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Abstract
In this contribution, we develop an efficient surrogate modeling framework for sim-
ulation-based optimization of enhanced oil recovery, where we particularly focus 
on polymer flooding. The computational approach is based on an adaptive training 
procedure of a neural network that directly approximates an input-output map of 
the underlying PDE-constrained optimization problem. The training process thereby 
focuses on the construction of an accurate surrogate model solely related to the opti-
mization path of an outer iterative optimization loop. True evaluations of the objec-
tive function are used to finally obtain certified results. Numerical experiments are 
given to evaluate the accuracy and efficiency of the approach for a heterogeneous 
five-spot benchmark problem.

Keywords PDE-constrained optimization · Enhanced oil recovery · Machine 
learning · Neural networks · Surrogate modeling · Ensemble-based optimization

Mathematics Subject Classification (2010) 49M41 · 68T07 · 90C90

1 Introduction

Water flooding remains the most frequently used secondary oil recovery method. 
However, the percentage of original oil in place left after the cessation of water 
flooding in many reservoir fields is estimated to be as high as 50–70% [1–3]. The 
reduced performance of water flooding leading to the sizable leftover of oil has been 
linked to many factors such as the presence of unfavorable mobility ratios (due to 
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heavy oil) and high level of heterogeneity (in porosity and permeability) in the res-
ervoir [4]. For these reasons, enhanced oil recovery (EOR) methods are employed to 
improve the performance of water flooding in order to increase oil production and 
minimize environmental stress.

Polymer flooding is a matured chemical EOR method, suitable for heavy oil reser-
voir development, with over four decades of practical applications [5, 6]. It involves 
injecting long chains of high-molecular-weight soluble polymers along with water 
flooding. The polymer EOR mechanism includes reducing mobility ratios of the oil-
water system and early water breakthrough in the reservoir by increasing the viscos-
ity of injected water and consequently improving vertical and aerial sweep efficien-
cies of the injected fluid.

The EOR process of polymer flooding can significantly increase the oil produc-
tion [6]. However, compared to water flooding, the operational cost and the risk 
associated with polymer flooding are higher. More so, since injecting more than nec-
essary polymer into the reservoir can lead to insignificant oil increment, it is impera-
tive to optimize the injection strategy of polymer flooding for field application to 
avoid unnecessarily high operational costs with no profit.

Conventionally, a reservoir simulation model is combined with a numerical opti-
mization technique to determine an optimal control (including water rates, polymer 
concentrations of injection wells, liquid rates, or bottom hole pressures of produc-
tion wells) for polymer flooding. The aim is to maximize a given reservoir perfor-
mance measure (RPM), such as the total oil production or the net present value 
(NPV) function over the reservoir life. The simulation model is usually a complex 
numerical reservoir simulator that requires substantial data accounting for geology 
and geometry of the reservoir or rock and fluid properties. In this study, the model 
simulates the oil reservoir response (in the form of fluid production) to a given poly-
mer flooding control per time. On this account, we estimate the RPM of a given 
control strategy.

Further, the complexity of a reservoir simulator leads to a high computational 
effort for simulating a given polymer flooding scenario. It contributes to the ineffi-
ciency of gradient-based solution techniques (e.g., the ensemble-based optimization 
(EnOpt) method) for polymer EOR optimization problems, since the (approximate) 
gradient of the objective function with respect to the control variables requires sev-
eral function evaluations, with each relying on a time-consuming polymer model 
simulation [7–9]. More so, for large-scale polymer problems discretized into a large 
number of grid cells, a single model evaluation may take several hours to complete. 
For this reason, we propose a machine learning-based approach to approximate the 
computationally demanding objective function.

In classical approaches of model order reduction or surrogate modeling, the 
expensive evaluation of the objective function due to the PDE constraints is replaced 
by an a priorly trained surrogate that can be efficiently evaluated with respect to the 
optimization parameters, e.g., by reduced basis methods [10–14]. These works share 
the fact that the offline time for constructing the respective surrogate can be ignored 
since the respective optimization parameters do not necessarily belong to the reduc-
tion parameters. If instead a single optimization problem is to be solved and no 
pre-trained surrogate model exists (as is the case in our application) the offline time 
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for constructing a globally accurate surrogate can be large or, in the case of a high 
dimensional parameter space, even prohibitive. Furthermore, reliable error estima-
tion is required to ensure a desired accuracy of the surrogate.

In this work, we make use of an adaptive surrogate modeling approach, where 
a surrogate model is constructed during the outer optimization loop through adap-
tive learning that is targeted towards an accurate input-output map in the vicinity 
of the chosen parameters during the optimization loop. The overall algorithm thus 
combines costly full order model (FOM) evaluations, training of machine learning 
(ML) based surrogate models, as well as evaluations of the successively trained ML 
models. In model reduction for parameterized systems [15], such adaptive enrich-
ment approaches have been recently proposed and successfully applied in the con-
text of PDE-constrained parameter optimization, e.g., by a progressive construction 
of reduced-order models (ROMs) [16, 17], or in combination with trust-region opti-
mization [18–20]. Recently, first ideas were presented to combine online enrichment 
for ROMs with machine learning-based surrogate modeling [21–23]. In this contri-
bution, we use feedforward deep neural networks (DNNs) to obtain surrogate mod-
els of the underlying input-output map that directly map the optimization parameters 
to the output of the objective function. For instance in [24, 25], DNNs have also 
been applied as ROM for parametrized PDEs in combination with reduced basis 
methods. Deep convolutional autoencoders, a special type of neural networks, were 
used in [26] to obtain a nonlinear approximation manifold that replaces the linear 
subspace from the reduced basis method.

Artificial neural networks also gained attention in the context of enhanced oil 
recovery in recent years, see [27–29], for instance. However, these approaches 
mainly focus on accelerating the evaluation of the costly objective function without 
providing a way to solve polymer EOR optimization problems using the proposed 
surrogate models. In [30], the authors describe an algorithm to obtain a global sur-
rogate model that is applied as a replacement for the objective function in a genetic 
algorithm. The global approximation of the objective is computed a priori before 
applying the optimization routine. In [31], artificial neural networks are employed to 
facilitate the decision process for a specific EOR method.

Concerning acceleration of PDE-constrained optimization in general, DNNs are, 
for instance, used in [32] to replace costly simulations within the optimization loops 
by evaluations of surrogate models. The main idea of the ISMO algorithm described 
in [32] is to run multiple parallel optimization routines starting from different ini-
tial guesses and to construct DNN surrogate models using training data collected at 
the final iterates of these optimization algorithms. The training data is computed by 
costly evaluations of the exact objective function (involving the solution of PDEs). 
In contrast, the optimization routines use the respective surrogate model to speed 
up the computations. Iteratively, a surrogate model is built to approximate the true 
objective function near local optima. The approximation quality also serves as the 
stopping criterion of the algorithm. Another approach involving physics-informed 
deep operator networks to accelerate PDE-constrained optimization in a self-super-
vised manner has recently been suggested in [33].

The idea of not having a global surrogate model, but only approximations of the 
objective function that are locally accurate, is also one of the main motivations for 
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our algorithm. In contrast to the procedure in [32] described previously, we itera-
tively construct DNN surrogate models tailored towards the objective function along 
a single optimization path. We consider only a single initial guess but check for con-
vergence by taking into account the true objective function. This stopping criterion 
certifies that the resulting control is approximately a (local) optimum of the true 
objective function and not only of the surrogate. Further, we do not assume that the 
derivative of the DNN surrogate with respect to its inputs is available but reuse the 
EnOpt procedure when optimizing with the surrogate model.

The remainder of this article is organized as follows. In Section 2 we introduced 
the polymer flooding model for EOR and formulate an optimization problem for the 
economic value of the reservoir response. Section 3 introduces a classical ensemble-
based optimization algorithm based on a FOM approximation of the polymer flood-
ing model. Feedforward DNNs to approximate the input-output map are introduced 
in Section 4. In Section 5, we finally present and discuss our new adaptive FOM-
ML-based optimization algorithm, which is evaluated numerically for a five-spot 
benchmark problem in Section 6. Last but not least, a conclusion and outlook are 
given in Section 7.

2  Optimization of polymer flooding in enhanced oil recovery

The problem of predicting the optimal injection strategy of the polymer EOR method 
can be formulated as a constrained optimization problem. The setup involves solving 
a maximization problem in which the objective function, the RPM, is defined on a 
given set of controllable variables. For the polymer EOR method, a complete set of 
control variables includes the concentration (and hence volume size of the polymer) 
and control variables (such as water injection rate, oil production rate, and/or bottom 
hole pressure for the injecting or producing wells) for water flooding over the pro-
ducing lifespan of the reservoir.

2.1  Polymer flooding model

As mentioned in the introduction, the optimization process is usually performed on 
a simulation model of the real reservoir [34]. Here, we consider a polymer flooding 
simulation model, which is an extension of the black-oil model with a continuity 
equation for the polymer component [9, 35]. The black-oil model is a special multi-
component multi-phase flow model with no diffusion among the fluid components 
[36]. It assumes that all hydrocarbon species are considered as two components, 
namely, oil and gas at surface conditions, and can be partially or entirely dissolved 
in each other to form the oil and gas phases. Further, there is an aqueous phase that 
consists of only one component called water.

For brevity, we first state the polymer flooding model without mentioning its 
dependence on the controls and geological parameters explicitly. Hence, in what fol-
lows, we assume that fixed sets of controls and geological parameters are given.
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In the polymer model, usually, it is assumed that polymer forms an additional 
component transported in the aqueous phase of the black-oil model and has no effect 
on the oil phase. We identify those quantities associated with the water, oil, gas, and 
polymer components with subscripts “W”, “O”, “G”, and “P”. In general, the poly-
mer model consists of the following system of partial differential equations:

where ϕ is the rock porosity, sα,  bα,  qα, and vα denote the (unknown) saturation, 
inverse formation-volume factor (depending on the respective density ρα), volu-
metric source (flow rate per unit volume), and Darcy’s flux of phase α ∈{W,O,G}, 
and rOG and rGO denote the oil-gas and gas-oil ratios. The quantities vP,ca,sipv, and 
c denote the Darcy’s flux, adsorption concentration, inaccessible pore volume, and 
concentration of the polymer solution, and ρr is the density of the reservoir rock.

In addition to the system (1), empirical closure equations for relative permeabili-
ties and capillary pressure in three-phase flow in porous media are applied. Here, the 
unknown primary variables are phase saturations sα (or component accumulations) 
and pressures pα, and thus, appropriate initial and boundary conditions are defined.

Based on the type of injection and/or production well (e.g., vertical, horizontal, 
or multi-segment), a suitable well model [37, 38] is coupled with (1) to measure the 
volumetric flow rates, which depend on the state of the reservoir. A standard well 
model for vertical wells is given as follows.

The volumetric flow rates qα for α ∈{W,O,G} in a multi-phase polymer model are 
computed using a semi-analytical model according to [38, 39] and are given by

Here, kRα(sα), ρα, pα, and μα,eff are the saturation-dependent relative permeabil-
ity, density, pressure, and effective viscosity of phase α ∈{W,O,G}, WI is the well 
index, zbh is the well datum level depth, pbh is the bottom hole pressure at the well 
datum level, z is the depth, Rk(c) models the reduced permeability experienced by 
the water-polymer mixture, and g is the magnitude of the gravitational acceleration.

(1a)�

�t
(�bWsW) + ∇ ⋅ bWvW = qW,

(1b)�

�t
�(bOsO + rOGbGsG) + ∇ ⋅ (bOvO + rOGbGvG) = qO,

(1c)�

�t
�(bGsG + rGObOsO) + ∇ ⋅ (bGvG + rGObOvO) = qG,

(1d)�

�t

[
�(1 − sipv)sW +

�rca

bWc
(1 − �)

]
+ ∇ ⋅ vP = qW,

(2a)qW =
kRW(sW)

�W,effRk(c)
WI(pbh − pW − �W�(zbh − z)),

(2b)qO =
kRO(sO)

�O,eff

WI(pbh − pO − �O�(zbh − z)),

(2c)qG =
kRG(sG)

�G,eff

WI(pbh − pG − �G�(zbh − z)).
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Individual wells are usually controlled by surface flow rates or bottom hole pres-
sures. Additional equations which enforce limit values for the component rates and bot-
tom hole pressures are

where qlimit
�

 is the desired surface-volume rate limit for component α, e.g., field oil 
rate at the production well, and plimit

bh
 is the desired bottom hole pressure limit. Also, 

logic constraints to determine what happens if the computed rates or pressures vio-
late the operational constraints, in which case a well may switch from rate control to 
pressure control, etc., are imposed.

If qα,i is the field volumetric flow rate (in  sm3/day) of component α ∈{W,O,G} in 
the production wells over the time interval Δti, the field production total (in  sm3) of the 
component α is given as Qα P,i = qα,iΔti. For polymer production total (in kg), QPP,i = 
cLqW,iΔti, where cL is the leftover field polymer concentration (in kg/sm3) after adsorp-
tion. Injection quantities QPI,i and QWI,i are computed similarly, however with volumet-
ric flow rates in the injection wells.

As already mentioned above, the solution of the polymer flooding model stated 
in (1) depends on a given control vector u, see Section 2.2 for a detailed description 
of the components of the control vector, and a set of geological properties 𝜃. Conse-
quently, all involved unknowns depend on u and 𝜃 and the same holds for qW, qO, and 
qG. From now on, we thus write Qα P,i(u,𝜃) for the field production total of component α 
∈{W,O,G}, depending on the controls u and the parameters 𝜃, within the time interval 
Δti, similar as above. We further write QPP(u,𝜃) for the polymer production total, and 
QPI,i(u,𝜃) and QWI,i(u,𝜃) for the polymer and water injection.

2.2  Optimization of the economic value of the reservoir response

This study considers the annually discounted net present value (NPV) function as the 
RPM, similar to the one in [7, 40]. The NPV function is related to the control varia-
bles through the polymer simulation model (1). For every polymer control strategy, the 
NPV function evaluates the economic value of the reservoir response. Also, because 
the injection and production facilities have limited capacity, the control variables are 
subject to bound constraints.

Suppose that the geological properties of the oil reservoir of interest, such as poros-
ity and permeability are known and denoted by 𝜃. Let D = ℝ

Nu be the domain of con-
trol vectors of polymer flooding for the reservoir, such that

 where T means transpose. The subscript of each component of u denotes the well 
index, the superscript is the control time step, Nw and Nt denote the number of wells 
and time steps for each well, respectively, and Nu = Nw ⋅ Nt is the total number of 
control variables. Each component ui

j
 in u represents a control type (e.g., polymer 

pbh − plimit
bh

≤ 0,

q� − qlimit
�

≤ 0,

u =
[
u1
1
, u1

2
,… , u1

Nw
,… , u

Nt

1
, u

Nt

2
,… , u

Nt

Nw

]�
,
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concentration or injection rate, oil or water rate, bottom hole pressure) of well j at 
the time step i.

The Nu-dimensional optimization problem for polymer flooding is to find the 
optimal u ∈ D that maximizes the NPV function subject to bound constraints. That 
is

where Ji denotes the cumulative NPV value in the i-th simulation time step. Fur-
ther, dτ is the discount rate for a period of τ days, ti is the cumulative time (in days) 
starting from the beginning of production up to the i-th time step, and Δti := ti − 
ti− 1 is the time difference (in days) between the time steps ti and ti− 1. The scalars 
rOP,rGP,rWI and rWP denote the prices of oil and gas production and the cost of han-
dling water injection and production (in USD/sm3) respectively, and rPI and rPP are 
the costs of polymer injection and production (in USD/kg). In addition, QWI,i and 
QPI,i are the total water injection (in  sm3) and total polymer injection or slug size (in 
kg) over the time interval Δti. The quantities QOP,i, QWP,i and QGP,i denote the total 
oil, water and gas productions (in  sm3) over the time interval Δti, while QPP,i repre-
sents the total polymer production (in kg) over the time interval Δti. The quantities 
QOP,i, QWI,i, QWP,i, QGP,i, QPI,i, and QPP,i are computed at each control time step i for 
given u and fixed 𝜃 from the polymer flooding model (1) and the well equations (2).

The evaluation of the objective function J in (3b) shall be referred to as the full 
order model (FOM) function evaluation in the remainder of this study. Therefore, 
the constrained optimization problem presented in (3) can be interpreted as the 
FOM optimization problem for polymer flooding, given a suitable discretization of 
the system (1) (see Section 6.1 for details). Also, because 𝜃 is fixed during the opti-
mization process, J is considered a function of u only, and hence we often write J(u) 
and Ji(u). The solution method utilized for this optimization problem is presented in 
the next section.

3  Ensemble‑based optimization algorithm

In this work, the FOM solution to problem (3) follows from the application of the 
adaptive ensemble-based optimization (EnOpt) method analogous to the one pre-
sented in [7, 41, 42]. We again emphasize that we restrict our attention to a fixed 

(3a)maximize
u∈D

J(u,���) ∶=
Nt∑
i=1

Ji(u,���)

(1+d� )
ti
�

(3b)

with

Ji(u,���) ∶= rOPQOP,i(u,���) + rGPQGP,i(u,���) − Ri(u,���),

Ri(u,���) ∶= rWIQWI,i(u,���) + rWPQWP,i(u,���)

+rPIQPI,i(u,���) + rPPQPP,i(u,���),

(3c)
subject to

ulow
j

≤ ui
j
≤ u

upp

j
for all j = 1,… ,Nw, i = 1,… ,Nt,
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choice of geological parameters 𝜃. Since we apply the EnOpt algorithm later on in 
our surrogate-based algorithm to a function different from J, we subsequently begin 
by describing the algorithm in its general form. Afterwards, we discuss the applica-
tion of the EnOpt algorithm to the objective function J and the resulting computa-
tional costs.

3.1  Optimization algorithm for a general objective function

In what follows, we describe the EnOpt algorithm for a general objective function 
F∶ ℝ

Nu → ℝ to iteratively solve the optimization problem

The EnOpt method is an iterative method in which one starts with an initial guess 
u0 that is usually based on experimental facts in such a way that the underlying con-
straints in (4b) are satisfied. We sequentially seek for an improved approximate solu-
tion u that maximizes F(u) using a preconditioned (with covariance matrix adapta-
tion) gradient ascent method given by

where k = 0, 1, 2,… denotes the optimization iteration. The tuning parameter βk for 
the step size is computed using an auxiliary line search [43] and is selected such that 
0 < βk ≤ 1. Furthermore, Ck

uk
∈ ℝ

Nu×Nu denotes the user-defined covariance matrix 
of the control variables at the k-th iteration and Gk ∈ ℝ

Nu is the approximate gradi-
ent of F with respect to the control variables, preconditioned with Ck

uk
 to obtain the 

search direction at iteration k.
To ensure that the constraints in (5) are satisfied, the original solution domain of 

the control variables is projected to the set of admissible controls Dad , defined as

which corresponds to the constraints in (4b). The updating scheme in (5) is per-
formed in Dad . We utilize a component-wise projection PDad

∶ D → Dad on the 
update ûk+1 ∈ D , such that

In practical applications, it is not common to have controls at different wells to 
correlate, but the controls may vary smoothly with time at individual wells. 

(4a)maximize
u∈D

F(u)

(4b)subject to ulow
j

≤ ui
j
≤ u

upp

j
for all j = 1,… ,Nw, i = 1,… ,Nt.

(5)ûk+1 = uk + 𝛽kdk,

(6)dk ≈
C

k
uk
Gk

‖Ck
uk
Gk‖∞

,

(7)Dad ∶= {u ∈ D ∶ ulow
j

≤ ui
j
≤ u

upp

j
for all j = 1,… ,Nw, i = 1,… ,Nt},

(8)uk+1 = PDad
(ûk+1) ∈ Dad.
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Hence, the use of Ck
uk

 in Equation (5) enforces this regularization on the control 
updates. At k = 0, we utilize a temporal covariance function given by

from a stationary auto regression of order 1 (i.e., AR(1)) model [44] to com-
pute C0

u0
 with an assumption that controls of different wells are uncorrelated. 

The variance for the well j is given by 𝜎2
j
> 0 , and ρ ∈ (− 1,1) is the correlation 

coefficient used to introduce a level of dependence between controls of indi-
vidual wells at different control time steps (since the AR(1) model is 
stationary).

The formulation above gives rise to a block diagonal matrix C0
u0

 , which is 
updated by matrices with rank one at subsequent iterations, using the statistical 
method presented in [42], to obtain an improved covariance matrix Ck

uk
 . For this 

reason, the solution method in Equation (5) is referred to as the adaptive EnOpt 
algorithm.

We compute the preconditioned approximate gradient Ck
uk
Gk following the 

approach of the standard EnOpt algorithm. At the k-th iteration, we sample N ∈ ℕ 
control vectors uk,m ∈ Dad , for m = 1,… ,N, from a multivariate Gaussian distri-
bution with mean equal to the k-th control vector uk and covariance matrix given 
by Ck

uk
 . Here, the additional subscript m is used to differentiate the perturbed con-

trol vectors from the one obtained by Equation (5). The cross-covariance of the 
control vector uk and the objective function F(uk) at the k-th iteration is approxi-
mated according to [45] as

Since uk,m ∼ N(uk,C
k
uk
) for m = 1,… ,N , we assume in Equation (10) that the 

mean of {uk,m}Nm=1 is approximated by uk. By first-order Taylor series expansion of 
F about uk, it can easily be deduced that Equation  (10) is an approximation of 
C

k
u
Gk at the k-th iteration, that is

see [41, 46] for a detailed proof. Therefore, we choose the search direction as 
dk = C

k
uk ,F

∕‖Ck
uk ,F

‖
∞

 in Equation (5). The updating scheme in Equation (5) is per-
formed until the convergence criterion

is satisfied, where ε > 0 is a specified tolerance.
For an arbitrary objective function F, the EnOpt procedure is summarized in 

Algorithm 1. In this algorithm, the OptStep function replicates a single optimi-
zation step in the EnOpt procedure and is detailed in Algorithm 2. We note that 

(9)Cov
(
ui
j
, ui+h

j

)
= �2

j
�h
(

1

1−�2

)
, for all h ∈ {0,… ,Nt − i},

(10)C
k
uk ,F

∶=
1

N − 1

N∑

m=1

(uk,m − uk)
(
F(uk,m) − F(uk)

)
.

(11)C
k
uk
Gk ≈ C

k
uk ,F

,

(12)F(uk) ≤ F(uk−1) + �
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returning the set of function values Tk+ 1 does not play a role in Algorithm 1 but 
is crucial for training the surrogate model in Section 5. The line search proce-
dure LineSearch can be found in Algorithm 3.

Algorithm 1  EnOpt algorithm

Algorithm 2  OptStep algorithm
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3.2  FOM‑EnOpt algorithm for enhanced oil recovery

Eventually, we are interested in solving the optimization problem (3) for polymer 
flooding in enhanced oil recovery. As already discussed in the introduction, our 
contribution is concerned with the development of a surrogate-based algorithm 
to reduce the computational costs for solving (3). To this end, if the EnOpt algo-
rithm is used to maximize the function J, defined in Equation  (3b), we refer to 
Algorithm 1 as the FOM-EnOpt algorithm. That is, the FOM-EnOpt algorithm is 
given as enOpt[J], see Algorithm 4.

As already indicated, we are concerned with the computational effort of the 
FOM-EnOpt algorithm. Let us recall that evaluating J as in (3b) has the com-
plexity of the high-fidelity reservoir simulator, which, in itself, requires the solu-
tion of the discretized polymer flooding model equations (1). In Algorithm  1, 
the most expensive part is to call OptStep[J], which requires N evaluations of J 
in Line 8 of Algorithm 2 such that the direction dk can be computed in Line 9. 
Furthermore, the line search in Line 10 evaluates J for every search step. Sup-
pose the simulation time for computing J is particularly large. In that case, the 

Algorithm 3  Line search

Algorithm 4  FOM-EnOpt algorithm
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FOM-EnOpt algorithm can be extremely costly, especially if many optimization 
steps are required since OptStep[J] is called at every iteration step. In this case, 
all steps in Algorithm 1 and Algorithm 2 that do not require evaluating J are com-
putationally negligible.

Since expensive FOM evaluations are very likely to happen for the presented 
application, we aim to derive a surrogate-based algorithm that uses an approxi-
mation of J whenever possible and thus tries to reduce the number of calls of 
OptStep[J]. Instead, FOM information is reused whenever possible and only com-
puted when necessary. The following section introduces a machine learning-based 
way for deriving suitable non-intrusive surrogate models.

4  Neural networks as surrogate model for the input‑output map

Deep neural networks (DNNs) are machine learning algorithms suitable for approxi-
mating functions without knowing their exact structure. Instead, DNNs can be fitted to 
approximately reproduce known target values for a set of given inputs, and thus, learn 
from examples of labeled data.

A particular class of DNNs are feedforward neural networks, in which no cyclic 
flow of information is allowed. This study considers feedforward neural networks 
consisting of (fully connected) linear layers combined with a nonlinear activation 
function. Our description of these types of DNNs is based on formal definitions that 
can be found in [47] and [48], for instance.

Feedforward neural networks are used to approximate a given function 
f ∶ ℝ

Nin → ℝ
Nout for a certain input dimension Nin ∈ ℕ and an output dimen-

sion Nout ∈ ℕ . To this end, let L ∈ ℕ denote the number of layers in the neural 
network, and Nin = N0,N1,… ,NL−1,NL = Nout ∈ ℕ the numbers of neurons in 
each layer. Furthermore, the weights and biases in layer i ∈ {1,… , L} are denoted 
by Wi ∈ ℝ

Ni×Ni−1 and bi ∈ ℝ
Ni . We assemble the weights and biases in an L-tuple 

W =
(
(W1, b1),… , (WL, bL)

)
 . Moreover, let �∶ ℝ → ℝ be the so-called activation 

function and �∗
n
∶ ℝ

n
→ ℝ

n the component-wise application of the activation func-
tion ρ for dimension n ∈ ℕ , that is �∗

n
(y) ∶=

[
�(y1),… , �(yn)

]�
∈ ℝ

n for y ∈ ℝ
n . 

Then we can define the corresponding feedforward neural network in the follow-
ing way: The feedforward neural network with weights and biases W and activa-
tion function ρ for approximating f ∶ ℝ

Nin → ℝ
Nout , is defined as the function 

Φ
W
∶ ℝ

Nin → ℝ
Nout . For a given input x ∈ ℝ

Nin , the result Φ
W
(x) ∈ ℝ

Nout is computed 
as

where rL ∶ ℝ
Nin → ℝ

Nout is defined in a recursive manner using the functions 
ri ∶ ℝ

Nin → ℝ
Ni for i = 0,… , L − 1 , which are given by

Φ
W
(x) ∶= rL(x),

rL(x) ∶= WLrL−1(x) + bL,

ri(x) ∶= �∗
Ni

(
Wiri−1(x) + bi

)
for i = 1,… , L − 1,

r0(x) ∶= x.
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Fitting neural network weights and biases to a given function f is accomplished by 
creating a sample set Ttrain = {(x1, f (x1)),… , (xn, f (xn))} ⊂ X ×ℝ

Nout (the so-called 
training set), consisting of inputs xi ∈ X from an input set X ⊂ ℝ

Nin and correspond-
ing outputs f (xi) ∈ ℝ

Nout . The process of finding the weights W such that ΦW(xi) ≈ 
f(xi) for i = 1,… , n is called training of the neural network. During the training, the 
weights and biases of the neural network ΦW are iteratively adjusted such that a loss 
function, which measures the deviation of the output ΦW(xi) for a given input xi from 
the desired result f(xi), is minimized. A common choice for the loss function is the 
mean squared error lossL

(
Φ

W
, Ttrain

)
 given as

Popular examples of optimization algorithms used in neural network training 
are variants of (stochastic) gradient descent methods, see [49] for an overview. For 
small neural networks with only a few layers and neurons, it is also possible to apply 
methods that use or approximate higher-order derivatives of the loss function, for 
instance, the L-BFGS optimizer [50], which is a limited-memory variant of the 
BFGS method, see for instance Section 6.1 in [43]. In the context of neural network 
training, each iteration of the optimizer is called epoch. Typically, a maximal num-
ber of epochs is prescribed for the optimizer to perform.

To prevent a neural network from overfitting the training data, we employ early 
stopping [51]. In this method, the loss function is evaluated on a validation set 
Tval ⊂ X ×ℝ

Nout after each epoch. The validation set is usually chosen to be disjoint 
from the training set, i.e., Tval ∩ Ttrain = ∅. Let Wk denote the weights in epoch 
k ∈ ℕ . In each epoch, the value L(Φ

Wk
, Tval) is computed, and if this value does not 

decrease anymore over a prescribed number of consecutive epochs, the training is 
aborted. This method ensures that the resulting neural network can perform well on 
unseen data (that is assumed to have the same structure as the training data).

The result of the optimization routine typically depends strongly on the initial 
values W0 of the weights. There are several methods for initializing the weights of 
neural networks, for instance, the so-called Kaiming initialization, see [52] for more 
details. We perform multiple restarts of the training algorithm using different initial 
values for the weights to minimize the dependence of the resulting neural network 
on the weight initialization. Finally, we select the neural network Φ

W
∗ that produced 

the smallest loss L(Φ
W

∗ ,Ttrain) +L(Φ
W

∗ ,Tval) over all training restarts, i.e., the 
smallest combined loss on the training and the validation set.

Finding an appropriate neural network architecture can be difficult in practical 
applications. Especially the number of layers and the number of neurons signifi-
cantly influence the approximation capabilities of the resulting neural network. In 
addition, there are lots of different activation functions available. Typical examples 
include the rectified linear unit (ReLU) �(x) = max(x, 0) , which is nowadays the 
most popular activation function [53], or the hyperbolic tangent 
�(x) = tanh(x) =

e2x−1

e2x+1
.

L
�
Φ

W
, Ttrain

�
∶=

1

�Ttrain�
∑

(x,y)∈Ttrain

‖Φ
W
(x) − y‖2

2
.
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5  Adaptive‑ML‑EnOpt algorithm using deep neural networks

The primary purpose of this work is to propose an adaptive machine learning-based 
algorithm for avoiding expensive FOM evaluations as often as possible. To this end, 
we first discuss the usage of DNNs for the NPV value and subsequently introduce 
the Adaptive-ML-EnOpt algorithm.

5.1  Surrogate models for the net present value

As discussed in Section 3, we use DNNs to construct a surrogate model for the FOM 
objective function J. DNNs are particularly well suited for non-intrusive model 
reduction if the simulator is considered a black box with no direct access to solu-
tions of the underlying PDEs. In fact, given the formulation of the objective function 
(3b), we assume to only have access to the respective components Ji(u).

Following the definition of a DNN in Section  4, two input-output maps can 
be used to approximate J. We refer to the scalar-valued output by considering 
J ∶ ℝ

Nu → ℝ as the input-output map. Furthermore, we refer to the vector-valued 
output if we make different use of the structure of J by writing J(u) = δTj(u) with

and the vector � ∈ ℝ
Nt , which includes the discount factors, is defined as

In the scalar-valued case  (DNNs-approach), we directly construct a DNN for J 
with a corresponding function Φ

Ws
∶ ℝ

Nu → ℝ , i.e., we use a DNN with Nin = Nu 
and Nout = 1. Instead, in the vector-valued case  (DNNv-approach), we construct a 
DNN for approximating j with a corresponding function Φ

Wv
∶ ℝ

Nu → ℝ
Nt and, by 

using δ, we indirectly approximate J. This means that we apply a DNN with input 
and output dimensions given by Nin = Nu and Nout = Nt, and multiply the result by δ 
whenever the respective DNN is used for approximating J. The algorithm described 
below works for both cases, the scalar-valued and the vector-valued output. There-
fore, if access to the individual components of the vector-valued function j is avail-
able, it is possible to run the algorithm with both versions. The different neural net-
work output sizes, and therefore, the various structures of the training data, might 
improve the DNN training results. In our numerical experiment, we observe that the 
vector-valued DNN yields slightly better results than the scalar-valued DNN (see 
Section 6). Nevertheless, we consider both the scalar- and vector-valued approaches 
to discuss the case where the black box reservoir simulator produces only scalar-
valued outputs.

By the  DNNs- and  DNNv-approach, we thus construct a surrogate for the objec-
tive function for the optimization problem (3). It remains to explain a suitable and 

j ∶ ℝ
Nu → ℝ

Nt ,

j(u) ∶=
[
Ji(u)

]Nt

i=1
,

� ∶=

[
1

(1+d� )
ti
�

]Nt

i=1

.



1 3

Adaptive machine learning‑based surrogate modeling to… Page 15 of 35    73 

robust EnOpt algorithm that takes advantage of a DNN but shows a similar con-
vergence behavior as the FOM algorithm. A common strategy is to construct a suf-
ficiently accurate surrogate JML ∈ {Φ

Ws
, ��Φ

Wv
} for the entire input space in a large 

offline time. Following the FOM-EnOpt procedure from Section  3, given JML, a 
surrogate-based procedure would then mean to set F := JML in Algorithm 1. How-
ever, no FOM stopping criterion would be used, and since no error control for the 
surrogate model is given, no certification of the surrogate-based procedure would be 
available.

Remark 1 (Size of neural network input) Importantly, we observe that the input 
dimension Nu of both DNN approaches is proportional to the number of time steps 
Nt and the number of physical variables Nw in the model. Thus, dependent on the 
complexity of the reservoir simulation, Nu may be large. Consequently, it may not 
be possible to construct a surrogate model with a DNN that is accurate for the entire 
input space. Even if it were possible to construct such a DNN, we would require pro-
hibitively costly training for computing the training set, validation set, and weights.

5.2  Adaptive algorithm

To circumvent the issue of constructing a globally accurate surrogate, in what fol-
lows, we describe the adaptive machine learning EnOpt algorithm (Adaptive-ML-
EnOpt). In this algorithm, we incorporate the construction of the DNN into an 
outer optimization loop trained and certified by FOM quantities. With respect to 
the FOM-EnOpt procedure, we remark that each FOM optimization step requires 
N evaluations of J for computing dk. To obtain an appropriately accurate direction, 
it is required that N is chosen sufficiently large [54]. For the Adaptive-ML-EnOpt 
procedure, we only use a single FOM-based optimization step at each outer iteration 
k. Then, we use the N evaluations of the FOM as data points for training a locally 
accurate surrogate Jk

ML
 . Instead of proceeding with the FOM function J, we utilize 

the DNN to start an inner EnOpt algorithm with F = Jk
ML

 as objective function in 
Section 3.1 and uk as initial guess. Denote by u(l)

k
 the iterates of the inner optimiza-

tion loop in the k-th outer iteration, i.e., in particular, we have u(0)
k

= uk . According 
to (12), the inner EnOpt iteration terminates if the surrogate-based criterion

is met for a suitable tolerance εi > 0. If the inner iteration terminates after L itera-
tions with a control u(L)

k
 , the next outer iterate uk+ 1 is defined as uk+1 ∶= u

(L)

k
 . For 

a certified FOM-based stopping criterion of the outer optimization loop, given the 
iterate uk, we check whether the FOM-EnOpt procedure would, indeed, also stop 
at the same control point. Thus, we perform a single FOM-based optimization step, 
which includes the computation of dk and the line search, and results in a control ũk . 
For verifying whether the FOM optimization step successfully finds a sufficiently 
increasing point at outer iteration k, we consider the FOM termination criterion

(13)Jk
ML

(u
(l)

k
) ≤ Jk

ML
(u

(l−1)

k
) + �i
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where εo > 0 is a suitable tolerance. If (14) is fulfilled, no improvement of the objec-
tive function value using FOM optimization steps can be expected, and therefore we 
also terminate the Adaptive-ML-EnOpt algorithm. If instead, (14) is not met, we use 
the computed training data (collected while computing dk) to retrain the DNN and 
restart an inner DNN-based EnOpt algorithm. We emphasize that the fully FOM-
based stopping criterion constitutes a significant difference to what is proposed in 
[32], where the termination criterion is based on the approximation quality of the 
surrogate model at the current iterate. However, we saw in our experiments that such 
an approximation-based criterion might lead to an undesired early stopping of the 
algorithm.

One may be concerned about the fact that the surrogate-based inner optimiza-
tion routine produces a decreasing or stationary point. For this reason, after every 
outer iteration k of the Adaptive-ML-EnOpt procedure, the inner DNN-optimization 
is only accepted after a sufficient increase, i.e.,

If an iterate is not accepted, we abort the algorithm. Instead of aborting, one 
may proceed with an intermediate FOM optimization step. We would further like to 
emphasize that the fulfillment of (15) also depends on the successful construction of 
the neural network, meaning that the parameters for the neural network are chosen 
appropriately. If, instead, (15) fails due to an inaccurate neural network, an auto-
matic variation of the parameters could be enforced to the neural network training, 
and the corresponding outer iteration should be repeated. However, for the sake of 
simplicity and because it did not show any relevance in our numerical experiments, 
we do not specify approaches for the case that uk+ 1 is not accepted due to (15).

While (15) prevents the algorithm from accepting an insufficient increase, the 
respective outer iteration point might still be far away from the optimum due to 
the lack of extrapolation accuracy. Since inner iterations are fast and the number 
of outer iterations is expected to be of moderate size, a longer optimization path 
compared to the reference (based solely on FOM evaluations) can still be considered 
computationally faster.

Remark 2 (Choice of the tolerances) Regarding the choice of the different tolerances 
εi and εo for the inner and outer stopping criteria in the Adaptive-ML-EnOpt algo-
rithm, we propose to choose a small value for εi similar to the tolerance ε in the 
FOM-EnOpt procedure. The inner iterations are much cheaper due to the application 
of a fast surrogate, such that a more significant amount of inner iterations is accepta-
ble. In contrast, we recommend selecting a larger tolerance εo to perform fewer outer 
iterations for obtaining a considerable speedup. However, if maximum convergence 
w.r.t. the FOM-EnOpt algorithm is desired, εo is to be set equal to ε.

The above-explained Adaptive-ML-EnOpt procedure is summarized in Algo-
rithm 5 and additionally visualized in Fig. 1.

(14)J(ũk) ≤ J(uk) + 𝜀o,

(15)J(uk+1) > J(uk) + 𝜀o.
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Algorithm 5  Adaptive-ML-EnOpt algorithm

Fig. 1  Flowchart for the Adaptive-ML-EnOpt algorithm, cf. Algorithm 5
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The train function performs the neural network training procedure as described 
in Section  4 and returns, depending on the chosen DNN construction strategy, a 
function Φ

Ws
 or Φ

Wv
 that approximates the FOM objective function J. Particularly, 

the result of train can be used as the function F in the enOpt procedure.
The outer acceptance criterion (15) is checked in Line 7. Using the FOM-based 

stopping criterion in Line 4, we ensure that the Adaptive-ML-EnOpt algorithm has 
an equivalent stopping procedure as the FOM-EnOpt algorithm, see Line 4 in Algo-
rithm 1. However, the algorithm might terminate at a different (local) optimal point, 
which we also observe in the numerical experiments.

Compared to the FOM-EnOpt procedure, we emphasize that, in the Adaptive-
ML-EnOpt algorithm, mainly the single calls of OptStep[J] in Lines 2 and 10 have 
FOM complexity, scaling with the number of samples N. Furthermore, the outer 
stopping criterion in Line 4 and the conditions for acceptance in Line 7 require a 
single FOM evaluation. The construction of the surrogate makes use of FOM data 
that is already available from the FOM optimization steps in Lines 2 and 10. In 
addition, while the training data for Line 5 is available from calling OptStep[J], the 
training function train itself is relatively cheap. Furthermore, calling enOpt[Jk

ML
 ] 

has low computational effort since evaluating the surrogate Jk
ML

 for a given control 
(i.e., performing a single forward pass through the neural network) is much faster 
than evaluating J. The primary motivation for the Adaptive-ML-EnOpt algorithm 
is the idea that many of the costly FOM optimization steps in the FOM-EnOpt algo-
rithm can be replaced by sequences of cheap calls of enOpt[Jk

ML
 ] with the surrogate 

Jk
ML

 . However, since the surrogate might only be reliable in a specific part of the 
set of feasible control vectors around the current iterate uk, we retrain the surrogate 
if the FOM optimization step suggests that a further improvement of the objective 
function value is possible. Therefore, the overall goal of the Adaptive-ML-EnOpt 
algorithm is to terminate with a considerably smaller number of (outer) iterations 
k than the FOM-EnOpt algorithm, and thus, to reduce the computational costs for 

Fig. 2  Example of optimization paths taken by the FOM-EnOpt algorithm (left part of the figure) and the 
Adaptive-ML-EnOpt algorithm (right part of the figure)
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solving the polymer EOR optimization problem in (3). We refer to the subsequent 
section for an extensive complexity and run time comparison in a practical example.

The main motivation for the Adaptive-ML-EnOpt algorithm is illustrated in Fig. 2. 
Computing the gradient information using evaluations of the function J is costly, 
whereas gradient computations using the approximation Jk

ML
 , obtained, for instance, 

via training a neural network, is cheap. In the example, the Adaptive-ML-EnOpt 
algorithm performs more optimization steps in total. However, most of these opti-
mization steps are cheap since they only require evaluations of Jk

ML
 . For the Adap-

tive-ML-EnOpt algorithm, only those steps involving evaluations of J (i.e., outer 
iterations) require a large computational effort. Each optimization step is costly in 
the FOM-EnOpt algorithm since the exact objective function J is evaluated multiple 
times. Altogether, in the example shown in Fig. 2, the Adaptive-ML-EnOpt algorithm 
performs less costly gradient computations than the FOM-EnOpt procedure while 
arriving approximately at the same optimum. This motivates why the Adaptive-ML-
EnOpt algorithm can be preferable with respect to the required computation time.

Remark 3 (Generalization of the method) The overall algorithmic procedure 
described in this section is applicable in many different scenarios and can be seen 
in a more general manner. For instance, the algorithm is independent of the exact 
objective function. Whenever the objective function is costly to evaluate and no cer-
tified surrogate is available, the Adaptive-ML-EnOpt might be useful. Hence, the 
algorithm can also be applied in scenarios where the objective function is not related 
to PDEs. Further, the choice of the surrogate is not limited to neural networks and 
machine learning algorithms in general. Any other approach that can be constructed 
from training data, similarly to DNNs, can serve as a replacement for the neural net-
works. In addition, the inner optimization loop is not restricted to the EnOpt algo-
rithm. Whether or not gradient-based algorithms are applicable, depends on the sur-
rogate and whether it is possible to compute its gradients with respect to the inputs.

6  Numerical validation for a five‑spot benchmark problem

In this section, we present an example with a synthetic oil reservoir in which the 
polymer flooding optimization problem (3) is solved using the traditional solu-
tion method, the FOM-EnOpt algorithm, and our proposed Adaptive-ML-EnOpt 
method presented in Algorithm 5. The focus is to demonstrate a more efficient and 
improved method of dealing with the optimization part of a closed-loop reservoir 
workflow [41] for polymer flooding with the assumption that the geological proper-
ties of the reservoir are known. We start by providing information on the algorithm 
implementation.

6.1  Implementational details

For a numerical approximation of the system (1) of non-linear partial differential 
equations and the corresponding well equations (2), we make use of the open 
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porous media flow reservoir simulator (OPM) [35, 55]. The system is discretized 
spatially using a two-point flux approximation (TPFA) with upstream-mobility 
weighting (UMW) and temporally using a fully implicit Runge-Kutta method. 
The resulting discrete-in-time equations are solved using a Newton-Raphson 
scheme to obtain time-dependent states and the output quantities from the well’s 
equation in terms of fluid production of the reservoir per time step. In this numer-
ical experiment, we perform all polymer flooding simulations in parallel on a 50 
core CPU.

For the implementation of the DNN-based surrogates, the Python package pyMOR 
[56] is used. The implementation of the neural networks and corresponding training 
algorithms in pyMOR is based on the machine learning library PyTorch [57].

Throughout our numerical experiments described in the subsequent section, we 
apply the L-BFGS optimizer with strong Wolfe line-search [58] for training the 
neural networks. Further, we perform a maximum of 1000 training epochs in each 
restart.

The number of training restarts influences the accuracy of the trained neural net-
works and the computation time required for the training. A larger number of restarts 
typically leads to smaller losses and more training time. To take these two factors 
into account, we consider different numbers of restarts in our numerical study pre-
sented below. The respective results can be found in the subsequent section. In gen-
eral, we use relatively small numbers of restarts. First of all, we are not interested in 
obtaining a neural network with very high accuracy. Due to the adaptive retraining 
of the networks, the surrogates are replaced in each outer iteration anyway. They are 
only supposed to lead the optimizer to a point with a larger objective function value. 
On the other hand, as indicated before, a larger number of restarts might result in an 
unnecessarily long training phase, which must be performed in each outer iteration. 
The small numbers of 15 and 35 restarts we tried in our studies can thus be seen as a 
compromise between the accuracy of the surrogate models and computational effort 
for the training algorithm.

We use 10% of the sample set for validation during the neural network training, 
and the training routine is stopped early if the loss does not decrease for 10 consecu-
tive epochs. Moreover, the mean squared error loss (MSE loss) is used as the loss 
function. The neural network training is performed on scaled data. The input values 
are scaled to [0, 1]Nu , and the output values are scaled to [0,1] in the  DNNs-case and 
[0, 1]Nt in the  DNNv-case, respectively. The scaling of the input values can be com-
puted exactly using the lower and upper bounds ulow

j
 and uupp

j
 for the control varia-

bles by

for j = 1,… ,Nw and i = 1,… ,Nt . For the output values, we take the minimum and 
maximum value over the training set as lower and upper bounds and perform the 
same scaling as in Equation (16). The tanh function serves as the activation function 
for each layer. Kaiming initialization is applied for initializing the neural network 
weights.

(16)ui
j
↦

ui
j
−ulow

j

u
upp

j
−ulow

j
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The input and output dimensions of the neural networks were already described 
in Section 5 and are different for the  DNNs- and  DNNv-case. Regarding the training 
data for the vector-valued case  DNNv, we note that we require Tk to store 
{(uk,j, j(uk,j))}

N
j=1

 instead of {(uk,j, J(uk,j))}Nj=1 , which we did not include in Algo-
rithm 2 for brevity.

6.2  Case study: five‑spot field

The numerical experiment considers a two-dimensional reservoir model with a 
three-phase flow, including oil, water, and gas (cf. Section 2). The computations are 
performed on a uniform grid that consists of 50 × 50 grid cells. The model has one 
injection and four production wells spatially arranged in a five-spot pattern as shown 
in Fig. 3.

On average, the reservoir has approximately 30% porosity with a heterogene-
ous permeability distribution. The initial reservoir pressure is 200 bar. The initial 
average oil and water saturations are 0.6546 and 0.3454, respectively. The origi-
nal oil in place is 4.983 ⋅  106  sm3. Fluid properties are similar to those of a light 
oil reservoir. The viscosity for saturated oil at varying bubble point pressure lies 

Fig. 3  Porosity distribution of the five-spot field and placement of the injection and production wells
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between 0.1 cP and 0.56 cP, and the viscosity of water is 0.01 cP. The densities of 
oil and water are taken as 732 kg/m3 and 1000 kg/m3, respectively. In this setting, 
it is easy to see that the displacement is unfavorable since the oil-water mobility 
ratio λ is such that 10 ≤ λ ≤ 56. The reservoir rock parameters utilized for the 
polymer flooding simulation in this problem are given by Table 1.

In this example, the injection well is controlled by two independent control 
variables, namely the water injection rate and the polymer concentration at each 
control time step. The lower and upper bounds for the water injection rate are set 
to 0  sm3/day and 2000  sm3/day respectively, while the lower and upper bounds for 
the polymer concentration are set to 0 kg/sm3 and 2.5 kg/sm3. Hence, the polymer 
injection rate ranges from 0 to 5000 kg/day. Each production well is controlled 
by a reservoir fluid production rate target with a lower limit of 0  sm3/day and an 
upper limit of 500  sm3/day. Bottom hole pressure limits are imposed on the wells, 
namely a maximum of 500 bar for the injector and a minimum of 150 bar for each 
producer. The production period for the reservoir is set to 50 months, and the 
control time step is taken as 5 months. Therefore, there are Nu = (2 + 4) × 10 = 
60 control variables in total to solve for in (3). For the objective function (3a), we 
used the economic parameters listed in Table 2.

Using the two different surrogate models for the objective function (3b) con-
structed by means of neural networks, namely  DNNs and  DNNv as explained 
in Section  5, the optimization problem (3) is solved using the Adaptive-ML-
EnOpt algorithm. In this case, the Adaptive-ML-EnOpt algorithm for (3) using 
 DNNs and  DNNv to approximate the objective function J from (3b) is denoted 
by AML-EnOpts and AML-EnOptv, respectively. The EnOpt parameters for both, 
the FOM-EnOpt and the two variants of the Adaptive-ML-EnOpt method, are 

Table 1  Reservoir model 
parameters used in the polymer 
flooding simulations

Parameter Value Unit

Dead pore space for polymer solution 0.1800 − 
Maximum polymer adsorption value 7.5 ⋅  10− 4 kg/kg
Residual resistance factor of polymer solution 2.5 − 
Reservoir rock density 1980 kg/rm3 
Polymer mixing parameters 0.65 − 

Table 2  Economic parameters 
used in the numerical 
experiments

Parameter Value Unit

Oil price rOP 500 USD/sm3 
Price of gas production rGP 0.15 USD/sm3 
Cost of polymer injection rPI 2.5 USD/kg
Cost of polymer production rPP 0.5 USD/kg
Cost of water injection or production 

rWI, rWP 
30 USD/sm3 

Annual discount rate dτ 0.1 − 
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presented in Table 3. We note that the tolerances ε, εi, and εo are chosen as sug-
gested in Remark 2 and are applied to the scaled quantities, i.e., the output quan-
tities, for which the respective stopping criteria in Algorithm 1 are checked, have 
already been scaled as described in Section 6.1.

We compare the Adaptive-ML-EnOpt results with those of the FOM-EnOpt 
algorithm for two different initial guesses u1

0
∈ Dad and u2

0
∈ Dad . The initial solu-

tion u1
0
 includes 700  sm3/day for the water injection rate at the injection well, 150 

 sm3/day for the reservoir fluid production rate at each production well, and 0.5 
kg/sm3 for the polymer concentration (equivalently 350 kg/day for polymer injec-
tion rate) at the injection well over the simulation period. Similarly, u2

0
 includes 

600  sm3/day for the water injection rate, 100  sm3/day for the reservoir fluid pro-
duction rate, and 0.5 kg/sm3 for the polymer concentration.

Figure 4 compares the values of the objective function during the outer iterations 
of the FOM-EnOpt, AML-EnOpts, and AML-EnOptv strategies using the initial 
solutions u1

0
 and u2

0
 . Furthermore, the value J(uk) at the outer iterate uk (denoted by 

“FOM value”) for the respective Adaptive-ML-EnOpt method is depicted.
Since the Adaptive-ML-EnOpt algorithms only use an approximate surrogate 

model Jk
ML

 , the values of J and Jk
ML

 are not necessarily the same for the control uk. 
This behavior is especially apparent in Fig. 4b, where the AML-EnOptv algorithm 
is examined for the initial guess u1

0
 . Here, after the first outer iteration, the values 

J(u1) and J0
ML

(u1) differ from each other by a significant amount. A possible reason 
is that the surrogate model J0

ML
 does not extrapolate well to the region where the 

first (inner) Adaptive-ML-EnOpt iteration converged to. This further indicates that 
the found iterate u1 is far from the initial solution u0, where the initial model J0

ML
 

was trained. However, since the Adaptive-ML-EnOpt algorithm uses evaluations of 
J in the stopping criterion, the Adaptive-ML-EnOpt does not terminate but contin-
ues by training a new surrogate model using training data sampled normally around 
u1. Hence, the new surrogate J1

ML
 tries to approximate the objective function J well 

Table 3  Parameters used in the FOM-EnOpt and Adaptive-ML-EnOpt algorithms

Parameter Value

Initial constant oil rate in u1
0
 and u2

0
 150 and 100  (sm3/day)

Initial constant water rate in u1
0
 and u2

0
 700 and 600  (sm3)

Initial constant polymer concentration in u1
0
 and u2

0
 0.5 and 0.5 (kg/sm3)

Initial step size β0 0.3
Step size contraction r 0.5
Maximum step size trials ν* 10
Initial control-type variance σj 0.001
Constant correlation factor ρ 0.9
Perturbation size N 100
FOM-EnOpt ε 10− 6

Tolerances Adaptive-ML-EnOpt inner iteration εi 10− 6

Adaptive-ML-EnOpt outer iteration εo 10− 2
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around u1. In each plot, we see that in the last two outer iterations of the respective 
Adaptive-ML-EnOpt procedure, the FOM value and the Adaptive-ML-EnOpt value 
agree to minimal deviations. This suggests that the surrogate model approximates 
the full objective function well in the region of the (local) optimum found by the 
Adaptive-ML-EnOpt method.

More so, in Fig. 4, it is seen that both, the AML-EnOpts and the AML-EnOptv 
algorithm, require considerably less (costly) outer iterations than the FOM-EnOpt 
method. This leads to an improvement in the run time of the method, which is 
detailed in Table 4. Besides the faster convergence of the method, we also remark 
that the Adaptive-ML-EnOpt algorithms find local optima with larger objective 

Fig. 4  Comparison of the NPV values obtained during the outer iterations of the FOM-EnOpt, AML-
EnOpts, and AML-EnOptv procedures for two different initial guesses u1

0
∈ D

ad
 and u2

0
∈ D

ad
 . For each 

Adaptive-ML-EnOpt procedure, the corresponding FOM value J(uk) at the current iterate uk of the 
respective Adaptive-ML-EnOpt method is indicated as well
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function values than the FOM-EnOpt algorithm. However, since the objective func-
tion J is multi-modal, this is not guaranteed.

We emphasize that each outer iteration of the Adaptive-ML-EnOpt algorithm 
includes many inner iterations (see also Tables 4 and 5), which leads to the large 
jumps in the objective function values between consecutive outer iterations, as pre-
sented in Fig. 4.

Further comparisons in terms of function values, numbers of inner and outer 
iterations, numbers of evaluations of the FOM function J and surrogate approxima-
tions Jk

ML
 , training times of the neural networks, total run time (including the train-

ing times), and speedup are presented in Tables 4 and 5.
With the different initial guesses u1

0
 and u2

0
, we found that the number of outer 

iterations required by the FOM-EnOpt algorithm significantly differs. However, the 
Adaptive-ML-EnOpt methods require only 4 and 5 outer iterations. This reduced 
number of outer iterations leads to a remarkable speedup in the overall computation 
time Ttotal and is particularly reflected in the reduced number of FOM evaluations, 
i.e., evaluations of the objective function J, which require costly polymer flooding 
simulations. Although each outer iteration consists of multiple inner iterations using 
the surrogate Jk

ML
 , it does not contribute substantially to the overall run time because 

evaluating the surrogate Jk
ML

 is very cheap.
For the initial solution u1

0
 , the optimizers obtained from the three solution strate-

gies are depicted in Fig. 5. Further, the initial guess u1
0
 is shown as a reference.

The control variables obtained by the AML-EnOpts and the AML-EnOptv algo-
rithm are close to those of the FOM-EnOpt method, except for production well 3 
(see Fig.  5c) and the water injection rate (see Fig. 5e). For each control variable, 
the values obtained via the AML-EnOpts and AML-EnOptv procedures are close to 
each other. Together with the FOM values of AML-EnOpts and AML-EnOptv pre-
sented in Table 4 and the evolution of the FOM values for the two methods shown in 
Fig. 4a–b, this suggests that the AML-EnOpts and the AML-EnOptv methods trav-
erse almost the same path in the control space Dad and find local optima close to 
each other.

Figure 6a depicts a comparison of the total field oil production for the optimal 
solutions (in Fig.  5) of the three solution methods. The total field oil production 
by FOM-EnOpt, AML-EnOpts, and AML-EnOptv are 1.343 ⋅  106, 1.425 ⋅  106, and 
1.554 ⋅  106 (in  sm3), respectively. The solution obtained by AML-EnOptv attains the 
highest oil production in total, followed by the AML-EnOpts. The total back-pro-
duced water and polymer from operating the five-spot field with the different opti-
mal solutions are presented in Fig. 6b and c, respectively. Here, we found that the 
AML-EnOpts and AML-EnOptv solutions are more economical and environmen-
tally friendly than the one provided by using the FOM-EnOpt method.

To further investigate the effects of different neural network architectures on the 
resulting NPV values, Fig. 7 depicts the NPV values obtained by the Adaptive-ML-
EnOpt algorithm when using different numbers of neurons in the hidden layers of 
the surrogate models  DNNs and  DNNv.

We observe that the AML-EnOptv method results are very similar, which suggests that 
the  DNNv-approach is more robust and leads to similar optimal solutions independent of 
the neural network structure. In the case of the AML-EnOpts algorithm, different numbers 
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Fig. 5  Comparison of the optimal solutions obtained via the FOM-EnOpt, AML-EnOpts, and AML-
EnOptv algorithms using the initial guess u1

0
 , which is depicted as the reference solution
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of neurons lead to results with a larger variation. In particular, the number of outer itera-
tions performed is different. Hence, the architecture of the underlying network seems to 
have a significant effect on the performance of the resulting AML-EnOpts algorithm.

The maximum, minimum, and average training and validation losses that 
occurred in the AML-EnOpts and AML-EnOptv algorithm for the initial guess u1

0
 are 

presented in Table 6. The table shows the respective MSE losses for different num-
bers of neurons in the hidden layers.

The results in Table  6 do not suggest a significant influence of the number of 
neurons on the training and validation results. Further, the scalar- and vector-valued 
cases,  DNNs and  DNNv respectively, perform similarly in overall training and vali-
dation losses. However, we emphasize that, in the  DNNv case, the MSE loss cannot 
be related directly to the difference in the output function. Instead, one has to take 
into account that the outputs of  DNNv are summed up to obtain the surrogate Jk

ML
 , 

while the MSE loss is measured on the vector-valued outputs of the neural network.

Fig. 6  Comparison of the production data obtained from the different solution strategies FOM-EnOpt, 
AML-EnOpts, and AML-EnOptv using the initial guess u1

0
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Altogether, the numerical experiments with different numbers of neurons suggest that 
already small DNNs with only 20 neurons in each of the hidden layers yield appropriate 
results. In this specific application, we do not benefit from increasing the complexity of the 
neural network. We have seen the same behavior when using more than two hidden layers.

7  Conclusion and future work

In this contribution, we presented a new algorithm to speed up PDE-constrained 
optimization problems occurring in the context of enhanced oil recovery. The algo-
rithm is based on adaptively constructed surrogate models that make use of deep 
neural networks for approximating the objective function. In each outer iteration of 

Fig. 7  Comparison of the Adaptive-ML-EnOpt procedures AML-EnOpts and AML-EnOptv for different 
numbers of neurons in the hidden layers with fixed initial guess u1

0

Table 6  Maximum, minimum, and average MSE loss in the AML-EnOpts and AML-EnOptv algorithm 
with different numbers of neurons in the hidden layers of the neural networks  DNNs and  DNNv for fixed 
initial guess u1

0
 . The number of hidden layers is fixed to two

Method Neurons Outer Training loss Validation loss

N1 = N2 iter. Max. Min. Avg. Max. Min. Avg.

DNNs 20 4 1.2 ⋅  10− 4 1.3 ⋅  10− 6 5.3 ⋅  10− 5 5.4 ⋅  10− 3 6.7 ⋅  10− 5 2.3 ⋅  10− 3 
DNNs 25 2 6.0 ⋅  10− 4 1.3 ⋅  10− 6 3.0 ⋅  10− 4 2.3 ⋅  10− 3 2.1 ⋅  10− 3 2.2 ⋅  10− 3 
DNNs 30 6 7.9 ⋅  10− 4 8.5 ⋅  10− 7 1.7 ⋅  10− 4 6.6 ⋅  10− 3 1.7 ⋅  10− 3 3.6 ⋅  10− 3 
DNNs 35 4 1.8 ⋅  10− 4 6.1 ⋅  10− 6 8.2 ⋅  10− 5 5.5 ⋅  10− 3 3.7 ⋅  10− 4 2.7 ⋅  10− 3 
DNNv 20 5 1.8 ⋅  10− 3 2.1 ⋅  10− 5 5.2 ⋅  10− 4 6.9 ⋅  10− 3 1.2 ⋅  10− 3 4.2 ⋅  10− 3 
DNNv 25 5 9.9 ⋅  10− 4 1.5 ⋅  10− 5 4.1 ⋅  10− 4 6.4 ⋅  10− 3 9.4 ⋅  10− 4 3.6 ⋅  10− 3 
DNNv 30 5 9.0 ⋅  10− 4 9.9 ⋅  10− 6 4.0 ⋅  10− 4 1.0 ⋅  10− 2 5.2 ⋅  10− 4 4.3 ⋅  10− 3 
DNNv 35 5 6.0 ⋅  10− 4 1.1 ⋅  10− 6 2.2 ⋅  10− 4 8.8 ⋅  10− 3 4.6 ⋅  10− 4 4.3 ⋅  10− 3 
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the algorithm, a new surrogate model is trained with data consisting of full-order 
function evaluations around the current control point. Afterwards, an ensemble-
based optimization algorithm is applied to the surrogate to obtain a candidate for 
the next iteration. We perform full order model evaluations to validate whether 
the resulting controls correspond to a local optimum of the true objective func-
tion. These function evaluations also serve as training data for constructing the next 
surrogate.

Our numerical results confirm that the described algorithm can accelerate the 
solution of the enhanced oil recovery optimization problem. At the same time, in our 
numerical experiments, the procedure produces controls with even larger objective 
function values than those obtained using only costly full-order model evaluations. 
However, we should emphasize that such an improvement in the objective function 
value is not guaranteed and, in our case, results from the multi-modal structure of 
the objective function.

The investigated five-spot benchmark problem served as a proof of concept for 
our Adaptive-ML-EnOpt algorithm, where FOM evaluations were relatively quickly 
accessible, and the input dimension was of moderate size. Future research is thus 
devoted to more involved numerical experiments with more significant complexity.

As indicated in the optimization problem description, we focused on a scenario 
with fixed geological properties. However, in practical applications, these geological 
parameters are usually unknown and typically treated by ensemble-based methods, 
where the ensemble is to be understood not only with respect to perturbations of the 
controls for approximating the gradient but also with respect to different samples 
of geological properties. One of the central future research perspectives is incor-
porating such geological uncertainty in our algorithm. The main challenge is the 
high dimension of the space of possible geological parameters. Naively using these 
parameters as additional inputs for the neural network is thus not feasible. Future 
research might consider reducing the dimension of the space of geological param-
eters by incorporating additional information on the distribution of such parameters 
and passing the reduced variables to the neural networks.

Furthermore, replacing neural networks as surrogate models for the objective 
function, for instance, by polynomial approximations obtained via linear regression 
or by different machine learning approaches, such as kernel methods [59], could be 
investigated further. The Adaptive-ML-EnOpt algorithm is formulated in such a way 
that replacing the surrogate model and its training is readily possible. Any approxi-
mation of the objective function built from evaluations of the true objective function 
is feasible and can directly be used in the algorithm. In addition, the inner iterations 
are not restricted to the EnOpt procedure but can also be performed using different 
optimization routines. However, we should emphasize that in the current formula-
tion, no information on the exact gradient, neither of the true objective function nor 
the surrogate model, is required. This might change when employing different opti-
mization routines. Moreover, the presented approach is not restricted to the NPV 
objective function in enhanced oil recovery but can be generalized to any scalar-
valued quantity of interest. The algorithm might be of particular relevance in cases 
where no direct access to the underlying PDE solutions is possible, and no error 
estimation for the surrogate model is available.
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Finally, we note that the selection of parameters, such as the initial and adaptive sam-
ple covariance for the approximate gradient computation of the objective function, can 
influence the behavior of the EnOpt method. This impact has been examined in greater 
detail by [54]. It will be of future interest to see how the different selections of these 
parameters can impact the final solutions of AML-EnOpts and AML-EnOptv.
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