganglion volume and surface area at iteration time � . The method has the option to enforce 

(20)
(��)� + H(�)

(
P� − ����

)
|∇��|

+
H(−�)

Δx
S(�)��

(
∇�� ⋅ ∇� − cos ��|∇��||∇�|

)
= 0, � = g, l.

(21)
S(�) =

�
√

�2 + |∇�|2(Δx)2
.

(22)P�,i(�) =
V�,i

(0) − V�,i
(�)

A
(�)

�,i
Δ�

.

Fig. 1   Illustration of the MLS method for a fluid/fluid interface in a pore geometry, before (left image) and 
after (right image) executing the projection step of Losasso et al. (2006)
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conservation on either one or both phases. It can also distinguish between connected and 
disconnected parts of the phases by specifying a pressure to the connected part (which con-
tacts inlet or outlet boundaries of the computational domain and is not conserved), while 
Eq. (22) calculates the pressures in the conserved disconnected parts.

The volume and surface area of the fluid phases are

and

respectively. Here, H� is a smoothed Heaviside function, �� is a smoothed delta function, 
and � = 1.5 × Δx is the smoothening parameter. In two-phase systems, the interfacial area 
between gas and liquid is given by Eq. (24), or alternatively, by Agl = (Ag + Al)∕2.

The method uses non-dimensional parameters for pressure, surface tension and length 
(P, � , and L), which are derived from the input parameters ( Pactual , �actual , and Lactual ), and 
a set of characteristic parameters ( P∗ , �∗ , and L∗ ) for the physical problem at hand. Thus,

During evolution, the level set functions �� get distorted and require repeated reinitialisa-
tion to maintain their signed distance nature. The reinitialisation is carried out using the 
following equation (Osher and Fedkiw 2003):

where S(�) is given by Eq. (21).

3.3 � Combined GB‑MLS method: Algorithm

This section describes the complete algorithm of the GB-MLS method for investigating 
mass transfer and evolution of gas ganglia driven by Ostwald ripening. Figure  2 shows 
a flowchart of the complete process. Following de Chalendar et  al. (2017), the method 
assumes the interface adjustment is instantaneous, and hence only the mass transfer con-
tributes to the time development. The different steps in the GB-MLS method are as follows 
(with reference to Fig. 2):

Step 1: The method takes the following as input: (i) Temperature T and pressure P that 
describe the reservoir conditions, and gas properties required to solve the EoS (molar 
mass M, acentric factor � , critical pressure Pcrit and critical temperature Tcrit ); (ii) inter-
facial tension �gl and contact angle �gl from which we determine �� and �� , � = g, l , using 
Eqs. (18) and (19); and (iii) binary image data of the pore geometry and fluid locations.

Step 2: We calculate the signed distance functions � , �g , and �l , using Eq.  (26). In 
addition, pressures Pg and Pl are assigned for any connected parts of the phases. Then, 
following Jettestuen et al. (2021), we identify any isolated ganglia of the conserved phase, 
calculate their initial pressure, volume, and surface area, using Eqs. (22), (23), and (24).

Step 3: Use Eq. (20) to evolve the level set functions �� forward one iteration-time step 
Δ� and enforce the projection step of Losasso et al. (2006). Periodically reinitialise �� to 

(23)V� = ∫Ω

H�(�)H�(−��)dV , � = g, l,

(24)A� = ∫Ω

H�(�)��(��)|∇��|dV , � = g, l,

(25)L =
Lactual

L∗
, � =

�actual

�∗
, P =

Pactual

P∗
, and P∗ =

�∗

L∗
.

(26)�� + S(�)(|∇�| − 1) = 0,
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Fig. 2   GB-MLS methodology 
for determining gas/liquid inter-
face evolution due to Ostwald 
ripening. The workflow shows 
GB method steps (green), MLS 
method steps (orange), decision 
boxes (red), and numbers in 
circles that provide a reference to 
each step
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signed distance functions using Eq. (26). In Eq. (20), we approximate normal and advec-
tive velocity terms using a weighted essentially non-oscillatory (WENO) scheme with 
appropriate upwinding techniques (Osher and Fedkiw 2003), while we approximate area 
and curvature terms with central differences. The iteration-time discretisation uses a third-
order Runge–Kutta method with time step determined from a standard Courant–Friedre-
ichs–Levy (CFL) condition (Osher and Fedkiw 2003).

Step 4: Redistribute volumes of isolated domains and allocate pressures to them (see 
Jettestuen et al. (2021)).

Step D1: Check if the fluid system has reached an equilibrium state based on conver-
gence criteria for �� (Jettestuen et al. 2021):

where we use c = 0.001 and � = 1.5x , and n and m are the two last iteration steps where 
reinitialisation of level set functions �� occurred.

Step 5: Based on Eqs. (22), (23), and (24), provide the pressure, volume, and interfacial 
area, respectively, of all isolated gas and liquid domains for the capillary-equilibrium state 
achieved with the MLS method. The GB method exploits these data further.

Step 6: For each liquid region (which we represent by a ghost bubble region), generate a 
list of all neighbouring gas ganglia. The neighbourhood identification finds the location of 
interfaces shared by the different gas ganglia and the ghost bubble region, from which we 
calculate the area of each interface separately, which is required by Eq. (14) (or, Eq. (15)) 
(see also “Appendix 1”).

Step 7: For real gases, calculate the fugacities (and compressibility factors) of all gas 
ganglia based on their pressures, using VdW or SRK EoS (see Supplementary informa-
tion). Then, use these fugacities together with the neighbourhood lists to calculate the 
fugacity of ghost-bubble regions with Eq.  (14). In case of ideal gas, we calculate the 
pressures of ghost-bubble regions with Eq.  (15) using the pressures of neighbouring gas 
ganglia.

Step 8: Calculate the mass transfer Δni,l between each gas bubble i and the surround-
ing liquid region l for a particular timestep Δt by converting Eq. (12) to a finite difference 
equation:

In case of ideal gas, we replace fugacity with pressure in Eq. (28). This net mass transfer 
can be positive or negative to indicate mass loss or mass gain for a particular gas bubble 
through the liquid. If a particular gas bubble i is in contact with Nl different liquid ganglia, 
we calculate the mass evolution of the bubble by

where ni is the mass of the bubble, superscript b and a represent the next and current itera-
tive time, respectively, and 

∑Nl

l=1
Δni,l is the mass transfer from the gas bubble in timestep 

Δt . We calculate Δt by setting a threshold for the maximum gas bubble volume change 
per time step equal to 2 to 10 grid cells for the 2D geometries and 10 grid cells for the 3D 
geometry.

(27)max
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Step 9: Update the original volume of each isolated gas bubble, V (0)

g,i
 in Eq. (22), before 

progressing the multiphase system toward the next capillary equilibrium state with the 
MLS method. As chemical potential of a gas is pressure-dependent, we assume in the 
numerical scheme that the pressure is constant for small changes in volume.

Step D2: After each timestep Δt of the GB method, check if the Ostwald ripening pro-
cess has reached a steady state based on the difference between highest and lowest dimen-
sionless gas-bubble pressures in the system:

where � is an error threshold. In this work, we use � = 0.001 for 2D geometries and 
� = 0.05 for the 3D geometry.

As for the MLS method (Helland et al. 2019), we have implemented the combined GB-
MLS code within SAMRAI, which is a software framework that enables parallel simula-
tions using patch-based data structures (Hornung and Kohn 2002; Hornung et  al. 2006; 
Anderson et al. 2013).

A challenge with the GB-MLS method is that the bubble distribution evolution can have 
a cyclic mass transfer during simulation. When a discrete amount of mass transfer from 
one bubble to another reverses the direction of mass transfer for the next step, we refer 
to it as “cyclic mass transfer”. It is also possible that more than two bubbles participate 
in cyclic mass transfer that leads to gas bubble pressure fluctuations in the vicinity of the 
stable state. Error tolerance values, computational errors, and sharp changes in pore geom-
etry or interface curvatures can cause cyclic mass transfers. Since our method is developed 
to work on any pore geometry, we cannot have an a priori method to control cyclic mass 
transfer. So in our model, we characterize a particular bubble distribution by the minimum, 
maximum and average bubble pressures, and the number of bubbles. If we find a similar 
bubble distribution among the last 10 GB-MLS iterations, we consider the mass transfer 
to be cyclic, and terminate the simulation. Cyclic mass transfer is linked to the maximum 
volume-change threshold set to determine Δt , and a very high threshold can significantly 
impact the results. Conversely, a higher � in Eq. (30) lowers the possibility of cyclic mass 
transfer at the cost of accuracy.

4 � Results and Discussion

We apply the GB-MLS method to investigate the impact of Ostwald ripening on gas-bub-
ble configurations in different porous medium geometries for different physical conditions. 
After investigating the behavior through several 2D numerical examples, we apply the 
method to evaluate the significance of Ostwald ripening on a residual gas/water configura-
tion in a 3D segmented image of sandstone.

4.1 � Bubble interactions in bulk liquid

We begin by simulating the interaction of gas bubbles in the absence of porous media. For 
this purpose, we consider an initial configuration of five CO2 bubbles with radii 7, 8, 9, 10, 
and 12 μ m separated by CO2-saturated water in a 2D spatial domain of size 1.2L∗×1.1L∗ m2 , 
see Fig. 3. The characteristic parameters are set to L∗ = 10−4 m and �∗ = 10−1 N m −1 , which 
gives P∗ = 1 kPa. We assume reservoir conditions with P = 15 MPa and T = 323.15 K, for 

(30)max
i
{Pg,i(t)} −min

i
{Pg,i(t)} < 𝜀,
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which CO2 is a supercritical fluid, the CO2/water interfacial tension is �gl = 32.6 × 10−3 N 
m −1 , and Henry’s constant for CO2 is H = 7.57 × 10−5 mol m −3 Pa−1 (de Chalendar et al. 
2017). In the MLS method, grid spacing is Δx = 0.01 . Further, we use reflective boundary 
conditions and reinitialise the level set functions �� , � = g, l , to signed distance functions 
every 10 iterations. In the ghost bubble method, we use SRK EoS to solve for CO2 fugacity 
and compressibility factor at every timestep. Figure 3 depicts the bubble evolution toward 
equilibrium. As expected, growth of larger bubbles occurs at the expense of smaller bub-
bles until only the largest bubble (with lowest capillary pressure) exists in the system. Note 
also that the location of the bubble centres remain stationary during the growth.

The evolution of bubble radii over time, as shown in Fig.  4, highlights some impor-
tant points. First, the bubbles disappear in the order of their sizes (Clark and Blackman 
1948). Second, mass transfer rate increases with bubble-size differences. We observe this 
from the radius evolution when the system consists of only two bubbles: The radius of the 
smaller bubble decreases at an increasing rate, leading to a convex trend in the curve for 
the shrinking bubble. Conversely, the rate of coarsening decreases when the bubble sizes 
come closer, which has also been observed for bubble-size distributions in foam (Lem-
lich 1978). Third, the second largest bubble does not decrease in size right from the start. 
Instead, it grows as the mass gain from smaller bubbles is larger than the mass loss to the 
bigger bubble. With time this imbalance turns and the size of the bubble starts decreasing. 
This instantaneous nature of growth and reduction is similar to those reported by Lifshitz 
and Slyozov (1961) for grain growth in solid solutions. This reversal shows that the bubble 
cluster responds to its immediate environment without preexisting knowledge of the future 
stable state.

4.2 � Bubble‑pair interactions in a 2D pore‑throat/pore‑body geometry

We proceed by investigating different scenarios for Ostwald ripening that can occur when 
two gas bubbles confined in a pore geometry are in capillary equilibrium with different 
pressures (or, interface radii) initially. For this purpose, we will simulate the scenarios that 
de Chalendar et al. (2017) explored with a typical pore-network model geometry composed 

Fig. 3   Evolution of five CO2 bubbles in bulk water. The bubbles are coloured orange, cyan, red, green, and 
black in order of increasing size, and water is shown in dark-blue colour
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of a 3D converging/diverging pore throat (filled with water) connected by two pore bodies 
containing CO2 bubbles. They identified four scenarios: Mass transfer from small to large 
bubble (case 1); mass transfer from large to small bubble (case 2); mass transfer leading to 
increased interface radii of both bubbles (case 3); and mass transfer leading to decreased 
interface radii of both bubbles (case 4). We explore these cases with the GB-MLS method 
in a similar 2D pore geometry, as shown in Fig.  5. The size of the spatial domain is 
2.1L∗×0.9L∗ m2 . We use brine/CO2 contact angle of �gl = 7.28◦ , while all other input and 
simulation parameters, as well as EoS, are the same as in the previous subsection.

Figure  6 shows the initial and final equilibrium states from GB-MLS simulations of 
the four cases, as well as the corresponding interface radius evolution of the two gas bub-
bles. The results are consistent with those reported by de Chalendar et al. (2017). In case 
1 the bubbles interact through bulk liquid without contacting the pore walls, and hence 
they exhibit the same behavior as described in the previous subsection. Case 2 describes 
a scenario where the pore geometry confines both bubbles, so that the large bubble has 
lower interface radius (or, higher pressure) than the small bubble. Thus, Ostwald ripening 
causes the larger bubble to retract from the pore throat while the smaller bubble ingresses 
until their interface radii are equal, leading to bubble “anti-coarsening” (de Chalendar et al. 
2017; Xu et al. 2017).

In case 3 and 4, the pore geometry confines the large bubble while water completely 
surrounds the small bubble. Case 3 is another example of “anti-coarsening” as the small 
bubble has highest interface radius so that mass transfers from the large bubble to the small 
bubble. This causes the large bubble to retract from the pore throat and the small bub-
ble to expand freely, accompanied by a substantial increase of the large-bubble interface 
radius and a modest increase of the small-bubble interface radius. In case 4, the situa-
tion is reversed as the small bubble completely surrounded by water has lowest interface 
radius. This leads to a mass transfer from the small bubble, which forces the large bubble 
deeper into the pore throat. The interface radii of both bubbles decrease with time until 
they become equal. Note that the mass transfer is least in case 4 since the initial difference 

Fig. 4   Bubble radii normalized by stable-state radius of the remaining bubble as a function of time nor-
malized by stable-state time for the simulation of CO2-bubble coarsening in bulk water. The colour of the 
curves corresponds to the colour of the bubbles in Fig. 3
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between the bubble radii is minimal. Cases 2, 3, and 4, all emphasize the potential impact 
of porous media on gas-bubble ripening, as both bubbles co-exist at the stable state with 
equal interface radii. In all cases, the rate of evolution reduces with time as the bubble radii 
come closer. This leads to a convex trend in the radius-evolution curves from the GB-MLS 
model.

4.3 � Bubble interactions in a 2D micromodel with permeable channels

We construct a 2D micromodel with two high-permeable channels to investigate the impact 
of pore-space heterogeneity, gas type and EoS, on gas-bubble interactions at reservoir con-
ditions in porous media. The size of the micromodel is 3.84L∗×2.80L∗ m2 and it consists 
of square grains separated by pore space, see Fig. 7. The width of the regular pore channels 
is 8 μ m, while the width of the two vertical, high-permeable channels in the middle of the 
micromodel is 16 μ m. The micromodel reflects a conducive environment for gas trapping. 
We place 15 gas bubbles with volumes (area in 2D) ranging from 501.88 to 971.22 μm2 
inside the regular pore space and one large bubble with volume 1530.65 μm2 in the middle 
of the two high-permeable channels, see Fig. 7. Brine saturated with gas species occupies 
the surrounding pore space. In the GB-MLS method, we use the same input and simulation 
parameters as before, except that we now consider a slightly different reservoir condition 
( P = 15 MPa and T = 333.15 K) and investigate the impact of gas type (CO2, CH4, and N2) 
and EoS. Interfacial tensions for these fluid systems are as follows: �gl = 32.6 × 10−3 N m −1 
(brine/CO2) (de Chalendar et al. 2017), �gl = 60 × 10−3 N m −1 (brine/CH4) (Shariat 2014), 
and �gl = 60.636 × 10−3 N m −1 (brine/N2) (Chow et al. 2016). These data were measured 
at slightly different temperatures where the variations of interfacial tensions are small and 
negligible (Chiquet et  al. 2007; Shariat 2014; Chow et  al. 2016). Henry’s constants for 
CO2, CH4, and N2 at T = 333.15 K were calculated as H = 1.1417 × 10−4 , 4.048 × 10−6 , 
and 7.9667 × 10−6 mol m-3 Pa−1 , respectively, using relations from Sander (2015). We set 
the contact angle to �gl = 7.28◦ in all cases.

The large bubble present in the high-permeable channels will grow during coarsening 
of this system as it has the lowest gas-bubble pressure (chemical potential) among all 
bubbles. Therefore, we end the simulations when the large bubble spans the entire chan-
nel length. Figure  7 depicts the gas-bubble evolution for the brine/CO2 system, using 
SRK EoS: Image (i) shows the initial capillary equilibrium state for the trapped gas 

Fig. 5   Illustration of the pore geometry used to explore interaction between two bubbles confined by pore 
walls (pore space in cyan, and solid space in orange). Circles of equal radius represent the pore bodies 
where gas bubbles are present, while four equal truncated triangles form a symmetrical pore throat where 
water is present
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bubbles, while images (ii)-(vi) show the growth of the large bubble and the correspond-
ing depletion of the other bubbles, leaving 13 tiny bubbles left in the pore space (image 
(vi)). The bubble interactions occur similarly for the other fluid systems and EoS, how-
ever, the mass transfer rates are different.

Fig. 6   Interaction of two gas bubbles (green) surrounded by brine (blue) in a pore geometry, as simulated 
with GB-MLS model: a Initial configuration, b evolution of normalized radius with respect to normalized 
time for bubble in left (red) and right (blue) pore body, and c final configuration
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Figure 8a shows volume evolution of the large bubble over time for the different gases 
and EoS. The evolution is nearly linear and misses the typical convex shape observed in the 
other numerical examples. This is because the pressure difference between the large bubble 
and the smaller bubbles in this micromodel geometry remains nearly similar throughout 
the simulation. Capillary pressure fluctuations due to interface movement between narrow 
pore throats and wider pore regions occur for different bubbles at different timesteps. Yet, 
the cumulative effect of these variations on the mass transfer rate is small, as seen by the 
nearly linear growth of large bubble volume in Fig. 8.

As expected, the ideal gas law overpredicts the rate of coarsening for CH4 and CO2, 
whereas SRK and VdW EoS predict longer coarsening times. The different predictions of 
coarsening rate can be attributed to different gas compressibility factors Z calculated with 
the three EoS. For the initial gas-bubble distribution (see Table 1) the range of calculated 
Z deviates significantly from unity for CO2 because system temperature and pressure are 
close to the critical point of CO2. When comparing Table 1 with Fig. 8a, we observe that 
the EoS which yields lower compressibility factor predicts a longer coarsening time for 
the large bubble. This is intuitive since gas compressibility factor is a measure of devia-
tion from ideal gas behaviour: When Z < 1 , attractive forces dominate, which corresponds 
to lower molar volume and longer time to transfer a given volume. On the other hand, 
when Z > 1 , the calculated rate of volume change is higher for real gas than ideal gas (as 
observed for N2 with SRK EoS).

Figure 8a also shows that the growth rate is highest for CO2 and lowest for N2. Zeng 
et  al. (2016) made similar observations while experimenting with CO2, CH4, N2, and 
their binary mixture foams. They observed that foam strength depends on gas solubility 
in the liquid phase and found that the N2-foam was strongest and the CO2-foam weakest. 
In our model the solubility (at T = 15 MPa) of CO2, CH4, and N2, is 2124.87 mol m −3 , 
119.50 mol m −3 , and 60.72 mol m −3 , respectively. Figure 8a shows that the growth rates for 
the gases are similarly separated, with the rate for CH4 being closer to N2 than CO2.

Fig. 7   Evolution of gas bubble coarsening in a 2D micromodel, as simulated with the GB-MLS model for 
the brine/CO2 fluid system and SRK EoS. The micromodel contains two permeable channels (spanning ver-
tically from top to bottom boundaries), with tighter porous space on the left and right sides. The figure 
shows CO2 (green), saturated brine (blue), and solid grains (brown)
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Fig. 8   Evolution of the large gas bubble over time from GB-MLS simulations on the micromodel using dif-
ferent gas types and EoS. The curves show the volume of the large bubble (normalized with its maximum 
volume) as a function of time. a Time normalized with total time from simulation of the brine/CO2 system 
using ideal gas equation. b Time normalized with the total time for stability in each simulation

Table 1   Range of gas 
compressibility factor Z for the 
initial gas-bubble distribution in 
the micromodel, using different 
gas types and EoS

Gas type Ideal gas 
equation

SRK equation VdW equation

CO2 1 0.458791–0.458799 0.46207–0.462126
N2 1 1.06018–1.06022 0.997436–0.997466
CH4 1 0.915803–0.915806 0.848441–0.848444
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In Fig.  8b, we transform Fig.  8a by non-dimensionalizing the time by the total time 
required for the large bubble to span the channel in each simulation. Figure 8b shows that, 
when time is rescaled in this manner, the bubble evolution follows a unique curve for all 
the cases (deviations are within 2.5%), irrespective of gas type and compressibility factor.

4.4 � Bubble interactions in a pore channel with disconnected liquid ganglia

Thus far we have investigated Ostwald ripening of gas bubbles in porous media by assum-
ing the surrounding liquid is a continuous wetting phase with constant pressure. This can 
be a reasonable assumption under strongly wetting states where the liquid maintains con-
nectivity across gas bubbles through wetting films along the pore walls (Blunt 2017). How-
ever, at less wetting states, or if the wetting films rupture, both gas and liquid form dis-
connected ganglia with different pressures. During Ostwald ripening, any growth or decay 
of gas bubbles will pressurize or depressurize the surrounding liquid ganglia. Hence, the 
interfaces between a gas bubble and different liquid ganglia will generally have different 
curvatures or capillary pressures.

We explore the impact of a disconnected liquid phase on bubble coarsening using a 2D 
sinusoidal pore-channel geometry of size 2.65L∗×0.7L∗ μm2 , see Fig. 9. In dimensionless 
variables, the pore space Ωp is defined as:

where

Initially, the pore channel contains three gas bubbles separated by saturated brine. As 
before, we model the brine/CO2 fluid system at the reservoir condition P = 15 MPa and 
T = 323.15 K, this time combined with VdW EoS. All other input and simulation param-
eters are the same as before. We perform one simulation with conservation of gas only, 
which describes gas bubbles surrounded by connected brine, and another simulation with 
conservation of both gas and brine, which describes gas bubbles separated by disconnected 
brine.

Figures 9a and 10 show evolutions of the fluid configurations, gas-bubble interface 
radii, and gas-bubble volumes, for the simulation with connected brine. The results 
show that the middle bubble grows while its interface radius changes non-monotonically 
over time due to the confining pore geometry. First, the middle bubble grows at the 
expense of the right bubble. This growth leads to a continuous increase of the middle 
bubble interface radius over several capillary equilibrium states. To incorporate these 
larger interface radii while maintaining the contact angle, the bubble slightly shifts its 
contact location with solid surface and moves gradually into the wide pore region on the 
right where it contacts the pore wall on the opposite side (image (ii) of Fig. 9a). Subse-
quently, the middle bubble grows with decreasing interface radius while the left bubble 
shrinks and the right bubble dissolves completely (image (iii)). The system reaches the 
stable state when the middle-bubble interface radius has started to increase again and 
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Fig. 9   Simulated evolution of gas-bubble coarsening in the sinusoidal pore, from initial capillary-equilib-
rium state (i) to final stable state (iv), assuming the surrounding liquid phase is a connected and b discon-
nected. The images show gas in green, brine in blue, and solid phase in brown. Each of the states (i)–(iv) in 
figure (a) and (b) show milestones during the two simulations and do not correspond to equal time steps. 
Image  (i) in figure  (b) labels the disconnected gas and water domains for preceding analysis of interface 
curvature

Fig. 10   Evolution over time of a normalized interface radii and b normalized bubble volume, for the gas 
bubble to the left (Bubble 1), middle (Bubble 2), and right (Bubble 3) in the sinusoidal pore channel, as 
obtained from GB-MLS simulations with brine as a connected phase
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the left bubble ceases to exist (image (iv)). The left and right bubbles contract freely 
during the evolution, and hence both their interface radii and volumes exhibit convex 
trends over time, as shown in Fig. 10.

Figures 9b and 11 show corresponding results for the simulation with disconnected 
brine, in which both fluids are trapped inside the pore space. As opposed to the case 
with connected brine, the liquid ganglia will generally have different pressures, imply-
ing that a gas bubble can have interfaces with different radii. By numbering the water 
and gas domains as illustrated in image (i) of Fig. 9b, we label the interfaces from left to 
right as W1G1,G1W2,W2G2,… ,W3G3,G3W4 . Initially, the radii of interfaces G1W2, 
W2G2 and G2W3 are equal, implying equal gas pressures in bubbles G1 and G2 and 
equal water pressures in domains W2 and W3. Gas bubble G1 is almost static as its vol-
ume and the radii of interfaces W1G1 and G1W2 are about constant in time, see Fig. 11. 
The radius of interface W2G2 is also constant in time, so that any pressure change in 
bubble G2 leads to similar pressure changes in regions W2, G1, and W1. Thus, in this 
simulation the mass transfer occurs mainly from the right bubble G3 to the middle bub-
ble G2. Due to the conservation of neighbouring water domains, the middle bubble G2 
evolves differently in this simulation compared to the connected-brine case. To maintain 
conservation of water domain W2 and W3, interface W2G2 is static while interfaces 
G2W3 and W3G3 move to the right over time with respectively increasing and decreas-
ing radius (see image (ii) of Fig.  9b). Eventually, water domains W3 and W4 merge 
when the right bubble G3 loses contact with the pore walls (image (iii)). In the stable 
state (image (iv)), the pressures in the two remaining bubbles are equal as the radii of 
G1W2 and W2G2 are equal. However, the radii of interfaces W1G1 and G2W3 differ sig-
nificantly because the remaining water domains have different pressures, see Fig. 11a.

Figure 12 compares the mass transfer rate in the two simulations. During evolution, 
our model has managed to maintain a constant total mass, with a total mass loss of 0.3% 
over time. The presence of a disconnected brine shortens the time to reach a stable state, 
although it prolongs the life of smaller bubbles. The time required to reach stability in 
the simulation with disconnected brine is around 54% of the time required to reach sta-
bility with connected brine.

Fig. 11   Gas bubble evolution over time from GB-MLS simulations on the sinusoidal pore chan-
nel by assuming both gas and brine are disconnected phases. a Normalized interface radii over 
time for the gas/water interfaces, labelled from left to right in the sinusoidal pore channel as 
W1G1,G1W2,W2G2,… ,W3G3,G3W4 (see also Fig.  9b, image (i)). b Normalized gas-bubble volume 
over time for the gas bubble to the left (Bubble 1), middle (Bubble 2), and right (Bubble 3), in the sinusoidal 
pore channel
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4.5 � Coarsening of a residual gas configuration in sandstone

Finally, we apply the GB-MLS method to explore the significance of Ostwald ripening 
on a residual configuration with trapped CO2 ganglia surrounded by brine in sandstone. 
For this purpose, we have extracted a 3D pore-space image containing 2003 voxels from 
a segmented micro-tomography data set of Castlegate sandstone, which is publicly avail-
able (Sheppard and Schroeder-Turk 2015). Porosity of the extracted image is 22.7% and 
voxel length is 5.6 μ m. We model a brine/CO2 system at a reservoir condition described by 
P = 15 MPa and T = 338.15 K, and use SRK EoS to calculate fugacity. Henry’s constant is 
H = 7.57 × 10−5 mol m −3 Pa−1 , interfacial tension is �gl = 32.6 × 10−3 N m −1 , and contact 
angle is � = 20◦ . The characteristic length is set equal to voxel length, L∗ = 5.6 × 10−6 m, 
while �∗ = 10−2 N m −1 . For the level set calculations, we use grid spacing Δx = 1 and per-
form reinitialization every five iteration steps. The simulations utilize 320 computing cores.

We create the residual gas configuration by simulating a saturation history composed 
of primary drainage and imbibition, using level set methods for capillary-controlled dis-
placement (Helland et al. 2017; Jettestuen et al. 2021). In primary drainage, gas enters the 
water-filled rock sample through bottom boundary where we place a layer of gas-filled pore 
space at a given constant pressure. We set the � values at the boundary by extrapolation 
from bulk values. The other faces of the rock use reflective boundary conditions. Gas inva-
sion occurs by increasing the capillary pressure stepwise after each equilibrium state, with-
out conserving any of the phases (Helland et al. 2017). The following imbibition adds a 
water-filled, water-wet porous plate at the top boundary to allow water invasion, while gas 
can only escape through bottom boundary. Following Jettestuen et al. (2021), we enforce 
local volume conservation to disconnected gas ganglia and simulate water imbibition by 
decreasing stepwise the capillary pressure between connected phases, starting from an ini-
tial water saturation of 5% after primary drainage. In the final state after imbibition, the 
residual gas saturation is 24% and all of the gas is capillary trapped in ganglia.

Then we simulate Ostwald ripening on the residual configuration (containing 76 gas 
bubbles), using GB-MLS model with gas conservation and reflective boundary conditions 

Fig. 12   Comparison of mass evolution for the two simulations with disconnected and connected brine in 
the sinusoidal pore channel. The plotline colours are the same as in Figs. 10 and 11. The abscissa represents 
time normalized with total time to stability for the simulation with connected brine
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on all rock faces. Figure 13 compares the gas bubble configurations before and after Ost-
wald ripening. It shows that some bubbles disappear while others extend into, or retract 
from, the nearby pore spaces. Figure 14 shows that the difference in bubble pressures gen-
erally decreases with time. However, a temporary incremental difference in bubble pres-
sures is a precursor to bubble loss. This is evident from Fig.  15, in which the loss of a 
bubble follows a sharp rise in pressure deviation. During evolution, this pressure deviation 
slowly approaches zero. Figure 15 also shows the progression of the number of bubbles in 
the system over time. The number of bubbles is 76 initially and 48 at the stable state, which 
yields a total bubble loss of 37%. We note that 50% of this loss occurs within the first 0.2 
time fraction, while 75% of the loss occurs within a time fraction of 0.6. This trend is simi-
lar to our previous observations, where the mass transfer rate decreases with time as the 
pressure and the chemical potential of the gas bubbles come closer.

We calculate the surface area-volume relationship for each CO2 ganglion to evaluate 
impacts of coarsening on the morphology of the residual gas configuration. Previous works 
have shown that ganglia distributions imaged in 3-D porous media exhibit a power-law 

Fig. 13   Simulated configurations of CO2 (green) and brine (translucent blue) in Castlegate sandstone: a Ini-
tial state after imbibition, b stable state after Ostwald ripening, and c comparison of the initial (translucent 
red) and final (green) states

Fig. 14   Time evolution of CO2-bubble pressures (above reservoir pressure) from the simulation of Ostwald 
ripening in Castlegate sandstone
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behavior, A ∝ Vp , where A and V are ganglion surface area and volume (Iglauer et al. 2013; 
Carroll et  al. 2015). Here, p = 2∕3 describes the situation where ganglia preserve their 
shape upon volume changes, which is the case for spherical bubbles that grow or shrink in 
response to Ostwald ripening. However, due to the confined pore space, larger ganglia get 
more ramified inside porous media, and thus ganglia distributions of the nonwetting phase 
typically exhibit p-exponents between 0.7 and 0.8, where p ≈ 0.75 is a common value 
(Iglauer et al. 2013; Carroll et al. 2015).

Figure  16a shows the area-volume relationship from our simulation. By fitting the 
power law to the data, we obtain p = 0.734 for the initial CO2-bubble configuration and 
p = 0.774 for the final configuration after Ostwald ripening. The slight increase in p-expo-
nent is a result of the coarsening, in which large ganglia get more ramified as they grow 
while small, almost spherical, bubbles dissolve completely. In Fig. 16a, this leads to relo-
cation of the data toward higher ganglion areas and volumes over time. However, the total 
interfacial area between gas and water decreases from 6.37 to 5.705 mm2 during the coars-
ening, which leads to a reduction in interfacial energy of the system.

Wang et al. (2021) suggested a linear relationship between surface energy and volume 
for multi-pore bubbles in a regular 2D pore geometry consisting of circular solid grains. 
Figure  16b shows the energy-volume relationship from our simulation. Here, surface 
energy includes both fluid-fluid and fluid-solid contributions. It can be seen that the trends 
are similar to those in Fig. 16a. In our 3D Castlegate sandstone model, most bubbles are 
smaller than 10 pore body spaces. The smaller size, irregular pore geometry, and an addi-
tional spatial dimension might have been the cause of this sublinear relationship.

5 � Conclusions

In this work, we have proposed a new methodology for investigating Ostwald ripen-
ing of gas bubbles in porous media. The approach (called GB-MLS method) couples 
a conservative multiphase level set method for capillary-controlled displacement with 

Fig. 15   Time evolution of the number of CO2 bubbles, and the standard deviation of CO2-bubble pressures, 
from the simulation of Ostwald ripening in Castlegate sandstone
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a ghost-bubble method that describes gas-bubble interactions based on differences in 
chemical potential. We implemented the method in a software framework for paral-
lel computations. The GB-MLS method handles arbitrary pore geometries and arbi-
trary gas/water configurations at various reservoir conditions. Specifically, the method 
accounts for the following challenging scenarios: (i) Gas bubbles that occupy multiple 
pores; (ii) capillary instabilities induced by bubble growth or shrinkage; and (iii) a liq-
uid phase composed of ganglia with different pressures so that their interfaces with a 
single gas bubble generally have different interface curvatures.

Fig. 16   CO2 bubbles in the 3D Castlegate sandstone at the initial, intermediate, and final state. The loga-
rithmic value of volume (in μm3), and area (in μm2) or energy (in 10−11 J) is plotted on a linear scale. a Sur-
face area-volume relationship. b Surface energy-volume relationship
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GB-MLS simulations confirm that gas-bubble coarsening in bulk liquid (in absence of 
porous media) behaves like Ostwald ripening in solid solutions, whereas in porous media 
both coarsening and anti-coarsening occur, which generally leads to stable states with mul-
tiple bubbles confined by the pore geometry. The interface evolution from simulations of 
four different cases of mass transfer between two bubbles placed in a pore-body/pore-throat 
geometry are consistent with previously reported results in a similar geometry. The conclu-
sions are as follows:

•	 Simulations on a micromodel with permeable channels suggest that the impact of Ost-
wald ripening is more significant in heterogeneous or micro-fractured porous media 
due to larger difference in chemical potentials (or pressures) among the residing gas 
bubbles. Consequently, growth of bubbles in a micro-fracture can eventually mobilize 
trapped gas and reduce residual gas saturation.

•	 The mass transfer rate depends strongly on gas type and equation of state. Gas solubil-
ity and compressibility factor are proportional to the mass transfer rate.

•	 Simulations of bubble coarsening in the presence of a disconnected liquid phase sug-
gest that the role of disconnected liquid ganglia is to stabilize more bubbles and to 
prolong the lifetime of bubbles that eventually cease to exist. We expect this scenario to 
be most relevant for intermediate-wet media. As such, Ostwald ripening is more signifi-
cant for strongly-wet states where the liquid could be treated as a connected phase with 
constant pressure.

•	 Simulations on a residual gas configuration in sandstone show that 37% of the gas bub-
bles disappear due to Ostwald ripening. Analysis of the surface area-volume relation for 
gas ganglia during the coarsening reveals that larger ganglia get more ramified as they 
grow, while small spherical bubbles dissolve completely.

GB-MLS method provides a methodology to assess the impact of Ostwald ripening on sta-
ble real gas configurations in complex pore geometries at reservoir pressure. This is impor-
tant to assess the permanency of residual trapping for CO2 and gas storage, as well as to 
estimate gas/water interfacial area for other mass transfer processes, like dissolution trap-
ping. A natural extension of this work is to investigate how the presence of residual oil 
ganglia impacts gas-bubble interactions caused by Ostwald ripening, which is relevant for 
gas storage in depleted oil reservoirs.

Appendix 1: Ghost bubble pressure and fugacity

For an intermediate liquid region, the total mass transfer at any time instance should be 
zero. This ensures that there is no increase in the concentration of gas in liquid beyond its 
saturation level. The ghost bubble represents this intermediate liquid region (Fig. 17).

The following section derives ghost-bubble fugacities for real gases. The same method-
ology is used to derive ghost-bubble pressures for ideal gases. At any time, t′ , for a region 
surrounded by N bubbles,

Using Eq. (10) the above equation can be rewritten as

(33)
N∑

i=1

(
�ni,l

�t

)

t�

= 0.
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If the proportionality parameter kl is proportional to the yth power of the interface area, Ay , 
and B is a scalar quantity, then

From Eqs. (34) and (35):

Since B is a constant, Eqs. (36) and (12) yield

Thus, at time step t′ we obtain

(34)
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i=1
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(
�i − �0

))
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= 0.

(35)kl = B × Ay.
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Fig. 17   Liquid drop surrounded 
by gas bubbles. The boundary 
of the ghost bubble region (blue 
dotted lines) coincides with the 
gas/water interfaces (green solid 
curves). They are shown here 
separately for clear demarcation
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From the above equation we obtain an expression for the ghost-bubble fugacity f0 for real 
gases:

For ideal gases the pressures replace the fugacities. Thus, the ghost-bubble pressure for 
ideal gas is

Appendix 2: Proportionality parameter

The proportionality parameter, kl , links molar rate of mass transfer to chemical potential 
difference. It helps in quantifying the relative mass transfer among the gas bubbles and 
will have unit dimensions of mol2 s kg−1 m −2 . For simulations, a reasonable value of the 
constant of proportionality will be required. This value can be estimated from dimen-
sional analysis. We know that the diffusive transfer of gas molecules through a liquid 
phase is proportional to diffusion constant D, Henry’s constant H, the solubility of the 
gas in the liquid s, and interface area Ai . By Graham’s law of gas mixture, the mass 
transfer rate is also inversely proportional to the molar mass of gas M. Verdes et  al. 
(2004) have reported that interfacial tension � can also affect the mass transfer. Thus, 
Eq. (10) can be rewritten as

where B is a dimensionless factor. As we are calculating net mass transfer during iterative 
time, we can assume B to be 1. Hence,
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From dimensional analysis we can determine possible values for the exponents by solving 
the following set of equations:

Table  2 presents the possible solutions. We choose parameter combination no. 3 
in Table 2, as it is reasonable to expect that the mass transfer through an interface is 
directly proportional to the interface area. This choice also maintains similarity with 
Eq. (3) used by Lemlich (1978). Thus, for the rate Eq. (9) that we use in this work, we 
obtain an effective phase permeability coefficient J′ given by

By setting y = 1 in Eq. (35), Eq. (44) for real gases is

and Eq. (45) for ideal gases is

(47)
�ni,l

�t
= DaHbscMd�eAi

f
(
�i − �0

)
.

mol: b + c − d = 2

kg: −b + d + e = −1

m: 2a − 3c + f = −2

secs: −a + 2b − e = 1.
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√
H

M
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Table 2   Exponents for 
parameters affecting constant of 
proportionality, k

l

S.No Diffusion  
constant

Henry’s  
constant

Gas  
solubility  
in Liquid

Molar  
mass  
of gas

Interfacial  
tension

Interface  
area

D H s M � Ai

[a] [b] [c] [d] [e] [f]

1 1 2 0 0 1 0
2 1 1 1 0 0 0.5
3 0 0.5 1 − 0.5 0 1
4 0 − 1.5 3 − 0.5 -2 2
5 3 2 1 1 0 − 0.5
6 3 3 0 1 1 − 1
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