
 

1 
 

A novel design approach for estimation of extreme load responses of a 10-

MW floating semi-submersible type wind turbine 

Rajiv Balakrishna1, Oleg Gaidai2, Fang Wang2*, Yihan Xing1, Shuaishuai Wang3 

1Department of Mechanical and Structural Engineering and Materials Science, University of Stavanger, 

Norway 

2Shanghai Engineering Research Centre of Marine Renewable Energy, College of Engineering Science 

and Technology, Shanghai Ocean University, Shanghai, China 

3Norwegian University of Science and Technology, Trondheim, Norway 

*Corresponding author: wangfang@shou.edu.cn  

 

Abstract 

Offshore structures are constructed to withstand extreme wind and wave-induced loads, so 

studying these extreme loads is vital as it allows offshore structures, e.g., wind turbines, to be 

designed and operated with minimal disruption. A novel statistical model that is precise and 

meticulous will facilitate these extreme load values to be estimated accurately. Therefore, the 

recently developed bivariate average conditional exceedance rate (ACER2D) method is utilized 

in this paper. This multivariate statistical analysis is more appropriate than a univariate 

statistical analysis for complete structures, e.g., wind turbines, since it can extrapolate the 

extreme values with better accuracy. This paper uses this ACER2D method to explore a novel 

approach to estimating the extreme load responses of a 10-MW semi-submersible type floating 

wind turbine (FWT). Two cases are considered to understand the feasibility of the ACER2D on 

the extreme load responses.  The first case analyses the blade root flap wise bending moment, 

while the second one analyses the tower bottom fore-aft bending moment. The numerical 

bending moments used in this study are obtained from the FAST simulation tool (developed by 

the National Renewable Energy Laboratory) with the load cases simulated at under-rated, rated 

and above-rated speeds. Then, the ACER2D method is applied to model an extreme response 

for both these cases for a 5-year return period prediction with a 95 % confidence interval (CI). 

The proposed methodology permits accurate estimation of the bivariate extreme value. In 

conclusion, based on the performance of the proposed novel method, the ACER2D method can 

offer better robust and precise bivariate predictions of the bending moments of the FWT.  

Keywords: Floating wind turbine, FAST, ACER2D method, Extreme responses, Bivariate 

probability distribution. 

 

1. Introduction 

Developing more efficient wind turbines is a driving force enabling engineers to achieve the 

net-zero emissions target 2050 [1]. According to International Electrotechnical Commission 

(IEC) standards, wind turbines must be designed to operate in the highly stochastic wind and 

wave environments for at least 20 years [2]. Since both larger and more wind turbines are 

constructed, especially offshore, it has become extensional to minimise construction, 

maintenance, and operational costs. Turbines and their components are vulnerable to various 

cyclic loads such as axial and transverse loading, bending moments and torque. Furthermore, 

the loads acting on the wind turbines are also influenced by the wind's stochastic behaviours in 

speed, direction, shear, and vorticity, making extreme load analysis imperative for wind 

turbines design and operation. Any failure in the turbine system can result in unnecessary 

downtime, which can be extremely expensive, see [3]-[5]. Despite this, engineers in the 1970s 

mailto:wangfang@shou.edu.cn


 

2 
 

believed that it was unnecessary to conduct detailed modelling, resulting in the design of wind 

turbines with huge safety margins. However, this changed with the further development of 

larger wind turbines as it became more expensive to maintain similar safety margins. On top of 

that, inaccurate estimation of design loads led to unnecessary failures. These led to an industry 

revamp, where a better accurate prediction technique was developed by the 1990s using 

dynamic structural models, turbulence models, aerodynamic models, and control algorithms, 

see [6]. 

Two different methods can be applied to evaluate extreme wind turbines loads. The first method 

involves running a simulation for rare occurrences that leads to a high structural load. In 

contrast, the second method simulates the wind turbine operating under normal conditions. The 

results are then extrapolated with a probability distribution, and the extreme tail is analysed, see 

[7]. The second method is more commonly used as it uses a full statistical distribution instead 

of an individual event.  

ACER univariant analysis of extreme loads is well established and has been a commonly used 

approach in accessing the extreme loads for wind turbines. However, extending this extreme 

values analysis from a univariant to a bivariant scenario poses many challenges, especially since 

there is no direct mapping distribution. Countless attempts have been made to model functions 

that map dependence between extreme components[47][48]. Nevertheless, there has been 

minimal success in finding accurate tools to identify the best type of joint distribution for the 

bivariate extremes of the bivariate data. It is possible to use marginal data sets to estimate the 

estimated marginal extreme value distribution (EVD), but an actual joint distribution is still a 

challenge. A very effective technique to cope with such limitations is to use a copula model to 

characterize a joint distribution structure. The generalized extreme value (GEV) type copula is 

commonly used this way, but there is no theoretical explanation that explains which should be 

chosen. The bivariate extreme value copula is no different as countless models could be used, 

which is made even more challenging because of the properties of dependence. Furthermore, it 

becomes imperative to observe if a bivariate analysis can be extended accurately to a wind 

turbine. However, in ACER, it has been shown that it is possible to extend to the bivariate case 

without needing approximations [49]. A bivariate extreme value copula approach will be 

applied as a first step in studying a functional depiction of the bivariant ACER surface. This 

involves combining the univariate ACER functions’ asymptotically consistent EVD with the 

asymmetric logistic (AL) and Gumbel logistic (GL) copula models. This method can 

additionally validate if the dependence structure of the bivariate EVD can be extended to a wind 

turbine. 

Thus, this paper proposes using the newly developed averaged conditional exceedance rate 

approach based on two-dimensional design points (ACER2D) instead of traditional one-

dimensional characteristic design values. Furthermore, ACER2D is a non-trivial approach 

compared to the classic method, given that there is a non-linear correlation between different 

response components. Thus, the proposed method is efficient and reliable in predicting extreme 

loads and their relationship with one another in a large 10 MW OO-Star Floater wind turbine 

(FWT).   

More efficient and reliable estimations of extreme responses will better help predict the effects 

these loads have on the components allowing the development and implementation of a better 

design or control system for the FWT. Optimal wind turbine parameters would minimise 

potential FWT mechanical damage due to excessive environmental loadings [10]. Accurately 

predicted extreme loads will also allow the components to be more optimally sized. It 

contributes to more refined designs and lower failure rates, which is particularly important for 
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the offshore wind industry as it advances the design, manufacturing and deployment of large 

FWTs (>10 MW) in the coming decade.  

 

2. System description 

A 10-MW FWT system [11] is used in this work, which is illustrated in Figure 1. The FWT 

system will be expounded in two parts in the following sections. Firstly, the reference wind 

turbine will be described, then the properties of the semi-submersible floater and the mooring 

system will be introduced.  

 

Figure 1 The LIFES50+ OO-Star Wind Floater Semi 10MW structure [11]. 

 

2.1. DTU 10-MW Reference Wind Turbine  

The DTU 10-MW reference wind turbine (RWT) [12] is used in this paper, designed from the 

NREL 5-MW RWT [11]. The wind turbine was designed per the International Electrotechnical 

Commission (IEC) Class 1A wind regime and is a traditional three-bladed, clockwise rotation-

upwind turbine, equipping with a variable speed and collective pitch control system. The DTU 

10-MW RWT numerical model has been successfully developed and studied in many academic 

works, e.g., [13]-[16]. The summary of the DTU 10-MW RWT is shown in Table 1. 

Table 1 Key parameters of the DTU 10-MW RWT  [11]. 

Parameter Value 

Rating 10-MW  

Type Upwind/3 blades 
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Control Variable speed, collective pitch 

Drivetrain Medium-speed, multiple stage gearbox 

Cut-in, rated and cut-out wind speed (m/s) 4, 11.4, 25 

Minimum and maximum rotor speed (rpm) 6.0, 9.6 

Maximum generator speed (rpm) 480 

Rotor diameter (m) 178.3 

Hub height (m) 119.0 

Rotor mass (kg) 227962 

Nacelle mass (kg) 446036 

Tower mass (kg) 1.257 x 106 

 

2.2. OO-Star Semi-submersible Wind Floater and mooring system 

This work uses a semi-submersible floating structure to support the DTU 10-MW RWT. It was 

introduced by Dr.techn. Olav Olsen AS in the LIFES 50+ project [11]. The floater comprises 

post-tensioned concrete, hosting a central column with three outer columns. The four columns 

are mounted on a star-shaped pontoon, where a slab is attached at the bottom. Three catenary 

mooring lines are used to maintain the floater in position, and in each line, a clumped mass is 

attached, separating the line into two segments. Greater details of the OO-Star Wind Floater 

and the mooring system are shown in Table 2 and Table 3, respectively.  

 

 

Figure 2 Main dimensions of the OO-Star floater of the LIFES50+ OO-Star Wind Floater 

Semi 10MW structure [11]. 
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Table 2 The main properties for the LIFES50+ OO-Star Wind Floater Semi 10MW structure 

wind floater [11]. 

Parameter Value 

Water depth (m) 130 

Draft (m) 22 

Tower-base interface above mean sea level (m) 11 

Displacement (kg) 24158 

Overall gravity, including ballast (kg) 21709 

Roll and pitch inertia about center of gravity (kg∙m2) 1.4462 x 1010 

Yaw inertia about center of gravity (kg∙m2) 1.63 x 1010 

Center of gravity height below mean sea level (m) 15.23 

Center of buoyancy height below mean sea level (m) 14.236 

 

 

Figure 3 Sketch of the mooring system in the LIFES50+ OO-Star Wind Floater Semi 10MW 

structure (left: top view; right: side view) [11]. 

 

Table 3 The main properties for the mooring system of the LIFES50+ OO-Star Wind Floater 

Semi 10MW structure [11].  

Parameter Value 

Radius to anchors from platform centerline (m) 691 

Anchor position below MSL (m) 130 

Initial vertical position of clump mass below MSL (m) 90.45 

Initial radius to clump mass from centerline (m) 148.6 

Length of clump mass upper segment (kg) 118 

Length of clump mass lower segment (kg) 585 

Equivalent weight per length in water (N/m) 3200.6 

Extensional stiffness (N/m) 1.506 x 109 
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3. Methodology 

This section describes the methodology adopted by authors to address engineering challenges 

related to safe and reliable design of FWTs (floating wind turbines). Note that the proposed 

ACER (Average Conditional Exceedance Rate) method along with the FAST simulation tool 

[40] was already recently successfully used by the authors, see e.g., [40]. 

3.1. Aero-hydro-elastic-servo dynamic analysis of the 10-MW FWT 

FAST (Fatigue, Aerodynamics, Structures and Turbulence) (version8, v8.16.00a-bjj), an open-

source WT simulation tool developed by the National Renewable Energy Laboratory (NREL), 

is utilized in this work for the fully coupled aero-hydro-elastic-servo dynamic analysis for the 

10-MW FWT [46]. The FAST code couples together five computer codes: AeroDyn [17], 

HydroDyn [18], ServoDyn, and MoorDyn [19], to account for the aerodynamic loads on rotor 

blades, hydrodynamic loads on floaters, control dynamics, structural dynamics and mooring 

system dynamics. In addition, FAST provides the interface for reading the time-varying 

stochastic wind for time-domain simulations. The FAST simulation tool has been successfully 

used in other well-known projects such as OC3: Offshore Code Comparison Collaboration [20] 

and OC4: IEA Task Wind 30 [21], and its modelling capability has been authenticated using 

multiple floating structures in the Netherlands [22].  

 

3.2. Extreme value prediction by ACER1D and ACER2D methods 

ACER1D method 

Various statistical methods have been used to approximate the extreme value distribution of a 

recorded time series in its tail. Examples of the extreme value methods used in the study of 

wind turbines include an estimation of extreme structural responses in floating vertical axis 

wind turbines, see [23] and extreme responses due to wave nonlinearity on a semi-submersible 

floating wind turbine, see [10].  

The ACER method used in this paper as in [24]-[30], [38]-[45] has numerous advantages when 

estimating extreme values from a recorded time series. One of these includes the ability to 

identify the effect of dependency between the data of the time series on the extreme value 

distribution. Also, the whole time series can be used as input data without de-clustering (i.e., 

no requirement to use independent data). However, the most prominent feature of the ACER 

method is its ability to provide a non-parametric depiction of the extreme value distribution 

inherent in the data. The ACER1D values are calculated in this paper using the ACER1D 

method from [8][9] to create a functional form of the Asymmetric-logistic and Gumbel-logistic 

dependence function to be compared against the ACER2D function.  

 

 

ACER2D method 

Now, the 2D (bivariate) Average Conditional Exceedance Rate, or briefly ACER2D method, 

has been applied to analyse FWT blade root and tower bottom bending moment due to 

environmental wind and wave loads. A brief introduction of the bivariate ACER2D method is 

outlined below; see [61]-[64] for more details. Note that both of the stochastic response 

processes (blade root and tower bottom bending moments) mentioned above, are time 

synchronous. The latter is undoubtedly beneficial for coupling effects and bivariate statistics 
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study.  

This paper studies a bivariate stochastic process 𝑍(𝑡) = (𝑋(𝑡), 𝑌(𝑡)) , having two scalar 

processes 𝑋(𝑡), 𝑌(𝑡),  simulated synchronously, over a time span (0, 𝑇). The bivariate data 

points (𝑋1, 𝑌1), … , (𝑋𝑁, 𝑌𝑁) correspond to equidistant time instants 𝑡1, … , 𝑡𝑁.  

The joint CDF (cumulative distribution function)  𝑃(𝜉, 𝜂): =  Prob (�̂�𝑁 ≤ 𝜉, �̂�𝑁 ≤ 𝜂) of the 

maxima vector (�̂�𝑁, �̂�𝑁), with �̂�𝑁 = max{𝑋𝑗 ; 𝑗 = 1, … , 𝑁}, and  �̂�𝑁 = max{𝑌𝑗 ; 𝑗 = 1, … , 𝑁} is 

introduced. In this paper, 𝜉 and 𝜂 are blade root and tower bottom mooring bending moments, 

M1 and M3 in Figure 5 respectively.  

Next, the non-exceedance event is introduced: 𝒞𝑘𝑗(𝜉, 𝜂): = {𝑋𝑗−1 ≤ 𝜉, 𝑌𝑗−1 ≤ 𝜂, … , 𝑋𝑗−𝑘+1 ≤

𝜉, 𝑌𝑗−𝑘+1 ≤ 𝜂} for 1 ≤ 𝑘 ≤ 𝑗 ≤ 𝑁 + 1. Based on the definition of the joint CDF 𝑃(𝜉, 𝜂) 

 

𝑃(𝜉, 𝜂) =   Prob (𝒞𝑁+1,𝑁+1(𝜉, 𝜂))

=   Prob (𝑋𝑁 ≤ 𝜉, 𝑌𝑁 ≤ 𝜂 | 𝒞𝑁𝑁(𝜉, 𝜂)) ⋅ Prob (𝒞𝑁𝑁(𝜉, 𝜂))

= ∏

𝑁

𝑗=2

  Prob (𝑋𝑗 ≤ 𝜉, 𝑌𝑗 ≤ 𝜂 | 𝒞𝑗𝑗(𝜉, 𝜂)) ⋅ Prob (𝒞22(𝜉, 𝜂))

 ( 1 ) 

 

The CDF 𝑃(𝜉, 𝜂) can be expressed as in [31]-[34] 

 

𝑃(𝜉, 𝜂) ≈ exp {− ∑

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))}   ( 2 ) 

 

for a suitably large conditioning level parameter 𝑘 , and large 𝜉 and 𝜂  with  𝛼𝑘𝑗(𝜉; 𝜂) ≔

 Prob (𝑋𝑗 > 𝜉 | 𝒞𝑘𝑗(𝜉, 𝜂)), 𝛽𝑘𝑗(𝜂; 𝜉) ≔ Prob (𝑌𝑗 > 𝜂 |𝒞𝑘𝑗(𝜉, 𝜂)) , 𝛾𝑘𝑗(𝜉, 𝜂) ≔ Prob (𝑋𝑗 >

𝜉, 𝑌𝑗 > 𝜂 | 𝒞𝑘𝑗(𝜉, 𝜂)). 

Next, the 𝑘-th order bivariate average conditional exceedance rate (ACER2D) functions can be 

introduced 

 

ℰ𝑘(𝜉, 𝜂) =  
1

𝑁 − 𝑘 + 1
 ∑

𝑁

𝑗=𝑘

(𝛼𝑘𝑗(𝜉; 𝜂) + 𝛽𝑘𝑗(𝜂; 𝜉) − 𝛾𝑘𝑗(𝜉, 𝜂))     ( 3 ) 

 

for 𝑘 = 1, 2, …; when 𝑁 ≫ 𝑘  

 

𝑃(𝜉, 𝜂) ≈ exp{ – (𝑁 − 𝑘 + 1)ℰ𝑘(𝜉, 𝜂)} ;  for large 𝜉 and 𝜂. ( 4 ) 

 

From Eq. ( 4 ), it follows that an accurate estimate of the bivariate CDF 𝑃(𝜉, 𝜂) = 𝑃(𝜉, 𝜂) relies 

on the equally accurate estimation of ACER2D functions ℰ𝑘. 
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3.3. Load cases and environmental conditions 

The environmental data (wind and wave data) used in this paper are established based on 

hindcast data from an offshore site in the Northern North Sea from 2001 to 2010.  The long-

term joint wind and wave distribution were developed in [35], which considers a one-hour mean 

wind speed at the position that is 10 meters above the sea level (U10), wave spectral peak period 

(Tp) and the significant wave height (Hs). The joint distribution of U10, Hs and Tp is expressed as 

below: 

 

𝑓𝑈10,𝐻𝑠,𝑇𝑝
(𝑢, ℎ, 𝑡) = 𝑓𝑈10

(𝑢) ∙ 𝑓𝐻𝑠ǀ𝑈10
(ℎǀ𝑢) ∙ 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠

(𝑡ǀ𝑢, ℎ) ( 5 ) 

 

where 𝑓𝑈10
(𝑢) , 𝑓𝐻𝑠ǀ𝑈10

(ℎǀ𝑢) and 𝑓𝑇𝑝ǀ𝑈10,𝐻𝑠
(𝑡ǀ𝑢, ℎ) represents the marginal distribution of U10, 

the conditional distribution of Hs for given U10 and the conditional distribution of Tp for given 

U10 and Hs. Figure 4 illustrates in situ Hs, Tp scattered diagram, used to assign probabilities to 

individual sea states. 

 

 

Figure 4 An example of in situ Hs, Tp scattered diagram, used to assign probabilities to 

individual sea states. 

Table 4 Load cases for numerical simulations. 

Load 

cases 
𝑼𝒘 (m/s) 𝑻𝑰 𝑯𝒔 (m) 𝑻𝒑 (s) Samples Simulation length (s) 

LC1 8 0.1740 1.9 9.7 20 4000 

LC2 12 0.1460 2.5 10.1 20 4000 

LC3 16 0.1320 3.2 10.7 20 4000 

 

Three representative load cases with a high probability of occurrence in the normal operating 

conditions are used in the present work and listed in Table 4. The mean wind speed selected to 

be used in this paper is based on the turbines operating ranges (wind speeds ranging within the 

cut-in, rated and cut-out zones) with an increment size of 4 m/s. The most probable wave height 
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and spectra peak period in each wind speed condition is selected based on the joint distribution 

expressed in Eq. ( 5 ). 

The turbulent wind and irregular waves are modelled, and they are considered to be 

directionally aligned in all the load cases. The normal turbulence and normal wind profile 

models are employed, and wind turbine Class C is applied. The wind power-law formulation is 

used to model the wind speed profile, as represented below: 

 

𝑈𝑤(𝑧) =  𝑈ℎ𝑢𝑏 (
Z

𝑍ℎ𝑢𝑏
)𝛼 ( 6 ) 

 

where Uw(z) is the mean wind speed at the height 𝑧 above the still water level, uhub represents 

the mean wind speed at the hub height, zhub denotes the hub height above the still water level 

and is 119 m for the 10-MW FWT. α is the power-law exponent, and it is taken as 0.14 for 

offshore locations based on the recommendation in IEC 61400-3-2, see [36].  

The Kaimal turbulence model is used to generate the three-dimensional turbulent wind fields, 

simulated using a stochastic turbulent-wind simulator, Turbsim [37]. Time-varying irregular 

waves are generated using the JONSWAP (Joint North Sea Wave Project) spectrum according 

to the specified Hs and Tp. Detailed descriptions for the models of turbulent wind and irregular 

waves can be found in IEC 61400-3-2 [36]. 

For the three environmental conditions, 20 different random samples of wind and wave are 

applied for each sea state. Each simulation lasts 4000s, where the first 400s is removed to reduce 

the transient effect induced by the wind turbine start-up. Therefore, 1-h data in each simulation 

is formed and is used for extreme value analysis in this work. The results shown in this work 

are based on the average of 20 1-h simulations to reduce the stochastic variability. 

 

4. Results and discussions 

This paper presents the methodology for estimating the DTU 10-MW RWT-OO-Star's extreme 

loads during operating conditions. The empirical data is based on accurate numerical 

simulations using a FAST model as presented in Section 3.1. The ACER2D (bivariate averaged 

conditional exceedance rate) method is presented in Section 3.2.  

The loads at the two measurement points presented in Figure 5 are considered. These are the 

blade 1 root flapwise bending moment (RootMyb1) and tower bottom fore-aft bending moment 

(TwrBsMyt). 



 

10 
 

  

Figure 5 Location of points where bending moments are measured. 

 

4.1. Power Spectral Density based on time responses 

Figure 7 of M1, M3. It is seen that there are PSD (Power Spectral Density) peaks at the 

frequencies f at 3P, 6P and 9P as observed in Figure 6. This information should be reflected in 

the ACER functions' choice of conditioning level k. 

 

 

Figure 7 PSD of LSSTipMys – M1 and TwrBsMyt – M3 

4.2. Extreme responses: univariate and bivariate analysis 
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This section presents statistical analysis results for M1 and M3 bending moments using the 

univariate and bivariate methods, i.e., ACER1D and ACER2D, respectively. The focus is on 

accurate predicting extreme response, which is vital for safety and reliability at the design stage. 

The conditioning level k is set to be 10, as it was observed that ACER functions have converged 

at that level in the distribution tail. 

Figure 8 presents univariate extreme response 5-year return period prediction with 95 % 

confidence interval (CI); the 1-year return period is chosen purely as an example. The predicted 

extreme probability level corresponds to 5-year return period. 
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Figure 8 Univariate ACER1D extreme response 5-year prediction with 95% CI (dotted lines). 

Top: RootMyb1 – M1; Bottom: TwrBsMyt – M3; decimal log scale. 

Figure 9 presents the phase space of responses M1 over M3, along with the bivariate empirical 

ACER2D function ℰ̂𝑘 . It is clearly seen that there is a non-linear correlation between responses 

M1 and M3. The bivariate empirical ACER2D surface, ℰ̂𝑘 obviously marginally corresponds to 

univariate ACER1D functions presented in Figure 8. 
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Figure 9 Top: phase space, response M1 vs M3; Bottom: bivariate empirical ACER2D 

function ℰ̂𝑘, decimal log scale. 

Figure 10 presents ACER2D fit to the empirical data along with the bivariate predicted contours 

with return periods in years (lower figure). Figure 10 presents contour lines for the optimized 

Asymmetric logistic (AL) 𝒜𝑘(𝑀1, 𝑀3)  and optimized Gumbel logistic (GL) 𝒢𝑘(𝑀1, 𝑀3) 

models, optimally matched to the corresponding empirical bivariate ACER2D function 

ℰ̂𝑘(𝑀1, 𝑀3), 𝑘 = 10, see [31]-[34] for GL and AL definitions. The contour lines negative 

labelling numbers in Figure 10 indicate decimal logarithmic scale probability levels of 

𝑃(𝑀1, 𝑀3). Figure 10 clearly shows that the empirical bivariate ACER2D surface ℰ̂10 well 

captures the strong correlation between load/response components. The optimized models 𝒢10 

and 𝒜10 exhibit smooth contours along with matching ACER2D empirical contours. The later 

models may be better suited for bivariate extreme value distributions response processes. Figure 

10 shows good agreement between the estimated optimized AL and GL surfaces and the 

bivariate ACER2D surface. This means that the correlation between responses M1 vs M3 is a 

crucial non-negligible factor influencing the shape of the bivariate contour lines. 
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Figure 10 Top: ACER2D fit to empirical data; Bottom: predicted bivariate contours with 

return periods in years. 

The lowest probabilities in Figure 9 and Figure 10 correspond to the value 𝑁−1 where 𝑁 is the 

number of equidistant time points in the studied time series. Figure 8 (bottom) presents the 

predicted bivariate contours with 50- and 100-years corresponding return periods. Note that the 

return period of a few years is quite long compared to the short duration of the analysed 



 

15 
 

measured record. As seen from Figure 10 (bottom), the fitted lines match the empirical data 

well, highlighting the accuracy of the ACER method. Further, the ACER method is efficient as 

it requires only 20 1-hour realisations to generate accurate results.  

Figure 11 shows that the univariate design point lies outside the safe 50-year zone (dashed area) 

and is outside the 2D design zone. This means that the 1D method is not conservative. 

 

Figure 11 Design safe zone (dashed) due to bivariate analysis, versus univariate design point, 

based on Figure 10. Asymmetric logistic  𝒜𝑘(𝑀1, 𝑀3) 50-year contour line. 

 

Table 5 presents 50- and 100-year return period ACER1D response predictions in meters.  

Table 5 50- and 100-year return period response ACER1D predictions 

 50 yr 100 yr 

M1 (Nm) 4.8 x 104 4.9 x 104 

M3 (Nm) 4.5 x 105 4.6 x 105 

 

5. Conclusions 

A new approach that is based on a 2D design point instead of the traditional 1D characteristic 

design values has been examined on the DTU 10-MW FWT. The proposed methodology 

provides an accurate bivariate extreme value prediction, utilizing all available data efficiently. 

Based on the overall performance of the proposed method, it was concluded that the ACER2D 

method could incorporate environmental input and provide a more robust and accurate bivariate 

prediction based on proper numerical simulations. The method uses only a relatively small 

amount of data to provide reasonable predictions with long return periods.  

The FWT blade root and tower bottom bending moments due to environmental wind and wave 

loads were studied for three operating conditions of mean wind speeds of 8, 12 and 16 m/s. The 
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bivariate ACER2D method was briefly described and applied to account for the coupled load 

effects, namely dynamic moment and force simulated synchronously in time. Bivariate extreme 

value distribution low probabilities (or equivalently high quantiles) contours were estimated by 

adopting various bivariate copula models. Potential outliers present in the data set are also well 

managed by being neglected in the distribution tail through the proposed extrapolation and 

copula fit technique.  

Regarding the safety and reliability of FWT operations, the multivariate analysis is a more 

proper approach than the classic univariate approach. The presented technique has the following 

advantages: 

• Unlike IFORM/ SORM, the ACER2D method does not simplify model nonlinearities.   

• Various kinds of coupled data can be studied: measured or numerically simulated. 

• Clustering effects can be accounted for. 

• The ACER2D method provides a more conservative prediction of the extreme values, 

especially in the regions where the variables are more strongly coupled together, i.e., at 

the value predicted by the 1D method. 

• The ACER2D method may provide an efficient way of identifying practical design 

appropriate bivariate copula models. 

The described approach may be used at the design stage of a large FWT to provide the 

opportunity of defining FWT parameters that would minimize extreme loads and potential 

damages. It is also noted that the study is limited to the quality of the data itself. This limitation 

applies for any type of statistical method.  
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