
Vol.:(0123456789)

Advances in Computational Mathematics (2022) 48:73
https://doi.org/10.1007/s10444-022-09981-z

1 3

Adaptive machine learning‑based surrogate modeling
to accelerate PDE‑constrained optimization in enhanced oil
recovery

Tim Keil1 · Hendrik Kleikamp1 · Rolf J. Lorentzen2 · Micheal B. Oguntola2,3 ·
Mario Ohlberger1

Received: 4 March 2022 / Accepted: 15 September 2022
© The Author(s) 2022

Abstract
In this contribution, we develop an efficient surrogate modeling framework for sim-
ulation-based optimization of enhanced oil recovery, where we particularly focus
on polymer flooding. The computational approach is based on an adaptive training
procedure of a neural network that directly approximates an input-output map of
the underlying PDE-constrained optimization problem. The training process thereby
focuses on the construction of an accurate surrogate model solely related to the opti-
mization path of an outer iterative optimization loop. True evaluations of the objec-
tive function are used to finally obtain certified results. Numerical experiments are
given to evaluate the accuracy and efficiency of the approach for a heterogeneous
five-spot benchmark problem.

Keywords PDE-constrained optimization · Enhanced oil recovery · Machine
learning · Neural networks · Surrogate modeling · Ensemble-based optimization

Mathematics Subject Classification (2010) 49M41 · 68T07 · 90C90

1 Introduction

Water flooding remains the most frequently used secondary oil recovery method.
However, the percentage of original oil in place left after the cessation of water
flooding in many reservoir fields is estimated to be as high as 50–70% [1–3]. The
reduced performance of water flooding leading to the sizable leftover of oil has been
linked to many factors such as the presence of unfavorable mobility ratios (due to

Communicated by: Gianluigi Rozza

 * Micheal B. Oguntola
 micheal.b.oguntola@uis.no

Extended author information available on the last page of the article

http://orcid.org/0000-0001-6692-639X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-022-09981-z&domain=pdf

 T. Keil et al.

1 3

 73 Page 2 of 35

heavy oil) and high level of heterogeneity (in porosity and permeability) in the res-
ervoir [4]. For these reasons, enhanced oil recovery (EOR) methods are employed to
improve the performance of water flooding in order to increase oil production and
minimize environmental stress.

Polymer flooding is a matured chemical EOR method, suitable for heavy oil reser-
voir development, with over four decades of practical applications [5, 6]. It involves
injecting long chains of high-molecular-weight soluble polymers along with water
flooding. The polymer EOR mechanism includes reducing mobility ratios of the oil-
water system and early water breakthrough in the reservoir by increasing the viscos-
ity of injected water and consequently improving vertical and aerial sweep efficien-
cies of the injected fluid.

The EOR process of polymer flooding can significantly increase the oil produc-
tion [6]. However, compared to water flooding, the operational cost and the risk
associated with polymer flooding are higher. More so, since injecting more than nec-
essary polymer into the reservoir can lead to insignificant oil increment, it is impera-
tive to optimize the injection strategy of polymer flooding for field application to
avoid unnecessarily high operational costs with no profit.

Conventionally, a reservoir simulation model is combined with a numerical opti-
mization technique to determine an optimal control (including water rates, polymer
concentrations of injection wells, liquid rates, or bottom hole pressures of produc-
tion wells) for polymer flooding. The aim is to maximize a given reservoir perfor-
mance measure (RPM), such as the total oil production or the net present value
(NPV) function over the reservoir life. The simulation model is usually a complex
numerical reservoir simulator that requires substantial data accounting for geology
and geometry of the reservoir or rock and fluid properties. In this study, the model
simulates the oil reservoir response (in the form of fluid production) to a given poly-
mer flooding control per time. On this account, we estimate the RPM of a given
control strategy.

Further, the complexity of a reservoir simulator leads to a high computational
effort for simulating a given polymer flooding scenario. It contributes to the ineffi-
ciency of gradient-based solution techniques (e.g., the ensemble-based optimization
(EnOpt) method) for polymer EOR optimization problems, since the (approximate)
gradient of the objective function with respect to the control variables requires sev-
eral function evaluations, with each relying on a time-consuming polymer model
simulation [7–9]. More so, for large-scale polymer problems discretized into a large
number of grid cells, a single model evaluation may take several hours to complete.
For this reason, we propose a machine learning-based approach to approximate the
computationally demanding objective function.

In classical approaches of model order reduction or surrogate modeling, the
expensive evaluation of the objective function due to the PDE constraints is replaced
by an a priorly trained surrogate that can be efficiently evaluated with respect to the
optimization parameters, e.g., by reduced basis methods [10–14]. These works share
the fact that the offline time for constructing the respective surrogate can be ignored
since the respective optimization parameters do not necessarily belong to the reduc-
tion parameters. If instead a single optimization problem is to be solved and no
pre-trained surrogate model exists (as is the case in our application) the offline time

1 3

Adaptive machine learning‑based surrogate modeling to… Page 3 of 35 73

for constructing a globally accurate surrogate can be large or, in the case of a high
dimensional parameter space, even prohibitive. Furthermore, reliable error estima-
tion is required to ensure a desired accuracy of the surrogate.

In this work, we make use of an adaptive surrogate modeling approach, where
a surrogate model is constructed during the outer optimization loop through adap-
tive learning that is targeted towards an accurate input-output map in the vicinity
of the chosen parameters during the optimization loop. The overall algorithm thus
combines costly full order model (FOM) evaluations, training of machine learning
(ML) based surrogate models, as well as evaluations of the successively trained ML
models. In model reduction for parameterized systems [15], such adaptive enrich-
ment approaches have been recently proposed and successfully applied in the con-
text of PDE-constrained parameter optimization, e.g., by a progressive construction
of reduced-order models (ROMs) [16, 17], or in combination with trust-region opti-
mization [18–20]. Recently, first ideas were presented to combine online enrichment
for ROMs with machine learning-based surrogate modeling [21–23]. In this contri-
bution, we use feedforward deep neural networks (DNNs) to obtain surrogate mod-
els of the underlying input-output map that directly map the optimization parameters
to the output of the objective function. For instance in [24, 25], DNNs have also
been applied as ROM for parametrized PDEs in combination with reduced basis
methods. Deep convolutional autoencoders, a special type of neural networks, were
used in [26] to obtain a nonlinear approximation manifold that replaces the linear
subspace from the reduced basis method.

Artificial neural networks also gained attention in the context of enhanced oil
recovery in recent years, see [27–29], for instance. However, these approaches
mainly focus on accelerating the evaluation of the costly objective function without
providing a way to solve polymer EOR optimization problems using the proposed
surrogate models. In [30], the authors describe an algorithm to obtain a global sur-
rogate model that is applied as a replacement for the objective function in a genetic
algorithm. The global approximation of the objective is computed a priori before
applying the optimization routine. In [31], artificial neural networks are employed to
facilitate the decision process for a specific EOR method.

Concerning acceleration of PDE-constrained optimization in general, DNNs are,
for instance, used in [32] to replace costly simulations within the optimization loops
by evaluations of surrogate models. The main idea of the ISMO algorithm described
in [32] is to run multiple parallel optimization routines starting from different ini-
tial guesses and to construct DNN surrogate models using training data collected at
the final iterates of these optimization algorithms. The training data is computed by
costly evaluations of the exact objective function (involving the solution of PDEs).
In contrast, the optimization routines use the respective surrogate model to speed
up the computations. Iteratively, a surrogate model is built to approximate the true
objective function near local optima. The approximation quality also serves as the
stopping criterion of the algorithm. Another approach involving physics-informed
deep operator networks to accelerate PDE-constrained optimization in a self-super-
vised manner has recently been suggested in [33].

The idea of not having a global surrogate model, but only approximations of the
objective function that are locally accurate, is also one of the main motivations for

 T. Keil et al.

1 3

 73 Page 4 of 35

our algorithm. In contrast to the procedure in [32] described previously, we itera-
tively construct DNN surrogate models tailored towards the objective function along
a single optimization path. We consider only a single initial guess but check for con-
vergence by taking into account the true objective function. This stopping criterion
certifies that the resulting control is approximately a (local) optimum of the true
objective function and not only of the surrogate. Further, we do not assume that the
derivative of the DNN surrogate with respect to its inputs is available but reuse the
EnOpt procedure when optimizing with the surrogate model.

The remainder of this article is organized as follows. In Section 2 we introduced
the polymer flooding model for EOR and formulate an optimization problem for the
economic value of the reservoir response. Section 3 introduces a classical ensemble-
based optimization algorithm based on a FOM approximation of the polymer flood-
ing model. Feedforward DNNs to approximate the input-output map are introduced
in Section 4. In Section 5, we finally present and discuss our new adaptive FOM-
ML-based optimization algorithm, which is evaluated numerically for a five-spot
benchmark problem in Section 6. Last but not least, a conclusion and outlook are
given in Section 7.

2 Optimization of polymer flooding in enhanced oil recovery

The problem of predicting the optimal injection strategy of the polymer EOR method
can be formulated as a constrained optimization problem. The setup involves solving
a maximization problem in which the objective function, the RPM, is defined on a
given set of controllable variables. For the polymer EOR method, a complete set of
control variables includes the concentration (and hence volume size of the polymer)
and control variables (such as water injection rate, oil production rate, and/or bottom
hole pressure for the injecting or producing wells) for water flooding over the pro-
ducing lifespan of the reservoir.

2.1 Polymer flooding model

As mentioned in the introduction, the optimization process is usually performed on
a simulation model of the real reservoir [34]. Here, we consider a polymer flooding
simulation model, which is an extension of the black-oil model with a continuity
equation for the polymer component [9, 35]. The black-oil model is a special multi-
component multi-phase flow model with no diffusion among the fluid components
[36]. It assumes that all hydrocarbon species are considered as two components,
namely, oil and gas at surface conditions, and can be partially or entirely dissolved
in each other to form the oil and gas phases. Further, there is an aqueous phase that
consists of only one component called water.

For brevity, we first state the polymer flooding model without mentioning its
dependence on the controls and geological parameters explicitly. Hence, in what fol-
lows, we assume that fixed sets of controls and geological parameters are given.

1 3

Adaptive machine learning‑based surrogate modeling to… Page 5 of 35 73

In the polymer model, usually, it is assumed that polymer forms an additional
component transported in the aqueous phase of the black-oil model and has no effect
on the oil phase. We identify those quantities associated with the water, oil, gas, and
polymer components with subscripts “W”, “O”, “G”, and “P”. In general, the poly-
mer model consists of the following system of partial differential equations:

where ϕ is the rock porosity, sα, bα, qα, and vα denote the (unknown) saturation,
inverse formation-volume factor (depending on the respective density ρα), volu-
metric source (flow rate per unit volume), and Darcy’s flux of phase α ∈{W,O,G},
and rOG and rGO denote the oil-gas and gas-oil ratios. The quantities vP,ca,sipv, and
c denote the Darcy’s flux, adsorption concentration, inaccessible pore volume, and
concentration of the polymer solution, and ρr is the density of the reservoir rock.

In addition to the system (1), empirical closure equations for relative permeabili-
ties and capillary pressure in three-phase flow in porous media are applied. Here, the
unknown primary variables are phase saturations sα (or component accumulations)
and pressures pα, and thus, appropriate initial and boundary conditions are defined.

Based on the type of injection and/or production well (e.g., vertical, horizontal,
or multi-segment), a suitable well model [37, 38] is coupled with (1) to measure the
volumetric flow rates, which depend on the state of the reservoir. A standard well
model for vertical wells is given as follows.

The volumetric flow rates qα for α ∈{W,O,G} in a multi-phase polymer model are
computed using a semi-analytical model according to [38, 39] and are given by

Here, kRα(sα), ρα, pα, and μα,eff are the saturation-dependent relative permeabil-
ity, density, pressure, and effective viscosity of phase α ∈{W,O,G}, WI is the well
index, zbh is the well datum level depth, pbh is the bottom hole pressure at the well
datum level, z is the depth, Rk(c) models the reduced permeability experienced by
the water-polymer mixture, and g is the magnitude of the gravitational acceleration.

(1a)�

�t
(�bWsW) + ∇ ⋅ bWvW = qW,

(1b)�

�t
�(bOsO + rOGbGsG) + ∇ ⋅ (bOvO + rOGbGvG) = qO,

(1c)�

�t
�(bGsG + rGObOsO) + ∇ ⋅ (bGvG + rGObOvO) = qG,

(1d)�

�t

[
�(1 − sipv)sW +

�rca

bWc
(1 − �)

]
+ ∇ ⋅ vP = qW,

(2a)qW =
kRW(sW)

�W,effRk(c)
WI(pbh − pW − �W�(zbh − z)),

(2b)qO =
kRO(sO)

�O,eff

WI(pbh − pO − �O�(zbh − z)),

(2c)qG =
kRG(sG)

�G,eff

WI(pbh − pG − �G�(zbh − z)).

 T. Keil et al.

1 3

 73 Page 6 of 35

Individual wells are usually controlled by surface flow rates or bottom hole pres-
sures. Additional equations which enforce limit values for the component rates and bot-
tom hole pressures are

where qlimit
�

 is the desired surface-volume rate limit for component α, e.g., field oil
rate at the production well, and plimit

bh
 is the desired bottom hole pressure limit. Also,

logic constraints to determine what happens if the computed rates or pressures vio-
late the operational constraints, in which case a well may switch from rate control to
pressure control, etc., are imposed.

If qα,i is the field volumetric flow rate (in sm3/day) of component α ∈{W,O,G} in
the production wells over the time interval Δti, the field production total (in sm3) of the
component α is given as Qα P,i = qα,iΔti. For polymer production total (in kg), QPP,i =
cLqW,iΔti, where cL is the leftover field polymer concentration (in kg/sm3) after adsorp-
tion. Injection quantities QPI,i and QWI,i are computed similarly, however with volumet-
ric flow rates in the injection wells.

As already mentioned above, the solution of the polymer flooding model stated
in (1) depends on a given control vector u, see Section 2.2 for a detailed description
of the components of the control vector, and a set of geological properties 𝜃. Conse-
quently, all involved unknowns depend on u and 𝜃 and the same holds for qW, qO, and
qG. From now on, we thus write Qα P,i(u,𝜃) for the field production total of component α
∈{W,O,G}, depending on the controls u and the parameters 𝜃, within the time interval
Δti, similar as above. We further write QPP(u,𝜃) for the polymer production total, and
QPI,i(u,𝜃) and QWI,i(u,𝜃) for the polymer and water injection.

2.2 Optimization of the economic value of the reservoir response

This study considers the annually discounted net present value (NPV) function as the
RPM, similar to the one in [7, 40]. The NPV function is related to the control varia-
bles through the polymer simulation model (1). For every polymer control strategy, the
NPV function evaluates the economic value of the reservoir response. Also, because
the injection and production facilities have limited capacity, the control variables are
subject to bound constraints.

Suppose that the geological properties of the oil reservoir of interest, such as poros-
ity and permeability are known and denoted by 𝜃. Let D = ℝ

Nu be the domain of con-
trol vectors of polymer flooding for the reservoir, such that

 where T means transpose. The subscript of each component of u denotes the well
index, the superscript is the control time step, Nw and Nt denote the number of wells
and time steps for each well, respectively, and Nu = Nw ⋅ Nt is the total number of
control variables. Each component ui

j
 in u represents a control type (e.g., polymer

pbh − plimit
bh

≤ 0,

q� − qlimit
�

≤ 0,

u =
[
u1
1
, u1

2
,… , u1

Nw
,… , u

Nt

1
, u

Nt

2
,… , u

Nt

Nw

]�
,

1 3

Adaptive machine learning‑based surrogate modeling to… Page 7 of 35 73

concentration or injection rate, oil or water rate, bottom hole pressure) of well j at
the time step i.

The Nu-dimensional optimization problem for polymer flooding is to find the
optimal u ∈ D that maximizes the NPV function subject to bound constraints. That
is

where Ji denotes the cumulative NPV value in the i-th simulation time step. Fur-
ther, dτ is the discount rate for a period of τ days, ti is the cumulative time (in days)
starting from the beginning of production up to the i-th time step, and Δti := ti −
ti− 1 is the time difference (in days) between the time steps ti and ti− 1. The scalars
rOP,rGP,rWI and rWP denote the prices of oil and gas production and the cost of han-
dling water injection and production (in USD/sm3) respectively, and rPI and rPP are
the costs of polymer injection and production (in USD/kg). In addition, QWI,i and
QPI,i are the total water injection (in sm3) and total polymer injection or slug size (in
kg) over the time interval Δti. The quantities QOP,i, QWP,i and QGP,i denote the total
oil, water and gas productions (in sm3) over the time interval Δti, while QPP,i repre-
sents the total polymer production (in kg) over the time interval Δti. The quantities
QOP,i, QWI,i, QWP,i, QGP,i, QPI,i, and QPP,i are computed at each control time step i for
given u and fixed 𝜃 from the polymer flooding model (1) and the well equations (2).

The evaluation of the objective function J in (3b) shall be referred to as the full
order model (FOM) function evaluation in the remainder of this study. Therefore,
the constrained optimization problem presented in (3) can be interpreted as the
FOM optimization problem for polymer flooding, given a suitable discretization of
the system (1) (see Section 6.1 for details). Also, because 𝜃 is fixed during the opti-
mization process, J is considered a function of u only, and hence we often write J(u)
and Ji(u). The solution method utilized for this optimization problem is presented in
the next section.

3 Ensemble‑based optimization algorithm

In this work, the FOM solution to problem (3) follows from the application of the
adaptive ensemble-based optimization (EnOpt) method analogous to the one pre-
sented in [7, 41, 42]. We again emphasize that we restrict our attention to a fixed

(3a)maximize
u∈D

J(u,���) ∶=
Nt∑
i=1

Ji(u,���)

(1+d�)
ti
�

(3b)

with

Ji(u,���) ∶= rOPQOP,i(u,���) + rGPQGP,i(u,���) − Ri(u,���),

Ri(u,���) ∶= rWIQWI,i(u,���) + rWPQWP,i(u,���)

+rPIQPI,i(u,���) + rPPQPP,i(u,���),

(3c)
subject to

ulow
j

≤ ui
j
≤ u

upp

j
for all j = 1,… ,Nw, i = 1,… ,Nt,

 T. Keil et al.

1 3

 73 Page 8 of 35

choice of geological parameters 𝜃. Since we apply the EnOpt algorithm later on in
our surrogate-based algorithm to a function different from J, we subsequently begin
by describing the algorithm in its general form. Afterwards, we discuss the applica-
tion of the EnOpt algorithm to the objective function J and the resulting computa-
tional costs.

3.1 Optimization algorithm for a general objective function

In what follows, we describe the EnOpt algorithm for a general objective function
F∶ ℝ

Nu → ℝ to iteratively solve the optimization problem

The EnOpt method is an iterative method in which one starts with an initial guess
u0 that is usually based on experimental facts in such a way that the underlying con-
straints in (4b) are satisfied. We sequentially seek for an improved approximate solu-
tion u that maximizes F(u) using a preconditioned (with covariance matrix adapta-
tion) gradient ascent method given by

where k = 0, 1, 2,… denotes the optimization iteration. The tuning parameter βk for
the step size is computed using an auxiliary line search [43] and is selected such that
0 < βk ≤ 1. Furthermore, Ck

uk
∈ ℝ

Nu×Nu denotes the user-defined covariance matrix
of the control variables at the k-th iteration and Gk ∈ ℝ

Nu is the approximate gradi-
ent of F with respect to the control variables, preconditioned with Ck

uk
 to obtain the

search direction at iteration k.
To ensure that the constraints in (5) are satisfied, the original solution domain of

the control variables is projected to the set of admissible controls Dad , defined as

which corresponds to the constraints in (4b). The updating scheme in (5) is per-
formed in Dad . We utilize a component-wise projection PDad

∶ D → Dad on the
update ûk+1 ∈ D , such that

In practical applications, it is not common to have controls at different wells to
correlate, but the controls may vary smoothly with time at individual wells.

(4a)maximize
u∈D

F(u)

(4b)subject to ulow
j

≤ ui
j
≤ u

upp

j
for all j = 1,… ,Nw, i = 1,… ,Nt.

(5)ûk+1 = uk + 𝛽kdk,

(6)dk ≈
C

k
uk
Gk

‖Ck
uk
Gk‖∞

,

(7)Dad ∶= {u ∈ D ∶ ulow
j

≤ ui
j
≤ u

upp

j
for all j = 1,… ,Nw, i = 1,… ,Nt},

(8)uk+1 = PDad
(ûk+1) ∈ Dad.

1 3

Adaptive machine learning‑based surrogate modeling to… Page 9 of 35 73

Hence, the use of Ck
uk

 in Equation (5) enforces this regularization on the control
updates. At k = 0, we utilize a temporal covariance function given by

from a stationary auto regression of order 1 (i.e., AR(1)) model [44] to com-
pute C0

u0
 with an assumption that controls of different wells are uncorrelated.

The variance for the well j is given by 𝜎2
j
> 0 , and ρ ∈ (− 1,1) is the correlation

coefficient used to introduce a level of dependence between controls of indi-
vidual wells at different control time steps (since the AR(1) model is
stationary).

The formulation above gives rise to a block diagonal matrix C0
u0

 , which is
updated by matrices with rank one at subsequent iterations, using the statistical
method presented in [42], to obtain an improved covariance matrix Ck

uk
 . For this

reason, the solution method in Equation (5) is referred to as the adaptive EnOpt
algorithm.

We compute the preconditioned approximate gradient Ck
uk
Gk following the

approach of the standard EnOpt algorithm. At the k-th iteration, we sample N ∈ ℕ
control vectors uk,m ∈ Dad , for m = 1,… ,N, from a multivariate Gaussian distri-
bution with mean equal to the k-th control vector uk and covariance matrix given
by Ck

uk
 . Here, the additional subscript m is used to differentiate the perturbed con-

trol vectors from the one obtained by Equation (5). The cross-covariance of the
control vector uk and the objective function F(uk) at the k-th iteration is approxi-
mated according to [45] as

Since uk,m ∼ N(uk,C
k
uk
) for m = 1,… ,N , we assume in Equation (10) that the

mean of {uk,m}Nm=1 is approximated by uk. By first-order Taylor series expansion of
F about uk, it can easily be deduced that Equation (10) is an approximation of
C

k
u
Gk at the k-th iteration, that is

see [41, 46] for a detailed proof. Therefore, we choose the search direction as
dk = C

k
uk ,F

∕‖Ck
uk ,F

‖
∞

 in Equation (5). The updating scheme in Equation (5) is per-
formed until the convergence criterion

is satisfied, where ε > 0 is a specified tolerance.
For an arbitrary objective function F, the EnOpt procedure is summarized in

Algorithm 1. In this algorithm, the OptStep function replicates a single optimi-
zation step in the EnOpt procedure and is detailed in Algorithm 2. We note that

(9)Cov
(
ui
j
, ui+h

j

)
= �2

j
�h
(

1

1−�2

)
, for all h ∈ {0,… ,Nt − i},

(10)C
k
uk ,F

∶=
1

N − 1

N∑

m=1

(uk,m − uk)
(
F(uk,m) − F(uk)

)
.

(11)C
k
uk
Gk ≈ C

k
uk ,F

,

(12)F(uk) ≤ F(uk−1) + �

 T. Keil et al.

1 3

 73 Page 10 of 35

returning the set of function values Tk+ 1 does not play a role in Algorithm 1 but
is crucial for training the surrogate model in Section 5. The line search proce-
dure LineSearch can be found in Algorithm 3.

Algorithm 1 EnOpt algorithm

Algorithm 2 OptStep algorithm

1 3

Adaptive machine learning‑based surrogate modeling to… Page 11 of 35 73

3.2 FOM‑EnOpt algorithm for enhanced oil recovery

Eventually, we are interested in solving the optimization problem (3) for polymer
flooding in enhanced oil recovery. As already discussed in the introduction, our
contribution is concerned with the development of a surrogate-based algorithm
to reduce the computational costs for solving (3). To this end, if the EnOpt algo-
rithm is used to maximize the function J, defined in Equation (3b), we refer to
Algorithm 1 as the FOM-EnOpt algorithm. That is, the FOM-EnOpt algorithm is
given as enOpt[J], see Algorithm 4.

As already indicated, we are concerned with the computational effort of the
FOM-EnOpt algorithm. Let us recall that evaluating J as in (3b) has the com-
plexity of the high-fidelity reservoir simulator, which, in itself, requires the solu-
tion of the discretized polymer flooding model equations (1). In Algorithm 1,
the most expensive part is to call OptStep[J], which requires N evaluations of J
in Line 8 of Algorithm 2 such that the direction dk can be computed in Line 9.
Furthermore, the line search in Line 10 evaluates J for every search step. Sup-
pose the simulation time for computing J is particularly large. In that case, the

Algorithm 3 Line search

Algorithm 4 FOM-EnOpt algorithm

 T. Keil et al.

1 3

 73 Page 12 of 35

FOM-EnOpt algorithm can be extremely costly, especially if many optimization
steps are required since OptStep[J] is called at every iteration step. In this case,
all steps in Algorithm 1 and Algorithm 2 that do not require evaluating J are com-
putationally negligible.

Since expensive FOM evaluations are very likely to happen for the presented
application, we aim to derive a surrogate-based algorithm that uses an approxi-
mation of J whenever possible and thus tries to reduce the number of calls of
OptStep[J]. Instead, FOM information is reused whenever possible and only com-
puted when necessary. The following section introduces a machine learning-based
way for deriving suitable non-intrusive surrogate models.

4 Neural networks as surrogate model for the input‑output map

Deep neural networks (DNNs) are machine learning algorithms suitable for approxi-
mating functions without knowing their exact structure. Instead, DNNs can be fitted to
approximately reproduce known target values for a set of given inputs, and thus, learn
from examples of labeled data.

A particular class of DNNs are feedforward neural networks, in which no cyclic
flow of information is allowed. This study considers feedforward neural networks
consisting of (fully connected) linear layers combined with a nonlinear activation
function. Our description of these types of DNNs is based on formal definitions that
can be found in [47] and [48], for instance.

Feedforward neural networks are used to approximate a given function
f ∶ ℝ

Nin → ℝ
Nout for a certain input dimension Nin ∈ ℕ and an output dimen-

sion Nout ∈ ℕ . To this end, let L ∈ ℕ denote the number of layers in the neural
network, and Nin = N0,N1,… ,NL−1,NL = Nout ∈ ℕ the numbers of neurons in
each layer. Furthermore, the weights and biases in layer i ∈ {1,… , L} are denoted
by Wi ∈ ℝ

Ni×Ni−1 and bi ∈ ℝ
Ni . We assemble the weights and biases in an L-tuple

W =
(
(W1, b1),… , (WL, bL)

)
 . Moreover, let �∶ ℝ → ℝ be the so-called activation

function and �∗
n
∶ ℝ

n
→ ℝ

n the component-wise application of the activation func-
tion ρ for dimension n ∈ ℕ , that is �∗

n
(y) ∶=

[
�(y1),… , �(yn)

]�
∈ ℝ

n for y ∈ ℝ
n .

Then we can define the corresponding feedforward neural network in the follow-
ing way: The feedforward neural network with weights and biases W and activa-
tion function ρ for approximating f ∶ ℝ

Nin → ℝ
Nout , is defined as the function

Φ
W
∶ ℝ

Nin → ℝ
Nout . For a given input x ∈ ℝ

Nin , the result Φ
W
(x) ∈ ℝ

Nout is computed
as

where rL ∶ ℝ
Nin → ℝ

Nout is defined in a recursive manner using the functions
ri ∶ ℝ

Nin → ℝ
Ni for i = 0,… , L − 1 , which are given by

Φ
W
(x) ∶= rL(x),

rL(x) ∶= WLrL−1(x) + bL,

ri(x) ∶= �∗
Ni

(
Wiri−1(x) + bi

)
for i = 1,… , L − 1,

r0(x) ∶= x.

1 3

Adaptive machine learning‑based surrogate modeling to… Page 13 of 35 73

Fitting neural network weights and biases to a given function f is accomplished by
creating a sample set Ttrain = {(x1, f (x1)),… , (xn, f (xn))} ⊂ X ×ℝ

Nout (the so-called
training set), consisting of inputs xi ∈ X from an input set X ⊂ ℝ

Nin and correspond-
ing outputs f (xi) ∈ ℝ

Nout . The process of finding the weights W such that ΦW(xi) ≈
f(xi) for i = 1,… , n is called training of the neural network. During the training, the
weights and biases of the neural network ΦW are iteratively adjusted such that a loss
function, which measures the deviation of the output ΦW(xi) for a given input xi from
the desired result f(xi), is minimized. A common choice for the loss function is the
mean squared error lossL

(
Φ

W
, Ttrain

)
 given as

Popular examples of optimization algorithms used in neural network training
are variants of (stochastic) gradient descent methods, see [49] for an overview. For
small neural networks with only a few layers and neurons, it is also possible to apply
methods that use or approximate higher-order derivatives of the loss function, for
instance, the L-BFGS optimizer [50], which is a limited-memory variant of the
BFGS method, see for instance Section 6.1 in [43]. In the context of neural network
training, each iteration of the optimizer is called epoch. Typically, a maximal num-
ber of epochs is prescribed for the optimizer to perform.

To prevent a neural network from overfitting the training data, we employ early
stopping [51]. In this method, the loss function is evaluated on a validation set
Tval ⊂ X ×ℝ

Nout after each epoch. The validation set is usually chosen to be disjoint
from the training set, i.e., Tval ∩ Ttrain = ∅. Let Wk denote the weights in epoch
k ∈ ℕ . In each epoch, the value L(Φ

Wk
, Tval) is computed, and if this value does not

decrease anymore over a prescribed number of consecutive epochs, the training is
aborted. This method ensures that the resulting neural network can perform well on
unseen data (that is assumed to have the same structure as the training data).

The result of the optimization routine typically depends strongly on the initial
values W0 of the weights. There are several methods for initializing the weights of
neural networks, for instance, the so-called Kaiming initialization, see [52] for more
details. We perform multiple restarts of the training algorithm using different initial
values for the weights to minimize the dependence of the resulting neural network
on the weight initialization. Finally, we select the neural network Φ

W
∗ that produced

the smallest loss L(Φ
W

∗ ,Ttrain) +L(Φ
W

∗ ,Tval) over all training restarts, i.e., the
smallest combined loss on the training and the validation set.

Finding an appropriate neural network architecture can be difficult in practical
applications. Especially the number of layers and the number of neurons signifi-
cantly influence the approximation capabilities of the resulting neural network. In
addition, there are lots of different activation functions available. Typical examples
include the rectified linear unit (ReLU) �(x) = max(x, 0) , which is nowadays the
most popular activation function [53], or the hyperbolic tangent
�(x) = tanh(x) =

e2x−1

e2x+1
.

L
�
Φ

W
, Ttrain

�
∶=

1

�Ttrain�
∑

(x,y)∈Ttrain

‖Φ
W
(x) − y‖2

2
.

 T. Keil et al.

1 3

 73 Page 14 of 35

5 Adaptive‑ML‑EnOpt algorithm using deep neural networks

The primary purpose of this work is to propose an adaptive machine learning-based
algorithm for avoiding expensive FOM evaluations as often as possible. To this end,
we first discuss the usage of DNNs for the NPV value and subsequently introduce
the Adaptive-ML-EnOpt algorithm.

5.1 Surrogate models for the net present value

As discussed in Section 3, we use DNNs to construct a surrogate model for the FOM
objective function J. DNNs are particularly well suited for non-intrusive model
reduction if the simulator is considered a black box with no direct access to solu-
tions of the underlying PDEs. In fact, given the formulation of the objective function
(3b), we assume to only have access to the respective components Ji(u).

Following the definition of a DNN in Section 4, two input-output maps can
be used to approximate J. We refer to the scalar-valued output by considering
J ∶ ℝ

Nu → ℝ as the input-output map. Furthermore, we refer to the vector-valued
output if we make different use of the structure of J by writing J(u) = δTj(u) with

and the vector � ∈ ℝ
Nt , which includes the discount factors, is defined as

In the scalar-valued case (DNNs-approach), we directly construct a DNN for J
with a corresponding function Φ

Ws
∶ ℝ

Nu → ℝ , i.e., we use a DNN with Nin = Nu
and Nout = 1. Instead, in the vector-valued case (DNNv-approach), we construct a
DNN for approximating j with a corresponding function Φ

Wv
∶ ℝ

Nu → ℝ
Nt and, by

using δ, we indirectly approximate J. This means that we apply a DNN with input
and output dimensions given by Nin = Nu and Nout = Nt, and multiply the result by δ
whenever the respective DNN is used for approximating J. The algorithm described
below works for both cases, the scalar-valued and the vector-valued output. There-
fore, if access to the individual components of the vector-valued function j is avail-
able, it is possible to run the algorithm with both versions. The different neural net-
work output sizes, and therefore, the various structures of the training data, might
improve the DNN training results. In our numerical experiment, we observe that the
vector-valued DNN yields slightly better results than the scalar-valued DNN (see
Section 6). Nevertheless, we consider both the scalar- and vector-valued approaches
to discuss the case where the black box reservoir simulator produces only scalar-
valued outputs.

By the DNNs- and DNNv-approach, we thus construct a surrogate for the objec-
tive function for the optimization problem (3). It remains to explain a suitable and

j ∶ ℝ
Nu → ℝ

Nt ,

j(u) ∶=
[
Ji(u)

]Nt

i=1
,

� ∶=

[
1

(1+d�)
ti
�

]Nt

i=1

.

1 3

Adaptive machine learning‑based surrogate modeling to… Page 15 of 35 73

robust EnOpt algorithm that takes advantage of a DNN but shows a similar con-
vergence behavior as the FOM algorithm. A common strategy is to construct a suf-
ficiently accurate surrogate JML ∈ {Φ

Ws
, ��Φ

Wv
} for the entire input space in a large

offline time. Following the FOM-EnOpt procedure from Section 3, given JML, a
surrogate-based procedure would then mean to set F := JML in Algorithm 1. How-
ever, no FOM stopping criterion would be used, and since no error control for the
surrogate model is given, no certification of the surrogate-based procedure would be
available.

Remark 1 (Size of neural network input) Importantly, we observe that the input
dimension Nu of both DNN approaches is proportional to the number of time steps
Nt and the number of physical variables Nw in the model. Thus, dependent on the
complexity of the reservoir simulation, Nu may be large. Consequently, it may not
be possible to construct a surrogate model with a DNN that is accurate for the entire
input space. Even if it were possible to construct such a DNN, we would require pro-
hibitively costly training for computing the training set, validation set, and weights.

5.2 Adaptive algorithm

To circumvent the issue of constructing a globally accurate surrogate, in what fol-
lows, we describe the adaptive machine learning EnOpt algorithm (Adaptive-ML-
EnOpt). In this algorithm, we incorporate the construction of the DNN into an
outer optimization loop trained and certified by FOM quantities. With respect to
the FOM-EnOpt procedure, we remark that each FOM optimization step requires
N evaluations of J for computing dk. To obtain an appropriately accurate direction,
it is required that N is chosen sufficiently large [54]. For the Adaptive-ML-EnOpt
procedure, we only use a single FOM-based optimization step at each outer iteration
k. Then, we use the N evaluations of the FOM as data points for training a locally
accurate surrogate Jk

ML
 . Instead of proceeding with the FOM function J, we utilize

the DNN to start an inner EnOpt algorithm with F = Jk
ML

 as objective function in
Section 3.1 and uk as initial guess. Denote by u(l)

k
 the iterates of the inner optimiza-

tion loop in the k-th outer iteration, i.e., in particular, we have u(0)
k

= uk . According
to (12), the inner EnOpt iteration terminates if the surrogate-based criterion

is met for a suitable tolerance εi > 0. If the inner iteration terminates after L itera-
tions with a control u(L)

k
 , the next outer iterate uk+ 1 is defined as uk+1 ∶= u

(L)

k
 . For

a certified FOM-based stopping criterion of the outer optimization loop, given the
iterate uk, we check whether the FOM-EnOpt procedure would, indeed, also stop
at the same control point. Thus, we perform a single FOM-based optimization step,
which includes the computation of dk and the line search, and results in a control ũk .
For verifying whether the FOM optimization step successfully finds a sufficiently
increasing point at outer iteration k, we consider the FOM termination criterion

(13)Jk
ML

(u
(l)

k
) ≤ Jk

ML
(u

(l−1)

k
) + �i

 T. Keil et al.

1 3

 73 Page 16 of 35

where εo > 0 is a suitable tolerance. If (14) is fulfilled, no improvement of the objec-
tive function value using FOM optimization steps can be expected, and therefore we
also terminate the Adaptive-ML-EnOpt algorithm. If instead, (14) is not met, we use
the computed training data (collected while computing dk) to retrain the DNN and
restart an inner DNN-based EnOpt algorithm. We emphasize that the fully FOM-
based stopping criterion constitutes a significant difference to what is proposed in
[32], where the termination criterion is based on the approximation quality of the
surrogate model at the current iterate. However, we saw in our experiments that such
an approximation-based criterion might lead to an undesired early stopping of the
algorithm.

One may be concerned about the fact that the surrogate-based inner optimiza-
tion routine produces a decreasing or stationary point. For this reason, after every
outer iteration k of the Adaptive-ML-EnOpt procedure, the inner DNN-optimization
is only accepted after a sufficient increase, i.e.,

If an iterate is not accepted, we abort the algorithm. Instead of aborting, one
may proceed with an intermediate FOM optimization step. We would further like to
emphasize that the fulfillment of (15) also depends on the successful construction of
the neural network, meaning that the parameters for the neural network are chosen
appropriately. If, instead, (15) fails due to an inaccurate neural network, an auto-
matic variation of the parameters could be enforced to the neural network training,
and the corresponding outer iteration should be repeated. However, for the sake of
simplicity and because it did not show any relevance in our numerical experiments,
we do not specify approaches for the case that uk+ 1 is not accepted due to (15).

While (15) prevents the algorithm from accepting an insufficient increase, the
respective outer iteration point might still be far away from the optimum due to
the lack of extrapolation accuracy. Since inner iterations are fast and the number
of outer iterations is expected to be of moderate size, a longer optimization path
compared to the reference (based solely on FOM evaluations) can still be considered
computationally faster.

Remark 2 (Choice of the tolerances) Regarding the choice of the different tolerances
εi and εo for the inner and outer stopping criteria in the Adaptive-ML-EnOpt algo-
rithm, we propose to choose a small value for εi similar to the tolerance ε in the
FOM-EnOpt procedure. The inner iterations are much cheaper due to the application
of a fast surrogate, such that a more significant amount of inner iterations is accepta-
ble. In contrast, we recommend selecting a larger tolerance εo to perform fewer outer
iterations for obtaining a considerable speedup. However, if maximum convergence
w.r.t. the FOM-EnOpt algorithm is desired, εo is to be set equal to ε.

The above-explained Adaptive-ML-EnOpt procedure is summarized in Algo-
rithm 5 and additionally visualized in Fig. 1.

(14)J(ũk) ≤ J(uk) + 𝜀o,

(15)J(uk+1) > J(uk) + 𝜀o.

1 3

Adaptive machine learning‑based surrogate modeling to… Page 17 of 35 73

Algorithm 5 Adaptive-ML-EnOpt algorithm

Fig. 1 Flowchart for the Adaptive-ML-EnOpt algorithm, cf. Algorithm 5

 T. Keil et al.

1 3

 73 Page 18 of 35

The train function performs the neural network training procedure as described
in Section 4 and returns, depending on the chosen DNN construction strategy, a
function Φ

Ws
 or Φ

Wv
 that approximates the FOM objective function J. Particularly,

the result of train can be used as the function F in the enOpt procedure.
The outer acceptance criterion (15) is checked in Line 7. Using the FOM-based

stopping criterion in Line 4, we ensure that the Adaptive-ML-EnOpt algorithm has
an equivalent stopping procedure as the FOM-EnOpt algorithm, see Line 4 in Algo-
rithm 1. However, the algorithm might terminate at a different (local) optimal point,
which we also observe in the numerical experiments.

Compared to the FOM-EnOpt procedure, we emphasize that, in the Adaptive-
ML-EnOpt algorithm, mainly the single calls of OptStep[J] in Lines 2 and 10 have
FOM complexity, scaling with the number of samples N. Furthermore, the outer
stopping criterion in Line 4 and the conditions for acceptance in Line 7 require a
single FOM evaluation. The construction of the surrogate makes use of FOM data
that is already available from the FOM optimization steps in Lines 2 and 10. In
addition, while the training data for Line 5 is available from calling OptStep[J], the
training function train itself is relatively cheap. Furthermore, calling enOpt[Jk

ML
]

has low computational effort since evaluating the surrogate Jk
ML

 for a given control
(i.e., performing a single forward pass through the neural network) is much faster
than evaluating J. The primary motivation for the Adaptive-ML-EnOpt algorithm
is the idea that many of the costly FOM optimization steps in the FOM-EnOpt algo-
rithm can be replaced by sequences of cheap calls of enOpt[Jk

ML
] with the surrogate

Jk
ML

 . However, since the surrogate might only be reliable in a specific part of the
set of feasible control vectors around the current iterate uk, we retrain the surrogate
if the FOM optimization step suggests that a further improvement of the objective
function value is possible. Therefore, the overall goal of the Adaptive-ML-EnOpt
algorithm is to terminate with a considerably smaller number of (outer) iterations
k than the FOM-EnOpt algorithm, and thus, to reduce the computational costs for

Fig. 2 Example of optimization paths taken by the FOM-EnOpt algorithm (left part of the figure) and the
Adaptive-ML-EnOpt algorithm (right part of the figure)

1 3

Adaptive machine learning‑based surrogate modeling to… Page 19 of 35 73

solving the polymer EOR optimization problem in (3). We refer to the subsequent
section for an extensive complexity and run time comparison in a practical example.

The main motivation for the Adaptive-ML-EnOpt algorithm is illustrated in Fig. 2.
Computing the gradient information using evaluations of the function J is costly,
whereas gradient computations using the approximation Jk

ML
 , obtained, for instance,

via training a neural network, is cheap. In the example, the Adaptive-ML-EnOpt
algorithm performs more optimization steps in total. However, most of these opti-
mization steps are cheap since they only require evaluations of Jk

ML
 . For the Adap-

tive-ML-EnOpt algorithm, only those steps involving evaluations of J (i.e., outer
iterations) require a large computational effort. Each optimization step is costly in
the FOM-EnOpt algorithm since the exact objective function J is evaluated multiple
times. Altogether, in the example shown in Fig. 2, the Adaptive-ML-EnOpt algorithm
performs less costly gradient computations than the FOM-EnOpt procedure while
arriving approximately at the same optimum. This motivates why the Adaptive-ML-
EnOpt algorithm can be preferable with respect to the required computation time.

Remark 3 (Generalization of the method) The overall algorithmic procedure
described in this section is applicable in many different scenarios and can be seen
in a more general manner. For instance, the algorithm is independent of the exact
objective function. Whenever the objective function is costly to evaluate and no cer-
tified surrogate is available, the Adaptive-ML-EnOpt might be useful. Hence, the
algorithm can also be applied in scenarios where the objective function is not related
to PDEs. Further, the choice of the surrogate is not limited to neural networks and
machine learning algorithms in general. Any other approach that can be constructed
from training data, similarly to DNNs, can serve as a replacement for the neural net-
works. In addition, the inner optimization loop is not restricted to the EnOpt algo-
rithm. Whether or not gradient-based algorithms are applicable, depends on the sur-
rogate and whether it is possible to compute its gradients with respect to the inputs.

6 Numerical validation for a five‑spot benchmark problem

In this section, we present an example with a synthetic oil reservoir in which the
polymer flooding optimization problem (3) is solved using the traditional solu-
tion method, the FOM-EnOpt algorithm, and our proposed Adaptive-ML-EnOpt
method presented in Algorithm 5. The focus is to demonstrate a more efficient and
improved method of dealing with the optimization part of a closed-loop reservoir
workflow [41] for polymer flooding with the assumption that the geological proper-
ties of the reservoir are known. We start by providing information on the algorithm
implementation.

6.1 Implementational details

For a numerical approximation of the system (1) of non-linear partial differential
equations and the corresponding well equations (2), we make use of the open

 T. Keil et al.

1 3

 73 Page 20 of 35

porous media flow reservoir simulator (OPM) [35, 55]. The system is discretized
spatially using a two-point flux approximation (TPFA) with upstream-mobility
weighting (UMW) and temporally using a fully implicit Runge-Kutta method.
The resulting discrete-in-time equations are solved using a Newton-Raphson
scheme to obtain time-dependent states and the output quantities from the well’s
equation in terms of fluid production of the reservoir per time step. In this numer-
ical experiment, we perform all polymer flooding simulations in parallel on a 50
core CPU.

For the implementation of the DNN-based surrogates, the Python package pyMOR
[56] is used. The implementation of the neural networks and corresponding training
algorithms in pyMOR is based on the machine learning library PyTorch [57].

Throughout our numerical experiments described in the subsequent section, we
apply the L-BFGS optimizer with strong Wolfe line-search [58] for training the
neural networks. Further, we perform a maximum of 1000 training epochs in each
restart.

The number of training restarts influences the accuracy of the trained neural net-
works and the computation time required for the training. A larger number of restarts
typically leads to smaller losses and more training time. To take these two factors
into account, we consider different numbers of restarts in our numerical study pre-
sented below. The respective results can be found in the subsequent section. In gen-
eral, we use relatively small numbers of restarts. First of all, we are not interested in
obtaining a neural network with very high accuracy. Due to the adaptive retraining
of the networks, the surrogates are replaced in each outer iteration anyway. They are
only supposed to lead the optimizer to a point with a larger objective function value.
On the other hand, as indicated before, a larger number of restarts might result in an
unnecessarily long training phase, which must be performed in each outer iteration.
The small numbers of 15 and 35 restarts we tried in our studies can thus be seen as a
compromise between the accuracy of the surrogate models and computational effort
for the training algorithm.

We use 10% of the sample set for validation during the neural network training,
and the training routine is stopped early if the loss does not decrease for 10 consecu-
tive epochs. Moreover, the mean squared error loss (MSE loss) is used as the loss
function. The neural network training is performed on scaled data. The input values
are scaled to [0, 1]Nu , and the output values are scaled to [0,1] in the DNNs-case and
[0, 1]Nt in the DNNv-case, respectively. The scaling of the input values can be com-
puted exactly using the lower and upper bounds ulow

j
 and uupp

j
 for the control varia-

bles by

for j = 1,… ,Nw and i = 1,… ,Nt . For the output values, we take the minimum and
maximum value over the training set as lower and upper bounds and perform the
same scaling as in Equation (16). The tanh function serves as the activation function
for each layer. Kaiming initialization is applied for initializing the neural network
weights.

(16)ui
j
↦

ui
j
−ulow

j

u
upp

j
−ulow

j

1 3

Adaptive machine learning‑based surrogate modeling to… Page 21 of 35 73

The input and output dimensions of the neural networks were already described
in Section 5 and are different for the DNNs- and DNNv-case. Regarding the training
data for the vector-valued case DNNv, we note that we require Tk to store
{(uk,j, j(uk,j))}

N
j=1

 instead of {(uk,j, J(uk,j))}Nj=1 , which we did not include in Algo-
rithm 2 for brevity.

6.2 Case study: five‑spot field

The numerical experiment considers a two-dimensional reservoir model with a
three-phase flow, including oil, water, and gas (cf. Section 2). The computations are
performed on a uniform grid that consists of 50 × 50 grid cells. The model has one
injection and four production wells spatially arranged in a five-spot pattern as shown
in Fig. 3.

On average, the reservoir has approximately 30% porosity with a heterogene-
ous permeability distribution. The initial reservoir pressure is 200 bar. The initial
average oil and water saturations are 0.6546 and 0.3454, respectively. The origi-
nal oil in place is 4.983 ⋅ 106 sm3. Fluid properties are similar to those of a light
oil reservoir. The viscosity for saturated oil at varying bubble point pressure lies

Fig. 3 Porosity distribution of the five-spot field and placement of the injection and production wells

 T. Keil et al.

1 3

 73 Page 22 of 35

between 0.1 cP and 0.56 cP, and the viscosity of water is 0.01 cP. The densities of
oil and water are taken as 732 kg/m3 and 1000 kg/m3, respectively. In this setting,
it is easy to see that the displacement is unfavorable since the oil-water mobility
ratio λ is such that 10 ≤ λ ≤ 56. The reservoir rock parameters utilized for the
polymer flooding simulation in this problem are given by Table 1.

In this example, the injection well is controlled by two independent control
variables, namely the water injection rate and the polymer concentration at each
control time step. The lower and upper bounds for the water injection rate are set
to 0 sm3/day and 2000 sm3/day respectively, while the lower and upper bounds for
the polymer concentration are set to 0 kg/sm3 and 2.5 kg/sm3. Hence, the polymer
injection rate ranges from 0 to 5000 kg/day. Each production well is controlled
by a reservoir fluid production rate target with a lower limit of 0 sm3/day and an
upper limit of 500 sm3/day. Bottom hole pressure limits are imposed on the wells,
namely a maximum of 500 bar for the injector and a minimum of 150 bar for each
producer. The production period for the reservoir is set to 50 months, and the
control time step is taken as 5 months. Therefore, there are Nu = (2 + 4) × 10 =
60 control variables in total to solve for in (3). For the objective function (3a), we
used the economic parameters listed in Table 2.

Using the two different surrogate models for the objective function (3b) con-
structed by means of neural networks, namely DNNs and DNNv as explained
in Section 5, the optimization problem (3) is solved using the Adaptive-ML-
EnOpt algorithm. In this case, the Adaptive-ML-EnOpt algorithm for (3) using
 DNNs and DNNv to approximate the objective function J from (3b) is denoted
by AML-EnOpts and AML-EnOptv, respectively. The EnOpt parameters for both,
the FOM-EnOpt and the two variants of the Adaptive-ML-EnOpt method, are

Table 1 Reservoir model
parameters used in the polymer
flooding simulations

Parameter Value Unit

Dead pore space for polymer solution 0.1800 −
Maximum polymer adsorption value 7.5 ⋅ 10− 4 kg/kg
Residual resistance factor of polymer solution 2.5 −
Reservoir rock density 1980 kg/rm3
Polymer mixing parameters 0.65 −

Table 2 Economic parameters
used in the numerical
experiments

Parameter Value Unit

Oil price rOP 500 USD/sm3
Price of gas production rGP 0.15 USD/sm3
Cost of polymer injection rPI 2.5 USD/kg
Cost of polymer production rPP 0.5 USD/kg
Cost of water injection or production

rWI, rWP
30 USD/sm3

Annual discount rate dτ 0.1 −

1 3

Adaptive machine learning‑based surrogate modeling to… Page 23 of 35 73

presented in Table 3. We note that the tolerances ε, εi, and εo are chosen as sug-
gested in Remark 2 and are applied to the scaled quantities, i.e., the output quan-
tities, for which the respective stopping criteria in Algorithm 1 are checked, have
already been scaled as described in Section 6.1.

We compare the Adaptive-ML-EnOpt results with those of the FOM-EnOpt
algorithm for two different initial guesses u1

0
∈ Dad and u2

0
∈ Dad . The initial solu-

tion u1
0
 includes 700 sm3/day for the water injection rate at the injection well, 150

 sm3/day for the reservoir fluid production rate at each production well, and 0.5
kg/sm3 for the polymer concentration (equivalently 350 kg/day for polymer injec-
tion rate) at the injection well over the simulation period. Similarly, u2

0
 includes

600 sm3/day for the water injection rate, 100 sm3/day for the reservoir fluid pro-
duction rate, and 0.5 kg/sm3 for the polymer concentration.

Figure 4 compares the values of the objective function during the outer iterations
of the FOM-EnOpt, AML-EnOpts, and AML-EnOptv strategies using the initial
solutions u1

0
 and u2

0
 . Furthermore, the value J(uk) at the outer iterate uk (denoted by

“FOM value”) for the respective Adaptive-ML-EnOpt method is depicted.
Since the Adaptive-ML-EnOpt algorithms only use an approximate surrogate

model Jk
ML

 , the values of J and Jk
ML

 are not necessarily the same for the control uk.
This behavior is especially apparent in Fig. 4b, where the AML-EnOptv algorithm
is examined for the initial guess u1

0
 . Here, after the first outer iteration, the values

J(u1) and J0
ML

(u1) differ from each other by a significant amount. A possible reason
is that the surrogate model J0

ML
 does not extrapolate well to the region where the

first (inner) Adaptive-ML-EnOpt iteration converged to. This further indicates that
the found iterate u1 is far from the initial solution u0, where the initial model J0

ML

was trained. However, since the Adaptive-ML-EnOpt algorithm uses evaluations of
J in the stopping criterion, the Adaptive-ML-EnOpt does not terminate but contin-
ues by training a new surrogate model using training data sampled normally around
u1. Hence, the new surrogate J1

ML
 tries to approximate the objective function J well

Table 3 Parameters used in the FOM-EnOpt and Adaptive-ML-EnOpt algorithms

Parameter Value

Initial constant oil rate in u1
0
 and u2

0
 150 and 100 (sm3/day)

Initial constant water rate in u1
0
 and u2

0
 700 and 600 (sm3)

Initial constant polymer concentration in u1
0
 and u2

0
 0.5 and 0.5 (kg/sm3)

Initial step size β0 0.3
Step size contraction r 0.5
Maximum step size trials ν* 10
Initial control-type variance σj 0.001
Constant correlation factor ρ 0.9
Perturbation size N 100
FOM-EnOpt ε 10− 6

Tolerances Adaptive-ML-EnOpt inner iteration εi 10− 6

Adaptive-ML-EnOpt outer iteration εo 10− 2

 T. Keil et al.

1 3

 73 Page 24 of 35

around u1. In each plot, we see that in the last two outer iterations of the respective
Adaptive-ML-EnOpt procedure, the FOM value and the Adaptive-ML-EnOpt value
agree to minimal deviations. This suggests that the surrogate model approximates
the full objective function well in the region of the (local) optimum found by the
Adaptive-ML-EnOpt method.

More so, in Fig. 4, it is seen that both, the AML-EnOpts and the AML-EnOptv
algorithm, require considerably less (costly) outer iterations than the FOM-EnOpt
method. This leads to an improvement in the run time of the method, which is
detailed in Table 4. Besides the faster convergence of the method, we also remark
that the Adaptive-ML-EnOpt algorithms find local optima with larger objective

Fig. 4 Comparison of the NPV values obtained during the outer iterations of the FOM-EnOpt, AML-
EnOpts, and AML-EnOptv procedures for two different initial guesses u1

0
∈ D

ad
 and u2

0
∈ D

ad
 . For each

Adaptive-ML-EnOpt procedure, the corresponding FOM value J(uk) at the current iterate uk of the
respective Adaptive-ML-EnOpt method is indicated as well

1 3

Adaptive machine learning‑based surrogate modeling to… Page 25 of 35 73

Ta
bl

e
4

 C
om

pa
ris

on
s

of
 th

e
re

su
lts

 fr
om

 th
e

di
ffe

re
nt

 s
ol

ut
io

n
str

at
eg

ie
s

FO
M

-E
nO

pt
, A

M
L-

En
O

pt
s,

an
d

A
M

L-
En

O
pt

v u
si

ng
 th

e
in

iti
al

 g
ue

ss
 u

1 0
 a

nd
 N

1 =
 N

2 =
 35

 n
eu

-
ro

ns
 in

 e
ac

h
hi

dd
en

 la
ye

r a
nd

 1
5

re
st

ar
ts

 fo
r t

he
 n

eu
ra

l n
et

w
or

k
tra

in
in

g

M
et

ho
d

FO
M

 v
al

ue
Su

rr
og

at
e

va
lu

e
O

ut
er

 it
er

.
In

ne
r i

te
r.

FO
M

 e
va

l.
Su

rr
og

at
e

ev
al

.
Tr

ai
ni

ng
 ti

m
e

(m
in

)
T t

ot
al

 (m
in

)
Sp

ee
du

p

FO
M

-E
nO

pt
6.

40
0
⋅ 1

08
−

28

−

28
39

−
−

54
.8

6
−

A
M

L-
En

O
pt

s
7.

01
3
⋅ 1

08
6.

96
8
⋅ 1

08
4

23
3

40
7

12
31

5
2.

03
8.

87
6.

18
A

M
L-

En
O

pt
v

7.
18

5
⋅ 1

08
7.

16
8
⋅ 1

08
5

31
2

50
9

14
10

1
3.

40
14

.1
0

3.
89

 T. Keil et al.

1 3

 73 Page 26 of 35

Ta
bl

e
5

 C
om

pa
ris

on
s

of
 th

e
re

su
lts

 fr
om

 th
e

di
ffe

re
nt

 s
ol

ut
io

n
str

at
eg

ie
s

FO
M

-E
nO

pt
, A

M
L-

En
O

pt
s,

an
d

A
M

L-
En

O
pt

v u
si

ng
 th

e
in

iti
al

 g
ue

ss
 u

2 0
 a

nd
 N

1 =
 N

2 =
 25

 n
eu

-
ro

ns
 in

 e
ac

h
hi

dd
en

 la
ye

r a
nd

 3
5

re
st

ar
ts

 fo
r t

he
 n

eu
ra

l n
et

w
or

k
tra

in
in

g

M
et

ho
d

FO
M

 v
al

ue
Su

rr
og

at
e

va
lu

e
O

ut
er

 it
er

.
In

ne
r i

te
r.

FO
M

 e
va

l.
Su

rr
og

at
e

ev
al

.
Tr

ai
ni

ng
 ti

m
e

(m
in

)
T t

ot
al

 (m
in

)
Sp

ee
du

p

FO
M

-E
nO

pt
4.

89
5
⋅ 1

08
−

92

−

93
10

−
−

13
5.

77
−

A
M

L-
En

O
pt

s
5.

75
4
⋅ 1

08
5.

81
6
⋅ 1

08
4

11
1

40
7

10
83

7
2.

89
9.

85
13

.7
8

A
M

L-
En

O
pt

v
5.

94
2
⋅ 1

08
5.

90
8
⋅ 1

08
4

11
7

40
7

10
03

3
4.

40
11

.0
5

12
.2

9

1 3

Adaptive machine learning‑based surrogate modeling to… Page 27 of 35 73

function values than the FOM-EnOpt algorithm. However, since the objective func-
tion J is multi-modal, this is not guaranteed.

We emphasize that each outer iteration of the Adaptive-ML-EnOpt algorithm
includes many inner iterations (see also Tables 4 and 5), which leads to the large
jumps in the objective function values between consecutive outer iterations, as pre-
sented in Fig. 4.

Further comparisons in terms of function values, numbers of inner and outer
iterations, numbers of evaluations of the FOM function J and surrogate approxima-
tions Jk

ML
 , training times of the neural networks, total run time (including the train-

ing times), and speedup are presented in Tables 4 and 5.
With the different initial guesses u1

0
 and u2

0
, we found that the number of outer

iterations required by the FOM-EnOpt algorithm significantly differs. However, the
Adaptive-ML-EnOpt methods require only 4 and 5 outer iterations. This reduced
number of outer iterations leads to a remarkable speedup in the overall computation
time Ttotal and is particularly reflected in the reduced number of FOM evaluations,
i.e., evaluations of the objective function J, which require costly polymer flooding
simulations. Although each outer iteration consists of multiple inner iterations using
the surrogate Jk

ML
 , it does not contribute substantially to the overall run time because

evaluating the surrogate Jk
ML

 is very cheap.
For the initial solution u1

0
 , the optimizers obtained from the three solution strate-

gies are depicted in Fig. 5. Further, the initial guess u1
0
 is shown as a reference.

The control variables obtained by the AML-EnOpts and the AML-EnOptv algo-
rithm are close to those of the FOM-EnOpt method, except for production well 3
(see Fig. 5c) and the water injection rate (see Fig. 5e). For each control variable,
the values obtained via the AML-EnOpts and AML-EnOptv procedures are close to
each other. Together with the FOM values of AML-EnOpts and AML-EnOptv pre-
sented in Table 4 and the evolution of the FOM values for the two methods shown in
Fig. 4a–b, this suggests that the AML-EnOpts and the AML-EnOptv methods trav-
erse almost the same path in the control space Dad and find local optima close to
each other.

Figure 6a depicts a comparison of the total field oil production for the optimal
solutions (in Fig. 5) of the three solution methods. The total field oil production
by FOM-EnOpt, AML-EnOpts, and AML-EnOptv are 1.343 ⋅ 106, 1.425 ⋅ 106, and
1.554 ⋅ 106 (in sm3), respectively. The solution obtained by AML-EnOptv attains the
highest oil production in total, followed by the AML-EnOpts. The total back-pro-
duced water and polymer from operating the five-spot field with the different opti-
mal solutions are presented in Fig. 6b and c, respectively. Here, we found that the
AML-EnOpts and AML-EnOptv solutions are more economical and environmen-
tally friendly than the one provided by using the FOM-EnOpt method.

To further investigate the effects of different neural network architectures on the
resulting NPV values, Fig. 7 depicts the NPV values obtained by the Adaptive-ML-
EnOpt algorithm when using different numbers of neurons in the hidden layers of
the surrogate models DNNs and DNNv.

We observe that the AML-EnOptv method results are very similar, which suggests that
the DNNv-approach is more robust and leads to similar optimal solutions independent of
the neural network structure. In the case of the AML-EnOpts algorithm, different numbers

 T. Keil et al.

1 3

 73 Page 28 of 35

Fig. 5 Comparison of the optimal solutions obtained via the FOM-EnOpt, AML-EnOpts, and AML-
EnOptv algorithms using the initial guess u1

0
 , which is depicted as the reference solution

1 3

Adaptive machine learning‑based surrogate modeling to… Page 29 of 35 73

of neurons lead to results with a larger variation. In particular, the number of outer itera-
tions performed is different. Hence, the architecture of the underlying network seems to
have a significant effect on the performance of the resulting AML-EnOpts algorithm.

The maximum, minimum, and average training and validation losses that
occurred in the AML-EnOpts and AML-EnOptv algorithm for the initial guess u1

0
 are

presented in Table 6. The table shows the respective MSE losses for different num-
bers of neurons in the hidden layers.

The results in Table 6 do not suggest a significant influence of the number of
neurons on the training and validation results. Further, the scalar- and vector-valued
cases, DNNs and DNNv respectively, perform similarly in overall training and vali-
dation losses. However, we emphasize that, in the DNNv case, the MSE loss cannot
be related directly to the difference in the output function. Instead, one has to take
into account that the outputs of DNNv are summed up to obtain the surrogate Jk

ML
 ,

while the MSE loss is measured on the vector-valued outputs of the neural network.

Fig. 6 Comparison of the production data obtained from the different solution strategies FOM-EnOpt,
AML-EnOpts, and AML-EnOptv using the initial guess u1

0

 T. Keil et al.

1 3

 73 Page 30 of 35

Altogether, the numerical experiments with different numbers of neurons suggest that
already small DNNs with only 20 neurons in each of the hidden layers yield appropriate
results. In this specific application, we do not benefit from increasing the complexity of the
neural network. We have seen the same behavior when using more than two hidden layers.

7 Conclusion and future work

In this contribution, we presented a new algorithm to speed up PDE-constrained
optimization problems occurring in the context of enhanced oil recovery. The algo-
rithm is based on adaptively constructed surrogate models that make use of deep
neural networks for approximating the objective function. In each outer iteration of

Fig. 7 Comparison of the Adaptive-ML-EnOpt procedures AML-EnOpts and AML-EnOptv for different
numbers of neurons in the hidden layers with fixed initial guess u1

0

Table 6 Maximum, minimum, and average MSE loss in the AML-EnOpts and AML-EnOptv algorithm
with different numbers of neurons in the hidden layers of the neural networks DNNs and DNNv for fixed
initial guess u1

0
 . The number of hidden layers is fixed to two

Method Neurons Outer Training loss Validation loss

N1 = N2 iter. Max. Min. Avg. Max. Min. Avg.

DNNs 20 4 1.2 ⋅ 10− 4 1.3 ⋅ 10− 6 5.3 ⋅ 10− 5 5.4 ⋅ 10− 3 6.7 ⋅ 10− 5 2.3 ⋅ 10− 3
DNNs 25 2 6.0 ⋅ 10− 4 1.3 ⋅ 10− 6 3.0 ⋅ 10− 4 2.3 ⋅ 10− 3 2.1 ⋅ 10− 3 2.2 ⋅ 10− 3
DNNs 30 6 7.9 ⋅ 10− 4 8.5 ⋅ 10− 7 1.7 ⋅ 10− 4 6.6 ⋅ 10− 3 1.7 ⋅ 10− 3 3.6 ⋅ 10− 3
DNNs 35 4 1.8 ⋅ 10− 4 6.1 ⋅ 10− 6 8.2 ⋅ 10− 5 5.5 ⋅ 10− 3 3.7 ⋅ 10− 4 2.7 ⋅ 10− 3
DNNv 20 5 1.8 ⋅ 10− 3 2.1 ⋅ 10− 5 5.2 ⋅ 10− 4 6.9 ⋅ 10− 3 1.2 ⋅ 10− 3 4.2 ⋅ 10− 3
DNNv 25 5 9.9 ⋅ 10− 4 1.5 ⋅ 10− 5 4.1 ⋅ 10− 4 6.4 ⋅ 10− 3 9.4 ⋅ 10− 4 3.6 ⋅ 10− 3
DNNv 30 5 9.0 ⋅ 10− 4 9.9 ⋅ 10− 6 4.0 ⋅ 10− 4 1.0 ⋅ 10− 2 5.2 ⋅ 10− 4 4.3 ⋅ 10− 3
DNNv 35 5 6.0 ⋅ 10− 4 1.1 ⋅ 10− 6 2.2 ⋅ 10− 4 8.8 ⋅ 10− 3 4.6 ⋅ 10− 4 4.3 ⋅ 10− 3

1 3

Adaptive machine learning‑based surrogate modeling to… Page 31 of 35 73

the algorithm, a new surrogate model is trained with data consisting of full-order
function evaluations around the current control point. Afterwards, an ensemble-
based optimization algorithm is applied to the surrogate to obtain a candidate for
the next iteration. We perform full order model evaluations to validate whether
the resulting controls correspond to a local optimum of the true objective func-
tion. These function evaluations also serve as training data for constructing the next
surrogate.

Our numerical results confirm that the described algorithm can accelerate the
solution of the enhanced oil recovery optimization problem. At the same time, in our
numerical experiments, the procedure produces controls with even larger objective
function values than those obtained using only costly full-order model evaluations.
However, we should emphasize that such an improvement in the objective function
value is not guaranteed and, in our case, results from the multi-modal structure of
the objective function.

The investigated five-spot benchmark problem served as a proof of concept for
our Adaptive-ML-EnOpt algorithm, where FOM evaluations were relatively quickly
accessible, and the input dimension was of moderate size. Future research is thus
devoted to more involved numerical experiments with more significant complexity.

As indicated in the optimization problem description, we focused on a scenario
with fixed geological properties. However, in practical applications, these geological
parameters are usually unknown and typically treated by ensemble-based methods,
where the ensemble is to be understood not only with respect to perturbations of the
controls for approximating the gradient but also with respect to different samples
of geological properties. One of the central future research perspectives is incor-
porating such geological uncertainty in our algorithm. The main challenge is the
high dimension of the space of possible geological parameters. Naively using these
parameters as additional inputs for the neural network is thus not feasible. Future
research might consider reducing the dimension of the space of geological param-
eters by incorporating additional information on the distribution of such parameters
and passing the reduced variables to the neural networks.

Furthermore, replacing neural networks as surrogate models for the objective
function, for instance, by polynomial approximations obtained via linear regression
or by different machine learning approaches, such as kernel methods [59], could be
investigated further. The Adaptive-ML-EnOpt algorithm is formulated in such a way
that replacing the surrogate model and its training is readily possible. Any approxi-
mation of the objective function built from evaluations of the true objective function
is feasible and can directly be used in the algorithm. In addition, the inner iterations
are not restricted to the EnOpt procedure but can also be performed using different
optimization routines. However, we should emphasize that in the current formula-
tion, no information on the exact gradient, neither of the true objective function nor
the surrogate model, is required. This might change when employing different opti-
mization routines. Moreover, the presented approach is not restricted to the NPV
objective function in enhanced oil recovery but can be generalized to any scalar-
valued quantity of interest. The algorithm might be of particular relevance in cases
where no direct access to the underlying PDE solutions is possible, and no error
estimation for the surrogate model is available.

 T. Keil et al.

1 3

 73 Page 32 of 35

Finally, we note that the selection of parameters, such as the initial and adaptive sam-
ple covariance for the approximate gradient computation of the objective function, can
influence the behavior of the EnOpt method. This impact has been examined in greater
detail by [54]. It will be of future interest to see how the different selections of these
parameters can impact the final solutions of AML-EnOpts and AML-EnOptv.

Funding Open access funding provided by University Of Stavanger • Tim Keil, Hendrik Kleikamp,
Micheal Oguntola and Mario Ohlberger received funding from the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy EXC 2044 –390685587,
Mathematics Münster: Dynamics–Geometry–Structure.

• Tim Keil and Mario Ohlberger received funding from the Deutsche Forschungsgemeinschaft under
contract OH 98/11-1.

• Micheal Oguntola and Rolf Lorentzen received funding from the Research Council of Norway and
the industry partners, ConocoPhillips Skandinavia AS, Aker BP ASA, Vår Energi AS, Equinor Energy
AS, Neptune Energy Norge AS, Lundin Energy Norway AS, Halliburton AS, Schlumberger Norge AS,
and Wintershall Dea Norge AS, of The National IOR Centre of Norway.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Pancholi, S., Negi, G.S., Agarwal, J.R., Bera, A., Shah, M.: Experimental and simulation studies
for optimization of water–alternating-gas (CO2) flooding for enhanced oil recovery. Petroleum Res.
5(3), 227–234 (2020). https:// doi. org/ 10. 1016/j. ptlrs. 2020. 04. 004

 2. Van, S.L., Chon, B.H.: Well-pattern investigation and selection by surfactant-polymer flooding
performance in heterogeneous reservoir consisting of interbedded low-permeability layer. Kor. J.
Chem. Eng. 33 (12), 3456–3464 (2016). https:// doi. org/ 10. 1007/ s11814- 016- 0190-7

 3. Zhang, Y., Lu, R., Forouzanfar, F., Reynolds, A.C.: Well placement and control optimization for
WAG/SAG processes using ensemble-based method. Comput. Chem. Eng. 101, 193–209 (2017).
https:// doi. org/ 10. 1016/j. compc hemeng. 2017. 02. 020

 4. Gudiña, E.J., Fernandes, E.C., Rodrigues, A.I., Teixeira, J.A., Rodrigues, L.R.: Biosurfactant pro-
duction by bacillus subtilis using corn steep liquor as culture medium. Front. Microbiol. 6, 59
(2015). https:// doi. org/ 10. 3389/ fmicb. 2015. 00059

 5. Abidin, A., Puspasari, T., Nugroho, W.: Polymers for enhanced oil recovery technology. Procedia
Chemistry 4, 11–16 (2012). https:// doi. org/ 10. 1016/j. proche. 2012. 06. 002

 6. Wang, D., Seright, R.S., Shao, Z., Wang, J., et al.: Key aspects of project design for polymer flood-
ing at the daqing oilfield. SPE Reserv Eval Eng 11(06), 1–117 (2008). https:// doi. org/ 10. 2118/
109682- PA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ptlrs.2020.04.004
https://doi.org/10.1007/s11814-016-0190-7
https://doi.org/10.1016/j.compchemeng.2017.02.020
https://doi.org/10.3389/fmicb.2015.00059
https://doi.org/10.1016/j.proche.2012.06.002
https://doi.org/10.2118/109682-PA
https://doi.org/10.2118/109682-PA

1 3

Adaptive machine learning‑based surrogate modeling to… Page 33 of 35 73

 7. Oguntola, M.B., Lorentzen, R.J.: On the robust value quantification of polymer eor injection strate-
gies for better decision making. In: ECMOR XVII. https:// doi. org/ 10. 3997/ 2214- 4609. 20203 5057.
European Association of Geoscientists & Engineers, vol. 2020, pp 1–25 (2020)

 8. Xu, L., Zhao, H., Li, Y., Cao, L., Xie, X., Zhang, X., Li, Y.: Production optimization of polymer
flooding using improved monte carlo gradient approximation algorithm with constraints. J. Circ.
Syst. Comput. 27 (11), 1850167 (2018). https:// doi. org/ 10. 1142/ S0218 12661 85016 70

 9. Zhou, K., Hou, J., Zhang, X., Du, Q., Kang, X., Jiang, S.: Optimal control of polymer flooding based
on simultaneous perturbation stochastic approximation method guided by finite difference gradient.
Comput. Chem. Eng. 55, 40–49 (2013). https:// doi. org/ 10. 1016/j. compc hemeng. 2013. 04. 009

 10. Dedè, L.: Reduced basis method and error estimation for parametrized optimal control problems
with control constraints. J. Sci. Comput. 50(2), 287–305 (2012)

 11. Grepl, M.A., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic
elliptic optimal control problems. C.R. Math. 349(15-16), 873–877 (2011)

 12. Kammann, E., Tröltzsch, F., Volkwein, S.: A posteriori error estimation for semilinear parabolic
optimal control problems with application to model reduction by POD. ESAIM: M2AN 47(2), 555–
581 (2013). https:// doi. org/ 10. 1051/ m2an/ 20120 37

 13. Kärcher, M., Tokoutsi, Z., Grepl, M.A., Veroy, K.: Certified reduced basis methods for parametrized
elliptic optimal control problems with distributed controls. J. Sci. Comput. 75(1), 276–307 (2018)

 14. Negri, F., Rozza, G., Manzoni, A., Quateroni, A.: Reduced basis method for parametrized elliptic
optimal control problems. SIAM J. Sci. Comput. 35(5), 2316–2340 (2013). https:// doi. org/ 10. 1137/
12089 4737

 15. Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model reduction of parametrized
systems. MS&A. modeling, simulation and applications, vol. 17. Springer, Berlin (2017). https://
doi. org/ 10. 1007/ 978-3- 319- 58786-8. Selected papers from the 3rd MoRePaS Conference held at the
International School for Advanced Studies (SISSA), Trieste, October 13–16, 2015

 16. Garmatter, D., Haasdonk, B., Harrach, B.: A reduced basis Landweber method for nonlinear inverse
problems. Inverse Prob. 32(3), 035001–21 (2016). https:// doi. org/ 10. 1088/ 0266- 5611/ 32/3/ 035001

 17. Zahr, M.J., Farhat, C.: Progressive construction of a parametric reduced-order model for PDE-con-
strained optimization. Int. J. Numer. Meth. Engng 102, 1111–1135 (2015). https:// doi. org/ 10. 1002/
nme. 4770

 18. Keil, T., Mechelli, L., Ohlberger, M., Schindler, F., Volkwein, S.: A non-conforming dual approach
for adaptive trust-region reduced basis approximation of PDE-constrained parameter optimization.
ESAIM Math. Model. Numer. Anal. 55(3), 1239–1269 (2021). https:// doi. org/ 10. 1051/ m2an/ 20210
19

 19. Qian, E., Grepl, M., Veroy, K., Willcox, K.: A certified trust region reduced basis approach to PDE-
constrained optimization. SIAM J. Sci. Comput. 39(5), 434–460 (2017). https:// doi. org/ 10. 1137/
16M10 81981

 20. Yue, Y., Meerbergen, K.: Accelerating optimization of parametric linear systems by model order
reduction. SIAM J. Optim. 23(2), 1344–1370 (2013). https:// doi. org/ 10. 1137/ 12086 9171

 21. Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T.,
Youssef, M.: A full order, reduced order and machine learning model pipeline for efficient predic-
tion of reactive flows. arXiv:2104. 02800 v2 (2021)

 22. Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., Wenzel, T.: A new certified hierarchical
and adaptive RB-ML-ROM surrogate model for parametrized PDEs. arXiv:2204. 13454 (2022)

 23. Haasdonk, B., Ohlberger, M., Schindler, F.: An adaptive model hierarchy for data-augmented train-
ing of kernel models for reactive flow. arXiv:2110. 12388 v1 (2021)

 24. Hesthaven, J.S., Ubbiali, S.: Non-intrusive reduced order modeling of nonlinear problems using
neural networks. J. Comput. Phys. 363, 55–78 (2018). https:// doi. org/ 10. 1016/j. jcp. 2018. 02. 037

 25. Wang, Q., Hesthaven, J.S., Ray, D.: Non-intrusive reduced order modeling of unsteady flows using
artificial neural networks with application to a combustion problem. J. Comput. Phys. 384, 289–307
(2019). https:// doi. org/ 10. 1016/j. jcp. 2019. 01. 031

 26. Lee, K., Carlberg, K.T.: Model reduction of dynamical systems on nonlinear manifolds using deep
convolutional autoencoders. J. Comput. Phys. 404, 108973–32 (2020). https:// doi. org/ 10. 1016/j. jcp.
2019. 108973

 27. Ahmadi, M.A.: Developing a robust surrogate model of chemical flooding based on the artificial
neural network for enhanced oil recovery implications. Math. Probl. Eng. 2015, 9 (2015). https://
doi. org/ 10. 1155/ 2015/ 706897

https://doi.org/10.3997/2214-4609.202035057
https://doi.org/10.1142/S0218126618501670
https://doi.org/10.1016/j.compchemeng.2013.04.009
https://doi.org/10.1051/m2an/2012037
https://doi.org/10.1137/120894737
https://doi.org/10.1137/120894737
https://doi.org/10.1007/978-3-319-58786-8
https://doi.org/10.1007/978-3-319-58786-8
https://doi.org/10.1088/0266-5611/32/3/035001
https://doi.org/10.1002/nme.4770
https://doi.org/10.1002/nme.4770
https://doi.org/10.1051/m2an/2021019
https://doi.org/10.1051/m2an/2021019
https://doi.org/10.1137/16M1081981
https://doi.org/10.1137/16M1081981
https://doi.org/10.1137/120869171
http://arxiv.org/abs/2104.02800v2
http://arxiv.org/abs/2204.13454
http://arxiv.org/abs/2110.12388v1
https://doi.org/10.1016/j.jcp.2018.02.037
https://doi.org/10.1016/j.jcp.2019.01.031
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1155/2015/706897
https://doi.org/10.1155/2015/706897

 T. Keil et al.

1 3

 73 Page 34 of 35

 28. Saberi, H., Esmaeilnezhad, E., Choi, H.J.: Artificial neural network to forecast enhanced oil recov-
ery using hydrolyzed polyacrylamide in sandstone and carbonate reservoirs. Polymers 13(16).
https:// doi. org/ 10. 3390/ polym 13162 606 (2021)

 29. Cheraghi, Y., Kord, S., Mashayekhizadeh, V.: Application of machine learning techniques for select-
ing the most suitable enhanced oil recovery method; challenges and opportunities. J. Pet. Sci. Eng.
205, 108761 (2021). https:// doi. org/ 10. 1016/j. petrol. 2021. 108761

 30. Golzari, A., Haghighat Sefat, M., Jamshidi, S.: Development of an adaptive surrogate model for pro-
duction optimization. J. Pet. Sci. Eng. 133, 677–688 (2015). https:// doi. org/ 10. 1016/j. petrol. 2015.
07. 012

 31. Lee, J.-Y., Shin, H.-J., Lim, J.-S.: Selection and evaluation of enhanced oil recovery method using arti-
ficial neural network. Geosystem Engineering 14, 157–164 (2011). https:// doi. org/ 10. 1080/ 12269 328.
2011. 10541 345

 32. Lye, K.O., Mishra, S., Ray, D., Chandrashekar, P.: Iterative surrogate model optimization (ISMO):
An active learning algorithm for PDE constrained optimization with deep neural networks. Comput.
Methods Appl. Mech. Eng. 374, 113575 (2021). https:// doi. org/ 10. 1016/j. cma. 2020. 113575

 33. Wang, S., Bhouri, M.A., Perdikaris, P.: Fast PDE-constrained optimization via self-supervised oper-
ator learning. arXiv:2110. 13297 (2021)

 34. Sarma, P., Durlofsky, L.J., Aziz, K., Chen, W.H.: Efficient real-time reservoir management using
adjoint-based optimal control and model updating. Comput. Geosci. 10 (1), 3–36 (2006). https:// doi.
org/ 10. 1007/ s10596- 005- 9009-z

 35. Rasmussen, A.F., Sandve, T.H., Bao, K., Lauser, A., Hove, J., Skaflestad, B., Klöfkorn, R., Blatt,
M., Rustad, A.B., Sævareid, O., et al: The open porous media flow reservoir simulator. Computers
& Mathematics with Applications 81, 159–185 (2021). https:// doi. org/ 10. 1016/j. camwa. 2020. 05.
014

 36. Bao, K., Lie, K. -A., Møyner, O., Liu, M.: Fully implicit simulation of polymer flooding with
MRST. Comput. Geosci. 21(5), 1219–1244 (2017). https:// doi. org/ 10. 1007/ s10596- 017- 9624-5

 37. Holmes, J.: Enhancements to the strongly coupled, fully implicit well model: wellbore crossflow
modeling and collective well control. In: SPE Reservoir Simulation Symposium. https:// doi. org/ 10.
2118/ 12259- MS. OnePe tro (1983)

 38. Holmes, J., Barkve, T., Lund, O.: Application of a multisegment well model to simulate flow in
advanced wells. In: European Petroleum Conference. https:// doi. org/ 10. 2118/ 50646- MS. OnePe tro
(1998)

 39. Chen, Z.: Reservoir simulation: Mathematical techniques in oil recovery. SIAM (2007)
 40. Lu, R., Reynolds, A.: Joint optimization of well locations, types, drilling order, and controls

given a set of potential drilling paths. SPE J. 25 (03), 1285–1306 (2020). https:// doi. org/ 10. 2118/
193885- MS

 41. Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization.
SPE J. 14(04), 634–645 (2009). https:// doi. org/ 10. 2118/ 112873- PA

 42. Stordal, A.S., Szklarz, S.P., Leeuwenburgh, O.: A theoretical look at ensemble-based optimiza-
tion in reservoir management. Math. Geosci. 48(4), 399–417 (2016). https:// doi. org/ 10. 1007/
s11004- 015- 9598-6

 43. Nocedal, J., Wright, S.: Numerical optimization springer. https:// doi. org/ 10. 1007/ 978-0- 387- 40065-
5 (2006)

 44. Montgomery, D.C., Jennings, C.L., Kulahci, M.: Introduction to time series analysis and forecast-
ing. Wiley, Hoboken (2015)

 45. Fonseca, R.R.-M., Chen, B., Jansen, J.D., Reynolds, A.: A stochastic simplex approximate gradi-
ent (stosag) for optimization under uncertainty. Int. J. Numer. Methods Eng. 109(13), 1756–1776
(2017). https:// doi. org/ 10. 1002/ nme. 5342

 46. Oguntola, M.B., Lorentzen, R.J.: Ensemble-based constrained optimization using an exterior pen-
alty method. J. Pet. Sci. Eng. 207, 109165 (2021). https:// doi. org/ 10. 1016/j. petrol. 2021. 109165

 47. Petersen, P., Voigtlaender, F.: Optimal approximation of piecewise smooth functions using deep
reLU neural networks. Neural Netw. 108, 296–330 (2018). https:// doi. org/ 10. 1016/j. neunet. 2018. 08.
019

 48. Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN Expression rate analysis of high-dimen-
sional PDEs: Application to option pricing. Constructive Approximation. https:// doi. org/ 10. 1007/
s00365- 021- 09541-6 (2021)

 49. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine learning. SIAM
Rev. 60(2), 223–311 (2018). https:// doi. org/ 10. 1137/ 16M10 80173

https://doi.org/10.3390/polym13162606
https://doi.org/10.1016/j.petrol.2021.108761
https://doi.org/10.1016/j.petrol.2015.07.012
https://doi.org/10.1016/j.petrol.2015.07.012
https://doi.org/10.1080/12269328.2011.10541345
https://doi.org/10.1080/12269328.2011.10541345
https://doi.org/10.1016/j.cma.2020.113575
http://arxiv.org/abs/2110.13297
https://doi.org/10.1007/s10596-005-9009-z
https://doi.org/10.1007/s10596-005-9009-z
https://doi.org/10.1016/j.camwa.2020.05.014
https://doi.org/10.1016/j.camwa.2020.05.014
https://doi.org/10.1007/s10596-017-9624-5
https://doi.org/10.2118/12259-MS.OnePetro
https://doi.org/10.2118/12259-MS.OnePetro
https://doi.org/10.2118/50646-MS.OnePetro
https://doi.org/10.2118/193885-MS
https://doi.org/10.2118/193885-MS
https://doi.org/10.2118/112873-PA
https://doi.org/10.1007/s11004-015-9598-6
https://doi.org/10.1007/s11004-015-9598-6
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1002/nme.5342
https://doi.org/10.1016/j.petrol.2021.109165
https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1016/j.neunet.2018.08.019
https://doi.org/10.1007/s00365-021-09541-6
https://doi.org/10.1007/s00365-021-09541-6
https://doi.org/10.1137/16M1080173

1 3

Adaptive machine learning‑based surrogate modeling to… Page 35 of 35 73

 50. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math.
Program. 45, 503–528 (1989). https:// doi. org/ 10. 1007/ BF015 89116

 51. Prechelt, L.: Early stopping - but when?. In: Neural Networks: Tricks of the Trade, Volume 1524 of
LNCS, Chapter 2. https:// doi. org/ 10. 1007/ 978-3- 642- 35289- 8∖_5, pp 55–69. Springer (1997)

 52. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 1026–1034. https:// doi. org/ 10. 1109/ ICCV. 2015. 123 (2015)

 53. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–44 (2015). https:// doi. org/ 10.
1038/ natur e14539

 54. Fonseca, R., Kahrobaei, S., Van Gastel, L., Leeuwenburgh, O., Jansen, J.: Quantification of the
impact of ensemble size on the quality of an ensemble gradient using principles of hypothesis test-
ing. In: SPE Reservoir Simulation Symposium. https:// doi. org/ SPE- 173236- MS. OnePetro (2015)

 55. Baxendale, D., Rasmussen, A.F., Rustad, A.B., Skille, T., Sandve, T.H.: OPM Flow documentation
manual. Open Porous Media Initiative (2021)

 56. Milk, R., Rave, S., Schindler, F.: PyMOR – generic algorithms and interfaces for model order reduc-
tion. SIAM J. Sci. Comput. 38(5), 194–216 (2016). https:// doi. org/ 10. 1137/ 15m10 26614

 57. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.: Pytorch: An imperative style, high-
performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc,
F., Fox, E., Garnett, R (eds.) Advances in Neural Information Processing Systems, vol. 32, pp 8024–
8035. Curran Associates Inc (2019)

 58. Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 13(2), 185–188 (1971). https://
doi. org/ 10. 1137/ 10130 35

 59. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3),
1171–1220 (2008). https:// doi. org/ 10. 1214/ 00905 36070 00000 677

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Tim Keil1 · Hendrik Kleikamp1 · Rolf J. Lorentzen2 · Micheal B. Oguntola2,3 ·
Mario Ohlberger1

 Tim Keil
 tim.keil@uni-muenster.de

 Hendrik Kleikamp
 hendrik.kleikamp@uni-muenster.de

 Rolf J. Lorentzen
 rolo@norceresearch.no

 Mario Ohlberger
 mario.ohlberger@uni-muenster.de

1 Institute for Analysis and Numerics and Mathematics Münster, University of Münster,
Einsteinstrasse 62, D-48149 Münster, Germany

2 NORCE-Norwegian Research Center AS, 5838 Bergen, Norway
3 University of Stavanger, 4036 Stavanger, Norway

https://doi.org/10.1007/BF01589116
https://doi.org/10.1007/978-3-642-35289-8∖_5
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/SPE-173236-MS
https://doi.org/10.1137/15m1026614
https://doi.org/10.1137/1013035
https://doi.org/10.1137/1013035
https://doi.org/10.1214/009053607000000677
http://orcid.org/0000-0001-6692-639X

	Adaptive machine learning-based surrogate modeling to accelerate PDE-constrained optimization in enhanced oil recovery
	Abstract
	1 Introduction
	2 Optimization of polymer flooding in enhanced oil recovery
	2.1 Polymer flooding model
	2.2 Optimization of the economic value of the reservoir response

	3 Ensemble-based optimization algorithm
	3.1 Optimization algorithm for a general objective function
	3.2 FOM-EnOpt algorithm for enhanced oil recovery

	4 Neural networks as surrogate model for the input-output map
	5 Adaptive-ML-EnOpt algorithm using deep neural networks
	5.1 Surrogate models for the net present value
	5.2 Adaptive algorithm

	6 Numerical validation for a five-spot benchmark problem
	6.1 Implementational details
	6.2 Case study: five-spot field

	7 Conclusion and future work
	References

