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ABSTRACT Brain tumors are usually fatal diseases with low life expectancies due to the organs they affect,
even if the tumors are benign. Diagnosis and treatment of these tumors are challenging tasks, even for
experienced physicians and experts, due to the heterogeneity of tumor cells. In recent years, advances in
deep learning (DL) methods have been integrated to aid in the diagnosis, detection, and segmentation of brain
neoplasms. However, segmentation is a computationally expensive process, typically based on convolutional
neural networks (CNNs) in the UNet framework. While UNet has shown promising results, new models
and developments can be incorporated into the conventional architecture to improve performance. In this
research, we propose three new, computationally inexpensive, segmentation networks inspired by Transform-
ers. These networks are designed in a 4-stage deep encoder-decoder structure and implement our new cross-
attention model, along with separable convolution layers, to avoid the loss of dimensionality of the activation
maps and reduce the computational cost of the models while maintaining high segmentation performance.
The new attention model is integrated in different configurations by modifying the transition layers, encoder,
and decoder blocks. The proposed networks are evaluated against the classical UNet network, showing
that our networks have differences of up to an order of magnitude in the number of training parameters.
Additionally, one of the models outperforms UNet, achieving training in significantly less time and with a
Dice Similarity Coefficient (DSC) of up to 94%, ensuring high effectiveness in brain tumor segmentation.

INDEX TERMS Artificial intelligence, cancer, deep learning, magnetic resonance imaging, image segmen-
tation.

I. INTRODUCTION

Brain tumors are abnormal cellular masses or growths that
cause severe damage to the nervous system [1]. These are
classified into heterogeneous neoplasms ranging from differ-
entiable lesions (e.g., meningiomas) to highly invasive and
poorly differentiable lesions such as multiform gliomas [2].
Glioma has the highest mortality rate among brain tumors
since it is the most progressive and represents almost 80% of
malignant tumors [3], generating a 5-year survival rate of less
than 21% in people older than 40 years [4]. However, early
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and accurate tumor regions’ detection significantly reduces
these figures [5].

On the other hand, Magnetic Resonance Imaging (MRI) is
one of the main noninvasive brain scanning techniques [6].
Besides, MRI is the standard technique for monitoring
neoplasms due to the high contrast between soft tissues
[71, [8], [9], which allows the affected regions to be seen as
changes in intensity and irregular shapes.

In medical practice, segmentation can be performed man-
ually, where the radiologist or professional in charge delim-
its or segments the affected tissue region [10]. However,
the process is tedious, time-consuming, and subject to the
professional’s interpretation. Besides, this is also subject to
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other factors such as skills, experience, and external factors,
generating results that are subject to great intra- and inter-
evaluator variability [11]. Therefore, an automatic tool is a
primary need for detecting tumor tissues. The implications
would allow to eliminate human error, make the process more
efficient and faster, and even improve treatments due to accu-
rate segmentation in the follow-up of neoplasms undergoing
treatments [12].

Automatic developments have had a significant position in
the different bioinformatics areas, and interest in these has
increased with Deep Learning (DL) techniques [13]. Con-
sequently, it is easy to find DL networks focused on tasks
such as classification, detection, prediction, and segmenta-
tion [14], [15]. For example, the Convolutional Neural Net-
work (CNN) is widely used in medical image segmentation
[16], [17], [18], [19], [20].

Automatic segmentation of brain tumors is not a recent
problem. In fact, the first approaches were born from
image processing techniques and the emergence of computer
vision [21]. Similarly, segmentation is a problem that has
been addressed in various disciplines, and new and more
robust techniques emerge every day. Implementations range
from basic image processing techniques to new artificial
intelligence techniques [22]. The latter has even experienced
exponential growth in recent years due to the versatility and
high performance of the techniques (e.g., such as CNN).
in this regard, we present recent works on brain tumor seg-
mentation in structural MRIL.

As mentioned above, segmentation is approached from
conventional image processing techniques. For example,
Mascarenhas et al. [23] define a histogram equalization
method, intensity adjustment, binarization, and segmenta-
tion through the brain region’s coordinates. On the other
hand, in a more robust approach, Chen et al. [24] use
a support vector machine and an extended Kalman fil-
ter, achieving close to 98% accuracy. These approaches
are promising; however, most current research focuses on
CNNs. Clear examples of this are Jacobo and Mejia [25],
Shehab et al. [26], Naveena et al. [27], Jungo et al. [28],
Banerjee and Mitra [29], Zhou et al. [30], Chen et al. [31],
Baur et al. [32], and Pei et al. [33].

Jacobo and Mejia [25] use a fully convolutional multi-
branch architecture with filters of different sizes. Similarly,
Shehab et al. [26] use CNNs incorporating blocks with a
residual connection in a UNet-like conformation (ResNets),
achieving a DSC close to 86% in the segmentation of
the whole tumor. Likewise, Naveena et al. [27] reach this
same result (Dice Similarity Coefficient (DSC) of 86%)
but implementing the network on multi-channel resonance
images. For their part, Jungo et al. [28] observe a score of
88% in their quantitative analysis of uncertainty estimation
methods, using UNet-like networks trained with the cross-
entropy loss function. In contrast, Banerjee and Mitra [29]
achieved 90.21%, performing volumetric segmentation from
two-dimensional CNN’s applied on axial, coronal, and sagittal
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slices. Besides, Banerjee integrates a consensus fusion strat-
egy with a post-refinement based on conditional random
fields in an encoder-decoder network. The model is trained
through DSC and weighted log loss functions. In the same
vein, Zhou et al. [30] approach the 3D problem from an effi-
cient residual network. The development uses the 3D Shuf-
fleNetV2 network as an encoder, reducing the computational
cost. Additionally, Zhou integrates a fusion loss function con-
stituted by the cross-entropy and DSC, achieving a score of
91.21%. In other more ingenious approaches, Chen et al. [31]
start from the principle of the two brain hemispheres’ struc-
tural symmetry to create a symmetric network, looking for
asymmetries present with brain tumors. Chen incorporates
the residual connection blocks and the focal loss function
and adds a post-refinement of the image, obtaining a score
of 85.2%.

In recent studies, it is possible to find approaches within
unsupervised training or architectures that are not fully
convolutional, as Baur et al. [32] and Pei et al. [33].
Baur implements an encoder trained with healthy patients
through a reconstruction function, capturing healthy subjects’
physiology through an unsupervised network. In contrast,
Pie et al. [33] designed a 3D encoder-decoder architecture
with a full connection at the architecture’s deepest layers.
In addition, Pie et al. compare their results with ResNet,
UNet, and UNet-VAE architectures and train their design
using a two-factor loss function (Dice and semantic loss),
achieving the highest scores with their network (values close
to 89%) [33].

In different approaches to brain tumors, Chen et al. [34],
propose a segmentation network using transformers as the
main structure in their model. In particular, the model counts
a Transformer at the input of the network, which encodes
tokenized image patches from a CNN feature map as the input
sequence to extract general contexts. Subsequently, the net-
work is integrated with a decoder that upsamples the encoded
features which are then combined with the high-resolution
CNN feature maps to enable accurate localization of the
lesion/organs of interest. In this research, the results showed
that the proposed network managed to outperform the state of
the art, achieving an average DSC value of 77.48%. Similarly,
Lin et al. [35] proposed a hierarchical swin transform in
both the encoder and decoder of the UNet architecture. The
network achieved a DSC segmentation score of 94%, but the
network used approximately 287 million training parameters.
In turn, Xie et al. [36] designed a network for organ segmen-
tation integrated with a CNN and a Deformable Transformer.
The architecture achieved a DSC of 85% using approximately
41.9 million training parameters. It is worth mentioning that
Chen et al. and Xie et al. recognize the UNet as the de-facto
standard, due to its great success [34], [36].

In the specific case of brain tumors, most of the challenges
and developments have been based on the BraTs database
that includes axial resonance images with their respective
segmentation masks, performed by expert radiologists. For
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example, Kajal and Mittal [37] use this database for the
development of a 3D network inspired by the UNet net-
work. The authors compare the performance of their model
with different state-of-the-art networks, concluding that their
model outperforms other models in terms of accuracy and
IoU (accuracy of 98.19% and IoU of 65.88%). Similarly,
Pei and Liu [38] propose a 3D U-network (UNet), but
including residual connections in their model. The network
achieved a DSC of 81.96%, 91.95%, and 85.03% in the
segmentation of enhanced tumor, whole tumor, and tumor
core, respectively. In the same classes, Hsu et al. [39]
achieve DSC of 81.59%, 87.34%, and 91.93%, through their
proposed SegResNet-based model implemented with dif-
ferent loss functions. The model includes post-processing,
which improves the model performance. Meanwhile, Di Ieva
et al. [40] evaluate the accuracy of the best-performing model
of the BraTs 2018 challenge, reaching DSC of 87.8%, 73.2%,
and 69.9% for the whole tumor, core tumor, and active
tumor, respectively. Similarly, Jena et al. [41] analyze the
performance of UNet under the DSC and accuracy using
cross-entropy as a loss function. The results showed that UNet
achieved scores of 98.81% and 99.34% in accuracy and DSC,
respectively.

Rahman et al. [42] develop a 3D UNet-Context encoding
for improved segmentation. In addition, the model includes
epistemic and random uncertainty quantification using Monte
Carlo Dropout and Test Time Augmentation to provide confi-
dence in segmentation performance. The results showed that
the proposed development achieved DSC of 77.87%, 84.99%,
and 91.59% for enhancing tumor, tumor core, and whole
tumor, respectively.

Abdullah et al. [43] propose a lightweight network (LBTS-
Net) for fast and accurate brain tumor segmentation. The
LBTS-Net is based on the VGG architecture, but has half
of the convolutional filters in the first layer and uses depth
convolution to reduce the number of parameters. In addi-
tion, it incorporates transfer learning to tune the network
and achieve robust tumor segmentation, achieving an overall
accuracy of 98.11% and a DSC of 91%, being significantly
more efficient than the standard VGG network. For their part,
Micallef et al. [44] propose a variation of the U-Net++-, using
a different loss function, number of convolutional blocks, and
deep supervision method than the standard model. It also
incorporates data augmentation and post-processing tech-
niques. The proposed approach achieved a DSC of 71.92%,
87.12%, and 78.17% for the enhancing tumor, whole tumor,
and tumor core classes, respectively. Moreover, the proposed
model is lightweight and performs similarly to peer-reviewed
methods on the same dataset.

In different approaches, Gryska et al. [45] replicate two
segmentation models (3D dual-path CNN and 2D single-path
CNN), seeking to determine the reproducibility and replica-
bility of the studies. The study found that one of the two
methods was successfully reproduced, but the second method
could not be reproduced due to insufficient description of
the preprocessing pipeline. Nevertheless, the first method
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showed promising results in terms of the DSC and sensitivity.
Meanwhile, Mehta et al. [46] explore and evaluate a met-
ric for quantifying uncertainty in segmentation models. The
metric was developed during the BraTS 2019-2020 challenge
on uncertainty quantification and is designed to evaluate and
rank uncertainty estimates in segmentation. The results con-
firm the importance and complementary value of uncertainty
estimates in medical image analysis and highlight the need to
quantify uncertainty in these tasks.

Table 1 shows the metrics reported by the authors in their
respective investigations.

While the results are promising, most research focuses on
conventional UNet, based on filters or convolutional opera-
tors, shaping thousands or millions of training parameters.
The approach requires a large number of computational
resources, state-of-the-art graphics cards, or equipment with
RAM with sufficient capacity to support the demand of the
models. The limitation of computational resources has always
been an inherent problem in artificial intelligence develop-
ments. Consequently, efforts are focused on reducing the
computational load without losing the high effectiveness of
the models. For example, backward propagation was one of
the fundamental algorithms that allowed reducing the com-
putational cost since the gradient is preserved as one moves
backward between the layers of the network [47], [48], [49].
On the other hand, techniques such as stochastic downward
gradient have been implemented, which, although produc-
ing stochastic variation before reaching the optimal values,
reduces RAM usage [50], [51]. Based on these motivations, in
this research, we propose three computationally inexpensive
models for brain tumor segmentation in magnetic resonance
imaging. The models are based on separable convolutions,
which split the conventional operation into a depthwise con-
volution and a pointwise convolution. Although these convo-
lutions reduce the computational model cost, this could affect
model performance. Therefore, we propose new connections
between stages of the UNet network to extract the abstract
features of the model to achieve state-of-the-art segmentation
while preserving the low computational cost. Our proposed
models were integrated with transition layers or layers based
on the attention model, modified to the new concept that we
call cross-point product, which avoids the loss of dimension-
ality by combining keys, queries, and values in the multi-
head-attention product.

Il. MATERIALS AND METHODS

A. DATASET

The proposed approach was based on the BraTS2020 chal-
lenge database [52], [53], [54]. The set has 369 MR images,
and each volume consists of 155 axials 240 x 240 slices
in uint8 (8-bit unsigned integer) format. Each image (slice)
has four channels corresponding to native (T1), post-
contrast T1-weighted (T1Gd), T2-weighted (T2), and T2
Fluid Attenuated Inversion Recovery (T2-FLAIR) acqui-
sition sequences. In addition, all images were manually
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TABLE 1. Metrics reported by related work in medical image segmentation.

Main author Year Network #TP DSC(%) IloU ACC SP SE PR HD PPV TPR
Mascarenhas et al., [23] 2020 Images processing NA - - - - - - - - -
B, Chen et al., [24] 2020 SVM NA - - - - - - - - -
Jacobo & Mejia [25] 2020 Fully convolutional multi-branch NR *96.4 93 - - - - - 96 975
Shehab et al., [26] 2020 Residual UNet NR 86 - 86 91 - 92 - - -
Naveena et al., [27] 2020 CNN on multi-channel NR 86 - - 74 73 - - - -
Jungo et al., [28] 2020 UNet NR 88 - - - - - - - -
Banerjee & Mitra [29] 2020 CNN two-dimensional NR 90.2 - - 993 914 - 475 - -
Zhou et al., [30] 2021 ERV-Net 17.3 91.2 - - - - - 388 - -
H, Chen et al., [31] 2020 Symmetric and residual CNN NR 85.2 - - - - - - - -
Baur et al., [32] 2020 Unsupervised network NR 53.7 - - - - - - - -
Pei et al., [33] 2020 3D encoder-decoder CANet NR 89.5 - - - - - 4.9 - -
J, Chen et al., [34] 2021 CNN with Transformers NR 77.5 - - - - - 317 - -
Lin et al., [35] 2022 Dual swin Transform UNet 287.75 942 894 - - 95 937 - - -
Xie et al., [36] 2021 CNN and deformable Transformer (CoTr) 41.9 85 - - - - - - - -
Kajal & Mittal [37] 2022 Modified U-Net NR *782 641 976 - - - - - -
Gryska et al., [45] 2022 Dual-path and single-path CNN NR 77 - - - 88 - - 72 -
Pei & Liu [38] 2022 3D ResUNet 7.8 92 - - - - - 617 - -
Hsu et al., [39] 2022 SegResnet 27.5 87.3 - - - - - 79 - -
Di leva et al., [40] 2021 DL CNN NR 87.8 - - - - - - - -
Rahman et al., [42] 2022 UNet-ContextEncoding (UNCE) NR 75.5 - - - - - 628 - -
Jena et al., [41] 2022 UNet NR 92.3 - 904 - - - - - -
Abdullah et al., [43] 2021 LBTS-Net 65 91 - 981 - - - - - -
Micallef et al., [44] 2021 UNet++ 45 87.1 - - = = = - - -

segmented by one to four radiologists, and experienced neu-
roradiologists approved their annotations. The neoplasms
were segmented into Necrotic and Non-Enhancing Tumor
Core (NCR/NET), GD-Enhancing Tumor (ET), and Peritu-
moral Edema (ED) conforming all tumor-involved tissue. It is
worth mentioning that, in order to reduce the computational
cost and training time of the proposed models, axial slices
without tumor tissue were excluded; therefore, the base was
reduced to 22410 MR images with their respective segmenta-
tion masks. In addition, only the images with the T2-FLAIR
sequence and the mask of the whole neoplasm were taken
for the training of the proposed models. Figure 1 shows two
examples from the database.

B. DATA PREPROCESSING

DL differs from machine learning in that DL can extract
features from data automatically. In other words, DL can
be implemented on raw data [55], [56], [57]. Therefore, the
preprocessing only focused on three basic processes. First,
the data type was changed to float32 format. Second, it was
normalized, leaving all pixel values in the range of O to 1.
Finally, all images were adjusted to the size of 128 x 128 to
reduce the computational cost during network training.

C. PROPOSED MODEL
Although convolutional models largely conform to segmen-
tation networks, these can be integrated with new elements or
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FIGURE 1. Examples of brain tumors from the BraST2020 database [52],
[53], [54].

developments. Therefore, we propose integrating the Trans-
former [58] into the classical UNet structure. In addition,
we propose a new approach to the care model, which we call
the cross-care model. The approach is born under the idea of
limiting dimensionality loss in the attention model’s scalar
product.
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Transformers still maintain the same intuitions of DL
neural networks but dispense with convolutional and recur-
rent networks. Figure 2 shows the structure of the Trans-
former, consisting of an encoder and a decoder described by
Vaswani et al. [58].

The architecture is based on the self-attention models,
generating the keys, queries, and values from the input data
(see Figure 2b). Moreover, the main difference is that it does
not depend on previous states, as they are implicit in the
positional encoding (see Figure 2d). Therefore, it is possible
to use a single attention model or, alternatively, multiple
attention models in parallel. The multiple models are known
as multiheaded attention. It generates the three matrices of
keys, queries, and values for each input embedding vector.
For example, let be an embedding vector x € R? (d dimen-
sions), then the queries, keys, and values are described by
Equations (1), (2) and (3).

Qi =xW! WwieR% (1
K; =W} wf e R )
Vi=xW! WYeR>® 3)

dy, di and d, are the columns of the i-th header matrices,
whose values must be equal.

The matrices are the outputs of the linear blocks (see
Figure 2b) and are used in the scalar product of the attention
model (see Figure 2¢). The product is the central part of the
model, consisting of the matrix product between the keys and
queries. The result is scaled by dividing it by v/dy, subjected
to the softmax activation function, and multiplied with the
values, as shown in Equation (4) and Figure 2c.

Qi - K,'T
Head; = softmax Nz Vi “)
k

Although the model is quite efficient, Equation (4) shows that
the scalar product Q; - K l.T loses the inherent dimensionality in
the product. Starting from this premise, the proposed model
is based on a cross-care model, i.e., the model is generated
with the scalar product in the three possible combinations of
matrices (1), (2) and (3). In this sense, the proposed cross
products are expressed by Equations (5), (6) and (7).

0;- Kl'T
VHead; = softmax Nz Vi 5)
k

KHead softmax Vi QiT K (6)
eal \/— i

dg

K-Vl
OHead; = softmax Nz 0i @)
4

In other words, the scalar product in Figure 2c is replaced by
the model depicted in Figure 3. The process is weighted and
repeated for each header, generating the output of the first
sublayer (see Figure 2b), described by Equation (9).

Head; = mean (Viead;, KHead;» QHead;) (8)
MultiHead = (Head;, Head,, . .., Head;)W?° 9)
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Here, W° e R%"*d js the matrix of the linear operation
shown in Figure 2b, and # is the number of headers of each
of the N stacks.

D. SEGMENTATION NETWORKS BASED ON THE
CROSS-ATTENTION MODEL

Our new multi-head-cross-attention layer can be integrated
into different configurations or architectures to perform tasks
such as classification or segmentation. In this sense, the new
block was integrated into low-cost convolutional structures
(separable convolutions) to perform brain tumor segmen-
tation. The new layer was added in three models named:
model 1, 2, and 3, respectively. Each model is schematically
represented by Figure 4, Figure 8 and Figure 11. In the
following, each of the three models is described in more
detail.

1) MODEL 1

Initially, model 1 (see Figure 4) is a 4-stage deep UNet
architecture. Each encoding stage increases the number of
features maps and reduces the dimensions of the feature maps
to half their initial dimensions. The first stage is a convolution
with 32 3 x 3 filters and strides of 2 (see Appendix B). The
three subsequent stages are the encoder blocks, depicted in
Figure 5.

The block is divided into two trajectories. The main tra-
jectory consists of two separable convolutional layers (see
Appendix C), where the number of filters in each layer is
twice the number of input feature maps. Subsequently, the
dimensions of the feature maps are reduced to half the input
size through maximal pooling (see Appendix E). The sec-
ondary trajectory only has a 1 x 1 convolution, with strides
of 2 and twice as many filters as the input number, adjusting
the dimensions of this trajectory to the output of the second
one, guaranteeing the residual connection (see Appendix G).

The process described above is repeated throughout the
three stages, as illustrated in Figure 4. It should be noted
that the output of each stage is the input of the next stage,
and similarly, each output is used in the transition layers to
concatenate with the output of the encoder stages.

A transition layer was implemented for each encoder-
decoder stage (see Figure 6). The layer receives the output
of the corresponding stage and reorganizes the maps by
taking patches from them, i.e., for a set of feature maps
with dimensions (batch, r, ¢, n) it is restructured to dimen-
sions (batch, r/m, c/m, mzn), where m? is the number of
patches per map. Then, the patches are embedded in a lower
dimensionality tensor using a linear operation and including
positional coding, as described in the original Transformer.

The embedding is normalized (see Appendix D) and used
on the multi-head cross-attention block. The block is shaped
by the proposed mathematical model described in the pre-
vious section (see C. proposed model). Subsequently, the
output of the block is added with the normalization output
in a residual connection. The output is again normalized to
give way to a feed-forward layer with the residual connection.
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FIGURE 3. Schematization of the proposed model; cross-care model between queries, keys, and values.

Finally, the embedding process is reversed, generating new
patches used to reconstruct the shapes of the original feature
maps.

As mentioned above, the transition layers outputs are con-
catenated with the decoder blocks outputs, except for the most
profound stage, which is concatenated with a copy of the last
encoder block.

The encoder blocks perform the opposite process to the
encoder blocks (see Figure 7). Each block increases the size

VOLUME 11, 2023

of the feature maps, adjusting those maps for concatenation
with the respective stage. Again, the encoder block consists
of two paths, the first of which has two serially transposed
convolutions, with the number of filters corresponding to
each stage and a 3 x 3 filter size. Subsequently, the output is
upsampled (see Appendix F), doubling the size of the maps.
The second trajectory is directly upsampled and convolved
1 x 1, adjusting the dimensions of this trajectory to make the
residual connection with the first one.
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feature maps

The process is repeated until the last 3 x 3 convolutional
layer with two convolutional filters is reached. The two filters
correspond to the probability outputs of the two elements of
interest, i.e., a map corresponding to the probability that each
pixel is a tumor and a map for the non-tumor pixels.

2) MODEL 2

The second model is like the first one; it has the same ele-
ments but partially different structural conformations. First,
this model has only the transition layer in the last encoder-
decoder stage, as shown in Figure 8.

However, the transition layer is included in both the
encoder and decoder blocks over the residual connection
path, as illustrated in Figure 9 and Figure 10. Additionally, the
convolutional layers were changed to separable convolutions
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FIGURE 6. Transition layer based on the cross-attention model. The
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Number of
filters (N)

N N
‘“LI ‘LI

N
n I
Input =
- sHO
| I I

Input dimensions:
(Batch, r, ¢, n)

\4

Output

@y

Output dimensions:
(Batch, 2r, 2¢, N)

\4

@y’ '

@y

r: Rows Convolution transpose 3x3, N
c: Columns = Upsampling 2x2

r=c wp Convolution 1x1, N

n: Number of Copy

feature maps

® Add

FIGURE 7. Decoding convolutional block of model 1.

in the two blocks but retaining a structure like the first blocks
described above.

It should be noted that the transition layers included in
Figure 9 and Figure 10, retain the same layout as described
in Figure 6.

3) MODEL 3
Model 2 follows the same general structure as model 2;
however, all convolutions were replaced by separable convo-
lutions. The change was made both in the general structure
(see Figure 11 and in the encoder and decoder blocks (see
Figure 12 and Figure 13).

Additionally, the transition layers based on the cross-
attention model were removed from these blocks. In other
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FIGURE 8. General structure of model 2, implemented with the transition
layer based on the cross-care model.
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FIGURE 9. Convolutional block encoder of model 2. The block
implements the transition layer based on the cross-attention model.

n: Number of
feature maps

words, model 3 only has a single transition layer between the
encoder-decoder of the last stage (see Figure 11).

Table 2 highlights the main structural differences of the
four models.

E. DATA AUGMENTATION

Data augmentation is a series of strategies to artificially
increase the amount of data or images used to train DL
models. The strategies range from the most straightforward
geometric transformations to synthesis with artificial neural
networks. Although there are many methods, the conven-
tional and simple ones have shown their high effectiveness
on DL models. In this sense, only the methods of random
horizontal flipping and rotation of the images were integrated
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FIGURE 11. General structure of model 3, implemented with the
transition layer based on the cross-attention model. The model uses only
separable convolutions.

into this research. Rotation was performed at 90° angles
using the same probability for any of the 4 possible positions
(including the original position). Similarly, flipping was used
using the same probability for the two positions. The methods
are illustrated in Figure 14.

F. LOSS FUNCTION

The loss function is an objective function used to quantify
the difference between the ground truth (labeled) values and
the values predicted by the network, i.e., the function allows
determining the degree of accuracy or performance of the
model. In the case of segmentation, the most used loss is the
Dice coefficient, which is described below.
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FIGURE 12. Convolutional block encoder of model 3. The model uses only
separable convolutions.

TABLE 2. Main structural characteristics of the three proposed models.

Model Exterqal o Encoders Transition Decoders
convolutions layers
Conventional Separable Applied to Conventlonfi !
1 . . and upsampling
convolutions  convolutions all 4 stages -
convolutions
Separable Separable
. convolutions  Appliedto  convolutions,
Conventional . .
2 . and internal the last upsampling
convolutions o .
transition stage and internal
layer transition layer
Appli 1
Separable Separable pplied to Separat? ©
. . the last convolutions
convolutions  convolutions .
stage and upsampling

*External convolutions refer to convolutions that are not inside the
encoder or decoder blocks.
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FIGURE 13. Decoding convolutional block of model 3. The model uses
only separable convolutions.

feature maps

1) DICE COEFICIENT LOSS

The Dice coefficient is a statistic used to calculate the simi-
larity between two samples, or in the case of computer vision,
the similarity between two images [59]. The coefficient is
defined mathematically as expressed in Equation (10) and can
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FIGURE 14. Examples of data augmentation with image flipping and
rotation operations.

be used as a loss function through the modification expressed
in Equation (11).

D(A,B) = 214N Bl (10)
AL+ 1B
Dioss (A, B) = 1 ZIANB| (11)
loss s - |A|+|B|

Here, A and B are the actual and predicted regions by the
network, respectively. Furthermore, for the case of binary
classification, the loss can be rewritten as expressed in
Equation (12).
D FN + FP 1
' = 2TP + FN + FP (12
where, TP, FN, and FP are true positives, false negatives, and
false positives, respectively.

G. EVALUATION METRICS

Currently, there are different metrics for the performance
evaluation of IA networks; therefore, for the objective eval-
uation of model performance, it was proposed to use 3 of
the most reported metrics in the literature: Jaccard distance
or Intersection-Over-Union (IoU), Dice Similarity Coeffi-
cient (DSC) and Hausdorff distance (HD). The metrics are
expressed mathematically as shown in Equations (13), (14)
and (15) [59], [60], [61].

TP
IoU= ———— (13)
TP + FP + FN
2TP
DSC= —————— (14)
2TP + FP + FN
HD (A, B) = max {h (A, B) , h(B, A)} (15)

IoU and DSC are expressed in terms of true positives (TP),
true negatives (TN), false positives (FP), and false negatives
(FN). Moreover, h(A, B) is the directed Hausdorff distance,
which refers to the minimum distance from the farthest point
of A to B and vice versa for h(B, A).
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TABLE 3. Hyperparameters used in segmentation models.

Hyperparameters

Loss function Dice coefficient

Optimizer Adam

Epochs 100

Number or repeated runs per fold 3

Batch size 16
Initialization of weights Uniform Glorot
Bias initialization Zeros

Hidden layers activation function ReLU

Output layer activation function Softmax

H. STATISTICAL ANALYSIS

The Kruskal Wallis test was used for statistical estimation
between groups, which evaluates whether two or more sam-
ples belong to the same distribution based on the median
of these samples. The test uses the null hypothesis with the
assumption that all samples come from the same distribution.
Then, for a p value less than 0.05, it would imply that the
null hypothesis is false and, therefore, a statistically signifi-
cant difference would be established between the two groups
tested. Note that the value of 0.05 or significance level can
have a lower or higher value. However, this value is the most
accepted since it represents only 5% of concluding that there
is a difference when there is none [62]. The method, assuming
k groups with n observations, defines the H statistic given by
the mathematical expression of Equation (16).

12 <
H=—"—> ni — 16
NN + 1) - ni(ri, —r) (16)
n ..
fy= 2= (7
n;

where, n; is the number of observations in the i-th group, N is
the total number of observations in the two groups, r;; is the
rank of the i-th observation over the j-th observation among
all observations, and k is the number of groups [63], [64].

I. EXPERIMENTAL DESIGN AND HYPERPARAMETERS
The three proposed models based on the cross-attention
model were trained together with the classical UNet model
to obtain a benchmarking. All models were trained on the
BraTS dataset, using an 80% and 20% split for training and
testing. In addition, the models were run through 5-fold cross-
validation and under the model settings shown in Table 3.
The architectures were modeled with the Python program-
ming language by utilizing the main Keras and TensorFlow
libraries. The models were executed on a Colab platform
configured with 25 GB of RAM and a Tesla P100 GPU.
Each training was evaluated with the Dice Similarity Coef-
ficient (DSC), Jaccard distance or Intersection-Over-Union
(IoU), and Hausdorff distance (HD) metrics [59], [60], [61].
Finally, the results were compared with the Kruskal-Wallis
non-parametric test statistic, based on the hypothesis that the
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TABLE 4. Total number of training parameters in each of the explored
networks.

Number of trainin, .
g Number in millions

parameters.
Model 1 5256130 5.26
Model 2 5505378 5.51
Model 3 1050429 1.05
UNet 43594920 43.59

sample means to come from the same population or distribu-
tion [63], [64].

IIl. RESULTS

This section shows the overall results of the methodology
described in the previous section. The four models were
trained under the same conditions but repeating the runs to
obtain the metrics distributions and a detailed description of
the models.

Initially, Table 4 shows the total number of training param-
eters. The results show a marked difference between the
conventional UNet and the proposed models, reaching a
reduction of up to an order of magnitude. This represents a
significant computational cost reduction due to the reduced
number of training parameters in the proposed models.

Table 5 shows the representative values for the three-
evaluation metrics and the training time of the models. The
results show that model 1 presented the best average per-
formance for the DSC metric, reaching up to an average
value of 93.06% with a standard deviation of 0.83%. In other
words, the model has a high probability of obtaining a DSC
close to 93%. Similarly, model 3 and the reference network
(UNet) presented good performance values, around 90%
DSC. On the other hand, model 2 was the network with the
worst performance, even falling below the conventional UNet
network. Additionally, shows the highest metrics achieved by
the four models, revealing again that model 1 was the best-
performing network, reaching a DSC of 94%.

Regarding the HD metric, the results reflect the same
behavior as the DSC metric. Model 1 presented the lowest
average HD with the smallest deviation, ensuring the high
effectiveness of the model. Similarly, model 1 achieved the
lowest HD value, ensuring that the predicted segmentation
contour is quite close to the ground truth. Conversely, model 2
presented the highest HD with the largest standard deviation,
i.e., the HD metric demonstrates the low segmentation quality
of this model.

The scores of the different trainings are shown in Figure 15,
except for the outliers. The distributions of the scores give
a more detailed description of the behavior of the models.
For example, the IoU metric shows that models 1, 3, and
UNet had scores between 80 and 90%. However, the UNet
network had a higher heterogeneity of scores, while models 1
and 3 presented more homogeneous distributions, ensuring a
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TABLE 5. Representative results of the three metrics for model evaluation and model training time.

Models DSC (%) IoU (%) ACC (%) HD (pixels) Time (Hours)

1 93.06 +0.83 87.03 +1.43 99.43+0.08 15.10 +10.25 2.63 +0.12
2 46.96 +8.72 31.13 +8.00 63.91+20.54 69.18 +55.95 481 +0.34
3 90.47 +0.87 82.61 +1.44 99.20+0.08 36.49 +13.56 3.23 +0.04

UNet  88.69 +7.11 80.30 +10.17 99.23+0.29 2735 +28.24 3.65 +0.86

Best values (Maximum values of DSC, IoU and Accuracy. Minimum HD values and minimum and
maximum range for time)

1 94.00 88.68 99.51 1.20 2.49-2.79
2 62.78 45.75 97.88 22.56 443 -5.87
3 91.66 84.60 99.30 13.24 3.18-3.30

UNet 93.13 87.14 99.46 1.33 2.95-4.95

higher probability of obtaining models with values close to
the average values reported in Table 5.

Additionally, the box-and-whisker plot shows again that
model 2 was the worst performer, stagnating with IoU scores
below 40%. Similarly, the DSC presented a similar behavior
in the four models; however, model 1, 3, and UNet had dis-
tributions close to 90% or above this value. Furthermore, it is
again confirmed that model 1 presents the most homogeneous
distribution, guaranteeing a high probability of obtaining
models with scores close to the mean value (see Table 5).

Figure 15 also presents the distribution of the training
times of the models. The results show that model 3 had a
more homogeneous behavior than the other models; however,
the interquartile range of this model is above the range of
model 1. In other words, model 1 had an average training
time above 2.5 hours, while model 3 was above 3 hours.
In the case of model 2, it had training times between 4.5 and
5 hours. On the other hand, the conventional UNet network
presented more significant heterogeneity in training time,
ranging from 3 to 5 hours.

Figure 16 shows the training of the four models through
the 100 epochs with the respective 95% error bands for
loss and validation through the DSC. The curves show that
models 1, 3, and UNet performed similarly. All three models
converged above 0.9 (90% in percent equivalent), partially
above the values generated by the test data (see Table 5 y
Figure 15). It is worth noting that the error bands of these
results were significantly reduced from epoch 80 onwards.
Therefore, this would imply that there was no overtraining of
the models or that the overtraining was almost null. In the
opposite case, the training curves of model 2 again reflect
the model’s difficulty in reaching the optimal values of the
training parameters, generating an error band that increases
with increasing training epochs.

Finally, the scores generated by the 30 runs were com-
pared via the Kruskal Wallis non-parametric test statistic. The
p-value of the test statistic is shown in Table 6, comparing all
possible combinations. The results indicate that there were
no values above the significance level for the IoU and DSC
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metrics, i.e., there were no values above 0.05. In other words,
all models have statistically significant differences. There-
fore, our proposed models are different from each other and
generate different scores from those of the conventional UNet
network.

The p-values also show that there is no statistically signif-
icant difference between models 2 and 3 for the Hausdorff
distance. Similarly, the UNet network and model 3 do not
have statistically significant training times, as can be seen in
the time plot in Figure 15.

As shown in Table 5, model 1 presented the best per-
formance in brain tumor segmentation. Figure 17 presents
seven segmentation samples predicted by model 1. The figure
contains the MR image in the axial slice, the ground truth, and
the segmentation predicted by that model. From a qualitative
point of view, the model segmentations are highly effective
for different tumor types, i.e., the predicted segmentation is
quite close to the ground truth for both small and large tumors.
Moreover, the segmentations differ faintly from the actual
contours, ensuring the high effectiveness of the segmentation
model despite its low computational cost.

Finally, although a precise comparison with related works
cannot be made due to the complexity of the models and
the different hyperparameters that affect their performance,
in this section we chose to make a comparison based solely
on the metrics and hyperparameters reported by the authors.
First, we found that our proposed models achieved higher
DSC scores than the research performed on the same database
(see Table 7). The maximum score reached by our most
efficient model (model 1) was 1.73% higher than the highest
value reported up to the present year 2022, and the average of
the different runs was 0.79% higher than the value reported
in the state of the art. Even, our second most efficient model
was only below the research of Jena et al. and Pie & Liu,
which guarantees the high effectiveness and performance of
our proposed models.

Regarding the number of training parameters, Table 8
shows only the related papers that reported the number of
training parameters along with the evaluation metrics DSC,
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FIGURE 16. Training curves of the four models. The curves are given for the model loss and the Dice coefficient as evaluation metrics during the training
data execution.

IoU and accuracy. The results show that, our models com- and that of Pei and Liu [38] with 7.8 million parameters.
prised the top 4 models with the lowest number of parameters. It is worth mentioning that, although the proposed model
Although model 3, with only 1.05 million parameters, did of Micallef et al. [44] presented the second model with the
not have the best DSC, it was only below our model 1 lowest number of parameters, it achieved a DSC of 87.12%,

VOLUME 11, 2023 27077



IEEE Access

A. Anaya-lIsaza et al.: CrossTransUnet: A New Computationally Inexpensive Tumor Segmentation Model for Brain MRI

TABLE 6. p-value for the comparison of the models through the non-parametric Kruskal Wallis test.

P-value from Kruskal Wallis

IoU DSC
Model 1 Model 2 Model 3 UNet Model 1 Model 2 Model 3 UNet
Model 1 - <0.001 <0.001  <0.001 Model 1 - <0.001 <0.001 <0.001
Model 2 <0.001 - <0.001  <0.001 Model 2 <0.001 - <0.001 <0.001
Model 3 <0.001 <0.001 - 0.013 Model 3 <0.001 <0.001 - 0.013
UNet <0.001 <0.001 0.013 - UNet <0.001 <0.001 0.013 -
Hausdorff Distances Time
Model 1 Model 2 Model 3 UNet Model 1 Model 2 Model 3 UNet
Model 1 - <0.001 <0.001  0.019 Model 1 - <0.001  <0.001 <0.001
Model 2 <0.001 - 0.082  <0.001 Model 2 <0.001 - <0.001 0.021
Model 3 <0.001 0.082 - 0.001 Model 3 <0.001 <0.001 - 0.404
UNet 0.019 <0.001 0.001 - UNet <0.001 0.021 0.404 -

*Values in bold are those that exceed the significance level (¢ = 0.05).

MRI anatomy (axial) Ground truth

Predicted segmentation

Sample 2 Sample 1

Sample 3

MRI anatomy (axial) Ground truth

Predicted segmentation

Sample 4

Sample 5

Sample 6

FIGURE 17. Segmentation results of the best model (Model 1) for different brain lesions.

lower performance than our models 1 and 3. Additionally, our
models had the lowest number of parameters compared to the
other two developments based on Transformers, where Lin
et al. outperformed our model, but on a different database
and with a marked difference in training parameters of up
to two orders of magnitude. It is worth mentioning that,
Abdullah et al. [43] also integrated depth convolutions with
the same purpose of reducing the number of training param-
eters, however, our models 1 and 3 had lower number of
parameters and higher performances in terms of DSC, IoU
and accuracy. In this sense, our models guarantee the best
performance/number of parameters ratio, generating the best
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segmentation metrics with the lowest number of training
parameters.

In the case of training times, most authors do not report
such time or limit themselves to stating that the models had an
inference time that exceeds manual execution without giving
a quantitative description. In this sense, the works related to
training or inference time were reduced to those shown in
Table 9. The results show that, our models were outperformed
by the development done by Shehab et al. [26]. However, the
authors do not report what type of GPU they used in training
the model, and, therefore, the comparison between models is
not clearly evidenced. On the other hand, Micallef et al [44]
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TABLE 7. Comparison of the metrics of the proposed model and related work based on the BraTs database.

Main author Year Network DSC (%) IoU (%) ACC (%)
Our proposed model 1 2022 Crosstransunet (max) 94.00 88.68 99.51
Our proposed model 1 2022 Crosstransunet (mean) 93.06 87.03 99.43
Jena et al, [41] 2022 UNet 92.27 - 90.41
Pei & Liu [38] 2022 3D ResUNet 91.95 - -
Our proposed model 3 2022 Crosstransunet (max) 91.66 84.60 99.30
Zhou et al, [30] 2021 ERVNet 91.21 - -
Abdullah et al, [43] 2021 LBTSNet 91.00 - 98.11
Banerjee & Mitra [29] 2020 CNN twodimensional 90.21 - -
Pei et al, [33] 2020 3D encoderdecoder CANet 89.50 - -
Jungo et al, [28] 2020 UNet 88.00 - -
Di leva et al, [40] 2021 DL CNN 87.80 - -
Hsu et al, [39] 2022 SegResnet 87.34 - -
Micallef et al, [44] 2021 UNet++ 87.12 - -
Shehab et al, [26] 2020 Residual UNet 86.00 - 86.00
Naveena et al, [27] 2020 CNN on multichannel 86.00 - -
H, Chen et al, [31] 2020 Symmetric and residual CNN 85.20 - -
Kajal & Mittal [37] 2022 Modified UNet *78.15% 64.13 97.59
Gryska et al, [45] 2022 Dualpath and singlepath CNN 77.00 - -
Rahman et al, [42] 2022 UNetContextEncoding (UNCE) 75.51 - -

*Metric calculated from metrics reported in the article

TABLE 8. Related work that reported the number of training parameters in their developments, along with DSC, loU and accuracy performance metrics.

Author Year Network #TP DSC IoU ACC
Our proposed model 3 2022 Crosstransunet 1.05 91.66  84.60  99.30
Micallef et al. [44] 2021 UNet++ 4.50 87.12 - -
Our proposed model 1 2022 Crosstransunet 5.25 94.00 88.68 99.51
Our proposed model 2 2022 Crosstransunet 5.50 62.78 4575 97.88
Pei & Liu [38] 2022 3D ResUNet 7.80 91.95 - -
Zhou et al. [30] 2021 ERV-Net 17.30 91.21 - -
Hsu et al. [39] 2022 SegResnet 27.50 87.34 - -
Xie et al. [36]* 2021 CNN and deformable Transformer (CoTr) 41.90 85.00 - -
Abdullah ez al. [43] 2021 LBTS-Net 65.00 91.00 - 98.11
Lin et al. [35]* 2022 Dual swin Transform UNet 287.75 94.22 89.39

*Segmentation not applied to the BraTs dataset
#TP: Number of training parameters in millions.

implemented UNet++ under the same data set and partially
accelerated with the Tesla P100 GPU, showing a high pro-
cessing time of approximately 14.33 hours per 100 epochs,
i.e., almost 3 times our slowest model implemented with the
same GPU (model 2).

IV. DISCUSSION

Cancer is one of the diseases with the highest incidence
worldwide, has a high impact on public health costs, and
has a high impact on patients’ quality of life. Brain tumors
are among the cancers with the highest mortality rate since
they involve part of the central nervous system. In this sense,
classification, diagnosis, and delimitation of the affected
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areas are vital tasks to provide timely patient care. Health-
care professionals perform many of these tasks, but they are
often tedious tasks that require excessive time or repetitive
processes, as in the case of segmentation. Fortunately, auto-
matic segmentation methods based on DL have proven to be
highly effective, despite the high computational cost required.
Based on these considerations, this research focused on devel-
oping a DL network with a reduced number of training
parameters.

We proposed three new models consisting of separable
convolutions and attention blocks with a new model that
we call the cross-attention model. The three networks were
designed in the UNet form integrating the new proposed
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TABLE 9. Related work that reported the model training or inference time.

Author Year Network Time GPU
Banerjee & Mitra [29] 2020 CNN two-dimensional 10 min* NR
H. Chen et al. [31] 2020 Symmetric and residual CNN 7-10 s* NVIDIA GTX 1080
Shehab et al. [26] 2020 Residual UNet 1.03 hrs/128 epoch NR
Our proposed model 1 2022 Crosstransunet 2.63 hrs/100 epochs Tesla P100
Our proposed model 3 2022 Crosstransunet 3.23 hrs/100 epochs Tesla P100
Our proposed model 2 2022 Crosstransunet 4.81 hrs/100 epochs Tesla P100
Micallef et al. [44] 2021 UNet++ 43hrs/300 epochs Tesla K80 GPU and Tesla P100

*Inference time and not training time

model in different structural conformations (models 1, 2,
and 3. see materials and methods, section E).

The results evidenced the reduced number of training
parameters, but showed the high effectiveness of the models,
comparable to the UNet. For example, all three models were
highly efficient (see Table 5); model 1 even managed to
outperform the conventional UNet, despite having less than
one-fifth of training parameters (see Table 4). Furthermore,
model 1 achieved a maximum DSC of 94% outperforming
the most robust CNN-based model for brain tumor segmen-
tation (DSC of 91.21% achieved by Zhou et al. [30]). In this
sense, it is clear that the cross-attentional models were effi-
cient for feature extraction in MR images, allowing efficient
segmentation to be achieved with fewer training parame-
ters. Although the latter did not achieve the performance
of model 1, it is an acceptable segmentation considering
that only 1.05 million training parameters were used, i.e.,
only 2.4% of the conventional UNet network (see Table 4).
Additionally, the structure of model 3, with a single transition
layer, makes it an efficient autoencoder. In this sense, image
synthesis could be explored in possible future work or address
investigations with the latent variables of the encoder.

On the other hand, the training times show the high effec-
tiveness of the designs, being model 1 the architecture with
the shortest average training time, reaching the total train-
ing of the model in less than 3 hours. This represents a
significant reduction in computational resources (machine
execution time). Likewise, the reduced number of training
parameters also guarantees the reduction of computational
resources, since a greater number of training parameters
requires more RAM memory for the adjustment of these
parameters.

The training curves confirmed that the models were not
overtrained. Moreover, these could be trained with a smaller
number of epochs, since the curves converged from epoch
80 onwards, and the error bands were reduced from this
epoch. In other words, the models reached the optimal values
of the training parameters from epoch 80 onwards, except for
model 2. It is worth mentioning that model 2 showed the worst
performance. The above would imply that it is not efficient to
add the cross-attention model in residual block connections
in both encoders and decoders. This would imply that the

27080

transition layers within the encoder and decoder blocks are
limited in mapping the residual connection identity function
and, therefore, prevent the blocks from reaching the optimal
values in their training parameters.

Although attention models have been shown to be highly
efficient in feature extraction on image tasks, many authors
point out that a larger amount of data is needed to reach
optimal training parameters [65]. This could be the cause
that limits model 2 because it has the cross-cutting care
model in each block. However, this opens the possibility for
future work. For example, model 2 could be explored in the
segmentation task with a large corpus of data to observe the
model’s behavior in detail.

When it comes to related work, it is challenging to make
objective comparisons between deep learning (DL) networks
due to the unique design and training of each network.
The performance of a DL network can vary based on fac-
tors such as the quality and quantity of training data, the
number of layers and neurons in each layer, the learning
algorithm, hyperparameters, and even hardware acceleration
time, which can have a significant impact on both training
and inference time. This makes it difficult to evaluate dif-
ferent networks accurately and fairly, particularly when the
necessary information to replicate the networks and results
is not reported. Gryska et al. [45] even caution about the
difficulties in replicating segmentation models and argue
that established reproducibility criteria do not adequately
emphasize the importance of describing the preprocessing
chain. They conclude that a detailed description of the entire
preprocessing chain is necessary to establish solid evidence
of the generalizability of segmentation methods. Given these
limitations, we compared related works based on evaluation
metrics, the number of training parameters, and the training
or inference time of the model. Our results showed that our
models have better segmentation in terms of DSC, IoU, and
accuracy. Additionally, the number of training parameters in
our models was lower than in most other studies, and Model 3
had the lowest number of parameters. Our results were also
significantly superior to studies that aimed to reduce the
number of training parameters, such as Abdullah et al. [43],
who used separable convolutions for this purpose, but still had
several million more parameters than our models.
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Clearly, the use of separable convolutions allows to signif-
icantly reduce the number of training parameters. In our case,
this means that by limiting the number of parameters in the
convolutional layers, it was possible to increase the number of
parameters in the attention layers, improving feature extrac-
tion for segmentation without losing the spatial distribution
preserved by the convolutional layers. In other words, the
processing load falls on the attention models, but the integra-
tion with separable layers preserves the spatial distribution
of pixels. Consequently, this shows the high efficiency of the
models, as the Transformers allow processing all the input
information simultaneously, thanks to the multi-heads, which
makes the network very efficient in capturing abstract rela-
tionships in all the information. In addition, multiple attention
blocks allow information to be extracted from different parts
of the input dynamically and adaptively, making it possible
to learn more complex and subtle relationships.

Regarding the models using Transformers, it is worth not-
ing that model 1, performed approximately 17% better than
the architecture of Chen et al. [34]. Moreover, it achieved
a maximum score of 94% equal to the Lin et al. network,
but with 5.26 million training parameters in contrast to the
287 million of Lin et al. [35], showing a marked difference
in the computational cost of our network. Similarly, model 1
used just over one-fifth of the training parameters of Xie’s
network (5.26 vs. 41.9 million) [36], but outperformed Xie’s
score by 9%. Although these results are not fully comparable,
due to the set of images used, the values give a good intuition
of the excellent performance of cross-attention models. This
implies that, the cross-point product between keys, queries,
and values, improves feature extraction by avoiding dimen-
sionality loss between such mathematical operations, how-
ever, a deeper analysis of the architecture is required, which
we will be addressing in future research.

The test statistics revealed that there are statistically signif-
icant differences among the four models, i.e., the performance
of each model is substantially different among the others, for
the DSC and IoU metrics. For the case of Hausdorff distance,
the metric is widely used to evaluate the quality of seg-
mentation in images. High quality segmentation is achieved
when the Hausdorff distance is small and poor-quality seg-
mentation is achieved when the distance is large. While the
metric is widely used to validate the quality of segmentation,
the mathematical model shows that the metric is sensitive
to small imperfections in image segmentation, since it takes
the largest distance between the maxima of the minimum
distances between sets. Consequently, a small imperfection
can significantly increase the Hausdorff distance, which can
give a false impression of the quality in the segmentation.
In this sense, the sensitivity of the metric affects the distri-
bution of distances, causing such distributions to have over-
lapping inter-quartile ranges, which in turn increases the test
statistic, i.e., this makes the metric not statistically significant
between models, as indicated for models 2 and 3. It is worth
mentioning that, although models 2 and 3 are not statistically
different for a significance level of 0.05, they have a p-value
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of 0.08, i.e., the probability of committing type I error is
below 10%, which is an acceptable percentage for the case
of neural networks. In the case of the test statistic between
training times, the p-values show that network 3 and UNet are
not statistically different. In other words, it is highly probable
that model 3 can take the same training time as the UNet
model. This statement can be seen in Figure 15 where model 3
has a homogeneous distribution but close to the median (Q2
quantile) of UNet.

V. CONCLUSION

In this study, three new DL networks with a reduced num-
ber of training parameters were developed for automatic
segmentation of brain tumors in structural magnetic res-
onance images. The networks were based on our pro-
posed new model, called CrossTransUNet, a novel attention
model using separable convolutions and inspired by Trans-
former that integrates a dot product between the queries,
keys, and values in the three possible combinations that
allows to reduce the computational cost of the models
while achieving highly accurate segmentations, measured
by DSC.

The results showed that the three proposed models were
highly efficient and achieved superior results to UNet, even
with significantly fewer training parameters. In addition,
training times were significantly shorter for model 1, and it
was confirmed that the models were not overtrained. Simi-
larly, comparison with related work demonstrates the superi-
ority of the models, exceeding the values reported in the state
of the art in terms of DSC, IoU, Accuracy Metrics, inference
times, and even with a lower number of training parameters
by up to two orders of magnitude.

Overall, it is concluded that CrossTransUnet models are
efficient for feature extraction in MRI images and allow
efficient segmentation with fewer training parameters.

APPENDIX

A. CONVOLUTIONAL NEURAL NETWORK

Artificial intelligence is one of the areas of computational
science with many ramifications. Al ranges from the most
straightforward systems composed of linear models to the
most recent DL methods. One of the fundamental elements
in Al is Convolutional Neural Networks (CNN) or simply
convolutional networks. CNNs are one of many bio-inspired
systems based on the functioning of the central nervous
system, specifically the brain. These emulate the primary
visual cortex to perform tasks such as segmentation [66].
In particular, as the name implies, CNNs are shaped by a con-
volutional operator (or filter) that highlights features of the
input images. Currently, there are many networks that differ
substantially from the first convolutional model developed by
Lecun et al. [67] or from the first convolutional model of DL,
known as AlexNet [66]. However, although developments
report novel architectures, UNet remains the base structure
par excellence for segmentation networks [68].
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B. CONVOLUTION AND CONVOLUTIONAL LAYERS

In general, convolution is a mathematical operation described
as the sum of the product of two functions with the argument
of one of them inverted and offset by a value ¢. The operation
can be applied to discrete space with a few minor modifi-
cations and is the fundamental basis of convolutional neural
networks. The two-dimensional convolution C between two
matrices A € R and B € R3*3 is mathematically denoted
as expressed in Equation (A.1).

C=Ax*B (A1)

That is, if the matrices A and B are made up of the elements
described in equation (A.2), these would produce the matrix
C e RO=2x(n=2) (see Equation (A.3)).

a1 ay2 ... aig
a1l a2 ... An b1 bip bi3
C= . . x| b2 bap b3 | (A2)
: by b3 b33
_a,,,l an’z e a,,’n
C1,1 C1,2 Cl,n—2
2,1 €02 ... C2p-2
C = . ) . ) (A3)
| Ch—2,1 Cn—-22 . Cp—2,n-2

Here, each element of matrix C is given by Equation (A.4).

3 3

cij= Z Z Aitk—1,j+m—1 - bk,m

k=1 m=1

(A4)

Note that the () represents convolution (it is not a conven-
tional matrix product).

In the case of artificial neural networks, the smaller matrix
is called the filter or kernel. In addition, convolution is gener-
ally a multi-channel operation corresponding to the multiple
feature maps that are generated throughout the network. That
is, for a set of N-channel feature maps, one must have a filter
K with the same number of channels, such that the output
of the convolutional layer can satisfy the model described by
Equation (A.5).

N
C=g¢ (b + D Aix K,-) (A.5)

i=1

Here, b is the bias associated with the filter K, and ¢ is the
activation function of the model. Then, for a convolutional
layer of k filters, a feature map (or channel) is generated for
each filter as described in Equation (A.6).

N
Cj=<p(b,+ZAi*K,;,) i=1,23,...,k (A6)

i=1

It should be emphasized that Equation (A.6) is the convo-
lutional model of the neural network; therefore, the weights
that constitute each filter K;; and the biases b; are the training
parameters of the network.
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C. SEPARABLE CONVOLUTION

Separable convolutions are like the conventional convolutions
described in the previous section. However, they differ from
the former in that the operation is divided into two convolu-
tions: a depthwise convolution and a pointwise convolution.
That is, for a convolution equivalent to the previous one (set
of N-channel feature maps and 3 x 3 filter), the depthwise
convolution described by Equation (A.7), must be performed,
where each filter D; has the exact dimensions (D; € R3*3).

Ap, =AixD; i=1,23,....N (A7)

Subsequently, the operation is used in the pointwise convolu-
tion described by Equation (A.8).

N
C=§0(b+ZADi*Pi)

i=1

(A.8)

Here, the filter P has dimensions 1 x 1 and has the same
number of channels as the input. Therefore, for a separable
convolutional layer of k filters, the maps described by Equa-
tion (A.9) are generated.

N

G :ga(bj+ZAD,~*P,~j) J=1,23,....k (A9
i=1

Note that regardless of the number of filters selected, the

depthwise convolution is the same for all k filters; therefore,

the number of training parameters is smaller in this operation.

D. BATCH NORMALIZATION

Batch normalization was proposed by loffe and Szegedy
[69]. The method allows for faster and more stable training
through neural networks by normalizing, centering, and scal-
ing the inputs to each layer. In principle, the method was
devised to mitigate the problem of the internal covariates
change produced by the internal distribution change of each
feature map and the random initialization of the weights,
which limit the learning rate. This unfavorable effect can
be reduced by adjusting the distribution toward a standard
normal, i.e., a distribution with a mean of 0 and a standard
deviation of 1. The process is mathematically expressed by
Equation (A.10).

A X — KB

Xj= ——
02+8
B

Here, X; presents the input activation maps of the j-th mini-
batch. ug and aé are the mean and variance of the activation
maps, and ¢ is a constant added for numerical stability of the
variance. Additionally, the normalization is fit to an optimal
distribution (y;) by learning the coefficients of a linear trans-
formation, as expressed in Equation (A.11).

(A.10)

yi=y-3+8 (A.11)

The model learns the parameters y and B generating the new
distribution and improving the model performance [70]. The
transformation also smooths the gradient flow and acts as a
regularization layer [69].
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FIGURE 18. Upsampling interpolated to the nearest values.

E. MAX POOLING

The method is a pooling operation that calculates the maxi-
mum value across patches or windows along the feature maps.
Generally, for a set of feature maps A of dimensions R x C,
the pooling expressed in Equation (A.12) would be generated
for an operation with 2 x 2 patches or windows.

Mg Mo ... My,

s

My My ... Mo,

)

MaxPooling (A) = (A.12)

Mr‘l Mr,2 Mr,c

where, the M; ; are the maxima of the windows, as expressed
in Equation (A.13).

M, = max A, on Ao 2nt1
’ Admt12n Admt1,2041

R C

m=1,2,3,...,| = n=1273,...,| =

2 2

(A.13)

It should be emphasized that the windows are applied along
the rows and columns; therefore, the number of channels is
not affected.

F. UPSAMPLING
Upsampling could be considered the opposite process of
pooling. In general, the process consists of increasing the size
of the activation maps by adding new rows and columns filled
with values determined by some interpolation method. In the
simplest case, the activation maps have rows and columns
added to them interleaved with the original rows and columns
(interpolation to the nearest). The new rows and columns are
filled with the closest value, as illustrated in Figure 18.
Upsampling can be implemented with different interpola-
tion methods such as area, bicubic, bilinear, Gaussian, etc.
However, nearest-neighbor interpolation is usually the most
commonly used method due to its low computational cost.

G. RESIDUAL CONNECTION

Residual connection is a simple but highly effective concept
to facilitate the training of neural networks, mitigating the
effect produced by gradient fading. The residual connection
creates a trajectory parallel to a set of convolutional layers
by applying the identity mapping to the input layers and
summing this result to the output, as illustrated in Figure 19.
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FIGURE 19. a) traditional network without residual connections,
b) network with the residual connection. The identity mapping path can
have a direct connection or a convolutional layer.

Generally, the identity mapping is accompanied by a 1 x 1
convolution with the number of filters corresponding to the
central trajectory’s output to allow summation of the output
depicted in Figure 19.
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