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A B S T R A C T   

The paper validates novel structural reliability Gaidai-Fu-Xing (GFX) method, particularly suitable for multi- 
dimensional structural responses, versus well established bivariate statistical method, that is known to accu
rately predict two-dimensional system extreme response levels. Classic reliability methods, dealing with time 
series do not have an advantage of dealing easily with system high dimensionality and cross-correlation between 
different dimensions. An operating Jacket located in the Bohai bay was taken as an example to demonstrate the 
proposed methodology. Novel state of art bimodal extrapolation technique was applied to predict system reli
ability with five years return period, which is of practical importance for design of fixed offshore structures. 

Unlike other reliability methods the new method does not require to re-start simulation each time system fails, 
in case of numerical simulation. In case of measured structural response, an accurate prediction of system failure 
probability is also possible as illustrated in this study. 

Jacket offshore platform subjected to large environmental wave loads, thus structural stresses in different 
structural critical locations were chosen as an example for this reliability study. The method proposed in this 
paper opens up the possibility to predict simply and efficiently failure probability for nonlinear multi- 
dimensional dynamic system as a whole.   

1. Introduction 

For Bohai sea location see Fig. 1. Due to significant increase of sci
entific and economic interest, especially offshore oil and gas and marine 
engineering industry. Bohai sea in situ wave characteristics are the key 
input for both offshore structural and reliability study, see (Lv et al., 
2014), (Wang et al., 2012) for Bohai bay local wave data, and DNV 
standards (DNV-RP-H103, 2011), (DNV-RP-C205, 2010) for the engi
neering guidance. It is challenging to estimate structural system reli
ability by using classic engineering reliability methods (Norwegian 
Meteorological Institute)- (Melchers, 1999), (Thoft-Christensen and 
Murotsu, 1986), (Sharma and Dean, 1981; Adcock and Draper, 2015; 
Zhao and Ono, 1999). The latter is usually due to high number of degrees 
of system freedom and random variables governing dynamic system. 
Reliability of a complex structural systems can be straightforwardly 
estimated either by having enough measurements or by direct numerical 
Monte Carlo simulations, (Naess et al., 2009), (Naess et al., 2012), (Xing 
et al., 2022; Gaidai et al., 2022a, 2022b; Sun et al., 2022b; Xu et al., 
2022a). However, experimental and computational often are 

unaffordable for many complex engineering dynamic systems. Authors 
have introduced novel reliability method for structural systems aiming 
at reduction of either measurement or numerical computational costs. 

This paper studies Jacket stress structural responses, subject to 
environmental drag-dominated loads, acting on the support structure in 
rough seas. 

This paper advocates a novel Monte Carlo (MC) based statistical 
approach, naturally being able to tackle inherent nonlinear effects. Due 
to certain correlation between stresses in different structural support 
members - application of the multivariate extreme value theory is of 
practical importance. 

For practical engineering use of the suggested methodology, see 
Fig. 2, where on the flow chart input side are the in situ environmental 
conditions, while on the output side is the dynamic system target failure 
probability. There is a great need in new statistical methods to be able to 
efficiently utilize limited non-stationary data set, then estimate proba
bility of extreme events. The novel approach advocated in this paper has 
been validated by comparison with method previously benchmarked in 
various applications, (Gaidai et al., 2022c, 2022d; Xu et al., 2022b). 
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Note that novel Gaidai-Fu-Xing (GFX) method (Gaidai et al., 2022) is 
MDOF (multi degree of freedom), while ACER2D (Xu et al., 2022a) is 
only limited to 2DOF (two dimensions), moreover ACER2D does not 
provide confidence intervals, while new GFX method can. The main 
objective of this paper is to coin novel improved method for assessment 
of extreme response, with special emphasis on whipping. 

2. Method 

Consider an MDOF (multi-degree of freedom) jointly stationary 
structural response. The MDOF structural response vector process R(t) =
(X(t),Y(t), Z(t),…) is measured and/or simulated over a sufficiently 
long time interval (0,T). Unidimensional global maxima over the entire 
time span (0,T) are denoted as Xmax

T = max
0≤t≤T

X(t), Ymax
T = max

0≤t≤T
Y(t), 

Zmax
T = max

0≤t≤T
Z(t), ….By sufficiently long time T one primarily means a 

large value of T with respect to the dynamic system auto-correlation 
time. 

Let X1,…,XNX be consequent in time local maxima of the process X(t)
at monotonously increasing discrete time instants tX1 < … < tX

NX 
in (0,T). 

The analogous definition follows for other MDOF response components 
Y(t),Z(t),… with Y1,…,YNY ; Z1,…,ZNZ and so on. For simplicity, all 
R(t) components, and therefore its maxima are assumed to be non- 
negative. The aim is to estimate system failure probability 

1 − P=Prob
(
Xmax

T > ηX ∪ Ymax
T > ηY ∪Zmax

T > ηZ ∪…
)

(1)  

with 

P=

∫∫∫(ηX ,ηY ,ηZ ,…)

(0,0,0,…)

pXmax
T , Ymax

T , Zmax
T ,…

(
Xmax

T , Ymax
T , Zmax

T ,…
)
dXmax

T dYmax
NY

dZmax
Nz

…

(2)  

being the probability of non-exceedance for response components ηX, ηY , 
ηZ, … critical values; ∪ denotes logical unity operation « or»; and 
pXmax

T , Ymax
T ,Zmax

T ,… being joint probability density of the global maxima 
over the entire time span (0,T). 

In practice, however, it is not feasible to estimate the latter joint 
probability distribution directly pXmax

T , Ymax
T , Zmax

T ,… due to its high dimen
sionality and available data set limitations. In other words, the time 
instant when either X(t) exceeds ηX, or Y(t) exceeds ηY , or Z(t) exceeds 
ηZ, and so on, the system being regarded as immediately failed. Fixed 
failure levels ηX, ηY , ηZ, … are of course individual for each unidimen
sional response component of R(t). Xmax

NX
= max {Xj ; j = 1, …, NX} =

Xmax
T , Ymax

NY
= max {Yj ; j = 1,…,NY} = Ymax

T , Zmax
Nz

= max {Zj ; j = 1,…,

NZ} = Zmax
T , and so on. 

Next, the local maxima time instants [tX
1 < …< tXNX

; tY1 

< …< tYNY
; tZ

1 < …< tZNZ
] in monotonously non-decreasing order are 

sorted into one single merged time vector t1 ≤ … ≤ tN.Note that tN =

max {tX
NX
, tY

NY
, tZ

NZ
,… }, N = NX + NY + NZ + …. In this case tj represents 

local maxima of one of MDOF stationary system response components 
either X(t) or Y(t), or Z(t) and so on. That means that having R(t) time 
record, one just needs continuously and simultaneously screen for uni
dimensional response component local maxima and record its exceed
ance of MDOF limit vector ( ηX, ηY , ηZ, ...) in any of its components X,Y,Z,
…. The local unidimensional response component maxima are merged 
into one temporal non-decreasing vector R→= (R1,R2,…,RN) in accor
dance with the merged time vector t1 ≤ … ≤ tN. That is to say, each local 
maxima Rj is the actual encountered local maxima corresponding to 
either X(t) or Y(t), or Z(t) and so on. Finally, the unified limit vector (η1,

…, ηN ) is introduced with each component ηj is either ηX, ηY or ηZ and so 
on, depending on which of X(t) or Y(t), or Z(t) etc., corresponding to the 
current local maxima with the running index j. 

Next, a scaling parameter 0 < λ ≤ 1 is introduced to artificially 
simultaneously decrease limit values for all response components, 
namely the new MDOF limit vector ( ηλ

X, ηλ
Y , ηλ

z, ...) with ηλ
X ≡ λ•ηX, 

≡ λ•ηY , ηλ
z ≡ λ•ηZ, … is introduced. The unified limit vector (ηλ

1,… , ηλ
N )

is introduced with each component ηλ
j is either ηλ

X, ηλ
Y or ηλ

z and so on. The 
latter automatically defines probability P(λ) as a function of λ, note that 
P ≡ P(1) from Eq. (1). Non-exceedance probability P(λ) can be now 
estimated as follows:  

Fig. 1. Annually averaged spatial distribution of wave height and period in Bohai bay (Lv et al., 2014), stars indicates Jacket location.  

Fig. 2. Long term statistical analysis flow chart.  

P(λ)= Prob
{

RN ≤ ηλ
N ,…,R1 ≤ ηλ

1

}
=Prob

{
RN ≤ ηλ

N

⃒
⃒ RN− 1 ≤ ηλ

N− 1,…,R1 ≤ ηλ
1

}
⋅ Prob

{
RN− 1 ≤ ηλ

N− 1,…,R1 ≤ ηλ
1

}

=
∏N

j=2
Prob

{
Rj ≤ ηλ

j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

1j− ,…,R1 ≤ ηλ
1

}
⋅ Prob

(
R1 ≤ ηλ

1

) (3)   
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In practice, dependency between neighbouring Rj is not always 
negligible; thus, the following one-step (called here conditioning level 
k = 1) memory approximation is introduced: 

Prob
{

Rj ≤ ηλ
j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

j− 1,…,R1 ≤ ηλ
1

}
≈ Prob

{
Rj ≤ ηλ

j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

j− 1

}
(4)  

for 2 ≤ j ≤ N (called here conditioning level k = 2). The approximation 
introduced by Eq. (4) can be further expressed as: 

Prob
{

Rj ≤ ηλ
j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

j− 1,…,R1 ≤ ηλ
1

}

≈ Prob
{

Rj ≤ ηλ
j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

j− 1,Rj− 2 ≤ ηλ
j− 2

}
(5)  

where 3 ≤ j ≤ N (will be called conditioning level k = 3), and so on. 
The motivation is to monitor each independent failure that happened 
locally first in time, thus avoiding cascading local inter-correlated 
exceedances, (Song, 2017)- (Sumer and Fredsøe, 1997). 

Eq. (5) presents subsequent refinements of the statistical indepen
dence assumption. The latter type of approximations enables capturing 
the statistical dependence effect between neighbouring maxima with 
increased accuracy. Since the original MDOF stationary process R(t) was 
assumed ergodic and therefore stationary, probability pk(λ) :=

Prob{Rj > ηλ
j

⃒
⃒
⃒ Rj− 1 ≤ ηλ

j− 1,Rj− k+1 ≤ ηλ
j− k+1} for j ≥ k will be independent 

of j but only dependent on conditioning level k. Thus non-exceedance 
probability can be approximated as in the Naess-Gaidai method, 
(Naess and Moan, 2013), (Rice, 1944), (Sun et al., 2022a) 

Pk(λ)≈ exp ( − N • pk(λ)) , k ≥ 1 (6) 

Note that Eq. (6) follows from Eq. (1) by neglecting Prob(R1 ≤ ηλ
1) ≈

1, as the design failure probability is usually very small. Further, it is 
assumed N≫k. 

Note that Eq. (5) is similar to the well-known mean up-crossing rate 
equation for the probability of exceedance. There is obvious conver
gence with respect to the conditioning parameter k: 

P= lim
k→∞

Pk(1); p(λ)= lim
k→∞

pk(λ) (7) 

Note that Eq. (6) for k = 1 turns into the quite well-known non-ex
ceedance probability relationship with the mean up-crossing rate 
function 

P(λ)≈ exp ( − ν+(λ) T); ν+(λ)=
∫ ∞

0
ζpRṘ(λ, ζ)dζ (8)  

where ν+(λ) is the mean up-crossing rate of the response level λ for the 
above assembled non-dimensional vector R(t) assembled from scaled 

MDOF dynamic system response 
(

X
ηX
, Y

ηY
, Z

ηZ
,…

)
, see Fig. 3. 

In the above, the stationarity assumption has been used. The pro
posed methodology can also treat the non-stationary case. An illustra
tion of how the methodology can be used to treat non-stationary cases is 
provided as follows. Consider a scattered diagram of m = 1, ..,M envi
ronmental states, each short-term environmental state having a proba
bility qm, so that 

∑M
m=1qm = 1. The corresponding long-term equation is 

then: 

pk(λ) ≡
∑M

m=1
pk(λ,m)qm (9)  

with pk(λ,m) being the same function as in Eq. (7) but corresponding to a 
specific short-term environmental state with the number m. 

The above presented pk(λ) functions are often regular in their tail, i.e. 
for extreme values of λ approaching extreme level 1. More precisely, for 
λ ≥ λ0, the distribution tail behaves like exp{ − (aλ + b)c

+d} with a, b, c,
d being fitted constants for appropriate tail cut-on λ0 value. Optimal 
values of the parameters a, b, c, d may be determined using a sequential 
quadratic programming (SQP) technique implemented in NAG Numer
ical Library, (Numerical Algorithms Group, 2010). 

GFX handles system as black box with infinite number of random 
parameters, as this method does not analyze any random parameters at 
all. Number of dimensions is also infinite, as all of them are simply 
merged into 1D vector R(t). The computational costs come mostly from 
FEM analysis, while statistical analysis comes at almost no costs (unless 
the vector R(t) size is very large). 

In the next, ACER2D method is briefly introduced. Let Z(t) = (X(t),
Y(t)) be a bivariate stochastic process, consisting of two synchronous 
scalar component processes X(t),Y(t), that have been observed during 
some time interval (0,T). In this paper it is assumed the sampled values 
(X1,Y1),…, (XN,YN) are allocated at N equidistant discrete time instants 
t1,…, tN within (0, T). The latter assumption however dos not limit 
proposed methodology, i.e. time sampling points can be reasonably non- 
equidistant. ACER2D aims at an accurate representation of the joint 
cumulative density function (CDF) of the extreme value vector (X̂N, ŶN), 
with X̂N = max{Xj ; j = 1, …, N}, and with a similar definition of ŶN. 
Thus, the aim is to get a robust estimate of the bivariate CDF function 
P(ξ, η) := Prob (X̂N ≤ ξ, ŶN ≤ η) for extreme values of ξ and η. In this 
paper ξ and η are the Jacket tubular support stresses. 

The non-exceedance event is introduced C kj(ξ, η) := {Xj−

1≤ ξ,Yj− 1 ≤ η,…,Xj− k+1 ≤ ξ,Yj− k+1 ≤ η} for 1 ≤ k ≤ j ≤ N+ 1. From 
the definition of CDF P(ξ, η) it follows that 

P(ξ, η)=Prob
(
C N+1,N+1(ξ, η)

)

= Prob (XN ≤ ξ,YN ≤ η | C NN(ξ, η)) ⋅ Prob (C NN(ξ, η))

=
∏N

j=2
Prob

(
Xj ≤ ξ, Yj ≤ η

⃒
⃒ C jj(ξ, η)

)
⋅ Prob (C 22(ξ, η))

(10) 

CDF distribution P(ξ, η) can be expressed as 

P(ξ, η)≈ exp

{

−
∑N

j=k

(
αkj(ξ; η)+ βkj(η; ξ) − γkj(ξ, η)

)
}

; ξ, η→∞ (11)  

given that conditioning order parameter k is large enough. From Eq. (11) 
it is seen that estimation of the bivariate extreme value distribution 
requires accurate estimate of functions {(αkj(ξ; η) + βkj(ξ; η)
− γkj(ξ, η))}N

j=k. Next, the k-th order bivariate average conditional ex
ceedance rate (ACER) function is introduced 

Fig. 3. Illustration on how two exemplary processes X and Y are combined into 
new synthetic vector R(t). 
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E k(ξ, η)=
1

N − k + 1
∑N

j=k

(
αkj(ξ; η)+ βkj(η; ξ) − γkj(ξ, η)

)
, k= 1, 2,… (12) 

Therefore, when N≫k, one may write 

P(ξ, η)≈ exp{ − (N − k+ 1) E k(ξ, η)} ; ξ, η→∞ (13) 

Numerical estimation of the bivariate ACER function for the 
observed stationary series consists in counting of the appropriate ex
ceedance events, with E k(ξ, η,m) being the ACER function (13), esti
mated for a particular stationary sea state, for numerical 
implementation see (https://github.com/gocrane/crane). According to 
Eq. (13), which is a definition of the bivariate ACER function E k(ξ, η), 
the product (N − k+1)⋅E k(ξ, η) is equal to expected number of bivariate 
observations Zj = (Xj,Yj) such that their components exceed one of two 
corresponding response levels ξ and η (not necessary simultaneously), 
and which follow after at least k − 1 immediately preceding simulta
neous non-exceedances. Thus the bivariate ACER function E k(ξ, η)
captures dependence structure between components Xj and Yj of un
derlying bivariate time series. For a pair of random variables (X,Y) with 
marginal CDFs Fx(ξ) and Gy(η), the joint CDF Hxy(ξ, η) = Prob 
(X≤ ξ,Y ≤ η) can be represented as bivariate copula C(u, v); the latter 
copula in this paper is chosen to be either Gumbel logistic (GL) or the 
Asymmetric logistic (AL) see (Gaidai et al., 2022d). Assuming that the 
marginal extreme value CDFs are presented through the corresponding 
univariate ACER functions 

Fx(ξ) ≈ exp
{
− (N − k + 1)εx

k(ξ)
}
, ξ ≥ ξ1

Gy(η) ≈ exp{ − (N − k + 1)εy
k(η)} , η ≥ η1

(14)  

where εx
k(ξ) = qx

k exp{ − ax
k(ξ − bx

k)
cx

k} with a similar definition of εy
k(η). 

For the details on optimization procedure for estimation of ax
k, b

x
k, c

x
k,

qx
k, a

y
k, b

y
k, c

y
k, q

y
k see (Xu et al., 2022a). 

3. Synthetic example 

In this section authors have deliberately selected synthetic example, 
as exact analytical solutions for underlying probability distributions are 
known in advance. That will allow not only to compare statistical 
methods, but cross-validate them versus exact predictions. Wind speeds 
prediction is an important engineering research topic (Thoft-Christensen 
and Murotsu, 1986),- (Leimeister and Kolios, 2021). 

Let one consider 3.65-day maximum wind speed process X(t) simu
lated during the given time interval [0, T]. The underlying normalized 
non-dimensional stochastic processes U(t) has been modelled as a sta
tionary Gaussian process with zero mean value and a standard deviation 

equal to one. Therefore it was assumed that the U(t) mean zero up- 
crossing rate satisfies the equality ν+U(0) = 103/T, with T = 1 year, the 
latter assumption is common in offshore wind engineering. 

For this numerical example, the data record had been chosen to 
contain 104 data points, which is equivalent to 100 years record, since 
wind speed maxima process X(t) has 365/3.65 = 102 data points per 
year. 

The underlying wind speed process U(t) results in 3.65 days 

maximum analytical CDF distribution F3d
X (x) = exp

{
− q exp

(
− x2

2

)}
for 

the wind speed three days maxima process X3d(t), with q = 10, see 
(Naess and Moan, 2013) for details. There are three Archimedian cop
ulas in common use: Clayton, Frank and Gumbel-Haugaard. 

First, the Gumbel-Haugaard copula dependence structure G(u, v)
between the two marginal peak wind speed variables X3d(t) and iden
tically distributed correlated process Y3d(t) is considered: 

G(u, v)= exp
{
− [(− log u)m

+ (− log v)m
]

1
m
}

(15)  

with parameter m = 1/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − Rcorr

√
being related to the correlation coef

ficient Rcorr between two processes X3d(t) and Y3d(t); in this section Rcorr 
was set to 0.5 for simplicity. As the underlying wind speed processes 
X(t), Y(t) are identically distributed stationary Gaussian processes, and 
Gumbel-Haugaard copula is quite easy to fit for ACER2D method, it is 
expected that it will be no significant difference between GFX and 
ACER2D predictions in terms of predicted decimal logarithm probability 
level for a given response level (wind speed in this case) of interest. For 
this section following response levels have been chosen: x = 6, y = 5.2. 

The bivariate extreme value distribution of the peak event data was 

H3d(x, y)= exp

{

−

[

q exp
(

− m
x2

2

)

+ q exp
(

− m
y2

2

)]1
m
}

(16) 

Fig. 4 presents simulated time series, along with corresponding 
ACER2D bivariate contour and GFX prediction for R→ vector, red star 
indicated target probability level. As expected agreement between both 
methods was very good. 

Second, the Clayton copula C(u, v) being an asymmetric Archime
dean copula was applied in analogous way instead of Gumbel-Haugaard 
copula. 

C(u, v)=max
{
[u− m + v− m]

− 1
m, 0

}
(17) 

Clayton copula is less convenient to fit by ACER2D as it is not in its 
copula library, therefore in this case ACER2D is expected to perform less 
accurate than GFX method, as obviously GFX does not have copula 

Fig. 4. Gumbel-Haugaard copula. Left: simulated time series. Right up: corresponding ACER2D bivariate contour, Right low: GFX prediction for R→ vector.  
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approximation assumption. All numerical parameters have been un
changed with respect to the previous Gumbel-Haugaard copula case. By 
performing a series of independent synthetic tests it was found that 
indeed GFX method predicts exceedance probability decimal logarithm 
level more accurate than ACER2D. For numerical set up as described 
above it was found that on average GFX performs about 15% more ac
curate than ACER2D. Note however that synthetic data was based on 
underlying Gaussian process and Archimedian copulas, predicted level 
chosen was not that extreme, and in case of real measured non-Gaussian, 
cross-correlated by non-Archimedian copula data, the GFX advantage 
may be much more pronounced. Last but not least, computational effort 
of ACER2D is of course much bigger that GFX method for any given 
bivariate failure limit, as ACER2D performs two-dimensional surface 
interpolation; the latter is particularly important when analyzing large 
data sets like in the next section. 

4. Jacket and environmental conditions modelling 

Offshore Jackets have been studied by many researchers for quite a 
long time (Song, 2017),- (Skjelbreia and Hendrickson, 1961). Fig. 5 
presents an example of Jacket platform, similar to the one studied here. 
Offshore Jacket was modelled as a multi-degree of freedom 4D structure 
using ANSYS finite element (FEM) software. 

The ANSYS FEM software is used to simulate response time histories. 
Jacket dynamic model is based on the assumption that the hydrody
namic forces acting on the structure are distributed over discrete nodes, 
located from the deck structure to the sea bottom. This is reasonable 
assumption, since wave height is not large enough to cause wave in deck 
jolt. The lumped parameter model can be expressed in the following 
vector form MẌ + CẊ + KX = Fin + Fd with M, C and K are constant 
matrices (geometric non-linearity is not modelled). Morison drag force is 
given in the relative velocity formulation, therefore non-linearity enters 
model though the right hand side of dynamic equation, namely through 
the Morison drag force. 

Response vector X = (x1, ..., xN)
T consists of componentsxk = xk(t),

k = 1..., N, being the k-th degree of freedom (DOF); N is the number 
DOFs in FEM model. Fin and Fd are inertia and drag force components 
respectively. For more information about the Morison equation (Sumer 
and Fredsøe, 1997). The inertial force Fin can be expressed as 
Fin = ρCmA(Ẋw − Ẋ) + ρAẊw where ρ denotes the water density, Cm de
notes the hydrodynamic-mass coefficient, A denotes the cross-sectional 
area of the body, Ẋw is the velocity of the water particle due to waves and 
currents. ρCmA(Ẋw − Ẋ) is the hydrodynamic mass force, while ρAẊw is 
the Froude-Krylov force. The drag force Fd can be expressed as 
Fd = 1

2 ρCDD(Ẋw − Ẋ)|Ẋw − Ẋ| where CD is the drag coefficient, D is the 
cylinder diameter. The velocity of the water particle is calculated by the 
wave and current settings, i.e. wave direction, wave theory, wave 
height, wave period, current direction, current speed, etc. They will be 
discussed in the next section. 

The Newmark-β method is applied to solve the nonlinear dynamic 
equation. If the algorithm parameters are properly chosen, the New
mark-β method can be stable unconditionally. 

Satellite based global wave statistics was used to obtain proper wave 

Fig. 5. An example of offshore Jacket platform operating in the Bohai conti
nental shelf. 

Fig. 6. Finite element model of the Jacket.  
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scatter diagram for the Bohai bay area. Specifically, the Global Wave 
Statistics Online (http://www.globalwavestatisticsonline.com/) data 
was utilized. Fig. 1 presents annually averaged spatial distribution of 
wave height along with wave period in Bohai bay area of interest, star 
indicates Jacket location. A 3-h stationary storm simulation was run for 
each sea state. Stationary sea state was specified according to the 
JONSWAP wave spectrum, namely given by the one-sided power spec
tral density (PSD) of the wave elevation η(t) denoted by S+

η (ω), ω > 0, as 
follows 

S+
η (ω)=

αg2

ω5 exp

{

−
5
4

(ωp

ω

)4
+ ln γ exp

[

−
1

2σ2

(
ω
ωp

− 1
)2

]}

(18)  

with g = 9.81 m/s2, ωp is the peak frequency in rad/s; α, γ and σ are 
parameters related to the spectral shape; σ = 0.07 when ω ≤ ωp, σ =

0.09 when ω > ωp. For Bohai bay the parameter γ is chosen to be 3.3, see 
(DNV-RP-C205, 2010; DNV-RP-H103, 2011). 

The parameter α was determined from equation α = 5.06
(

Hs
T2

p

)2
(1 −

0.287 ln γ ); with Hs being significant wave height, and Tp = 2π/ωp 

being spectral peak wave period. 

5. Jacket model 

Jacket was modelled as a multi-degree of freedom (MDOF) 4D 
structure using ANSYS finite element software (FEM). Fig. 6 depicts 
investigated Jacket platform operating on the Bohai Continental Shelf. 

6. Reliability study results for structural support stresses 

This section presents statistical results, corresponding to the two 
selected Jacket tubular support member stresses. Since simulation was 
performed synchronously for the whole Jacket platform structure. 

Fig. 7 presents schematic Jacket illustration with four stress moni
toring location spots. 

Fig. 7. Schematic Jacket illustration with four stress monitoring location spots.  

Fig. 8. Example of von Mises Jacket stresses with subtracted mean. Non- 
dimensional, presented as time series. 

Fig. 9. ACER2D bivariate contours for Jacket non-dimensional stresses.  
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7. Method validation 

This section illustrates efficiency of GFX method, by means of 
application to Jacket stresses data set. Two different Jacket stresses 
located at number 1 and 2 points indicated in Fig. 7 were chosen as 
components X,Y thus constituting an example of two dimensional (2D) 
dynamic system. 

Unidimensional extreme response values roughly corresponding to 5 
years return period where taken as critical thresholds, chosen Jacket 
components to fail. 

In order to unify all three measured time series X,Y the following 
scaling was performed according Eq. (11) making both two responses 
non-dimensional and having the same failure limit equal to 1. Next, all 
local maxima from three measured time series were merged into one 
single time series by keeping them in time non-decreasing order: R→ =

(max{X1,Y1},…,max{XN,YN}). In order to unify all three measured time 
series X,Y the following scaling was performed 

X →
X
ηX
, Y→

Y
ηY

(19) 

Fig. 8 presents example of von Mises Jacket stresses with subtracted 
mean value for different sea states, both dimensional and non- 
dimensional stresses. 

Fig. 9 presents ACER2D bivariate contours for Jacket stresses. It is 
seen from Fig. 9 that ACER2D fits different Gumbel copula to the 
measured data, and there is an inherent error due to particular copula 
choice. Fig. 10 presents GFX prediction, with star indicating the same 
bivariate failure level of interest. Note that both Figs. 9 and 10 exhibit 
certain agreement for the target probability level p, indicated by star. 
For more details on ACER2D method see (Xu et al., 2022a, 2022b; Gaidai 
et al., 2022b, 2022c, 2022d). For more details on GFX method see 
(Gaidai et al., 2022). Bivariate non-dimensional failure point ηX = 0.6, 
ηY = 0.84 was chosen above because in lies on 5 years contour line, 
estimated by ACER2D. The probability level p corresponding to this 
contour line was then compared with GFX method estimate. It was found 
that ACER2D probability level estimate lied well within 95% CI (Con
fidence Interval), predicted by GFX method. For numerical code behind 
GFX extrapolation, see GitHub repository. (https://github.com/gocr 
ane/crane). 

8. Conclusions 

Classic reliability methods, dealing with time series do not have an 
advantage of dealing efficiently with systems possessing high 

dimensionality and cross-correlation between different system re
sponses. The key advantage of the introduced methodology is its ability 
to study reliability of high dimensional dynamic systems. 

This paper studied both synthetic wind speed data set as well as 
simulated Jacket dynamic response time series measured in few critical 
structural locations. Theoretical reasoning behind the proposed method 
is given in detail. Note that use of direct either measurement or Monte 
Carlo simulation for dynamic system reliability analysis is attractive, 
however dynamic system complexity and its high dimensionality require 
development of novel robust and accurate techniques that are able to 
deal with a limited data set at hand, utilizing available data as efficient 
as possible. 

The method introduced in this paper, has been previously validated 
by application to a wide range of simulation models, but for only one- 
dimensional system responses and, in general, very accurate pre
dictions were obtained. This study aimed at further development of a 
general purpose, yet robust and simple to use multi-dimensional reli
ability method. 

Novel method was validated versus ACER2D bivariate method using 
both analytical synthetic data. 

Finally, the suggested methodology can be used in wide range of 
engineering areas of applications. The presented naval architecture 
example does not limit areas of new method applicability by any means. 

Novelty and contribution  

⁃ A novel health system reliability method has been developed and 
applied to the real engineering data set  

⁃ Novel method has been validated versus existing one  
⁃ Proper confidence bands may be given 
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