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This article introduces a modern thermal energy plant consisting of sewage heat
pumps, a biogas boiler, thermal solar collectors, and greywater recycling. It further
discusses advanced methods to achieve energy efficiency in the plant operation.
The project is a collaboration between the industrial plant designer, the municipal
plant owner, and the local academic institution. The article presents the
framework for the collaboration. The overall target is to investigate how the
experience and competence of the three partners can lead to improved operation
using data-driven methods and optimization strategies. The industrial partner can
closely follow up on its design and increase its knowledge of artificial intelligence
and data-driven methods. The municipal partner is given a “free-of-charge”
system review. New knowledge and reduced life cycle costs and emissions are
possible outcomes. The academic partner gets access to a “living green
laboratory,” a unique dataset, and the opportunity to validate developed
models and optimization strategies. The plant represents the state-of-the-art
for a medium scaled, local thermal energy production system in an existing
building cluster. The design energy and emission targets are presented and
compared to the operational results. Though the municipal partner can report
good agreement between targets and results, an evaluation of the day-to-day
operation identified practical examples of system conditions that Artificial
Intelligence may improve. The article concludes with a description of plans for
future work and a broader discussion of the impacts of introducing data-driven
methods to real-life systems.
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1 Introduction

The Paris Agreement is a legally binding international treaty on climate change
that 96 Parties adopted in Paris in 2015 (United Nations, 2021). The agreement targets
to limit global warming to well below 2, preferably to 1.5°C, compared to pre-industrial
levels. Energy production and usage are the largest contributors to global greenhouse
gas (GHG) emissions; thus, the energy sector is key to achieving the agreement’s
objectives (IEA, 2020).
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In addition to ambitious targets of transforming the energy
sector to net zero, high fuel prices, inflation, supply chain
bottlenecks, and consequences of the Russian invasion of Ukraine
have all led to a global energy market crisis (IEA, 2022c), with rapid
increasing energy costs and concerns seen all over Europe (Eddy,
2022). In a recently announced support initiative for business
owners, the Norwegian government has demanded that all
businesses receiving financial support review their energy
situation. If a company initiates energy efficiency projects, the
government will reimburse a higher percentage of the electricity
bill (Norwegian Ministry of Trade, Industry and Fisheries, 2022).
Energy efficiency helps mitigate the consequences of high electricity
prices for households and businesses (Aasland, 2022).

Buildings are responsible for about 30% of global energy
consumption and contribute 27% of the total GHG emissions
(IEA, 2022a). The building sector is considered the largest energy
consumer in the European Union (EU), tracking 36% of GHG
emissions (European Commission, 2020). Heat is the most
significant global energy demand, about 50% of the final energy
consumption, of which 46% represents the heating of buildings and
hot water (IEA, 2019). In addition, the global energy demand for
space cooling has tripled since 1990, making it the fastest-growing
end-use in buildings. In 2021 space cooling demands accounted for
nearly 16% of the building sector’s final electricity consumption
(IEA, 2022b). Increasing energy demands for heating and cooling in
residential and industrial sectors significantly contribute to GHG
emissions (Ahmed A. A. et al., 2022).

By introducing renewable thermal energy production sources
such as heat pumps, solar thermal energy, and ambient heat for the
heating and cooling sector, the dependency on fossil fuels can be
reduced (Ahmed A. A. et al., 2022). Heat pumps are among the most
energy-efficient and environmentally friendly thermal energy
production technologies (Gaur et al., 2021), with a high potential
to contribute to green building (Yunna and Ruhang, 2013).
Furthermore, heat pumps can provide heating, cooling, and
domestic hot water (DHW) from a single unit (Arteconi et al.,
2013), thus potentially producing a large share of a building’s energy
demand with low energy input. The work presented in this article
concerns a modern thermal energy plant for building demands
based on advanced sewage heat pump technology.

Heat pump systems should be designed and operated with
conditions allowing for high efficiencies, as even minor
improvements can reduce energy consumption significantly (Eom
et al., 2019). Furthermore, efficient control for heating, ventilation,
and air-conditioning systems (HVAC) is the most cost-effective way
to minimize energy use in buildings (Escrivá-Escrivá et al., 2010).

Recently the popularity of Artificial Intelligence (AI) and data-
driven methods for control, prediction, monitoring, and fault
detection applications in HVAC systems has grown (Ahmad
et al., 2016). This popularity is due to the available
computational power to apply these techniques to experiments
and real-life problems and more strict requirements for building
energy efficiency and HVAC systems. Still, researchers have mostly
validated AI techniques through simulations or in small-scale
HVAC systems. Hence, there is a need for practical validation in
commercial systems for real-time control (Ahmad et al., 2016).

There has been significant growth in smart devices and sensors,
which allows the development of a new generation of more

intelligent, more context-aware building controllers (Reynolds
et al., 2018). A “smart building” has a set of sensors that capture
the state of the environment; a management system that analyses the
information provided by the sensors and decides the actions to be
taken; actuators that allow control of the facilities; and an interface
for the building operator to monitor and control the system (Noye
et al., 2022).

Teng et al. presented an excellent review of the current industrial
developments in enabling technologies for the Internet of Things
(IoT) and a guideline for researchers and industrialists developing
advanced energy-saving systems based on digital twins (Teng et al.,
2021). A digital twin is a digital copy or model of any physical entity,
interconnected by exchanging data in real-time. It should capture
the state of its physical twin in real time and vice versa (Singh et al.,
2021). AI is a tool applicable for developing digital twins. Teng et al.
expect the practical implementation of digital twins to grow in the
coming decades.

To allow for maximum utilization of the state-of-the-art and
establish successful smart energy projects, there is a need to combine
industrial implementation, knowledge, and data-driven modeling
(Máša et al., 2018). There are principal differences between the
academy and the industry. While universities wish to contribute to
theoretical developments, the industry depends on profitability. In
science and engineering disciplines, a link between academia and the
industry can contribute to the betterment of both (Ahmed F. et al.,
2022). Teng et al. recommended that researchers perform “low-
level” research, such as “data janitor”-tasks, and shift their focus to
realistic industrial implementations instead of pseudo-theoretical
problems. In addition, industrialists should actively investigate
research advances and collaborate with academia, provide real-
life problems to researchers, and allocate funds for R&D projects
(Teng et al., 2021).

1.1 Motivation and contribution

This article conveys the collaboration between academic,
industrial and municipal partners. As their contribution to the
EU Lighthouse project Triangulum, the Municipality of Stavanger
in Norway developed a thermal energy plant supplying three
municipal office buildings, including the main public swimming
pool, heating, DHW, and cooling. Sewage heat pumps, solar thermal
heating, grey water recycling, and a biogas boiler replaced natural
gas and electric boilers. The project had an overall target to reduce
GHG emissions by 75% compared to the baseline (Triangulum,
2018). This thermal energy plant, known as the Triangulum Central
Energy Plant (TriCEP), is this article’s case study.

The collaboration’s overall aim is to practically implement what
Teng et al. pinpoint as the path to success, namely, bringing
academic and industrial organizations together to explore the
potential of smart technologies for achieving energy efficiency in
a real-world application (Teng et al., 2021). The TriCEP is the
selected case study. To introduce the industrial and municipal
partners and readers to the state-of-the-art, Chapter 2 presents
an open literature review of relevant AI methods and
applications for thermal energy plants and heat pump systems.
Chapter 3 presents the establishing of the collaboration and the
methodology applied to evaluate the plant operation. The TriCEP
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case is introduced in Chapter 4. A comparison between the design
targets and the energy and GHG emissions results from the first
4 years of operation is given in Chapter 5. Though satisfactory
results are reported, delving into the data shows room for further
improvement. System-specific suggestions of tasks that AI could be
applied to are presented in Chapter 6. The conclusion in Chapter
7 presents a summary and a discussion of the project’s impacts.
Inspired by the concept of being a lighthouse project, the conclusion
examines how technological advancements may have impacts
beyond improving a single energy plant’s operation. The article
aims to establish a platform foundation for future publications,
presenting detailed analyses of the various subsystems of the
TriCEP.

2 Advanced methods for monitoring
and control of thermal energy systems

The academic literature connecting AI, data-driven methods,
and smart technology for energy systems has increased rapidly over
the last decade. We recommend the industrial reader Behzadi et al.‘s
article Smart design and control of thermal energy storage in low-
temperature heating and high-temperature cooling systems: A
comprehensive review for a clear introduction to relevant
concepts (Behzadi et al., 2022). The authors present intelligent
control aspects such as model predictive control (MPC), artificial
neural networks (ANN), and optimization methods for modern
thermal energy plants comparable to the TriCEP. Killian and Kozek
asked ten questions about MPC in buildings. Through their answers,
they provided a thorough introduction to an advanced control
strategy, which has become relevant for thermal energy plants
and heat pump systems (Killian and Kozek, 2016). Discussing
control of ground source heat pump systems (GSHP), Noye et al.
identified two principal uses of AI. First, developing a predictive
model of the system that reflects its actual performance, and second,
optimizing the control decisions in real-time based on the predictive
model (Noye et al., 2022). In their concluding remarks, they stated
that the examples found in the literature are limited, and there is
further potential in investigating and applying AI to heat pump
systems. GSHP is fundamentally the same type of heat pump system
used in TriCEP, i.e., a brine-to-water heat pump.

This literature review first introduces methods to develop
predictive models for thermal energy plants and heat pump
systems emphasizing the ANN. Then, Section 2.2 presents
monitoring and fault detection and diagnosis (FDD) using
predictive models, and Section 2.3 discusses system control using
optimization methods.

2.1 Developing predictive models using
data-driven methods and artificial neural
networks

AI and data-driven methods represent an advanced approach to
developing and implementing digital twins (Teng et al., 2021). The
ANN is a data-driven method widely applied to optimize energy and
process systems (Mohanraj et al., 2012). It is a suitable method for
modeling non-linear and multidimensional energy systems when an

accurate prediction of performance is required (Nikpey et al., 2013).
The ANN learns from data by constructing a function that relates
selected inputs to outputs without physical relationships between
the parameters (Nikpey et al., 2020). The many advantages of the
ANN include pattern recognition, non-linearity, and adaptivity
(Haykin, 2009). The models are relatively easy to develop and
use, and the accuracy depends on the selected algorithm’s quality
and quantity of data available (Runge and Zmeureanu, 2019).

Data-driven models can act as surrogate models for actual
engineering models. Once trained, the surrogate models present
the relationship between input and output while bypassing
computationally extensive models. In energy systems, surrogate
models reduce the computational time required to simulate the
system’s response to variations in input parameters and external
disturbances (Perera et al., 2019).

The academic partner in the collaboration has successful
experience researching ANN for gas turbine applications. Nikpey
et al. developed and evaluated an ANN model for monitoring a
micro gas turbine (Nikpey et al., 2013). The final ANN model was a
reliable baseline model that could predict the typical performance of
the micro gas turbine with high accuracy, making the model
appropriate for online monitoring applications at both system
and component levels. Assadi and Fast developed a model of the
hybrid plant Västhamnsverket in Helsingborg, consisting of a
natural gas turbine, a heat recovery steam generator, and a
biomass boiler connected to a steam turbine (Assadi and Fast,
2006). They modeled all subsystems using ANN, and their results
showed that the method has excellent versatility and potential within
thermal power plant modeling.

At the University of Auckland, Swider et al. and Becthler et al.
early published work on ANN for heat pumps in 2001. First, Swider
et al. developed neural networks to predict chillers’ steady-state
performance (Swider et al., 2001). They chose network input
parameters based on their availability to the operational
personnel: water outlet temperature from the evaporator, cooling
water inlet temperature to the condenser, and evaporator capacity.
The output predictions were performance parameters such as the
Coefficient of Performance (COP) and compressor work input.
They trained and validated the models using operational data
from two chillers with 650 and 350 kW nominal capacities. The
networks predicted the compressor work input and the COP
with ±5% and the temperatures with ±0.5% accuracy when tested
on unseen data. The authors concluded that ANN is a promising
tool for predicting chiller performance for fault detection and other
diagnostic purposes. Next, Bechtler et al. investigated the transient
behavior of the machines using data from the same chillers. Their
results showed that the networks predicted all tendencies in a dataset
satisfactorily, but they were most accurate under steady conditions.
Still, the authors concluded that the neural network provides fast
and accurate means of determining the chiller’s performance under
transient operating regimes, such as modulating part-load and start-
up conditions (Bechtler et al., 2001).

A group of researchers at the Firat University in Turkey has
steadily published work on ANN for GSHP. Their main target has
been to develop models which help system designers forecast heat
pump performance to achieve optimal design and energy savings in
the operational phase (Esen et al., 2008a). First, Esen et al. used ANN
to predict the performance of a GSHP system based on experimental
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measurements as training and test data (Esen et al., 2008c). They
developed a network that predicted the COP from the input
parameters condenser inlet, condenser outlet, and ground
temperatures. A network with seven hidden neurons trained with
the Levenberg–Marquart algorithm performed best, with a root-
mean-square (RMS) value of 1%. In subsequent papers, they
compared the network to an adaptive neuro-fuzzy inference
system (Esen et al., 2008a), developed a pre-processing method
using statistical data weighting (Esen et al., 2008b), and introduced a
heat pump system with two operational modes, heating and cooling
(Esen and Inalli, 2009; Esen and Inalli, 2010), further finetuning
their method.

Opalic et al. developed ANN models of an operational CO2-
based industrial cooling subsystem in a complex warehouse
energy system (Opalic et al., 2020). Operating temperature and
pressure measurements, as well as the frequency of the
compressors, were used as input to a model which predicted
the compressor’s electrical power consumption and refrigerant
mass flow rate. The authors concluded that the technique is
superior to a general theoretical model in terms of accuracy,
flexibility, cost-effectiveness, and its ability to be implemented
in real-world applications. Like the TriCEP, the project is a
collaboration between the plant designer, plant owners, and an
academic institution. In their conclusion, they reported that the
next step is implementing the model in the control system to
improve operational control.

Puttige et al. used measured data to develop simple and accurate
models for GSHP systems, combining a hybrid analytical-ANN
model for the borehole heat exchanger (BHE), an ANN model for
the heat pumps, and an empirical model for system heat exchangers
(Puttige et al., 2022). The BHE and the heat pumpmodels achieved a
mean absolute error (MAE) of less than 5%, while the heat
exchanger model had an MAE of 18%. The final models agreed
well when validated against 4 years of monitored data. They
predicted the compressor power with an MAE of 7.8% and the
BHE power with an MAE of 19.1%.

2.2 Monitoring and fault detection

Heat pump systems are only efficient if the equipment is
maintained correctly. Gradual faults decrease efficiency, increase
energy consumption and GHG emissions, and reduce thermal
comfort (Sun et al., 2019). FDD systems can reduce the cost of
operating and maintaining HVAC and heat pump systems while
keeping their performance (Bellanco et al., 2021). Typical faults in
heat pump systems are reduced water flow across the evaporator or
condenser, condenser fouling, non-condensable gases in the
refrigerant, and refrigerant leakage (Singh et al., 2022). An
accurate monitoring tool can improve an energy system’s
reliability, availability, and maintainability, avoid unexpected
outages, detect performance degradation, and help with
maintenance planning (Nikpey et al., 2013).

Casteleiro-Roca et al. designed a novel intelligent system to
detect faults in BHE systems (Casteleiro-Roca et al., 2016). Based on
a classification method, the system can detect when the BHE in a
heat pump system fails in real-time. The authors investigated the
ANN, Linear Discriminant Analysis, and Decision Three

classification and achieved the best accuracy, nearly 94%, using
the ANN. The authors tested the system empirically with a real
dataset obtained from measurements from 1 year of operation.

Refrigerant leakage is a potential and frequent fault in heat
pump systems. Heat pumps and cooling machines perform best at
the optimal refrigeration charge. Therefore, predicting the amount
of refrigerant charge can be vital for the optimum operation of the
machine. Eom et al. developed a refrigeration fault detection strategy
based on convolutional neural networks. Two models using
classification and regression predicted the quantitative refrigerant
amount in both cooling and heating modes of a heat pump. The
models achieved a mean classification accuracy of 99.9% (Eom et al.,
2019).

Bellanco et al. presented a detailed review of FDD for heat pump
systems, which included experimental and digital twin-based fault
detection. They registered several areas where there is room for
improvement, including performance indicators for FDD, new and
updated studies about the health status of field heat pumps, testing
methods that take the gradual and probabilistic nature of heat pump
faults into account, and further research on the use of virtual sensors
in FDD systems (Bellanco et al., 2021).

2.3 Optimized control of thermal energy
plants using AI

Accurate predictive models allow for AI-based control.
However, for a predictive model to be helpful in the real world,
the whole framework must be carefully designed for it to work
(Gallagher et al., 2019). Noye et al. recommended the following as a
minimum; the acquisition of real-time information on the status of
the system and climate conditions, an energy system with automatic
control possibilities, and a management system that can control the
plant according to the current conditions capable of sending
corresponding commands to the production units (Noye et al.,
2022).

MPC is an optimization-based control strategy. Various studies
have consistently reported better performance than traditional
strategies (Cotrufo et al., 2020). Initially developed for refineries
in the late 1970s, MPC is now considered one of the core methods in
advanced process control. Commercial tools are available in
industries such as refineries, petrochemicals, pulp and paper, and
furnaces (Qin and Badgwell, 2003). Still, MPC is an upcoming field
in building energy systems (Killian and Kozek, 2016).

An MPC uses a predictive model of the system it controls, with
forecasts of the disturbances, such as weather and occupancy, to
predict future behavior and select an optimal set of actions. In
energy systems, examples of actions are setpoint profiles, energy
storage charging and discharging steps, and operational load of
energy production units and auxiliary devices such as pumps and
fans. These control actions target minimizing a cost function,
typically total energy consumption, peak power demand, GHG
emissions, and energy costs (Cotrufo et al., 2020). Each time step
predictions of the disturbances and the controllable actions in the
MPC are sent to the process model. The simulation runs over the
prediction horizon, typically between 8 and 72 h for building
applications. The optimizer evaluates the performance criterion
for each simulation run and adapts the control actions until
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finding an optimal solution. The process controller receives the first
control action, and then the optimization is restarted at the next
sampling instant (Killian and Kozek, 2016).

In their literature review, Cotrufo et al. listed several applications
of MPC in energy systems, including control of district heating and
cooling systems, management of ice banks for cooling applications,
provisions of ancillary services like voltage and frequency regulation
of the grid, control of radiant heating and cooling systems, short-
term office temperature control and demand response schemes
(Cotrufo et al., 2020).

The group who asked ten questions about MPC (Killian and
Kozek, 2016) has steadily published papers researching MPC for
building energy and heating systems. Working with 50% of
27,000 m2 of a university building in Salzburg as their reference
case, they have developed the work from a single MPC to a system of
independent but interacting MPCs. Mayer et al. investigated MPC
for the supply side of the heating system, where a heat pump
operated against a stratified accumulation tank and a separate
district heating loop (Mayer et al., 2015). The objective of the
optimization was to minimize the deviation to the heat load
prediction and operational costs while managing the constraints
on control inputs, states, and minimum on/off times of the heat
pump. The authors derived analytical models for the heating loops
and represented non-linearities by a piecewise linear model.

Mayer et al. widened the scope to include both the heating and
cooling demands of the user and the supply levels (Mayer et al.,
2017). The user-level MPC optimized user comfort while
minimizing heating and cooling energy demand, with ambient
temperature, radiance, and the occupancy profile as disturbances.
In these two papers (Mayer et al., 2015; Mayer et al., 2017), the
authors tested the MPCs in simulation environments. Finally,
Killian and Kozek implemented an MPC system in parts of the
university building (Killian and Kozek, 2018). The final controller
consisted of fuzzy MPCs for each zone, a global MPC to control the
coupling zone, and a cooperative iteration loop. The control strategy
mostly showed better performance at significantly lower control
efforts than the original rule-based control system of the building.
Additionally, the authors registered that known actuator faults were
automatically compensated without control reconfigurations, thus
achieving a more adaptable control of the system. Simulation results
of a rule-based control for the same period showed that the MPC
achieved higher comfort with less cost and energy savings, lying
between 31% and 36% (Killian and Kozek, 2018).

The group suggested that MPC for building energy system
control is about to reach commercial maturity (Killian and
Kozek, 2016). Still, our experience from the Norwegian building
industry is that consultants design thermal energy plants with
traditional rule-based control strategies and present “smart
technology” and AI discussions in concept studies.

Cotrufo et al. developed a control algorithm that targeted
reducing natural gas consumption in a hydronic heating system
(Cotrufo et al., 2020). The algorithm optimized the transition
between night setback and daytime indoor air setpoint values as
a function of expected weather. The authors implemented the
strategy in an institutional building in Varennes, Canada, during
the heating season of 2018–2019. By allowing the MPC to choose
one of several predefined setpoint profiles, the authors managed to
reduce the natural gas consumption and GHG emissions by ca. 22%

and the building heat demand by 4.3%, compared to a baseline ON/
OFF-control strategy. The authors suggested that the strategy is
scalable and replicable for other buildings (Cotrufo et al., 2020).
Furthermore, the methodology included the selection of an
appropriate AI technique for developing the model for the MPC,
in this case, Gauss Process Regressions with a squared exponential
Kernel function. The authors trained the prediction model using
operational data from the building and concluded that engineers
should train new models for each new building application.

Reynolds et al. investigated MPCs for supply and demand side
control of a multi-vector energy network supplying several buildings at a
district level (Reynolds et al., 2019). The first strategy targeted optimizing
heat generation to meet a predefined building demand at minimum cost.
The second strategy extended the first one by also aiming to control the
demand of an office building by managing the heating temperature
setpoint. The system re-optimized every hour with a 24-h time horizon to
allow quick reaction to unforeseen circumstances or forecasting errors.
ANNs predicted the building heat demand over the next 24 h and solar
photovoltaic generation. A genetic algorithm performed the optimization
and set the percentage output of the energy production units, which
included a gas boiler, a combined heat and power unit, a heat pump, and
thermal storage. When tested against a simulated baseline rule-based
control strategy, the outcomes of the two MPC strategies were 45% and
53% increases in profits, respectively. Consequently, the MPCs achieved
an overall reduction of GHG emissions of 4% compared to the baseline.

MPC has yet to become standard in commercial building energy
systems due to the greatest challenge of MPC, namely, developing an
accurate mathematical model of the controlled system (Killian and
Kozek, 2016). Inaccurate predictions can lead to a system with inferior
performance compared to a system with standard rule-based control
(Seborg et al., 2011). Model development is a process that requires time,
technical expertise, and often information that is difficult to obtain, such
as details on the construction of the building or mechanical system
layout (Cotrufo et al., 2020). As the literature review has discussed, AI is
a tool with the potential to simplify model development.

The potential of utilizing MPC is vast, and the literature has
proven that the strategy can reduce energy use and cost GHG
emissions. However, Drgoňa et al. pointed out that despite solid
research efforts, practical applications are still in the early stages
(Drgoňa et al., 2020).

3 Methods

The takeawaymessage of the literature review is that AI methods
allow the development of advanced tools for improving energy
system management. However, the practical implementations are
limited and an important field of research. The knowledge of AI in
both the industrial and municipal organizations of the partnership is
narrow, and it has therefore been a goal that the article appeals to
academics and industrialists alike. Industrialists should get a better
overview of the possibilities of using AI without fancy algorithms
and mathematical derivations. The academic is presented with a
description of the practical challenges the industrialists face when
developing and operating real-life thermal energy plants. The
collaborative effort gives the article a different perspective than
most academic literature presenting AI for thermal energy plants
and heat pump systems.
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Giving the academic and industrial partners access to the
TriCEP data was the key to unlocking the collaboration and
beginning the project. During a manual investigation of historical
data, we discovered patterns that conflicted with our understanding
of how the system should operate. Based on these patterns, we
suggested that there is room for improvement in the management of
the TriCEP and that the AI methods presented in the previous
chapter may be valuable tools. Since the TriCEP has ambitious
energy and GHG emissions targets and to establish a baseline, we
investigated whether the plant has achieved the defined targets
during the first years of operation. This section presents the data
capture and processing method before defining benchmarking
parameters to compare design targets and operational results.

3.1 Data capture and processing

Measurements from building automation and energymanagement
systems, electricity and thermal energy meters, weather and climate
stations, utility bills, national reports, and surveys are themost common
data sources for training data-driven models (Runge and Zmeureanu,
2019). Measurements represent themost reliable data sources, provided
that the quality of measurements is validated. Furthermore, building
simulation software can be used to generate data, and thus a data-driven
model can be built based on actual, measured data and advanced
engineering models.

The municipal partner granted the academic and industrial
partners access to their building automation system (BAS), Citect
SCADA (Schneider Electric, 2018), and energy management system
(EMS), Gurosoft (2022), through a permanent remote access link.

The EMS contains a list of predefined calculations and
benchmarking parameters, which the municipal partner uses to
report energy and GHG results for all their properties. This list was
used to set up the tables in the discussions in Chapter 5 and Chapter 7.

The BAS is a tool to monitor and control building HVAC
systems, which contains access to all sensors and historical
measurements. In the BAS process view, the user can access
figures with historical data for each sensor or measuring unit
with manually set time scales and the number of measurements.
Data for the previous 13 months down a 1-s resolution can be
collected. We captured the data manually by copying and pasting it
from the BAS to Excel.

In Excel, we developed a visualizing tool for observing the data
and the process. Using a specific cell to set the date and a scrollbar,
we observed the process from day to day.We intended to use the tool
to manually go through and check a dataset and quickly identify
outliers or errors in the data or the process. In addition, the tool has
become a supplement to the written control strategy of the plant. It
allows the user to identify how the setpoints have influenced the past
operation. We generated the figures in chapter 6.1 using this tool.

3.2 Benchmarking parameters for thermal
energy plants with heat pumps

An electrically driven heat pump is a thermal energy generator
that relates the compressor power _W in kW to the useable thermal

power _Q through its Coefficient of Performance (COP)
(Rastegarpour et al., 2021) defined as (Andresen et al., 2002):

COP � _Q
_W

(1)

The useable heat depends on the target of the process. For heat
production, _Q represents the condenser heat dissipation; in a
refrigeration process, _Q represents the evaporator heat extraction;
in a combined heating and cooling process, _Q represents the sum of
the condenser and evaporator heat which is utilized in the system.
The higher the COP is, the more efficient the process is (Andresen
et al., 2002).

The COP is a momentaneous relationship that changes
continuously depending on the flow rates and temperature levels
of the fluids entering the evaporator and condenser and the part-
load conditions of the compressor. For example, when procuring the
heat pumps, we used the COP to specify the minimum requirement
of the machines at various operating points. In the operational
phase, we compare the design and the operational COP to
investigate the status of the process, where a negative deviation is
a sign that further inquiries should be made.

An electric heat pump’s seasonal coefficient of performance
(SCOP) is the ratio between the annual heat energy output and the
annual electric energy input. The SCOP depends on the COP, the
local climatic conditions, and the integration of the heat pump into
the building energy distribution systems (Dones, 2004). The
definition of the SCOP is similar to the expression for COP, but
it includes the utilization time (τ) of the heat pump (Andresen et al.,
2002):

SCOP � ∫τ

0
_Qdt

∫τ

0
_Wdt

� QHP

WHP
(2)

where QHP and WHP are the heat pump energy production and
consumption over the utilization time in kWh/τ. The utilization
time is usually defined as a year; thus, SCOP can be compared from
year to year, where a high SCOP equals an efficient heat pump.

The SCOP does not contain information on the overall heat
pump contribution to the thermal energy plant. For example, if the
heat pump only supplies a small amount of the heat demand, the
peak load system may operate more than intended. Then the overall
system efficiency can be low, even if the heat pump process is
efficient.

The Plant Seasonal Performance Factor (SPFplant) equals the
sum of all energy produced from the production units divided by all
energy consumed to operate the plant. The higher the value of the
parameter is, the more efficient the plant. The SPFplant is defined by
the following expression (Harsem et al., 2021):

SPFPlant � QHP + QPL

WHP +WPL +WU
(3)

where QPL and WPL are the peak load energy production and
consumption, and WU is the energy consumption of all utility
equipment, such as circulation pumps and pump- or
compressor-driven expansion units. For energy plants that
consist of more units than a heat pump and a single peak load
boiler, the SPFplant can be generalized for n supplementary
production units:
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SPFPlant � QHP + ∑i�n
i�1 QPLi

WHP +∑i�n
i�1 WPLi +WU

(4)

Finally, the efficiency ηPL of a supplementary production unit is
defined as:

ηPL �
QPL

WPL
(5)

We used these parameters to define the system during the design
phase and to follow up on the operation.

3.3 Evaluation of greenhouse gases
emissions

The Norwegian standard NS3720 — Method for greenhouse gas
calculations for buildings (SN/K 356, 2018) defined the GHG criteria
for the TriCEP. NS3720 is a standard method for calculating GHG
emissions in building projects based on the life cycle assessments of a
building’s environmental performance. In the TriCEP, energy use in
operation was chosen as the single decision parameter, in addition to
a more qualitative evaluation of the locality of the energy sources.
Annual GHG emissions were calculated based on delivered energy
to the system, electricity, natural gas, and biogas, using the following
equation with constant GHG emission factors:

Edel � ∑
N

i�1
∑
T

t�1
wdel i, t( ) × fdel i, t( ) (6)

where Edel is the total annual GHG emissions from energy use, in kg
CO2 equivalents/yr, i is the energy product index, from 1 toN, t is the
time index, which goes from 1 to T, T is the maximum value for the
time interval (hours = 8,760 in a standard year), wdel(i,t) is delivered
energy for the energy product i at time t, kWh/h, and fdel (i,t) is the
LCA-based emission factor for delivered energy product i, and in
time index t if available; stated in kg CO2e/kWh.

The municipality and consultant defined the constant emissions
factors presented in Table 1 based on emission factors from the
Centre for Zero Emissions Buildings (ZEB) (Mamo Fufa et al., 2016).

4 The case study

Using the TriCEP as our case study, we aim to investigate the
practical implementation of AI and MPC in an advanced real-life

system. Triangulum was one of 14 European Smart Cities and
Communities Lighthouse Projects aiming to demonstrate,
disseminate and replicate solutions and frameworks for Europe’s
future smart cities. Stavanger, Norway, was selected as one of three
Lighthouse Cities to serve as a testbed for innovative projects focusing
on sustainable mobility, energy, information and communications
technology, and business opportunities (Triangulum, 2018). Twenty-
two partners from industry, research, and municipalities cooperated
to develop and implement smart solutions and act as lighthouses for
replication in follower cities.

Though the Triangulum project officially finished in 2020, this
work further develops the project’s targets. Continuing in the
lighthouse spirit, the partners share results and accounts of what
has worked and where there is room for improvement.

Acting as project owner and manager, the municipality of
Stavanger had an active role in Triangulum from start to finish.
The municipality defined that its main target was to demonstrate
innovative use of local renewable energy sources other than
hydropower and design and implement new technology for the
inspiration of others (Triangulum, 2018). When the Triangulum
project ended in 2019, the municipality launched an official webpage
for the plant (Municipality of Stavanger, 2019), with contact
information and a principle to share all relevant project
documentation with any new project interested in the utilized
technologies or the development process. In addition, an
interactive plant model, which shows the most crucial process
flows, current system temperatures, and a large quantity of
historical energy data, is open for all interested (Municipality of
Stavanger, 2020).

The academic partner, the University of Stavanger (UiS), set up a
data link between the TriCEP and the University during the project.
The theoretical and practical experience from the work done at UiS
has given the TriCEP project an academic edge from the start. The
industrial partner Norconsult AS (Norconsult AS, 2021) developed
the concept study, which led to the final TriCEP system configuration
and performed the detailed design and construction management.
The industrial author is an employee of the industrial partner and had
a leading role in developing the TriCEP.

In most projects, after the end of construction, the client takes
over the plant, the consultant hours reduce to a minimum, and the
municipality gets a new plant in addition to all their existing HVAC
systems. Through an industrial Ph.D. initiative, the industrial
partner follows up on the project in more detail than usual for a
consultancy firm. The industrial Ph.D. program supports an
employee of a company to perform a doctoral project, which
must be of clear relevance to the company’s activities. It should
culminate in concrete research and development results that
enhance the company’s core activity, products, and services (The
Research Council of Norway, 2019).

4.1 Technical ambitions

The municipality of Stavanger set the following project goals for
the TriCEP:

• To develop a fully automated thermal energy plant for heating
and cooling production.

TABLE 1 GHG emission factors used in the work.

Energy product GHG emissions [kg
CO2e/kWh]

Biogas 0.024

Natural gas 0.211

Electricity 0.132

The existing mix between gas and
electricity

0.185
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• To achieve a 75% reduction in GHG emissions compared to
the plant before refurbishment.

• For the plant to only be based on local energy sources.
• To investigate utilizing the local main sewage pipe as an energy
reservoir interacting with a heat pump. The system for heat
exchange with sewage is presented in Figure 1.

• To be finished and in operation by May 2017.

A concept study performed between October 2015 and January
2016 defined the main plant configuration (Fadnes and Havellen,
2016). Several energy production technologies were evaluated
separately, and the final system configuration was determined
based on the skill and experience of the engineering team. Life
cycle costs and GHG emissions reductions were determined for the
final concept.

Several local energy sources and systems were investigated,
such as geothermal, air, seawater, and sewage heat pumps, solar
thermal, grey water recycling, biogas, bio-oil, electrical boilers,
photovoltaics, and a local windmill. The final system setup is
presented in Figure 2 and consists of the following sources and
production units:

• Two heat pumps connected to heat exchangers mounted in the
local sewage canal supply the base load heat, DHW, and total
cooling load. The system for heat exchange with sewage, see
Figure 1, was considered unique in a Norwegian setting,
defined as a “smart city” concept, and will be the topic of
investigation in a future publication.

• Solar thermal collectors contribute to covering the heat and
DHW demand.

• A grey water recycler preheats cold water for DHW.
• A natural gas boiler run on biogas acts as peak load and
backup for heat and DHW demands.

• An electrical boiler acts as a backup unit.

The concept study found a reduction of GHG emissions of 80%
to be within reach with acceptable life cycle costs.

4.2 Baseline energy demand and GHG
emissions

Before the refurbishment, the plant consisted of a natural gas
and an electric boiler. In addition, electric panel ovens heated one of
the buildings. A mixed original heat factor of 0.185 kg CO2/kWh
produced waterborne energy, represented the GHG emissions of the
old waterborne system. Local chillers supplied the cooling demands,
which were assumed to have an average cooling COP of 2,5 when
calculating the electricity demand and GHG emissions.

In addition to refurbishing the thermal energy plant, the
municipality removed all existing electric panel ovens, installed a
waterborne heat distribution system, demolished all local cooling
equipment, and established new cooling pipes between the plant and
the buildings. Table 2 presents the project’s official baseline energy
demands and resulting GHG emissions.

4.3 Overall thermal energy plant design

Figure 2 presents the main components, system configuration,
and flow directions in the TriCEP. The upper part of the figure
shows the heating and cooling production system, while the bottom
part shows the DHW system. The two systems are physically
connected at three locations, denoted AE1/2, AH1/2, and CA1/2.

Two heat pumps, each with a nominal capacity of 250 kW, are
the primary heating and cooling production units. They interact
with sewage heat exchangers through a 20% mono-ethylene glycol-
water brine circulating between the evaporator and sewage. While
producing heat, the heat pumps work against an accumulator system

FIGURE 1
Sewage heat exchanger system—360 kW design heat extraction—(A) - from installation in 2017, (B), system specific design principle.
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on the condenser side. If the heat pumps cannot meet their setpoint,
the gas boiler supplies the peak heat. The boiler, which has a nominal
capacity of 1,000 kW, also acts as the backup unit. In cooling mode,
the heat pumps disconnect from the heating system, and the excess
heat at the condenser transfers to the sewage. The boiler provides the
heat demand.

The energy modeling software Simien (2022), based on the
Norwegian standard NS3031:2014 Calculation of energy
performance of buildings—Method and data (Norsk Standard,
2014), was used to evaluate the energy demand profiles for
heating and cooling. The design team finetuned the model input
parameters in cooperation with the municipal operators and verified
the simulation results against historical data. The heat pump
capacity of 500 kW was determined based on an energy balance
for the heat production system for each hour of the year. Assuming a
constant heating COP at every timestep and investigating for several
values of maximum heat pump capacity qHPmax [kW], the balance
can be written as:

scop t( ) � constant � 3.5

if qHPmax ≥ qDh t( )
qHP t( ) � qDh t( )

qPL t( ) � 0,

else qHPmax < qDh t( )
qHP t( ) � qHPmax

qPL t( ) � qDh t( ) − qHP t( ),

FIGURE 2
Principal system sketch of the TriCEP—top - heating and cooling production and distribution systems; bottom - DHW production systemwith solar
heating, grey water recycling, gas boiler heat exchanger.

TABLE 2 Project-defined baseline energy demand and GHG emissions.

Energy demand
[kWh/yr.]

Emissions [t
CO2/yr.]

Waterborne heat demand 2,910,000 538

Electricity demand cooling
production

6,000 1

Electricity demand circulation
pumps

35,000 5

Sum baseline energy demand
and GHG emissions

2,951,000 544
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wHP t( ) � qHP t( )
scop t( )

wPL t( ) � qPL t( )
ηPL t( )

where scop(t) is the average hourly COP, assumed to be constant,
qDh(t) is the heat demand at hour t [kWh/h], qHP(t) and wHP(t)
are the heat pump energy production and consumption at hour t
[kWh/h], qPL(t) and wPL(t) are the peak load energy production
and consumption at hour t [kWh/h], and ηPL(t) is a boiler
efficiency, assumed to be constant. The annual heat
production and consumption were determined using the
expression below, with the heat pump heat production used
as an example:

QHP � ∑
t�8760

t�1
qHP t( ) (7)

Ideally, optimizing investment cost for a given capacity and the
resulting SPFplant and energy cost should lead to the selection of
heat pump capacity. However, the industrial partner used rules of
thumb:

• The heat pumps should have sufficient capacity to meet the
complete cooling demand.

• At least 90% of the heat demand, excluding DHW, should be
met by the heat pumps.

A capacity of 500 kW met both criteria. Then, using the
relationships above and the benchmarking parameters presented
in chapter 3.2, the design SCOP and SPFplant were determined. These
are presented in the design part of Table 4.

There is a significant consumption of DHW for showering in
a public swimming pool (Yuan et al., 2021). Compared to the
building heat distribution system at 55°C, DHW is produced at a
higher temperature, in the range of 65°C–70°C (Toffanin et al.,
2021). Ambient temperature conditions do not influence the
DHW demand profile; instead, the demand closely follows the
swimming pool’s opening hours (Delgado Marín et al., 2019)
and is relatively constant over the year. In the TriCEP, cold
water is preheated by heat exchange against grey water from the
pool showers, increasing the temperature from the municipal
water feed level of 5–10 to 20°C–25°C. Nine thermal
accumulators, 1,000 L each, are heated by either 180 m2 of
solar thermal collectors, the heat pumps, or the gas boiler.
The distributed DHW holds a temperature of about 60°C
(Toffanin et al., 2021). All accumulators are heated to 70°C

using the gas boiler as a safety measure to destroy legionella
bacteria.

4.4 Control strategy, energy meters, and
sensors

The industrial partner designed the TriCEP control strategy,
which consists of standard setpoint and rule-based control schemes.
The most important principles are summarized below.

• Ambient temperature control. The end points of a linear
correlation between the ambient temperature and the
production temperature of each heat pump and the gas boiler
can be set manually in the BAS. The cooling production
temperature is constant, but the setpoint can be changed.

• The heat pumps can be set to prioritize heat or cooling
production from a rule scheme. The scheme is based on
the ambient temperature, selected system temperatures, and
several time limits. In addition, the BAS allows for a manual
switch if the operator observes that the chosen setpoints give
unfavorable system conditions.

• Circulation pumps operate at a constant speed, except for the
distribution loop pumps. Here pressure difference sensors
control the flow rates. The differential pressure targets can
be manually set from the BAS.

• The operator must manually set whether to prioritize solar or
heat pump heating for DHW. If the latter, solar heating is
rerouted to the return pipe of the pool heat exchanger. There
are several rules and time limits in the Solar System to ensure
that heat is not withdrawn from the system and dispatched
and lost to the air through the solar collectors, for example,
during the night.

• In general—all setpoints can manually be overwritten in
the BAS.

• The plant is equipped with the following meters and sensors:
o Sixteen thermal energy meters, consisting of a flow meter,
two temperature sensors, and a calculator unit, measure
energy production and distribution in the system.

o Four electrical energy meters measure electricity consumption,
1 m per heat pump, one for the electrical boiler, and one for the
rest of the consumption, mainly circulation pumps.

o Two external energy meters from the energy supplier measure
total electricity consumption and biogas consumption.

o Seventy-nine temperature sensors, excluding the
temperature sensors connected to the thermal energy
meters.

TABLE 3 Design demands and results from 2018 until 2021.

Demand [kWh/yr.] Design 2018 2019 2020 2021

Heat 1,758,000 1,381,000 2,014,000 1,933,000 1,546,000

DHW 365,000 1,000 97,000 97,000 83,000

Cooling 187,000 36,000 193,000 196,000 181,000

Sum 2,310,000 1,418,000 2,304,000 2,226,000 1,810,000

The rows with bold values represent the most significant aspects of the discussion, namely the heat pumps and the full plant demand. These rows relates to the benchmarking parameters listed in

chapter 3.2.
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o Six absolute pressure sensors, one for each separate water
system.

o Eight differential pressure sensors, one for each heating and
cooling distribution loop.

o One flow meter measures the flow of the inlet DHW water.
o Two float switches in the grey water accumulator.
o Thirty-three frequency converters are connected to
circulation pumps and provide information about pump
power consumption.

5 Discussion of operational energy
results and GHG reductions

TriCEP officially started producing thermal energy in May
2017 and has since been operating. Here follows a discussion of
the accumulated energy data for the four full years of operation,
2018–2021. The municipality has yet to realize the plant’s full
potential. Delays in the refurbishment project in the building
which houses the TriCEP led to the plant first supplying the
complete building cluster with energy in March 2019. The
installation of the solar collector system first took place during
the summer of 2019. When the plant finally was completed, the
COVID-19 pandemic shut down the swimming pool for long
stretches in 2020 and 2021. The shutdown influenced the DHW
demand, the energy production from the solar collectors, and the
contribution from the grey water recycler. Later, the municipality
temporarily removed another building temporarily due to a new
refurbishment.

Tables 3–6 present selected energy data, while Table 7 shows the
resulting GHG emissions. The most representative year for demand
evaluations is 2019, as all buildings were in standard operation most
of the year. Unfortunately, none of the years give a good
representation of the solar collector and the grey water recycling
systems.

The plant has met the primary target for reduction in GHG
emissions every year. This trend was expected when the plant only

supplied two of the three buildings. However, even when the total
production was relatively close to the design demand, the reductions
were higher than the target value. The heat pumps have contributed
to more than 90% of the demand most years with high SCOP. Thus,
we regard the heat pump system as successful. Still, in Chapter 6, we
present observations that indicate there is potential for
improvements in this part of the system.

It is impossible to separate when the heat pump electricity
consumption goes to heating, cooling, or both simultaneously
from the energy meter configuration. In addition, no accurate
measurement of the heat pump contribution to DHW exists.
Thus, it is impossible to determine the SCOP for heating and
cooling production separately. In Tables 4, 6, the rowHeat pumps
heating represents data from thermal energy meters at each heat
pump condenser. In contrast, the row Heat pumps cooling
represents summarized data from thermal energy meters in
the cooling distribution loops. Registered condenser heat
could be from periods without a heat demand and the system
in cooling mode, representing excess heat transferred to the
sewage. A small continuous cooling demand occurred while
the heat pumps operated in heat mode; therefore, the was
some simultaneous heat and cooling production. For this
discussion, the rows representing the heat pumps give an
adequate understanding of their contribution to system. A
more precise energy meter setup is recommended for future
plants.

The DHW demand in Table 3 is the official reported DHW
demand and is calculated from the sum of measured grey water
recycling, solar heating, and thermal energy from the gas boiler to
the DHW system. The heat pumps’ contribution to DHW is not part
of the sum because it cannot be read from the EMS or the BAS. The
official reported DHWdemand has been lower than the design value
all years. The lower demandmay be due to the pandemic, but even in
2019, it was lower than the design estimation. The difference
between 2019 and 2020/2021 is not significant. Solar heating and
grey water recycling have produced significantly less energy than the
design targets, which should be inspected closely. Some

TABLE 4 Energy production and consumption for production units, design targets and results 2018.

Design 2018

Production [kWh/yr.]/Consumption
[kWh/yr.]/Efficiency/Seasonal
performance [-]

Production Consumption Efficiency/
SCOP

Production Consumption Efficiency/
SCOP

Heat pumps heating 1,692,000 483,000 3.50 1,183,000

Heat pumps cooling 187,000 18,700 10.00 36,000

Sum heat pumps 1,879,000 501,700 3,75 1,219,000 340,000 3,59

Biogas boiler 249,000 311,000 0.80 200,000 274,000 0.73

Solar heating 91,000 —

Grey Water Recycling 91,000 —

Other electrical consumption - 165,000 — 106,000

Sum 2,310 000 978,000 SPFplant 2,36 1,419,000 720,000 SPFplant 1,97

The rows with bold values represent the most significant aspects of the discussion, namely the heat pumps and the full plant demand. These rows relates to the benchmarking parameters listed in

chapter 3.2.

Frontiers in Energy Research frontiersin.org11

Fadnes et al. 10.3389/fenrg.2023.1078603

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1078603


assumptions, further detailed in a future publication, are presented
below.

• The number of pool visitors and the assumed showering time
per visitor were lower than the numbers used for design.

• Since grey water recycling is closely related to hot water
consumption, lower consumption of hot water leads to less
cold water passing through the recycler. In addition, the
placement of the grey water recycler in the configuration
should be investigated.

TABLE 5 Energy production and consumption for production units, results 2019 and 2020.

2019 2020

Production [kWh/yr.]/Consumption
[kWh/yr.]/Efficiency/Seasonal
performance [-]

Production Consumption Efficiency/
SCOP

Production Consumption Efficiency/
SCOP

Heat pumps heating 1,963,000 1,898,000

Heat pumps cooling 193,000 196,000

Sum heat pumps 2,156,000 560,000 3,85 2,094,000 542,000 3,86

Biogas boiler 115,000 188,000 0.61 94,000 245,000 0.38

Solar heating 25,000 — 20,000 -

Grey Water Recycling 14,000 — 20,000 -

Other electrical consumption — 125,000 - 127,000

Sum 2,310,000 873,000 SPFplant2,65 2,228,000 914,000 SPFplant 2,44

The rows with bold values represent the most significant aspects of the discussion, namely the heat pumps and the full plant demand. These rows relates to the benchmarking parameters listed in

chapter 3.2.

TABLE 6 Energy production and consumption for production units, results 2021.

2021

Production [kWh/yr.]/Consumption [kWh/yr.]/Efficiency [-] Production Consumption Efficiency/SCOP

Heat pumps heating 1,513,000

Heat pumps cooling 181,000

Sum heat pumps 1,786,000 451,000 3,96

Biogas boiler 90,000 181,000 0.50

Solar heating 18,000 —

Grey Water Recycling 12,000 —

Other electrical consumption — 120,000

Sum 1,906,000 752,000 SPFplant 2,53

The rows with bold values represent the most significant aspects of the discussion, namely the heat pumps and the full plant demand. These rows relates to the benchmarking parameters listed in

chapter 3.2.

TABLE 7 Historical GHG emissions.

Design 2018 2019 2020 2021

Consumption [kWh/yr.]/GHG emissions [ton CO2/yr.]

Electricity 666,700 88 446,000 59 685,000 90 669,000 88 571,000 75

Biogas 311,000 7 274,000 7 188,000 5 245,000 6 181 00 51

Sum 977,700 95 720,000 65 873,000 95 914,000 94 752,000 80

Reduction from baseline [%] 82% 88% 83% 83% 85%
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• The solar heating efficiency is closely related to the
temperature difference between the ambient air and the
heat carrier fluid. The higher the temperature difference
is, the lower the efficiency (Zijdemans, 2014). Therefore, a
lower DHW demand than the design value may have led to
higher temperatures in the accumulators and lower efficiency
in the Solar System. In addition, the municipality
experienced fouling inside several solar collectors, which
the supplier and responsible piping company currently
investigate.

• The system has a hot water circulator in continuous operation.
Thus, there is heat loss from the DHW system, 24/7, even in
periods with little activity in the swimming pool. The
circulator may explain why the demands in 2020 and
2021 were close to 2019.

The grey water recycler and solar thermal collectors were first set
in operation during the summer of 2019 and had no contribution in
2018 and the first half of 2019. There is some energy consumption
related to system-specific circulation pumps, but all pumps are
lumped together in the row Other electrical consumption in
Tables 4, 6.

A separate electricity meter captures all plant electricity
consumption except for the heat pump compressor power and
electrical boiler consumption, representing the WU in the
definition of the SPFplant and which is part of the calculation of
the GHG contribution of the system. The electrical boiler has yet to
be in operation during the inspected period.

The biogas boiler efficiency is relatively low. During low heat
demand periods, the boiler operates for 5-to-10-min intervals every
fourth hour, supplying heat to the DHW system. This short
operational span may cause a high loss as the boiler stops before
it practically begins to operate (Soma, 2005). A closer investigation
should be performed.

6 Investigations of the current TriCEP
operationwith emphasis on the sewage
heat pumps

The overall conclusion is that the main parts of the TriCEP
work. Especially the heat pumps provide a high share of the demand
with a satisfactory SCOP, leading to a SPFplant that has been higher
than the design target each year except the first. Solar heating and
grey water recycling have not contributed as expected, but the DHW
demand has been lower than the design estimation. The gas boiler
efficiency is so low that some inquiries should be made. Overall, the
TriCEP fulfills its main operational intention, supplying renewable
heating and cooling with a low contribution to GHG emissions. The
municipality of Stavanger’s initial conclusion has similarly been that
the plant works as intended and that it is an advantage that the
operators can prioritize their time solving daily challenges in other,
older municipal buildings. If any faults occur in the TriCEP, a notice
is given to the operator immediately from the BAS. So far, they have
easily fixed most errors.

The municipality of Stavanger is responsible for more than
220 buildings, including schools, kindergartens, nursing homes,
community buildings, and ice rinks. The oldest buildings are

more than 70 years old, while the newest is an advanced fire
station from 2021. Theoretical knowledge, practical experience,
system understanding, and sufficient time are needed to operate
advanced HVAC systems effectively. The TriCEP has no inherent
smartness in its control, and the responsible municipal operators
must set specific control parameters as they see best. Future
energy prices and weather forecasts influence the optimal
setpoint values for these parameters (Wang et al., 2022).
However, the operators now primarily define the setpoints
based on their “gut feeling” and previous experience. Even a
highly qualified and experienced operational organization should
welcome tools that help the operators perform their work more
effectively.

6.1 Evaluation of operational data and
identification of potential system
improvements

When the municipality gave the industrial and academic partners
access to the TriCEP BAS and EMS, we were able to prioritize time to
study the data, investigate the daily operation, and have fruitful
discussions with the operators. As the heat pumps have produced
more than 90% of the annual thermal energy demand, our main
priority is to ensure that they are appropriately utilized. The heat
pumps’ mode, heating or cooling, and temperature production
setpoints are available for the operator to define. Several
unsatisfactory operational conditions were identified.

6.1.1 Switching between heating and coolingmode
The operators report that the pre-set values controlling the

automatic switch between heating and cooling modes have not
worked satisfactorily, especially on days with both heating and
cooling demands. They changed mode as they saw best but may
have forgotten to follow up when more pressing priorities in other
municipal buildings occurred. Figure 3 presents 25 June 2021, an
example of a day with several suboptimal operational situations due
to the automatic mode switch. The green and grey curves are
metered condenser heat production and electricity consumption,
the red and blue curves are outgoing condenser and evaporator
temperatures, representing produced heating and cooling
temperatures, the yellow curve is the temperature setpoint, and
the brown is ambient temperature. When the yellow curve is high at
ca. 50°C, the heat pumps are in heat mode, and when the curve is low
at ca. +10°C, the heat pumps are in cooling mode.

Production peaks occurred after the switch, which can be
explained by the system configuration. Thus, we consider the
peaks a result of a flawed design. A more dynamic setpoint
control, where the setpoint is gradually changed instead of
abruptly, could eliminate this pattern without physical changes in
the system.

No cooling was produced during the daytime when the
municipal employees were at the office. Cooling production
started at 16:20 when most had gone home. The heat pumps
started and stopped continuously in cooling mode, indicating a
low demand, perhaps not even an actual demand.

There was significant heat production during the night.
However, as an ambient temperature curve controls the

Frontiers in Energy Research frontiersin.org13

Fadnes et al. 10.3389/fenrg.2023.1078603

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1078603


temperature setpoint, it is uncertain whether the actual demand was
this high on a summer day with ambient temperatures never
below +16°C.

In coolingmode, the gas boilers supply the heating system. Thus,
if the automatic switch does not happen fast enough and the
operator forgets to change it manually, biogas may be used
instead of the heat pumps, leading to unnecessary high
operational costs.

6.1.2 DHW production—Source priority and heat
pump temperature setpoint

A manual control action decides whether the heat pumps or
the solar heating are prioritized for the intermediate
temperature levels in the DHW system. The industrial plant
designer did not manage to write a general rule to set this
priority. Instead, the operators must manually choose
priority, using the weather forecast and season as help. The
choice is complex, and if the control is not followed-up, an
unsatisfactory operation may occur for extended periods. If the
system is in solar mode and no contribution from the Sun is
available, the biogas boiler will supply the DHW demand even
when the heat pumps are available. If the system is in heat pump
mode, available solar heat may be thrown away. Thus, a tool to
help select and set the priority automatically would help the
operators.

By standard design, the heat pumps produce heat at lower
temperatures when the ambient temperature is high. However,
they can be given a constant setpoint at a maximum of 60°C, but
this action increases their energy consumption. However, since the
DHW holds a distribution temperature of 60°C, and if the electricity
prices are low or no solar heat is available, the action may be
advantageous compared to using the biogas boiler for DHW. An
economic evaluation based on energy prices, weather forecasts, and
demand estimations should ideally provide the final answer from
day to day.

6.1.3 Peaks due to the current heat pump control
setup

We have documented peaks in Figure 3, and within the dashed
rectangle in Figure 4, we present another example of how peaks may
occur. A quick change in the outgoing condenser temperature led to
the heat pump first reducing its capacity before immediately going to
maximum capacity again. These quick changes in the system
temperatures and the resulting peaks indicate that calibrating the
heat pumps’ response to temperature changes should be further
investigated.

6.1.4 Monitoring and fault detection—A practical
example

We have experienced that AI can provide powerful tools for
monitoring and fault detection in gas turbine systems.
Furthermore, the literature review has clarified that similar
methods apply to thermal energy plants and heat pump
systems. This section presents a practical example from the
TriCEP operation, which a precise predictive model should
have been able to recognize.

The filter in the brine system between the heat pumps and the
sewage tunnel was clogged with dirt, leading to an operational
situation with negative implications for the system The
conservation of energy relation for a control volume with one
inlet and one outlet with negligible changes in kinetic and
potential energies, assuming steady conditions and the absence of
any work interactions, defines the relationship between the flow rate,
the temperature difference between inlet and outlet, and the heat
transfer (Çengel, 2006):

_Q � _m× cp × Tout − Tin( ) (8)
where _Q in kW is the net heat transfer from/to sewage to/from heat
pump brine, _m in kg/s is the momentaneous mass flow rate in the
heat pump brine system, cp, kJ/kg K, is the specific heat capacity of
the heat pump brine, in this case, MEG20, and Tin and Tout, in K, are

FIGURE 3
Example of day where the automatic switch between heating and cooling mode leads to suboptimal system operation.
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the temperatures of the heat pump brine entering and exiting the
heat exchangers, respectively.

The circulation pumps operate at constant flow rates; thus, the
maximum temperature difference between the supply and return
pipes occurs at the maximum heat extraction from the sewage.
During a random check of the BAS, the industrial partner noticed
that the temperature difference was higher than expected and
suggested a reduction of the flow rate using Eq. 8. Unfortunately,
no digital flow measurement was available in this part of the system,
and thus no warning had been given to the operators.

The photo on the left in Figure 5 shows that the filter was clogged
giving the temperature difference below. After cleaning the filter, the
temperature difference dropped to the level on the figure’s right side.
Manual measurement of the flow rate documented that the flow had
doubled after the cleaning. The heat pumps were not operating at
maximum capacity, which is why the temperature difference is lower
than the design value reported in chapter 6.3. The consequence of a
reduced flow rate is that the evaporation temperature decreases,
which leads to higher energy consumption in the heat pump process
(Coker, 2015).

This observation is not advanced, but a competent person must
follow up the system closely. In addition, the operators cannot be
expected to remember all design temperature levels by heart. Thus, if
a predictive model had been available, it could have reacted
immediately when the temperature difference began to deviate
from the model, and the filter cleaning could have been
performed earlier than it did. Unfortunately, detailed system data
from 2018 is unavailable, and it is unknown how the long systemwas
operating before the operator cleaned the filter.

6.2 Energy cost

When performing the concept study for TriCEP, the industrial
partner operated with an average electricity cost of ca. 0.1 Euro/kWh in

the life cycle cost analysis. The Norwegian and European electricity
prices have increased significantly in the last year (Møller and Øverås,
2022). Averaging the electricity spot price for the first 8 months of
2022 in the Stavanger region, the cost of 1 kWh equals almost 0,16 euros
in addition to network tariffs and governmental fees. The electricity
prices also vary from hour to hour. Figure 6 presents examples of the
electricity spot price for selected days, summer and fall of 2022 in
Stavanger (Lyse, 2022). A conversion rate of 0,1 Euro perNOKwas used
in the figure.

For a system as advanced as the TriCEP, the type of operation
which is best suited for a day with an energy cost close to zero
during daytime and 0,4 EURO/kWh during afternoon and night-
time is not necessarily the best for a day where the price is
constantly close to 0,5 EURO/kWh. The energy prices do not
influence the automatic operation of the system, and the operators
have no tool to help them decide how to define setpoints based on
future energy prices.

6.3 Evaluation of the potential for
introducing smart technology in the TriCEP

Even though the average heat pump production and
consumption results are close to the design targets, there is
randomness and suboptimal operation in this part of the system.
The analysis of Busato et al. of a multi-source heat pump system
revealed that not only is a good plant design and control logic
necessary, but an in-depth energy analysis based on operational
monitoring is critical to keep the energy efficiency at or above the
design value (Busato et al., 2021).

Both the limits controlling the switch between heating and
cooling priority and the heat pump setpoint control can be
improved and help to set the priority of energy source for DHW
is desired. The literature indicates that MPC is a promising tool that
could lead to more efficient operation and help the operators

FIGURE 4
Example of typical operation leading to heat pump peaks.
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determine the setpoints based onmathematical optimization. Killian
and Kozek stated that MPC can be integrated into existing control
systems for supervisory control while retaining the existing local
control loops (Killian and Kozek, 2016), thus enabling retrofitting
with little influence on the existing control system.

Building MPC is generally more expensive than traditional
rule-based control due to increased engineering costs and
additional software and hardware. The increased engineering
costs are primarily a result of the model development process
(Killian and Kozek, 2016). Our experience is that the type of
non-linear model development a thermal energy plant like
TriCEP would require is beyond most Norwegian building
projects’ economic scope and available project time. The
TriCEP supplies three buildings with thermal energy at

several temperature levels; the buildings are of different ages
and have different energy standards with separate, independent
control systems. In addition, the plant has ambient temperature-
induced and process demands, such as computer cooling, pool
water heating, and DHW. The TriCEP consists of custom-made
equipment in a non-standardized overall system configuration.
The custom-built heat pumps have four compressors each and
inverter control; only their design points are officially defined for
the operator. Their operation in off-design needs to be clarified,
as the manufacturer has not made a product-specific model
available. The heat pumps were specified to produce 250 kW
heat with condenser and evaporator inlet/outlet temperatures of
+40/46°C/+5/+1°C, respectively. Figure 7 documents the
measured energy production of one of the heat pumps

FIGURE 5
Example of influence of clogged filter on temperature difference in sewage heat pump brine system—before and after cleaning.

FIGURE 6
Examples of variations in electricity spot price in Stavanger in 2022.
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between September 2021 and August 2022 and shows that
production as high as 250 kW never occurred. The heat pump
operated at other temperature levels than the design point.

No analytical model of either the heat pumps or the plant is
available. No one has evaluated the defined ambient temperature
curves controlling the production setpoint of the heat pumps and
the gas boiler analytically. Furthermore, other factors than the
ambient temperature influence the heat demand, such as solar
radiation, plant setpoints, room and water temperature, and
night setback (Lazzarin and Noro, 2018). Even with time and
money, developing an accurate physical model of the system
takes time and effort.

The data from the energy meters and sensors in the plant,
combined with AI methods, provide the project partners with
promising tools to increase the control and management of the
TriCEP. We aim to develop a data-driven model which can
accurately predict the process. Based on the research group’s
experience, the modeling approach will be ANN of the various
subsystems, using a similar methodology as Assadi and Fast at
the hybrid power plant Västhamnsverket (Assadi and Fast,
2006). In addition to being a tool for real-time monitoring, we
will investigate if the model can be used to develop
optimization suggestions based on MPC principles. Given
the TriCEP’s design target of reducing GHG emissions, this

is a crucial optimization goal that we will see against the
energy cost.

Teng et al. stated that today’s computing power and research
experience have made training data-driven models as easy as loading
a dataset and pressing a button. However, they warned that too
much research goes into making advanced data-driven models, in
contrast to ensuring the quality of the industrial data (Teng et al.,
2021). In addition to modeling, data acquisition, data cleaning, and
industrial implementation demand attention. Introducing domain
knowledge by an expert can further improve data-driven modeling
(Singh et al., 2022), and even basic system knowledge can lead to
simplifications andmore specificity in model development (Mahbub
et al., 2016). Stoustrup et al. emphasized that advanced theoretical
control solutions must be industrially feasible. They suggested that
industrial and academic partnerships should have an explicit project
phase investigating going from an advanced control solution of high
complexity to a solution with the complexity required for industrial
implementation (Stoustrup, 2013).

The partners who make up the authoring team of this article,
inspired by the warnings and recommendations from the literature,
aim to keep a practical perspective throughout the whole project.
Therefore, instead of delving deep into advanced modeling, we
attempt to find a level that is enough to provide the operators
with valuable information but keeping it as simple as a municipal

FIGURE 7
Measured thermal energy production [kW] for heat pump 350.01-IK001, sorted into 50 bins of ca. 5 kW per bin.

TABLE 8 Historical energy consumption all municipal buildings connected to Gurosoft EMS.

Energy consumption [kWh/yr.] 2018 2,019 2020 2021

Electricity 78,790,000 78,510,000 79,900,000 85,500,000

District heating 3,610 000 5,140 000 4,900 000 5,300 000

District cooling 130,000 90,000 100,000 100,000

Biogas 1,770,000 1,470,000 3,700,000 3,100,000

Natural gas 3,210,000 2,190,000 900,000 600,000

Sum 87,510,000 87,400,000 89,500,000 94,600,000
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consulting contract can afford to include. This strategy allows us to
investigate if we can develop AI for thermal energy systems as a
product or concept for sale.

7 Conclusion

The TriCEP is a unique thermal energy system by Norwegian
standards due to the heat pump reservoir technology, the
combination of several renewable sources, and the municipal
owner’s principle of sharing their data and opening their fully
operational plant for research purposes.

This article has documented that the municipality of Stavanger
can report significant reductions in GHG emission compared to
their baseline and heat pumps which produce thermal energy with
consistently high SCOP. Still, there is a potential to improve the
operation. The potential can be achieved by spending more
resources following up and maintaining the plant manually or by
continuing to investigate the potential of AI methods. The examples
from the open literature presented in the article indicate that AI-
based modeling and control of thermal energy plants and heat pump
systems is a growing field of research (Ahmad et al., 2016), which
may ultimately provide operators with tools for advanced holistic
management of the systems. In addition to serving as a monitoring
system capable of detecting faults, a predictive model can help
operators make intelligent decisions based on mathematical
optimizations. Several control actions ideal for evaluation using
MPC in TriCEP have been identified, such as.

• Determining when the heat pumps should prioritize heating
and cooling.

• Determining when the heat pumps and the solar collectors
should be prioritized for DHW heating.

• Continuously evaluating and updating the temperature
setpoints of the heat pumps and gas boiler to consider
influences beyond the ambient temperature, which controls
the setpoints today.

The first companies to provide services and expertise related
to MPC can expect to acquire a significant market share (Killian
and Kozek, 2016). For the industrial partner defining a new
market segment focusing on the practical implementation of
AI and holistic management of thermal energy plants appears
alluring. Concrete project results for a consultancy company will
include knowledge of necessary sensor setup, data capture and
processing methods, model development, optimization
methodologies, and practical implementation skills. The
results should culminate in standard project building blocks
that several employees can utilize.

For the municipal partner, managing this specific energy plant
is important due to the potential to reduce operational costs,
emissions, equipment wear, and free operator time. However,
an even more significant advantage would be if a larger number
of municipal buildings could be equipped with necessary sensors
and connected to an overall “smart” management system. The
TriCEP is a unique plant, but several municipal buildings have
smaller heat pump systems with similar standard designs. The
municipal EMS reports the energy consumption of all buildings

connected to the system, see Table 8. The average electricity
consumption was about 80,000 000 kWh/year in 2018–2021,
and the average of the sum of biogas, natural gas, district
heating, and district cooling equaled about 10,000 000 kWh/
year. Thus, the annual energy consumed in the TriCEP equals
ca. 1% of the total municipal energy consumption. Though
primarily based on simulation, the literature reports the
potential for significant reductions in energy demand and
consumption using AI methods. For example, Killian and
Kozek achieved energy savings between 31% and 36% in a real-
life project (Killian and Kozek, 2018). We do not expect all
municipal buildings to achieve the same improvement as a
dedicated research project. However, even a minor reduction in
some buildings would significantly contribute to the municipal
energy and GHG results. Thus, if the partnership successfully
develops an advantageous holistic management system for the
TriCEP, we can likely develop similar systems for the smaller
plants, allowing standardization for the simpler systems.

For academic institutions, participating in industrial and
municipal partnerships not only provides highly relevant
datasets to test and validate models against, but the industry
will get a fundamentally better understanding of the possibilities
within the state-of-the-art and how to utilize it. In addition, by
offering academic services and developing projects with the
industry, universities can offer the next-generation of
engineers and energy experts a taste of what awaits them in
an industrial company. This collaboration may help build even
stronger connections, which is highly important considering the
current global energy targets.
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Nomenclature

Abbreviations

AI Artificial Intelligence

ANN Artificial Neural Network

BHE Borehole heat exchanger

COP Coefficient of Performance

DHW Domestic Hot Water

EU European Union

FDD Fault detection and diagnosis

GHG Greenhouse gas

GSHP Ground-source Heat Pump

HVAC Heating, ventilation, and air-conditioning

IoT Internet of Things

MPC Model Predictive Control

MAE Mean absolute error

RMS Root-Mean-Square

SCOP Seasonal Coefficient of Performance

SPFplant Seasonal Performance Factor Plant

TriCEP Triangulum Central Energy Plant

UiS University of Stavanger

ZEB Centre for Zero Emissions Buildings.
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