
Journal of Cloud Computing:
Advances, Systems and Applications

Shi et al. Journal of Cloud Computing: Advances, Systems
and Applications (2022) 11:27
https://doi.org/10.1186/s13677-022-00292-8

RESEARCH Open Access

AWESOME: an auction and witness
enhanced SLAmodel for decentralized cloud
marketplaces
Zeshun Shi1, Veno Ivankovic1, Siamak Farshidi1, Jayachander Surbiryala2, Huan Zhou3*

and Zhiming Zhao1*

Abstract
In recent decades, the world has witnessed cloud computing as an essential technology that changes the traditional
application Development and Operation (DevOps) lifecycle. However, current cloud software DevOps and Service
Level Agreement (SLA) management often face challenges of 1) selecting the best fitting service providers,
customizing services and planning capacities for large-scale distributed applications; 2) guaranteeing high-quality and
trustworthy SLAs among multiple service providers; 3) enhancing the interoperability of cloud services across different
providers; and 4) designing effective incentive models among stakeholders. This paper proposes a novel framework
called Auction and Witness Enhanced trustworthy SLA for Open, decentralized service MarkEtplaces (AWESOME) to
build a trustworthy cloud marketplace and address the above challenges. The proposed framework contains four
subsystems: a customizable graphical user interface, an auction-based service selection model, a witness committee
management mechanism, and a smart contract factory orchestration. We developed a prototype AWESOME
decentralized application (DApp) based on the Ethereum blockchain. Extensive experiments are designed to evaluate
the latency and cost of our model. The experimental results demonstrate that our model is economical and feasible.

Keywords: Decentralization, Cloud marketplace, Auction, Service level agreement

Introduction
The cloud computing paradigm provides flexible ser-
vices based on pay-as-you-go business models [1]. In the
current cloud marketplace, several well-known service
providers maintain the traditional cloud marketplace, and
the share of these top providers is continuously growing.
According to a report, as of October 2020, AWS, Azure,
Google, and Alibaba control 63% of the entire cloud mar-
ketplace, whereas all other providers only share 37%1.
Since product migration is complex, consumers become
locked in a particular provider’s ecosystem. In the future,

*Correspondence: huanzhou@nudt.edu.cn; z.shi2@uva.nl z.zhao@uva.nl
3School of Computer Science, National University of Defense Technology,
410073 Changsha, China
1Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH,
Amsterdam, the Netherlands
Full list of author information is available at the end of the article
1https://www.canalys.com/newsroom/worldwide-cloud-market-q320

however, we can expect a more open, fair, and trust-
worthy cloud resource trading marketplace for all service
providers and customers.
There are typically two cloud transaction models: cen-

tralized and decentralized [2]. In a centralized cloud envi-
ronment, all service trading and trust-related issues rely
on trusted third parties (TTPs), e.g., some well-known
cloud service providers with good reputations and track
records. However, those providers are not always trust-
worthy in practice and can be biased or conspire with
any party. On the other hand, in a decentralized trad-
ing environment, all sellers or buyers perform transaction
management and operations, avoiding the concentration
of power and making the transactions more trustworthy.
In this case, all trust assurance comes from a decentralized
platform (e.g., blockchain), which needs to be appropri-
ately designed, implemented, deployed, and monitored.

© The Author(s). 2022Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-022-00292-8&domain=pdf
http://orcid.org/0000-0001-9163-8023
mailto: huanzhou@nudt.edu.cn
mailto: z.shi2@uva.nl
mailto: z.zhao@uva.nl
https://www.canalys.com/newsroom/worldwide-cloud-market-q320
http://creativecommons.org/licenses/by/4.0/

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 2 of 25

Traditionally, a Service Level Agreement (SLA) is a
business concept that defines the contractual financial
agreements between the roles engaging in the business
activity. In the context of a cloud marketplace, it is an
agreement between the cloud customer and provider
regarding the cloud service quality [3]. For instance, the
IaaS (Infrastructure-as-a-Service) provider, Amazon Elas-
tic Compute Cloud (Amazon EC2), claims that the avail-
ability of its data center is no less than 99%. If this is not
achieved, it will pay back 30% credits to its customers
as compensation. In practice, however, this agreement is
hard to enforce fairly and transparently; it is usually per-
formed manually and dominated by giant providers in the
traditional SLA management process.
Blockchain technology can be used to support decen-

tralized applications (DApps), bringing new hints of pos-
sible solutions to address these challenges [4, 5]. It inspires
the emergence of a new decentralized cloud marketplace
that encourages greater inclusivity and participation from
different service parties.We can foresee that such a decen-
tralizedmarketplace will providemore choices and oppor-
tunities for both providers and consumers. Besides, the
smart contract makes it possible to manage and automate
the SLA process on the blockchain in a fair and tamper-
proof way [6]. However, reaching a consensus on events
that occur outside the blockchain is another possible
challenge. Cloud customers or providers can still violate
the agreed SLA despite using the blockchain to com-
plete cloud transactions. For example, the provider may
not provide the QoS (Quality of Service) they promised,
and the customer may refuse to pay for the claimed
cloud resources. In the blockchain community, the bridge
between on-chain and off-chain events is called “oracle”
[7]. One of the solutions to build this bridge is to retrieve
data from Oraclize2, a third-party company that performs
as a trusted data source for the blockchain. However, this
solution suffers from a single point of failure and needs
extra commission fees. In this case, a decentralized wit-
ness mechanism is promising to judge SLA violations that
occur off-chain.
This paper expects to use blockchain to enhance the

cloud marketplace and SLA management lifecycle by
introducing a novel Auction andWitness Enhanced trust-
worthy SLA for Open, decentralized serviceMarkEtplaces
(AWESOME) framework. Specifically, a new role called
auction witness is involved in the entire cloud service trad-
ing process, as shown in Fig. 1. In our model, the decen-
tralized blockchain users can join the SLA judgment and
work as witnesses through an incentive mechanism that
motivates them to make truthful judgments to win prof-
its. This paper is based on our previous conference paper
[8], and we have extended the framework, protocols, and

2http://www.oraclize.it/

experiments extensively. In brief, the main contributions
of this paper can be summarized as follows:

• A novel auction and witness enhanced SLA model
called AWESOME for decentralized cloud
marketplaces. The model can support interactions
between service providers, customers, and witnesses
to complete trustworthy transactions and SLA
enforcement.

• A prototype DApp based on the AWESOME model
is fully developed on the Ethereum blockchain3. It
contains customizable graphical user interfaces
(GUIs) and advanced smart contract protocols to
support the SLA business process.

• Extensive experiments are designed to evaluate the
execution latency and cost of the proposed model and
DApp. The experimental results demonstrate that
our model is economical and feasible to implement.

In the rest of this paper, we first demonstrate the
related works in “Related work” section. Then, in “The
AWESOME framework” section, we analyze the sys-
tem requirements, objectives, actors, on-chain and off-
chain interactions, and then present the overall AWE-
SOME system architecture. Next, we introduce the design
choices of our AWESOME DApp and show the details of
how the DApp works with a business process model in
“The AWESOME DApp demonstration” section. “Exper-
iments and validations” section shows the experimental
results to demonstrate the feasibility of the AWESOME
framework and DApp. Finally, we discuss key consider-
ations and future development plans in “Discussion and
future work” section, and conclude the whole paper in
“Conclusion” section.

Related work
This section provides an overview of the state-of-the-art
technologies that are related to the AWESOME frame-
work.

Smart contract-based SLAmanagement
Smart contracts are computer programs designed to exe-
cute contracts automatically on a blockchain. In this
regard, many studies have discussed the use of smart
contracts and blockchain for SLA management. Uriate
et al. [9] proposed a domain-specific language known as
SLAC, which is designed for SLA specification in the
cloud computing domain to avoid ambiguities that come
with SLAs. The core purpose of SLAC is to describe
the contract, specify the contract terms, and define the
guarantees of those terms. Gomes et al. [10] developed
a smart contract that makes use of web3.js to connect

3The code repository is open-sourced in: https://github.com/ZeshunShi/
AWESOME

http://www.oraclize.it/
https://github.com/ZeshunShi/AWESOME
https://github.com/ZeshunShi/AWESOME

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 3 of 25

Fig. 1 An illustration of an AWESOME decentralized cloud marketplace

web applications to the blockchain. They use this smart
contract to determine if an SLA violation has occurred
and to enforce fines and compensation. Their proof of
concept demonstrated that service operators could use
DApps in cloud environments to simplify the process
of SLA validation. The same research group also high-
lighted transparency and trust between different parties
as a major issue in SLA validation [11]. They proposed
a solution that uses a decentralized file system to store
the generated agreements. An oracle, in this case, is used
as a real-time data channel that inserts real-world data
into the blockchain to determine if there is any loss of
connectivity.

SLAmonitoring solutions
There are various monitoring solutions in the SLA
domain. For example, the Web Service Management
Agent [12] implemented SLA monitoring of web services
using agents from both server-side and customer-side. In
addition, monitoring is done in practice by SLA decom-

position, where low-level system performance metrics are
mapped to high-level SLA parameters [13]. From the con-
sumer’s perspective, SLAs should be understandable and
avoid ambiguity to ensure QoS, so providers often write
SLA documents in legal language. Besides, formal met-
rics need to be defined in order to facilitate successful
monitoring [14, 15]. To ensure proper SLA modeling and
monitoring, the authors in [15] suggested an SLA model-
ing process that defines the ontology to represent the SLA
concepts. After that, monitoring can occur to measure
different SLA parameters and detect violations. In [16],
the authors stated that a monitoring engine should mainly
consist of two different phases. The first phase is the
runtime monitoring of SLA parameters, where the moni-
toring agents continuously record the application perfor-
mance. In the second phase, an analysis engine verifies the
values and compares them to predefined thresholds from
the agreement’s service-level objectives. Then, the engine
identifies violations, and the provider is penalized in
some cases.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 4 of 25

Blockchain-based auction models
Auction is a well-studied research topic due to its effec-
tive and fair transaction properties. In cloud comput-
ing, classic auction models, e.g., English auction, Dutch
auction, and seal-bid auction, have been widely lever-
aged to optimize cloud resource allocation. For example,
the authors in [17, 18] used different auction models to
achieve optimal cloud customer/provider selection.While
blockchain-based auction models have great potential in
optimizing cloud transactions and marketplaces, most
existing solutions focus only on the design of the auction
models without considering the trustworthy enforcement
of cloud SLAs [19].

DApp development challenges
The contribution of this paper is to provide DApp devel-
opers with a framework for a decentralized service mar-
ketplace in which users can customize to their own busi-
ness needs and technologies. Therefore, the challenges
in DApp development that currently exists should be
identified. An initial challenge with AWESOME DApp
development stems from the fact that it is new and unex-
plored. As a result, DApp requirements are not fully
understood or require continuous change during pro-
duction. This is why the use of Agile methods in DApp
Development and Operation (DevOps) is often encour-
aged [20]. Unfortunately, few development frameworks
can aid DApp developers in making service marketplaces.
To the best of our knowledge, this paper is the first
integrated model and DApp attempt to study generic auc-
tions and witness mechanisms for decentralized cloud
marketplaces.

The AWESOME framework
In this section, we first perform the requirement analy-
sis using two industrial use cases and show the design
objectives of the system. Then, we describe our AWE-
SOME model in detail, including actor identification, on-
chain vs. off-chain interactions, and system components
& workflows.

Requirements analysis
In industrial innovations (e.g., crowd journalism and
disaster early warning) and scientific applications (e.g.,
research data management), cloud services are playing
an increasingly important role in real-time data pro-
cessing (e.g., multimedia acquired by mobile devices),
running simulations (e.g., for predicting possible dis-
asters), and for enabling extensive scale collaborations
(e.g., for running distributed scientific workflows). There-
fore, it is necessary to employ multiple data centers or
providers to handle decentralized collaboration between
resource providers and customers in several industrial use
cases.

1. Use case 1. Decentralized cloud marketplace for
social media (taken from EU ARTICONF project4):
crowd journalism for real-time news reporting
during live sports, music events, or natural disasters.
Individual citizen journalists make photos or videos
of the news and trade them via the news platform.
The system has to detect fake news from those
crowdsourced contents by running real-time
processing from multiple cloud providers or
engaging human experts to review them.

2. Use case 2. Decentralized service marketplace for
medical data management (taken from EU CLARIFY
project5): sharing and utilizing pathology data
provided by hospitals or individuals from different
countries, where various medical data access
constraints are often applied. When a machine
learning application for studying breast cancer must
use data from multiple hospitals, the application
developer has to select cloud providers from a
decentralized marketplace that meet the application
needs (e.g., geolocation, capacity, and price).

We can therefore highlight the following requirements
and challenges from those use cases:

• Provider selection, service customization, and
capacity planning challenges. The developer has to
select cloud services from different providers (very
often multiple ones) due to distributed data locations
(e.g., sensors or repositories), various data access
constraints (e.g., for medical data), and performance
constraints (e.g., for real-time decisions in early
warning). The various price and reputation models
make the selection time-consuming and challenging
to be optimal.

• SLA interoperability and guarantee challenge. The
time-critical application constraints, e.g., processing
media contents during crowd news reporting and
real-time decision-making, require the profound
optimization of the application logic and the quality
guarantee of the cloud services. However, the diverse
SLA terms among providers and the uncertainties in
the SLA guarantee make performance optimization
difficult.

• Difficulties in setting up incentive models and
customizing witness games in a decentralized
marketplace. The business logic in a decentralized
marketplace is often realized by smart contracts,
which are supposed to be immutable after being
deployed on blockchains. However, any careless
design or mistake may cause unexpected loss.

• Virtual infrastructure automation challenge. When
an application involves multiple providers or data

4https://articonf.eu/
5http://www.clarify-project.eu/

https://articonf.eu/
http://www.clarify-project.eu/

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 5 of 25

centers, the provisioning of the virtual infrastructure,
deployment of the software platform and application
components, monitoring, and adaptation of the
application need to be ideally automated. However,
the diverse Application Programming Interfaces
(APIs) from different providers and the
interoperability issues across those providers make
automated provisioning and deployment a challenge.
This leads to a high level of complexity in monitoring
runtime infrastructure quality, detecting SLA
violations, and adapting the infrastructure when
violations happen.

To tackle these challenges in a decentralized cloud mar-
ketplace, we propose the AWESOME framework. The
AWESOME software architecture consists of novel tech-
nologies in DApp DevOps, game theory, blockchain, and
smart contracts.

System objectives
We aim to provide guidelines, tools, and templates
that can aid developers in developing a DApp for a
specific business that can benefit from a decentral-
ized architecture. The system needs to provide ser-
vice customers and providers a platform that can facil-
itate easy SLA generation and operation, and allow
decentralized witnesses to monitor such SLAs. Further-
more, the system needs to be generic and modular.
DApp developers who use the system could customize
the model for their own business needs and adapt it
to other blockchain use cases. Specifically, the objec-
tives of the AWESOME model can be summarized as
follows:

• Objective 1: Improve the customer/provider selection
in a decentralized ecosystem by developing an
automated service auction framework to enable
dynamic business relations between a consumer(s)
and providers and establish SLAs.

• Objective 2: Improve the service quality and SLA’s
trustworthiness between consumer(s) and providers
by establishing a decentralized witness mechanism to
monitor the SLA violations and automate the
procedure for SLA compensation and payment.

• Objective 3: Improve the model usability by
developing easy-to-use customizable DApp GUIs for
general cloud users to interact with different smart
contracts.

• Objective 4: Improve the continuous DevOps of
DApps by providing an integrated contract factory to
improve smart contracts’ security and efficiency.

Actor identification
Actors which interact with the AWESOME model are
human roles, external systems, or devices that exchange

information with the DApp.With this in mind, we identify
the following actors:

• Service Customer: Service customers use the DApp
to find providers that can offer them services. They
should be able to make listings on the platform and
sign an SLA with a service provider. They pay for
these services but can receive compensation in case
of SLA violations.

• Service Provider: Service providers use the DApp to
list their available services on the platform for auction.
They earn monetary rewards for these services but
may be penalized in case of SLA violations.

• AuctionWitness: Witnesses can use the DApp to
monitor SLAs and receive monetary rewards for their
efforts. The judgment from the witness committee
can ensure that auctioned cloud services are
delivered as agreed in SLAs.

• AWESOMEOperator: An AWESOME operator
could modify the developed framework for a specific
business use case. They need to read the provided
documentation, edit the user interfaces, blockchain
APIs, and smart contract templates, and then deploy
a custom decentralized service marketplace6.

In our model, customers are motivated to receive ser-
vices at a low cost, and providers are incentivized to
provide high-quality services in return for service fees.
Two parties complete transactions and make profits by
means of customized on-chain auctions. The payoffs of
both parties are always positive; otherwise, an auction will
never be settled. The incentive for witnesses, on the other
hand, can include the following three parts: 1) a reward for
their monitoring efforts; 2) a penalty if their reports about
SLA violations fail to match the results of others (based on
the majority rule); and 3) a blockchain transaction fee. We
specify in our model that the monitoring reward is large
enough so that the witness’s payoff is always positive. In
this way, witnesses are always motivated to participate in
our model and earn their rewards.

On-chain vs. off-chain interactions
After identifying system objectives and actors, we can now
design the system architecture as a whole. The ABCDE
DApp development method [20] suggests first dividing
the system into two subsystems. Namely, smart contracts
running on top of the blockchain and external systems
that interact with the blockchain. The authors also rec-
ommended formalizing what transactions and data should
be placed on-chain and off-chain. In practice, the infor-
mation that should be included in the blockchain is that
with critical trust requirements. This is because on-chain

6For simplicity, customer, provider, witness, and operator are used in the
following text.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 6 of 25

information is immutable and enforces non-repudiation.
In addition, not only “big data” is not suitable for the
blockchain, but even “not-tiny” data should not be stored
on the blockchain. This is mainly due to cost and scalabil-
ity considerations; the computing power and data storage
space available on the blockchain is limited. One of the
typical solutions is to store raw data off-chain due to its
size while storing small critical data and hashes on-chain.
In terms of computation, blockchains are not the best
for complex, intensive computations; however, they pro-
vide a benefit in their interoperability properties as many
systems can access it [21]. The authors of the ABCDE
development methodology suggest as a general guideline
that data with transparent and immutable requirements
for DApps should be managed on the blockchain system
[20]. In this section, we follow this idea to demonstrate our
design choices.

On-chain activities
The data and activities the system should keep on-chain
include:

• Auction: To support transparent trade, the auction of
service tasks should be conducted on the blockchain
to maintain fairness and prevent fraud. Implementing
decentralized auctions on the blockchain can also
avoid the cheating auctioneers of traditional
centralized auctions and save commission fees.

• Witness reports: In order to avoid tampering with the
SLA reports, they should be placed on-chain. While
this may lead to witnesses viewing each other’s
reports and reporting accordingly, the reports should
be transparent. One effective way to address this
issue and protect privacy is to submit the hashes of
the reports in a specified time window.

• SLAs: It is essential to include SLA details between
the service provider, customer, and witnesses in the
blockchain, as all these data have trust requirements.
However, since SLAs may be larger textual files that
could give a large load to the blockchain, a possible
solution is to place SLA metadata that can unlock the
SLA off-chain while keeping the cryptographic hash
on-chain.

• Payment enforcement: In case of an SLA violation, a
smart contract should be used to facilitate payments
to providers, customers, and witnesses automatically.
Blockchain cryptocurrencies can support the secure
and fair enforcement of money payments.

Off-chain activities
The data and activities the system should keep off-chain
include:

• User interface: Due to data loads, the way in which
providers, customers, and witnesses interact with the

platform should mostly be off-chain.
• Cloud Services. Cloud services offered and used by

providers and customers should be off-chain.
• Pre-monitoring communication: The platform

should facilitate communications between providers
and customers before entering an SLA agreement so
that they can privately agree upon service and
monitoring terms.

Overall system components
Based on the above analysis, we designed the system
architecture of AWESOME. The AWESOME framework
consists of four subsystems in response to the proposed
objectives, as shown in Fig. 2:

1. DApp Graphical User Interface (DGUI) provides a
flexible and customizable DApp interactive
environment for different AWESOME users to
connect on-chain and off-chain activities. It is
designed to provide a bridge between customers,
providers, and witnesses who do not have IT
development knowledge and assist them in calling
function interfaces between different smart contract
agents. Furthermore, the usability of the AWESOME
DApp is ensured through a customizable interface
design for business needs. More specifically, DGUI is
designed with interfaces regarding 1) auctions by
customers and providers; 2) SLA monitoring
activities by witnesses; and 3) DApp management
and maintenance by operators.

2. Auction-Based Service Selection (ABSS) provides
an auction-based service customer/provider
selection solution. This subsystem will first diagnose
the use case requirements and help the user select
the most suitable auction model and algorithm to
achieve desirable results. Then, the management of
the auction process and the enforcement of the
service fee payment (in the form of cryptocurrency)
are executed on the blockchain, ensuring that the
whole auction is open and trustworthy. Finally, ABSS
also audits bidder candidates to prevent malicious
actors from joining the auction.

3. DecentralizedWitness Committee Management
(DWCM) provides a trustworthy incentive
framework to manage decentralized auction
witnesses. First of all, an appropriate number of
witness candidates will be selected in an unbiased
way to perform off-chain monitoring of cloud SLAs.
DWCM will then invoke a game theory incentive
mechanism based on customized payoff functions to
enable selected witnesses to make correct judgments
to win more profits. The subsystem will also audit
the witnesses’ reputations to reward/restrict their
participation in future monitoring activities.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 7 of 25

Blockchain

User-friendly DApp
graphical user interface

Auction-based service provider
and customer selection

Automated smart contract
factory orchestration

Customizable trustworthy
witness committee management

Cloud

SCFO

DWCM

DGUI

ABSS

AWESOME

Fig. 2 The overall architecture of the AWESOME framework

4. Smart Contract Factory Orchestration (SCFO)
provides tools and APIs for AWESOME operators to
set the necessary smart contracts on the blockchain.
More specifically, it is responsible for automating the
process of planning, provisioning blockchain
infrastructure, and deploying AWESOME business
smart contracts. In addition, the SCFO subsystem
also monitors and diagnoses smart contracts and the
underlying blockchain infrastructure at runtime to
provide effective adaptation solutions.

As shown in Fig. 3, the overall workflow of the AWE-
SOME framework can be described as the following steps
(using a reverse auction example). First of all, an AWE-
SOME operator calls the DGUI subsystem to customize
and generate customer, provider, and witness user inter-
faces (UIs) for the current use case. The AWESOME
operator then calls the SCFO subsystem to initiate a con-
tract factory. This contract factory automatically gener-
ates the required auction, witness, and SLA smart con-
tracts to ensure trustworthy interaction between differ-
ent participants. Meanwhile, it also invokes a runtime
monitor for these contracts and returns the monitor-
ing result to the AWESOME operator. Next, an AWE-
SOME customer invokes the UI to transfer the spe-
cific business requirement to the ABSS subsystem. Based

on this requirement, an auction model is selected and
configured to wait for providers to submit their bids.
The decentralized service providers then start to regis-
terer in the ABSS subsystems through their UIs. When
there are enough bidder candidates, smart contracts
automatically start the auction process to find quali-
fied providers. Then, the witnesses invoke their UIs to
register in the DWCM subsystem. The DWCM subsys-
tem also performs game design and an unbiased wit-
ness screener to choose the appropriate witness to form
the witness committee. Finally, the selected providers
collaborate to provide cloud services, and selected wit-
nesses monitor the SLAs to win profits. The service fee
and witness fee will be paid and enforced with cryp-
tocurrency using smart contracts when the cloud service
ends.
In the entire AWESOME workflow, DGUI provides a

customizable graphical interaction environment to sup-
port user-to-user interactions in business processes.ABSS
selects candidate providers through an effective auction
mechanism. DWCM ensures trustworthy SLA enforce-
ment through truth-telling witness monitoring. Finally,
SCFO provides automated smart contract support for
the entire process. The four subsystems form a dynamic
ecosystem that provides services to AWESOME users
collaboratively.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 8 of 25

Fig. 3 The process flow of the AWESOME model and the related stakeholders in the decentralized service ecosystem

The AWESOME DApp demonstration
This section presents a prototype system based on our
AWESOME framework. The prototype output is a DApp
system that helps AWESOME operators and users trade
cloud services in a decentralized service marketplace.
This DApp will contain customizable auction and wit-
ness models for service provisioning and SLA violation
monitoring. Specifically, we first examine different design
choices and implementation options. Then we leverage
a use case to demonstrate how the different roles would
utilize the DApp.

Design choices
We discuss the design choices regarding the auction mod-
els, the blockchain infrastructure, and the smart contract
protocols.

Auctionmodels
In order to support dynamic business requirements, we
should allow both customers and providers can be ini-
tiators and bidders. This produces a more customizable

system that aids in defining a broader range of auction
possibilities. Therefore, at the highest level, the two types
of auctioning that the system supports are: 1) forward
auctions, where the provider is the initiator and the cus-
tomers submit competing bids; 2) reverse auctions, where
the customer is the initiator, and the providers submit
competing bids. Specifically, AWESOME is designed to
support the following eight auction models:

• English Auction: This is an ascending bid auction,
where the price is gradually raised until only one final
bidder remains, and that bidder wins the service at
the finalized price.

• Dutch Auction: This is a descending bid auction,
also known as a clock auction or open-outcry
descending-price auction. The seller starts at a high
price and lowers it until a bidder accepts the price.

• First Price Sealed-Bid Auction: In this auction,
bidders submit sealed bids simultaneously to the
seller, and the highest bidder wins and pays the value
of their bid.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 9 of 25

• Second Price Sealed Bid Auction: In this auction,
bidders submit sealed bids and the highest bidder
wins again, but the price they pay is the value of the
second-highest bid. It is also known as the Vickrey
auction, which encourages truthful bidding in terms
of mechanism design [22].

We can also implement the symmetrical version of these
four types for reverse auctions.

• Reverse English Auction: In this auction, the price
is decremented by competing providers until no one
bids at a lower price. The provider offering the lowest
price wins the auction and provides the service at
that price.

• Reverse Dutch Auction: This auction begins at a
very low price for the service and gradually increases
until a service provider accepts to provide the service
at that specific price.

• Reverse First Price Sealed-Bid Auction: In this
auction, providers submit sealed bids simultaneously
to the customer. The one with the lowest bid wins
and pays the value of their bid.

• Reverse Second Price Sealed Bid Auction: In this
auction, providers again submit sealed bids, the
lowest bid again wins, but the price he should pay is
the value of the second-lowest bid.

Blockchain infrastructure
In general, blockchains can be permissionless or per-
missioned. Our modular AWESOME framework is not
limited to the underlying blockchain infrastructure. AWE-
SOME aims to build a decentralized cloud marketplace
using both permissionless and permissioned blockchains.
Some existing popular platforms may include:

• Ethereum: It is an open-source permissionless
blockchain platform with smart contract and
cryptocurrency functions. It provides a decentralized
mechanism to handle peer-to-peer smart contract
transactions through its proprietary Ethereum
Virtual Machine. We are currently using the
Ethereum blockchain to develop AWESOME smart
contracts and DApps.

• Hyperledger Fabric: It is an open-source
permissioned blockchain platform. The main reason
for choosing a permissioned blockchain is the
availability of a more efficient consensus mechanism,
which increases scalability and reduces wasted
resources.

• Other promising blockchain platforms, e.g.,
Hyperledger Sawtooth, Hyperledger Iroha,
Hyperledger Besu, and IOTA, can also be
implemented to support our decentralized cloud
marketplace. These platforms have been investigated

in many research studies and commercial projects
[23].

Smart contract protocols
To meet the requirements of the AWESOME model to
build a decentralized cloud marketplace, we designed
three smart contracts (i.e., auction contract, witness con-
tract, and SLA contract) to support trustworthy and fair
interactions between different stakeholders, as shown in
Figs. 4, 5 and 6. Specifically, the auction contract is respon-
sible for managing the auction process. The witness con-
tract is responsible for the registration and management
of auction witnesses, as well as the calculation of wit-
ness reporting results and corresponding witness fees.
Furthermore, the SLA contract is used to build and man-
age a trustworthy SLA lifecycle. It should be noted that
we leverage a contract factory to manage and gener-
ate subcontracts instead of developing different contracts
separately in the AWESOME framework, as this is a more
secure and efficient way [24].
The sequence diagram in Fig. 7 shows the interaction

between the contract factory and different subcontracts.
First, an AWESOME operator calls the contract factory to
create a new auction contract. Next, an auction contract
with a customized auction rule for business requirements
is built to support a transparent and automated auction
process. In this case, service providers can register and
submit their bids for services on the blockchain. The auc-
tion contract then selects the winning providers based
on the highest k bids and generates k SLA contracts for
each provider. When the auction is settled (note that the
services have not been delivered yet), the AWESOME
operator calls the contract factory again to generate a wit-
ness contract that contains customized incentive mecha-
nisms to encourage truth-telling witnesses. More details
about a game theory-based witness payoff design are
discussed in our previous research [25]. Then, different
winner providers can start to deliver cloud services off-
chain while the witnesses start to monitor all the services;
if the QoS satisfies the requirements in the SLA contract,
there is no violation; otherwise, there is a violation. The
result of service monitoring is also returned to the auction
contract to determine the status of the auction.

Use case demonstration
We use the business process model in Fig. 8 to demon-
strate how our AWESOME DApp works. There are three
parties of stakeholders who interact with the AWESOME
DApp to complete a reverse auction. In this auction, the
customer acts as the purchaser of the cloud service and
the initiator of the auction. The providers need to com-
pete for bids to get the right to sell their services. The
entire AWESOME business process is described as fol-
lows. When the AWESOME DApp is launched, it first

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 10 of 25

Fig. 4 Protocol: Auction Contract

invokes the AWESOME contract factory to generate the
auction contract to support the auction process manage-
ment. At this time, a customer can register, set up, and
post an auction through the customer UI, as illustrated
in Fig. 9a. An example output of the JSON data structure
when setting an auction object is shown in Listing 1. This
auction invitation is displayed on the AWESOME DApp
to make it visible to providers. When noticing the auc-
tion invitations, different providers can register as bidders
and submit their bids through the provider UI, as shown
in Fig. 9b. When enough bids are received to meet the
customer’s requirement, the auction is settled, and the
winning providers are selected.
After that, the AWESOME contract factory will gen-

erate SLA contracts to prepare for service delivery and
monitoring. The customer and providers need to sign
and confirm the SLA contracts in AWESOME DApp,
respectively. At the same time, a witness contract is also
generated. At this point, the auction initiator (i.e., the
customer) needs to define the rules for witnesses, includ-
ing the number of witnesses, the minimum consensus
percentage required to confirm a violation, the time win-
dow for submitting reports, and the rewards and penalties
for each witnesses’ report. This is illustrated in Fig. 10a

and b. Then, witnesses can register and interact with the
contract through theWitness UI. The cloud service is offi-
cially launched only when all sub-SLAs are confirmed,
and there are enough witnesses for SLAmonitoring. Next,
the customer and providers perform off-chain cloud ser-
vice provisioning and consumption. Witnesses perform
continuous SLAs monitoring and report the monitoring
results to the AWESOME DApp, as shown in Fig. 11.
Based on the results reported by the witness committee,
SLA violation is confirmed: when there is a violation, the
service fee prepaid by the customer is refunded; while
when the service is completed as agreed in the SLA, the
providers can withdraw their corresponding service fees.
Finally, witness fees are calculated and allocated based on
the monitoring results of the witness game.

1 {
2 owner : ' p r ov i d e r 1 ' ,
3 a u c t i o n S t a t e : ' a c t i v e ' ,
4 auc t ionID : ' auc t i on 647 ' ,
5 b i d s : [] ,
6 s e r v i c e : {
7 commodity : {
8 docType : ' vmInstance ' ,
9 p r o p e r t i e s : [

10 { os : ' Ubuntu 18 . 04 ' } ,

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 11 of 25

11 { s t o r a g e _ c a p a c i t y : ' 32 GiB '
} ,

12 {memory : ' 4 GiB ' } , s i g n i f i e s
13 { cpu_cores : ' 8 ' } ,
14]
15 } ,
16 p r i c i n g : {
17 p r i c i n g S u b s c r i p t i o n : '

c r yp tocur rency ' ,
18 p r i c ingCur r ency : ' e ther '
19 }
20 s l aRu l e sAndF ine s : [
21 {
22 i d e n t i f i e r : ' A v a i l a b i l i t y ' ,
23 a c t i on : ' The s e r v e r w i l l be

a v a i l a b l e . ' ,
24 c o n s t r a i n t : ' 99 . 95% of the

t ime . ' ,
25 measurementPeriod : ' 12 : 00 : 0

0 ' ,
26 f i n e : ' 100 ' ,
27 } ,
28 {
29 i d e n t i f i e r : ' Response Time '

,
30 a c t i on : ' The s e r v e r

responds w i th in 1
second . ' ,

31 c o n s t r a i n t : ' 85% of the
t ime . ' ,

32 measurementPeriod : ' 01 : 00 : 0
0 ' ,

33 f i n e : ' 120 ' ,
34 } ,
35]
36 }
37 auc t i onRu l e s : {
38 au c t i onD i r e c t i on : ' forward ' ,
39 auct ionType : ' e ng l i s h ' ,
40 p r i c i n g : {
41 s t a r t P r i c e : ' 50 ' ,
42 r e s e r v e P r i c e : ' 100 ' ,
43 b idd ingS t ep : ' 10 ' ,
44 depo s i t F e e : ' 50 '
45 } ,
46 h i d eRe s e r v eP r i c e : ' t rue ' ,
47 bidCountdownTime : ' 01 : 00 : 00 '
48 } ,
49 }

Listing 1 The JSON data structure when a customer defines an
auction object

Experiments and validations
In this section, we present the evaluation and validation of
the AWESOME framework. We identified two key met-
rics that affect the performance of our AWESOMEmodel:
latency and cost.

Latency analysis
To evaluate the performance of the AWESOME DApp
and the feasibility of the model, we first simulated cloud

Fig. 5 Protocol: Witness Contract

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 12 of 25

Fig. 6 Protocol: SLA Contract

auction and SLA management scenarios with different
player numbers. Then, the latency is tested in the local
Ethereum blockchain and calculated in two ways: 1) the
response time of the AWESOME DApp; 2) the differ-
ence between the block timestamps [26]. The former
reflects the latency of executing transactions in our DApp,
and the latter demonstrates the transaction processing
time of the underlying blockchain. In addition, we simu-
lated two cases of blockchain mining network congestion.
The “best” case implies that there are enough miners
to process transactions promptly. In contrast, the “aver-
age” situation indicates seconds of delays for transaction
processing due to network congestion.
Figure 12 consists of 20 plots representing the perfor-

mance of 20 function interfaces in a “best” blockchain
mining network. Overall, the response time of the AWE-
SOME DApp API is a few seconds longer than the
blockchain block time, which is in line with our expecta-
tions. It can be seen that the execution time of most of the
function interfaces increases linearly with the number of
players. One exception is Place Bids, which has an expo-
nentially increasing trend. This is because this function
requires on-chain calculations to place bids and therefore
takes significantly more time when the number of play-
ers increases or the auction data becomes complex. Some
other functions that take longer time include Setup Auc-
tion, Calculate Witness Fee, Publish Service, and Setup

SLA. Except for these functions, the latency of all others
holds at a low level (10 to 15 seconds with 100 players).
Similarly, Fig. 13 shows the performance of 20 func-

tional interfaces on an “average” mining network. It can
be found that the DApp API response time and the
blockchain block time have both increased significantly;
the two latency values also tend to be close to each other
because of the huge increase in the total time needed to
process blockchain transactions. Nevertheless, all latency
is maintained within a few minutes when the number of
players increases. A strange observation is that the latency
is high in the Cancel SLA function when the player num-
ber is 1. By analyzing our experimental workflow, we
found that this is because he needs to process a large num-
ber of SLAs generated from the previous step. This also
proves that the latency is influenced by the player num-
bers and the complexity of the data to be processed. In
summary, we conclude that the AWESOME framework
has a good performance in terms of execution latency.
Some individual functions that require complex calcu-
lations have longer time delays, but they may not be
time-critical in the auction process. We also conclude that
the main factor affecting DApp latency is the performance
of the underlying blockchain; namely, the latency is heav-
ily dependent on the congestion of the blockchain mining
network. A more detailed comparison is also presented
in Table 1.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 13 of 25

Fig. 7 The sequence diagram of the AWESOME smart contracts interactions

Cost analysis
Next, we measured the gas consumption and transac-
tion fee (Ether) of each function interface in AWESOME
smart contracts, as shown in Fig. 14 and Table 2. These
functions have built-in access control mechanisms; only
specific stakeholder groups can access and call them.
Specifically, three transaction submission speed modes
(i.e., low, average, and high) were tested7. By analyz-
ing the testing results, we can find that the transac-
tion fees of most function interfaces are maintained
at a relatively low level (less than 0.01 ether), except
for only three special cases, namely Place Bids (auc-
tion contract), Calculate Witness Fee (witness contract),
and Check SLA Violation (SLA contract). These func-
tion interfaces require specific computational tasks on-
chain and therefore need more transaction fees to pay for
miners.

7The estimated transaction confirmation duration for three modes are 16
minutes, 2 minutes and 19 seconds, and 30 seconds, respectively. Data was
collected on April 30, 2021, at https://etherscan.io/gastracker

Table 3 further shows the transaction fee of each AWE-
SOME user (converted into USD). Overall, the customer
is the beneficiary and initiator of the service auction and
should therefore bear more commission fees. Providers
have lower transaction costs since they only join themodel
as bidders. Besides, the transaction fee per witness is eco-
nomical (about $15-20), which ensures that they have
sufficient incentive to join the SLA monitoring activities.
It is worth noting that although the customer pays over
$200 to initiate the auction, this fee is fixed and indepen-
dent of the final service price. In contrast, some popular
online auction platforms charge a percentage of the sale
price as a commission (e.g., eBay charges 12.9% of the
sale price). Therefore, our model has a price advantage,
especially when the price of the auctioned cloud services
becomes very expensive. On the other hand, if the com-
mission is higher than the cost of the cloud service itself,
our model will not be suitable for a public blockchain
like Ethereum. A fee-free permissioned blockchain (e.g.,
Hyperledger Fabric), in this case, can be used as an alter-
native and the whole model is still valid.

https://etherscan.io/gastracker

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 14 of 25

Fig. 8 The business processes in an AWESOME service trading activity

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 15 of 25

Fig. 9 The auction initiator (i.e., the customer in this auction) sets the auction rules, and bidders (i.e., providers in this auction) submit their bids

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 16 of 25

Fig. 10 The auction initiator (i.e., the customer in this auction) sets the monitoring rules for witnesses

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 17 of 25

Fig. 11Witness UI: A witness starts to submit the report for SLA violations

Discussion and future work
AWESOME aims to build a trustworthy cloud market-
place using blockchain technologies. In this section, we
discuss the design choices and future development plans.

Blockchain technologies
The first consideration is the tradeoff between choosing
permissionless and permissioned blockchain technolo-
gies. Permissioned blockchains can address the huge oper-
ational cost and low-performance issues of permissionless
blockchains, but this is often considered at the cost of
transaction security, especially in a low trust environ-
ment [27]. We used a static sealed-bid auction model to
demonstrate and evaluate our AWESOME DApp in “The
AWESOME DApp demonstration” and “Experiments and
validations” sections. Such an auction does not require
high performance and scalability of the blockchain since
each bidder only needs to submit a bid once. However,

in a high-frequency and large-scale dynamic auction,
the blockchain’s performance is a key factor; therefore,
we believe that a permissioned blockchain is a better
choice. Another consideration is to support auction pay-
ments using cryptocurrencies. Ethereum’s widely recog-
nized token Ether can be commonly regarded as fiat
money, which primarily motivated us to use the Ethereum
blockchain to develop the current DApp. We leave the
implementation of permissioned blockchain platforms
(e.g., Hyperledger Fabric) in the AWESOME framework
as our future work.

Auction models
In order to support dynamic business requirements, we
design our AWESOME framework to allow both for-
ward and reverse auctions. This gives users a more cus-
tomizable system that aids in defining a broader range
of auction possibilities. Introducing both forward and

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 18 of 25

Fig. 12 Execution latency of different function interfaces in AWESOME smart contracts under the best mining network

reverse auctions also increases the possibilities for users
on the DApp and promotes fairness between parties as
both can use the DApp to serve their business needs in
their own way. Besides, many other popular auction mod-
els, e.g., double auction, combinatorial auction, and VCG
auction, have demonstrated their great potential for inte-
gration with blockchain and cloud computing [19]. We
leave the implementation of these auctions as our future
work. In addition to the eight auction models mentioned
in “Auction models” section, AWESOME users can also
customize various auction models to support different
business needs.We expect a richer AWESOME ecosystem
to be built with the contribution of more auction models
from users.

Smart contract optimization
We do not let users deploy AWESOME smart contracts
directly in the current model. Instead, users need to
invoke contract templates through the DApp UI to gen-

erate auction, witness, and SLA contracts automatically.
This design provides users an easy way to customize and
deploy contracts while helping the DApp operator keep
track of all deployed contracts. We believe such a design is
reasonable and effective. Besides, the gas consumption of
contracts is a huge challenge. In “Cost analysis” section we
show that although the contract code has been optimized
and the overall cost of the AWESOME DApp is econom-
ical, there are some functional interfaces such as Place
Bids andCalculateWitness Feemay invoke a large amount
of gas consumption. This will, to some extent, hinder
the widespread utilization of the AWESOME DApp. To
handle this issue, some off-chain solutions (e.g., state
channels and trusted execution environments) can be
leveraged to offload the on-chain computation tasks to
off-chain networks. In addition, contract vulnerabilities
should be carefully investigated in the future to pre-
vent diverse security attacks from causing huge losses
to users.

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 19 of 25

Fig. 13 Execution latency of different function interfaces in AWESOME smart contracts under the average mining network

Table 1 Execution latency of the AWESOME contracts with different player numbers (s)

Function Interface No. of Players
API Response Time Block Time

Best Average Best Average

Setup Auction 1 5.081 ±0.641 5.229 ±0.319 0.326 ±0.083 1.001 ±0.345
20 6.198 ±0.409 24.950 ±0.718 3.527 ±0.212 22.014 ±0.488
40 8.590 ±0.572 46.920 ±0.498 5.693 ±0.385 44.281 ±0.456
60 10.368 ±0.502 68.758 ±0.362 7.448 ±0.455 65.726 ±0.812
80 13.077 ±1.564 91.226 ±0.421 9.821 ±1.433 88.224 ±0.703
100 15.026 ±1.213 113.532 ±1.876 11.520 ±1.525 110.639 ±1.796

Bidder Register 1 5.346 ±0.410 4.651 ±0.431 0.128 ±0.053 0.302 ±0.170
20 5.381 ±0.491 24.042 ±0.170 2.414 ±0.351 20.975 ±0.484
40 6.786 ±0.420 45.686 ±0.500 3.777 ±0.140 42.668 ±0.806
60 8.367 ±0.414 67.255 ±1.108 5.222 ±0.506 64.246 ±1.030
80 9.603 ±0.361 89.016 ±1.284 6.480 ±0.359 86.135 ±1.408
100 11.367 ±0.632 110.538 ±1.156 7.956 ±0.397 107.674 ±1.267

Check Bidder Number 1 5.083 ±0.238 4.511 ±0.256 0.082 ±0.009 0.564 ±0.248
20 5.543 ±0.634 23.970 ±0.469 2.184 ±0.458 20.891 ±0.561
40 6.690 ±0.431 45.679 ±0.541 3.282 ±0.321 42.436 ±0.643
60 7.795 ±0.394 66.857 ±0.843 4.475 ±0.390 63.879 ±0.979
80 8.427 ±0.228 88.656 ±1.033 5.128 ±0.387 85.632 ±1.322

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 20 of 25

Table 1 Execution latency of the AWESOME contracts with different player numbers (s) (Continued)

Function Interface No. of Players
API Response Time Block Time

Best Average Best Average

100 9.495 ±0.443 109.509 ±0.896 6.329 ±0.343 106.681 ±1.335

Submit Bid 1 4.993 ±0.257 4.381 ±0.171 0.136 ±0.018 0.550 ±0.276
20 5.888 ±0.651 24.423 ±0.643 2.529 ±0.264 21.183 ±0.862
40 7.177 ±0.104 46.639 ±1.107 3.899 ±0.249 43.606 ±1.080
60 8.928 ±0.621 68.299 ±0.885 5.485 ±0.819 65.229 ±1.021
80 10.562 ±1.064 89.638 ±1.507 7.304 ±1.045 86.534 ±2.021
100 11.635 ±0.658 111.857 ±1.342 8.126 ±0.574 108.806 ±1.460

Reveal Bid 1 4.976 ±0.215 4.734 ±0.552 0.119 ±0.030 0.796 ±0.197
20 5.617 ±0.436 24.039 ±0.252 2.483 ±0.330 21.071 ±0.513
40 7.105 ±0.312 46.029 ±0.343 3.823 ±0.610 42.764 ±0.625
60 8.758 ±0.909 67.481 ±0.750 5.447 ±0.950 64.534 ±1.071
80 9.958 ±0.618 89.659 ±1.057 6.730 ±0.683 86.685 ±1.230
100 11.368 ±0.615 111.816 ±1.576 8.270 ±0.848 109.56 ±1.695

Reveal Reserve Price 1 5.041 ±0.050 4.723 ±0.751 0.075 ±0.006 0.557 ±0.242
20 5.297 ±0.323 23.947 ±0.606 1.942 ±0.058 20.987 ±0.551
40 6.707 ±0.890 45.704 ±0.533 3.519 ±0.750 42.649 ±0.875
60 7.615 ±0.528 67.066 ±0.654 4.422 ±0.251 63.721 ±1.194
80 8.674 ±0.381 88.870 ±0.785 5.449 ±0.372 85.926 ±1.080
100 10.533 ±1.529 109.980 ±1.194 7.143 ±1.455 107.125 ±1.223

Place Bids 1 5.304 ±0.540 4.753 ±0.499 0.601 ±0.278 1.303 ±0.500
20 9.526 ±0.654 30.767 ±5.002 6.361 ±0.842 28.077 ±5.088
40 19.790 ±1.887 63.894 ±11.285 16.490 ±1.792 60.981 ±11.291
60 41.688 ±4.794 113.183 ±19.302 38.475 ±4.832 110.20 ±19.428
80 99.762 ±10.176 191.103 ±35.886 96.615 ±10.118 187.842 ±36.20
100 223.549 ±15.436 317.983 ±23.430 220.420 ±15.282 315.121 ±23.237

Withdraw Deposit 1 4.939 ±0.511 4.849 ±0.752 0.085 ±0.031 0.653 ±0.313
20 4.934 ±0.384 24.024 ±0.400 2.112 ±0.284 21.250 ±0.582
40 6.133 ±0.294 45.342 ±0.451 3.151 ±0.246 42.295 ±0.726
60 7.639 ±0.659 66.946 ±0.730 4.333 ±0.425 63.979 ±1.063
80 8.690 ±1.298 88.097 ±1.156 5.458 ±0.629 85.291 ±1.446
100 9.597 ±0.405 109.507 ±1.151 6.293 ±0.386 106.567 ±1.403

Witness Register 1 5.425 ±0.737 4.483 ±0.263 0.171 ±0.047 0.686 ±0.283
20 5.874 ±0.292 24.440 ±0.466 2.901 ±0.247 21.651 ±0.290
40 7.941 ±0.408 46.923 ±1.383 4.818 ±0.363 44.057 ±1.394
60 9.782 ±0.212 68.228 ±1.230 6.681 ±0.255 65.324 ±1.166
80 11.204 ±0.212 90.606 ±0.754 8.092 ±0.342 87.740 ±1.206
100 13.157 ±0.720 113.572 ±0.583 10.001 ±0.491 110.452 ±0.421

Check Auction Settled 1 5.349 ±0.198 4.513 ±0.459 0.125 ±0.015 0.654 ±0.123
20 6.211 ±0.759 24.427 ±0.617 2.698 ±0.676 21.563 ±0.551
40 7.509 ±0.367 45.950 ±0.755 4.422 ±0.358 42.907 ±1.060
60 8.847 ±0.470 67.829 ±0.909 5.736 ±0.559 64.888 ±0.858
80 10.415 ±0.897 90.098 ±0.717 7.200 ±0.785 86.940 ±1.002
100 11.380 ±0.654 111.617 ±1.275 8.101 ±0.750 108.645 ±1.159

Submit Reports 1 5.330 ±0.273 4.519 ±0.537 0.112 ±0.037 0.512 ±0.282
20 6.168 ±0.698 24.137 ±0.420 3.087 ±0.634 21.056 ±0.537
40 7.578 ±0.552 45.851 ±0.545 4.140 ±0.490 43.093 ±0.492
60 8.548 ±0.419 67.868 ±0.765 5.379 ±0.313 65.090 ±0.900
80 9.619 ±0.307 89.155 ±0.863 6.414 ±0.348 86.343 ±1.143
100 10.738 ±0.352 110.656 ±1.126 7.604 ±0.494 107.751 ±1.273

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 21 of 25

Table 1 Execution latency of the AWESOME contracts with different player numbers (s) (Continued)

Function Interface No. of Players
API Response Time Block Time

Best Average Best Average

Reveal Reports 1 5.098 ±0.163 4.983 ±1.190 0.184 ±0.046 0.514 ±0.249
20 5.841 ±0.136 24.431 ±0.329 2.721 ±0.236 21.276 ±0.629
40 7.559 ±0.308 46.788 ±0.794 4.324 ±0.239 43.683 ±0.485
60 9.878 ±0.980 68.559 ±0.839 6.674 ±0.718 65.553 ±0.987
80 10.984 ±0.525 90.275 ±1.068 7.664 ±0.360 87.288 ±1.188
100 11.805 ±0.234 112.551 ±1.290 8.626 ±0.357 109.384 ±1.481

Calculate Witness Fee 1 5.153 ±0.119 4.424 ±0.178 0.441 ±0.065 0.847 ±0.200
20 7.892 ±0.330 26.818 ±0.245 4.714 ±0.146 23.899 ±0.307
40 12.065 ±0.786 50.975 ±0.244 9.023 ±0.848 48.278 ±0.493
60 16.577 ±0.782 75.447 ±0.768 13.233 ±0.743 72.716 ±0.923
80 19.295 ±0.630 99.818 ±1.442 16.081 ±0.637 96.850 ±1.706
100 22.975 ±0.668 123.946 ±1.800 19.797 ±0.839 121.80 ±1.844

Withdraw Witness Fee 1 5.140 ±0.498 4.655 ±0.577 0.079 ±0.032 0.316 ±0.148
20 5.592 ±0.405 24.114 ±0.292 1.992 ±0.288 20.910 ±0.488
40 6.493 ±0.626 45.126 ±0.604 3.324 ±0.327 42.453 ±0.699
60 7.419 ±0.211 67.014 ±0.862 4.055 ±0.254 64.226 ±0.876
80 8.029 ±0.192 88.599 ±0.939 5.124 ±0.284 85.305 ±1.308
100 9.015 ±0.435 109.059 ±1.189 5.808 ±0.199 106.464 ±1.299

Publish Service 1 5.001 ±0.405 4.657 ±0.444 0.297 ±0.280 0.841 ±0.268
20 11.345 ±1.191 23.981 ±0.518 9.727 ±1.161 21.590 ±0.339
40 20.429 ±1.788 45.851 ±0.784 18.449 ±1.648 43.599 ±0.568
60 27.985 ±1.714 67.248 ±0.069 26.244 ±1.550 65.170 ±0.088
80 36.563 ±1.033 89.267 ±0.466 34.661 ±0.990 86.791 ±0.114
100 42.494 ±3.358 111.204 ±0.639 40.646 ±3.405 108.942 ±0.342

Setup SLA 1 4.754 ±0.556 4.411 ±0.102 0.277 ±0.278 0.719 ±0.368
20 11.203 ±0.453 23.844 ±0.289 9.194 ±0.293 21.455 ±0.272
40 19.328 ±0.474 45.302 ±0.347 17.334 ±0.634 43.113 ±0.500
60 25.957 ±1.229 67.098 ±0.639 24.030 ±1.340 64.767 ±0.483
80 33.449 ±1.503 88.470 ±0.292 31.595 ±1.440 86.324 ±0.330
100 39.588 ±1.885 110.304 ±0.790 37.625 ±1.807 107.931 ±0.447

Accept SLA 1 4.658 ±0.521 4.556 ±0.313 0.097 ±0.027 0.324 ±0.231
20 5.052 ±0.264 24.028 ±0.732 2.269 ±0.207 21.063 ±0.538
40 6.604 ±0.398 45.886 ±0.388 3.557 ±0.401 42.759 ±0.830
60 7.576 ±0.269 66.953 ±0.812 4.411 ±0.160 64.031 ±1.111
80 8.513 ±0.426 88.380 ±0.767 5.543 ±0.373 85.537 ±0.995
100 10.450 ±0.256 110.139 ±1.565 7.033 ±0.251 106.885 ±1.466

Cancel SLA 1 33.458 ±2.225 34.516 ±3.614 30.187 ±2.435 31.467 ±3.801
20 5.412 ±0.451 24.460 ±0.507 2.133 ±0.219 21.189 ±0.712
40 6.575 ±0.420 45.962 ±0.533 3.391 ±0.381 43.116 ±0.801
60 8.039 ±0.767 67.295 ±1.002 4.765 ±0.621 64.242 ±1.275
80 8.921 ±0.261 89.148 ±1.156 5.665 ±0.223 86.043 ±1.545
100 9.862 ±0.215 110.630 ±1.646 6.492 ±0.377 107.441 ±1.575

Check SLA Violation 1 5.164 ±0.520 4.658 ±0.360 0.495 ±0.176 0.738 ±0.236
20 7.458 ±0.747 25.358 ±0.532 4.616 ±0.647 22.242 ±0.362
40 10.582 ±1.853 47.916 ±0.183 7.277 ±2.174 45.181 ±0.441
60 11.931 ±1.544 70.610 ±0.416 8.752 ±1.703 67.853 ±0.727
80 13.160 ±0.952 93.304 ±0.343 9.915 ±1.56 90.546 ±0.379
100 15.327 ±1.369 116.324 ±1.104 12.248 ±1.406 113.332 ±1.241

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 22 of 25

Table 1 Execution latency of the AWESOME contracts with different player numbers (s) (Continued)

Function Interface No. of Players
API Response Time Block Time

Best Average Best Average

Withdraw Service Fee 1 4.360 ±0.131 4.958 ±0.618 0.102 ±0.016 0.468 ±0.256
20 4.857 ±0.323 24.229 ±0.515 1.957 ±0.110 21.327 ±0.422
40 6.539 ±0.727 45.944 ±0.401 3.594 ±0.257 43.139 ±0.607
60 7.671 ±0.464 67.570 ±1.034 4.517 ±0.524 64.640 ±0.844
80 8.447 ±0.315 89.396 ±0.893 5.420 ±0.408 86.363 ±0.984
100 9.737 ±0.715 110.668 ±0.963 6.735 ±0.559 107.909 ±1.227

Fig. 14 The transaction fee of each function interface in AWESOME smart contracts

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 23 of 25

Table 2 The gas consumption and access control mechanisms of function interfaces in AWESOME smart contracts

Smart Contract Access Control Function Interface Gas Consumption
Transaction Fee (Ether)

Low Average High

Auction Contract Customer Setup Auction 63694 0.002101902 0.002420372 0.002675148

Provider Bidder Register 55835 0.001842555 0.00212173 0.00234507

Customer Check Bidder Number 32420 0.00106986 0.00123196 0.00136164

Provider Submit Bid 54555 0.001800315 0.00207309 0.00229131

Provider Reveal Bid 76605 0.002527965 0.00291099 0.00321741

Customer Reveal Reserve Price 29630 0.00097779 0.00112594 0.00124446

Customer Place Bids 1552698 0.051239034 0.059002524 0.065213316

Customer & Provider Withdraw Deposit 22242 0.000733986 0.000845196 0.000934164

Witness Contract Witness Witness Register 63630 0.00209979 0.00241794 0.00267246

Customer Check Auction Settled 47298 0.001560834 0.001797324 0.001986516

Witness Submit Reports 28159 0.000929247 0.001070042 0.001182678

Witness Reveal Reports 60330 0.00199089 0.00229254 0.00253386

Customer Calculate Witness Fee 817390 0.02697387 0.03106082 0.03433038

Witness Withdraw Witness Fee 24017 0.000792561 0.000912646 0.001008714

SLA Contract Provider Publish Service 34587 0.001141371 0.001314306 0.001452654

Provider Setup SLA 55275 0.001824075 0.00210045 0.00232155

Customer Accept SLA 26721 0.000881793 0.001015398 0.001122282

Provider Cancel SLA 31926 0.001053558 0.001213188 0.001340892

Provider Check SLA Violation 169151 0.005581983 0.006427738 0.007104342

Customer & Provider Withdraw Service Fee 36785 0.001213905 0.00139783 0.00154497

Witness mechanism
Regarding the witness mechanism of the SLA, a possi-
ble optimization solution is to perform a random and fair
selection of the registered witnesses, which can effectively
avoid Sybil attacks and malicious witnesses. In this regard,
an unbiased screening algorithm proposed in our previ-
ous work [25] could be integrated into the current model
to improve trustworthiness. Besides, a reputation system
could also be designed to prevent the inclusion of dis-
reputable witnesses. Furthermore, the current judgment
of the SLA violation is implemented based on a static
gamemodel between different witnesses. In the future, we
plan to design more complex and effective game models
and incentive mechanisms to motivate witnesses to report
trustworthy monitoring results.

Privacy concerns
All data stored on the blockchainmust be public to all peer
nodes to ensure traceability, verifiability, and immutabi-

lity. This conflicts with the privacy requirements of auc-
tion users, especially for those applications with critical
business secrets [28]. Our AWESOME model will not be
widely used if privacy and security are not adequately
safeguarded. In general, blockchain-based auction models
have two privacy concerns: identity privacy and trans-
action privacy. The former considers preventing transac-
tions from being associated with specific auction users
and their blockchain addresses. The latter covers the pri-
vacy of auction information regarding bids, contracts,
payments, and other transaction details. Several privacy
protection solutions are already available in this con-
text, e.g., cryptographic techniques, mixing/tumbler ser-
vice, differential privacy, trusted execution environment,
and permissioned blockchain [19]. AWESOME does not
restrict users from choosing auction models and applica-
tion scenarios. Therefore, users should choose and imple-
ment appropriate privacy protection solutions for their
specific needs in practice.

Table 3 The transaction fee of each AWESOME user in a specific auction event

User Gas Consumption
Transaction Fee USD

Low Average High Low Average High

Customer 2628878 0.086752974 0.099897364 0.110412876 230.94335702592 265.93477475712 293.92790894208

Provider 536961 0.017719713 0.020404518 0.022552362 47.17129358304 54.31845927744 60.03619183296

Witness 176136 0.005812488 0.006693168 0.007397712 15.47330805504 17.81774866944 19.69330116096

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 24 of 25

Conclusion
This work proposes a novel AWESOME model for build-
ing a decentralized cloud marketplace, which is enhanced
by auction models and witness mechanisms. The model
can support interactions between service providers, cus-
tomers, and witnesses to complete trustworthy auctions
and SLA enforcement. Compared with classic cloud ser-
vice models, our model uses blockchain and smart con-
tracts for decentralized service auctions; transaction effi-
ciency is ensured through customizable auction models,
and auction trustworthiness is guaranteed by the mon-
itoring of decentralized witnesses. We also developed
a prototype AWESOME DApp based on the Ethereum
blockchain. It contains customizable GUIs and several
advanced smart contract protocols to support the SLA
business process. Extensive experiments are designed to
evaluate the latency and cost of our model and DApp.
The experimental results demonstrate that our model is
economical and feasible.
It is worth noticing that the AWESOME framework

aims to develop generic software architecture for a decen-
tralized cloud ecosystem. Some features, such as the inte-
gration with other blockchain platforms (e.g., Hyperledger
Fabric) and auction models (e.g., VCG auction and dou-
ble auction), are still under development. In the future,
we will continue to test our framework and demonstrate
its feasibility in two ongoing industrial projects (i.e., EU
ARTICONF and CLARIFY).

Acknowledgements
Not applicable.

Funding
This work is funded by the European Union’s Horizon 2020 research and
innovation program under grant agreements 825134 (ARTICONF project),
824068 (ENVRI-FAIR project), and 862409 (BLUECLOUD project). The work is
supported by the National Natural Science Foundation of China under grant
No. 62102434 and No. 62002364. The work is also supported by the Chinese
Scholarship Council and EU LifeWatch ERIC.

Authors’ contributions
ZS, VI, and JS carried out the experiment and wrote the manuscript with
support from HZ, SF, and ZZ. ZS and ZZ conceived the original idea. ZZ
supervised the whole project. All authors read and approved the final
manuscript.

Availability of data andmaterials
The DApp code and simulation data used in this paper are publically available
on Github, and the links have been included in the paper.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1Informatics Institute, University of Amsterdam, Science Park 904, 1098 XH,
Amsterdam, the Netherlands. 2Department of Electrical Engineering and
Computer Science, University of Stavanger, Rennebergstien 30, 4021
Stavanger, Norway. 3School of Computer Science, National University of
Defense Technology, 410073 Changsha, China.

Received: 2 December 2021 Accepted: 20 June 2022

References
1. Ibrahim S, He B, Jin H (2011) Towards pay-as-you-consume cloud

computing. In: 2011 IEEE International Conference on Services
Computing. IEEE. pp 370–377. https://doi.org/10.1109/SCC.2011.38

2. Uriarte RB, Zhou H, Kritikos K, Shi Z, Zhao Z, De Nicola R (2020) Distributed
service-level agreement management with smart contracts and
blockchain. Concurr Comput-Pract Exp:e5800. https://doi.org/10.1002/
cpe.5800

3. Patel P, Ranabahu AH, Sheth AP (2009) Service level agreement in cloud
computing. https://corescholar.libraries.wright.edu/knoesis/78/.
Accessed 15 Nov 2021

4. Wüst K, Gervais A (2018) Do you need a blockchain? In: 2018 Crypto Valley
Conference on Blockchain Technology. IEEE. pp 45–54. https://doi.org/10.
1109/CVCBT.2018.00011

5. Xing X, Chen Y, Li T, Xin Y, Sun H (2021) A blockchain index structure
based on subchain query. J Cloud Comput 10(1):1–11. https://doi.org/10.
1186/s13677-021-00268-0

6. Scheid EJ, Rodrigues BB, Granville LZ, Stiller B (2019) Enabling dynamic sla
compensation using blockchain-based smart contracts. In: 2019 IFIP/IEEE
Symposium on Integrated Network and Service Management. IEEE.
pp 53–61

7. Mühlberger R, Bachhofner S, Ferrer EC, Di Ciccio C, Weber I, Wöhrer M,
Zdun U (2020) Foundational oracle patterns: Connecting blockchain to
the off-chain world. In: 2020 International Conference on Business
Process Management. Springer. pp 35–51. https://doi.org/10.1007/978-3-
030-58779-6_3

8. Shi Z, Farshidi S, Zhou H, Zhao Z (2021) An auction and witness enhanced
trustworthy sla model for decentralized cloud marketplaces. In: 2021 ACM
International Conference on Information Technology for Social Good
(GoodIT). ACM. pp 109–114. https://doi.org/10.1145/3462203.3475876

9. Uriarte RB, Tiezzi F, De Nicola R (2014) SLAC: A formal
service-level-agreement language for cloud computing. In: 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing.
IEEE/ACM. pp 419–426. https://doi.org/10.1109/UCC.2014.53

10. de Brito Gonçalves JP, Gomes RL, da Silva Villaca R, Municio E,
Marquez-Barja J (2020) A service level agreement verification system
using blockchains. In: 2020 IEEE 11th International Conference on
Software Engineering and Service Science (ICSESS). IEEE. pp 541–544.
https://doi.org/10.1109/ICSESS49938.2020.9237735

11. de Brito Gonçalves JP, Lima Gomes R, da Silva Villaca R, Municio E,
Marquez-Barja J (2020) A quality of service compliance system
empowered by smart contracts and oracles. In: 2020 IEEE International
Conference on Blockchain (Blockchain). IEEE. pp 532–538. https://doi.org/
10.1109/Blockchain50366.2020.00077

12. Sahai A, Machiraju V, Sayal M, Van Moorsel A, Casati F (2002) Automated
sla monitoring for web services. In: 2002 International Workshop on
Distributed Systems: Operations and Management. Springer. pp 28–41.
https://doi.org/10.1007/3-540-36110-3_6

13. Sun L, Singh J, Hussain OK (2012) Service level agreement (sla) assurance
for cloud services: A survey from a transactional risk perspective. In:
Proceedings of the 2012 International Conference on Advances in Mobile
Computing & Multimedia. ACM. pp 263–266. https://doi.org/10.1145/
2428955.2429005

14. Alkandari F, Paige RF (2012) Modelling and comparing cloud computing
service level agreements. In: Proceedings of the 2012 International
Workshop onModel-Driven Engineering for High Performance and CLoud
Computing. ACM. pp 1–6. https://doi.org/10.1145/2446224.2446227

15. Labidi T, Mtibaa A, Gaaloul W, Tata S, Gargouri F (2017) Cloud sla modeling
and monitoring. In: 2017 IEEE International Conference on Services
Computing. IEEE. pp 338–345. https://doi.org/10.1109/SCC.2017.50

16. Anithakumari S, Chandrasekaran K (2015) Monitoring and management
of service level agreements in cloud computing. In: 2015 International
Conference on Cloud and Autonomic Computing. IEEE. pp 204–207.
https://doi.org/10.1109/ICCAC.2015.28

17. Lu R, Liang Y, Ling Q, Li C, Wu W (2021) Double auction and profit
maximization mechanism for jobs with heterogeneous durations in cloud
federations. J Cloud Comput 10(1):1–22. https://doi.org/10.1186/s13677-
021-00249-3

https://doi.org/10.1109/SCC.2011.38
https://doi.org/10.1002/cpe.5800
https://doi.org/10.1002/cpe.5800
https://corescholar.libraries.wright.edu/knoesis/78/
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1109/CVCBT.2018.00011
https://doi.org/10.1186/s13677-021-00268-0
https://doi.org/10.1186/s13677-021-00268-0
https://doi.org/10.1007/978-3-030-58779-6_3
https://doi.org/10.1007/978-3-030-58779-6_3
https://doi.org/10.1145/3462203.3475876
https://doi.org/10.1109/UCC.2014.53
https://doi.org/10.1109/ICSESS49938.2020.9237735
https://doi.org/10.1109/Blockchain50366.2020.00077
https://doi.org/10.1109/Blockchain50366.2020.00077
https://doi.org/10.1007/3-540-36110-3_6
https://doi.org/10.1145/2428955.2429005
https://doi.org/10.1145/2428955.2429005
https://doi.org/10.1145/2446224.2446227
https://doi.org/10.1109/SCC.2017.50
https://doi.org/10.1109/ICCAC.2015.28
https://doi.org/10.1186/s13677-021-00249-3
https://doi.org/10.1186/s13677-021-00249-3

Shi et al. Journal of Cloud Computing (2022) 11:27 Page 25 of 25

18. Dibaj SR, Miri A, Mostafavi S (2020) A cloud priority-based dynamic online
double auction mechanism (PB-DODAM). J. Cloud Comput. 9(1):1–26.
https://doi.org/10.1186/s13677-020-00213-7

19. Shi Z, de Laat C, Grosso P, Zhao Z (2021) When Blockchain Meets Auction
Models: A Survey, Some Applications, and Challenges. Available at arXiv
2110.12534. https://doi.org/10.48550/arXiv.2110.12534

20. Marchesi L, Marchesi M, Tonelli R (2019) ABCDE – Agile Block Chain Dapp
Engineering. Available at arXiv 1912.09074. https://doi.org/10.48550/
arXiv.1912.09074

21. Xu X, Weber I, Staples M (2019) Architecture for blockchain applications.
Springer, Cham

22. Klemperer P (1999) Auction theory: A guide to the literature. J Econ Surv
13(3):227–286. https://doi.org/10.1111/1467-6419.00083

23. Zhou H, Shi Z, Ouyang X, Zhao Z (2021) Building a blockchain-based
decentralized ecosystem for cloud and edge computing: an ALLSTAR
approach and empirical study. Peer-to-Peer Netw Appl 14(6):3578–3594.
https://doi.org/10.1007/s12083-021-01198-z

24. Liu Y, Lu Q, Xu X, Zhu L, Yao H (2018) Applying design patterns in smart
contracts. In: 2018 International Conference on Blockchain. Springer.
pp 92–106. https://doi.org/10.1007/978-3-319-94478-4_7

25. Zhou H, Ouyang X, Ren Z, Su J, de Laat C, Zhao Z (2019) A blockchain
based witness model for trustworthy cloud service level agreement
enforcement. In: 2019 IEEE International Conference on Computer
Communications. IEEE. pp 1567–1575. https://doi.org/10.1109/INFOCOM.
2019.8737580

26. Tapas N, Longo F, Merlino G, Puliafito A (2020) Experimenting with smart
contracts for access control and delegation in IoT. Futur Gener Comp Syst
111:324–338. https://doi.org/10.1016/j.future.2020.04.020

27. Bakos Y, Halaburda H (2021) Tradeoffs in Permissioned vs Permissionless
Blockchains: Trust and Performance. Available at SSRN 3789425. https://
doi.org/10.2139/ssrn.3789425

28. Peng L, Feng W, Yan Z, Li Y, Zhou X, Shimizu S (2021) Privacy preservation
in permissionless blockchain: A survey. Digit Commun Netw
7(3):295–307. https://doi.org/10.1016/j.dcan.2020.05.008

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/s13677-020-00213-7
https://doi.org/10.48550/arXiv.2110.12534
https://doi.org/10.48550/arXiv.1912.09074
https://doi.org/10.48550/arXiv.1912.09074
https://doi.org/10.1111/1467-6419.00083
https://doi.org/10.1007/s12083-021-01198-z
https://doi.org/10.1007/978-3-319-94478-4_7
https://doi.org/10.1109/INFOCOM.2019.8737580
https://doi.org/10.1109/INFOCOM.2019.8737580
https://doi.org/10.1016/j.future.2020.04.020
https://doi.org/10.2139/ssrn.3789425
https://doi.org/10.2139/ssrn.3789425
https://doi.org/10.1016/j.dcan.2020.05.008

	Abstract
	Keywords

	Introduction
	Related work
	Smart contract-based SLA management
	SLA monitoring solutions
	Blockchain-based auction models
	DApp development challenges

	The AWESOME framework
	Requirements analysis
	System objectives
	Actor identification
	On-chain vs. off-chain interactions
	On-chain activities
	Off-chain activities

	Overall system components

	The AWESOME DApp demonstration
	Design choices
	Auction models
	Blockchain infrastructure
	Smart contract protocols

	Use case demonstration

	Experiments and validations
	Latency analysis
	Cost analysis

	Discussion and future work
	Blockchain technologies
	Auction models
	Smart contract optimization
	Witness mechanism
	Privacy concerns

	Conclusion
	Acknowledgements
	Funding
	Authors' contributions
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

