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Abstract

Masked Image Modelling (MIM) has been shown to
be an efficient self-supervised learning (SSL) pre-
training paradigm when paired with transformer ar-
chitectures and in the presence of a large amount
of unlabelled natural images. The combination
of the difficulties in accessing and obtaining large
amounts of labeled data and the availability of
unlabelled data in the medical imaging domain
makes MIM an interesting approach to advance
deep learning (DL) applications based on 3D medi-
cal imaging data. Nevertheless, SSL and, in par-
ticular, MIM applications with medical imaging
data are rather scarce and there is still uncertainty
around the potential of such a learning paradigm in
the medical domain. We study MIM in the context
of Prostate Cancer (PCa) lesion classification with
T2 weighted (T2w) axial magnetic resonance imag-
ing (MRI) data. In particular, we explore the ef-
fect of using MIM when coupled with convolutional
neural networks (CNNs) under different conditions
such as different masking strategies, obtaining bet-
ter results in terms of AUC than other pre-training
strategies like ImageNet weight initialization. 1

1 Introduction

The deep learning (DL) field has quickly progressed
during the past years and its convergence with med-
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ical imaging is rapidly enabling the development
of tools that can support health practitioners by
automatizing tasks that otherwise would be car-
ried out by human experts [1, 2]. In particular, 3D
medical images such as MRI hold a tremendous po-
tential to help in the management and diagnostic
pathway of diseases such as PCa by, for instance,
reducing the number of biopsies [3] or increasing the
detection rate for the lesions that require treatment
and further testing (clinically significant) [4]. Nev-
ertheless, MRI review requires specialized training
and expertise to achieve such results. Furthermore,
its analysis can suffer from inter-reader variability
and sub-optimal interpretation [5] and in that re-
gard, DL applications can offer an alternative able
to reduce or overcome the aforementioned issues
by helping doctors in their daily chores. However,
DL algorithms have traditionally relied on a super-
vised learning paradigm, requiring large amounts
of annotated data. In the clinical domain, such an-

Figure 1: Example of T2w axial direction slice,
static masking approach and dynamic masking
(left, mid and right column, respectively).
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Figure 2: From left to right: Contrastive, Masked Image Modelling (MIM) and fully supervised ap-
proaches (or downstream evaluation).

notations are typically limited, expensive and time-
consuming to obtain, making its access and avail-
ability a barrier for the progress of DL in the med-
ical imaging domain [6, 2].

Current approaches to tackle data scarcity com-
monly focus on transfer learning (TL) with Ima-
geNet weights. However, the results obtained with
it can be sub-optimal due to the existing gap be-
tween the initialization domain (RGB natural im-
ages) and the target domain (medical images) [7].
Self-supervised learning (SSL) [8] has aroused as
a viable alternative and, in particular, has shown
promising results in the medical domain when in
the presence of scarce amounts of labeled data
[9, 10]. However, most of the SSL approaches are
tailored to natural images (RGB) and 2D data,
whilst their effect is rather unknown and unex-
plored in the case of 3D medical images.

MIM is a type of SSL approach that uses a
masked (corrupted) input to predict the unmasked
original signal and has shown promising results in
natural language processing (NLP) [11, 12]. Fur-
thermore, latest approaches based on MIM have
also shown a good performance in vision models
[13]. In spite of it, little attention has been paid to
MIM for MRI and, in particular, for PCa applica-
tions. In this work, we hypothesize that by leverag-

ing MIM we can improve the performance of PCa
diagnosis measured by area under the curve (AUC)
when compared to other initialization strategies
such as ImagNet and random initialization. In that
regard, our contributions in the work are the fol-
lowing:

• We explore different masking strategies for
MIM in a dynamic and static way (different
ratios for each patient or a fixed ratio) in or-
der to determine the effect of it in 3D MRI
data for PCa (Figure 1).

• We compare MIM by means of fine-tuning with
SSL contrastive learning approaches (Sim-
CLR), since it has been proven to learn robust
features for medical down-stream tasks [9, 10]
(Figure 2).

• We explore the effect of different fractions of
annotated data in a linear probing and fine-
tuning setting in order to test the robustness of
the approach and as a proxy for real world ap-
plications in the clinical domain, where scarce
annotated data is usually the norm.
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Figure 3: Masked image modelling with convolutional neural networks training and evaluation pipeline.

2 Data

The data used for the development of the model
and internal validation is the ProstateX dataset
[14]. The study is retrospective and includes dif-
ferent MRI sequences from which we use axial T2w
due to its higher inter-plane resolution. The MRI
sequences were obtained without endorectal coil
with a 3.0 T field strength Siemens scanners.
The cohort included in the development of the

SSL approaches consisted of 346 patients (unla-
belled), whilst the downstream evaluation and su-
pervised learning approaches were evaluated on the
basis of 204 labeled patients, which were the total
amount available at the time the study was carried
out.
The 204 labeled sequences are provided with

biopsy results, which are the basis to define the
clinical significance of the lesions for the down-
stream task (Figure 3). Specifically, if Gleason
Score (GS) ≥ 7 the lesions are deemed to be signif-
icant and non-clinically significant otherwise. For
those patients with ≥ 1 lesion present in the se-
quence, we consider the worst case scenario and
label the patient according to the highest scored
lesion in terms of GS score.

2.1 Pre-processing and data split-
ting

As part of the pre-processing, we re-sample all the
sequences by linear interpolation to a common co-
ordinate system with a 2D resolution of 0.5 x 0.5
mm2 and 3.6 mm slice thickness, which are the pre-
dominant resolution and slice thickness among the
sequences. Following, we normalize the MRI se-
quences intensities to a range of [0, 1] and apply
outlier removal by removing the intensities of each
sequence that are outside of the range of the 1st
and 99th percentiles.

To train the SSL approach, we use all the avail-
able unlabelled data [15]. Following, we split the
labeled data in 70% and 30% for training and test-
ing sets, respectively. The training set is used to
re-train the pre-trained algorithm during the down-
stream task whilst the testing one is used to have
an estimation of the performance of the model in a
real-world scenario with unseen data during train-
ing.

3 Approach and Evaluation

Masked image modelling (MIM) learns representa-
tions from images corrupted by masking patches.
In particular, MIM builds on the concept of
auto-encoding, which consists of an encoder that
maps the corrupted (masked) input to a lower-
dimensional representation (latent representation)
and a decoder that aims to reconstruct the orig-
inal input from the lower-dimensional representa-
tion obtained from the masked input. Following
that concept, Denoising Autoencoders (DAE) [16]
are a class of auto-encoders that corrupt the input
signal using different corruptions such as masking
pixels or rotating image patches [17].

Our masked auto-encoder (MAE) is a simple
convolution-based auto-encoder that aims to re-
cover the original 3D sequence from a partial obser-
vation, obtained by masking 3D cubes of the MRI
sequence (Figure 2, bottom of left side). Specif-
ically, we use a U-net [18] like auto-encoder ar-
chitecture with a 3D VGG16-inspired [19] encoder
and decoder [20] includng 3D convolutions and 3D
batch normalization operations. We follow a sim-
ilar training procedure as the one in [20] with an
Adam optimizer and a learning rate of 0.0001. The
training and inference is performed on a Tesla V100
GPU.
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3.1 Dynamic and static approach

We split each 3D sequence into regular non-
overlapping cubes. Following this, we sample a
sub-set of cubes and apply a series of corruption op-
erations (masking, rotation of 30 degrees and hori-
zontal and vertical flipping of the cubes [20]) with
a fixed size and sampling number (static approach)
or a dynamic size and sampling for each patient
(dynamic approach) (Figure 1). Specifically:

Static approach. We choose a fixed value and
divide the image total size by the chosen value,
such that all the cubes of the patient have the same
height/width ratio. Additionally, we also fix the
sub-set of cubes that will be corrupted.

Dynamic approach We choose a range of values
and divide each patient size by a randomly chosen
value in that range, such that all the patients have
a different height/width ratio cubes. Additionally,
we also set a corruption range, such that the sub-
set of cubes that will be corrupted is different for
every patient.

Figure 4: Reconstructions obtained with Static
(three first columns) and Dynamic (last three
columns) MIM approaches.

We conducted experiments to test the effect of
two different approaches to the MIM pre-training
strategy. Specifically, we experiment with the static
and dynamic corruption approaches and different
configurations of them. As shown in Table 1, the
main difference lie on the fact that we apply dif-
ferent corruptions, sub-sampling %, cube sizes and
corruption operations probabilities (that is, for a
specific patient a corruption might happen to a
cube with a pre-defined probability p). Examples
of the of the effect of the approaches in selected

slices of patients is shown in Figure 1 (we carry it
out in 3D but for the sake of simplicity we exem-
plify it in 2D, at the slice level) whilst the effect of
the two approaches in the reconstruction of the pa-
tient sequences when carrying out the pre-training
stage, is depicted in Figure 4.

Table 1: Characteristics of the different tested MIM
approaches.

Approach
Characteristics Static Dynamic

Cube size 32x32x16 [9x9x2 -32x32x16]
Corruptions Occlusion Occlusion, Rotation & Flipping

Sub-sampling % 60 [60 - 90]
Occlusion/Others ratio % 100 50

3.2 Linear probing and fine-tuning

We evaluate the effect of proposed pre-training
strategy following previous work practices on un-
supervised visual representation learning [13]. In
particular, we evaluate the downstream task (lesion
classification) under two different settings: Lin-
ear probing and fine-tuning. In the first case, the
weights obtained from the MIM pre-training strat-
egy are frozen and a randomly initialized linear
head (fully-connected layer) is trained for the le-
sion classification task. The idea underlying such
an evaluation protocol is to obtain an estimation
of the quality of the learnt features and their re-
usability [9]. In the other case scenario, the en-
coder is unfrozen and re-trained. Both procedures
are carried out with different fractions of labeled
data: 10, 25, 50 and 100%. That is, we sample in
a stratified way the chosen % of the test set with-
out replacement and evaluate the method with that
sub-set of the test set (Figure 2).

3.3 Bootstrapping and statistical
significance

As part of the evaluation protocol, we include a
non-parametric bootstrap approach with n = 100
replicates from the test set to estimate the variabil-
ity of the model performance. Following, we obtain
the 95 % bootstrap confidence intervals (CI) and
assess the significance at the p = 0.05 level between
the different approaches (dynamic, static and base-
lines) in terms of AUC. The comparison is carried
out by means of Wilcoxon signed-rank [21].
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Table 2: Results for MIM (dynamic approach), ImageNet and Random initialization with 100% of labeled
data and linear probing evaluation approach.

Metrics
Method AUC Accuracy Precision Recall F1 p value
Random 0.64 [0.53, 0.70] 0.60 [0.48, 0.69] 0.54 [0.42, 0.56] 0.53 [0.43, 0.64] 0.53 [0.42, 0.60] 0.050†

ImageNet 0.71 [0.62, 0.80] 0.66 [0.56, 0.78] 0.62 [0.46, 0.78] 0.60 [0.47, 0.71] 0.60 [0.46, 0.74] 0.492
MIM 0.75 [0.69, 0.83] 0.71 [0.63, 0.78] 0.73 [0.53, 0.87] 0.60 [0.51, 0.69] 0.66 [0.52, 0.70] -

† Statistically significant.

All the conducted experiments include two
stages: pre-training with the MIM approach and
the downstream task evaluation. We use the
same encoder of the architecture used for the
MIM approach (VGG16) and train it with Ima-
geNet weights and random initialization. Both ap-
proaches are considered to be the baselines of the
work and compared against MIM under the differ-
ent evaluation protocols described in Section 3.2.
The results are presented in terms of bootstrapping
(Section 3.3) and AUC, Accuracy, Precision, Recall
and F1 metrics (mean and 95% CI). In particu-
lar, the p values are obtained based on the AUC.
Following, we present a sensitivity analysis on the
effect of the static and dynamic approaches pre-
sented in Section 3.1 and the different corruption
operations and sub-sampling amount tested in such
approaches.

4 Results

4.1 Linear probing

We start by investigating if the representations
learnt by MIM are of higher quality than the ones
transferred through ImageNet or obtained from a
random initialisation. As depicted in Figure 5, the
MIM approach shows statistically significant im-
provements when compared to a random initializa-
tion for different % of annotated data but shows
non-significant improvements when compared to
ImageNet initialization. When tested with small
amounts of labeled data, the MIM approach reaches
an averaged AUC 0.66 [0.62, 0.74], compared with
0.58 [0.51, 0.68] of ImageNet and 0.51 [0.50, 0.55]
of Random initialisation. These finding support the
hypothesis that MIM representations are of higher
quality, which is most apparent when the annotated
data is scarce and when compared to a random ini-

tialization. In particular, Table 2 shows the results
for all the metrics when the methods are presented
with 100% of annotated data. As the table shows,
MIM outperforms the other initialization methods
based on AUC results when all the original anno-
tated data is available, showing the efficiency of
using in-domain data rather than out-of-domain
methods.

4.2 Fine-tuning

Figure 6 shows the proposed MIM method with a
dynamic approach offers significant improvements
when evaluated under a fine-tuning protocol (p <
0.001) and when compared to ImageNet and Ran-
dom initialisation for all the different % of anno-
tated data. In particular, the MIM improvements
are particularly large for small amounts of anno-
tated data (Random 0.51 [0.52, 0.55], ImageNet
0.58 [0.51, 0.60] and MIM 0.66 [0.62, 0.74]), show-
ing that the MIM pre-training strategy is more ef-
ficient than its out-of-domain counterparts when in
the presence of scarce amounts of annotated data.

Figure 5: AUC and 95% CI intervals for different
fractions of labeled data and Random, ImageNet
and MIM initialisation with a dynamic approach
and linear probing evaluation scheme.
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Table 3: Results for MIM (dynamic approach), ImageNet and Random initialization with 100% of labeled
data and fine-tuning evaluation approach.

Metrics
Method AUC Accuracy Precision Recall F1 p value
Random 0.64 [0.56, 0.80] 0.67 [0.56, 0.80] 0.52 [0.26, 0.84] 0.53 [0.44, 0.57] 0.52 [0.33, 0.68] <0.001†

ImageNet 0.77 [0.68, 0.86] 0.73 [0.64, 0.81] 0.72 [0.42, 1.0] 0.55 [0.47, 0.67] 0.62 [0.44, 0.80] 0.568
MIM 0.80 [0.71, 0.90] 0.78 [0.70, 0.84] 0.75 [0.46, 0.94] 0.58 [0.49-0.70] 0.65 [0.48, 0.80] -

† Statistically significant.

Specifically, as shown in Table 3 the dynamic MIM
approach outperforms the other initialisation meth-
ods in terms of the other metrics used in this work
(Accuracy, Precision, Recall and F1) when in the
presence of 100% of annotated data and in a fine-
tuning evaluation protocol.

4.3 Dynamic vs static approach

We observe non-significant differences for the AUC
between the dynamic and static approach (0.80
[0.72-0.90] vs 0.71 [0.62-0.81], p = 0.08) and larger
values when it comes to accuracy, precision and re-
call (Figure 7). Specifically, we observe that the
dynamic approach obtains better results both in a
scarce amount of data setting (10% of annotated
data) in terms of AUC (0.62 [0.58-0.71] vs 0.67
[0.65-0.74] p = 0.215) and with the original amount
of annotated data (0.70 [0.58-0.81] vs 0.80 [0.71-
0.90] p = 0.08).

Figure 6: AUC and 95% CI intervals for different
fractions of labeled data and Random, ImageNet
and MIM initialisation with a dynamic approach
and fine-tuning evaluation scheme.

4.4 Contrastive learning vs MIM

We experiment with SimCLR [9] and compare the
results in a fine-tuning setting with our dynamic
MIM approach in terms of AUC for 10% and
100% of annotated data. We observe that the dy-
namic MIM outperforms SimCLR in both settings
in terms of AUC (0.80 [0.71-0.90] vs 0.77 [0.69-
0.84] p = 0.501 for 100% and 0.66 [0.62-0.74] vs
0.62 [0.61-0.69]) p = 0.278 for 10%), depicting its
robustness in the presence of the original amount
of annotated data and in an evaluation setting sim-
ulating an extreme data scarcity.

Figure 7: Results for dynamic and static MIM ap-
proaches (AUC, Accuracy, Precision and Recall,
from left to right) in a fine-tuning setting and dif-
ferent fractions of annotated data.

5 Conclusions

To the best of our knowledge, this is the first con-
tribution that shows the potential of masked mod-
elling for MRI in a PCa context. We experimented
with different masking approaches showing that a
dynamic per patient corruption MIM pre-training
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scheme is able to obtain high quality data fea-
tures for PCa lesion classification, even in the pres-
ence of highly scarce labeled data. In particular,
we observe that a dynamic MIM approach out-
performs random initialisation, ImageNet and Sim-
CLR approaches, showing larger AUC when com-
pared to standard initialisation techniques (out-of-
domain) and other self-supervised in-domain ones
(SimCLR).
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[4] Matthias Röthke, AG Anastasiadis, M Lichy,
M Werner, P Wagner, S Kruck, Claus D
Claussen, A Stenzl, HP Schlemmer, and
D Schilling. Mri-guided prostate biopsy de-
tects clinically significant cancer: analysis of
a cohort of 100 patients after previous neg-
ative trus biopsy. World journal of urol-
ogy, 30(2):213–218, 2012. doi: 10.1007/
s00345-011-0675-2.

[5] Andrew B Rosenkrantz, Luke A Ginocchio,
Daniel Cornfeld, Adam T Froemming, Ra-
jan T Gupta, Baris Turkbey, Antonio C West-
phalen, James S Babb, and Daniel J Margo-
lis. Interobserver reproducibility of the pi-rads

version 2 lexicon: a multicenter study of six ex-
perienced prostate radiologists. Radiology, 280
(3):793, 2016. doi: 10.1148/radiol.2016152542.

[6] Andre Esteva, Katherine Chou, Serena Ye-
ung, Nikhil Naik, Ali Madani, Ali Mottaghi,
Yun Liu, Eric Topol, Jeff Dean, and Richard
Socher. Deep learning-enabled medical com-
puter vision. NPJ digital medicine, 4(1):1–9,
2021. doi: 10.1038/s41746-020-00376-2.

[7] Maithra Raghu, Chiyuan Zhang, Jon Klein-
berg, and Samy Bengio. Transfusion: Under-
standing transfer learning for medical imaging.
Advances in neural information processing sys-
tems, 32, 2019.

[8] Longlong Jing and Yingli Tian. Self-
supervised visual feature learning with deep
neural networks: A survey. IEEE transactions
on pattern analysis and machine intelligence,
43(11):4037–4058, 2020. doi: 10.1109/TPAMI.
2020.2992393.

[9] Alvaro Fernandez-Quilez, Trygve Eftestøl,
Svein Reidar Kjosavik, Morten Goodwin, and
Ketil Oppedal. Contrasting axial t2w mri
for prostate cancer triage: A self-supervised
learning approach. In 2022 IEEE 19th In-
ternational Symposium on Biomedical Imag-
ing (ISBI), pages 1–5, 2022. doi: 10.1109/
ISBI52829.2022.9761573.

[10] Shekoofeh Azizi, Basil Mustafa, Fiona Ryan,
Zachary Beaver, Jan Freyberg, Jonathan
Deaton, Aaron Loh, Alan Karthikesalingam,
Simon Kornblith, Ting Chen, et al. Big self-
supervised models advance medical image clas-
sification. In Proceedings of the IEEE/CVF
International Conference on Computer Vi-
sion, pages 3478–3488, 2021.

[11] Jacob Devlin, Ming-Wei Chang, and Kenton
Lee. Kristina, toutanova. Bert: Pre-training of
deep bidirectional, transformers for language
understanding. In, NAACL, 2(3), 2019. doi:
10.18653/v1/N19-1423.

[12] Tom Brown, Benjamin Mann, Nick Ryder,
Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, et al.

7



Language models are few-shot learners. Ad-
vances in neural information processing sys-
tems, 33:1877–1901, 2020.

[13] Kaiming He, Xinlei Chen, Saining Xie, Yang-
hao Li, Piotr Dollár, and Ross Girshick.
Masked autoencoders are scalable vision learn-
ers. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recog-
nition, pages 16000–16009, 2022.

[14] Geert Litjens, Oscar Debats, Jelle Barentsz,
Nico Karssemeijer, and Henkjan Huisman.
Computer-aided detection of prostate cancer
in mri. IEEE transactions on medical imag-
ing, 33(5):1083–1092, 2014. doi: 10.1109/TMI.
2014.2303821.

[15] Hari Sowrirajan, Jingbo Yang, Andrew Y Ng,
and Pranav Rajpurkar. Moco pretraining im-
proves representation and transferability of
chest x-ray models. In Medical Imaging with
Deep Learning, pages 728–744. PMLR, 2021.

[16] Pascal Vincent, Hugo Larochelle, Isabelle La-
joie, Yoshua Bengio, Pierre-Antoine Manzagol,
and Léon Bottou. Stacked denoising autoen-
coders: Learning useful representations in a
deep network with a local denoising criterion.
Journal of machine learning research, 11(12),
2010.

[17] Pascal Vincent, Hugo Larochelle, Yoshua Ben-
gio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denois-
ing autoencoders. In Proceedings of the 25th
international conference on Machine learning,
pages 1096–1103, 2008.

[18] Olaf Ronneberger, Philipp Fischer, and
Thomas Brox. U-net: Convolutional net-
works for biomedical image segmentation. In
International Conference on Medical image
computing and computer-assisted intervention,
pages 234–241. Springer, 2015. doi: 10.1007/
978-3-319-24574-4 28.

[19] Karen Simonyan and Andrew Zisserman.
Very deep convolutional networks for large-
scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[20] Alvaro Fernandez-Quilez, Trygve Eftestøl,
Svein Reidar Kjosavik, and Ketil Oppedal.
Learning to triage by learning to recon-
struct: a generative self-supervised approach
for prostate cancer based on axial t2w mri.
InMedical Imaging 2022: Computer-Aided Di-
agnosis, volume 12033, pages 460–466. SPIE,
2022. doi: 10.1117/12.2610623.

[21] Robert F Woolson. Wilcoxon signed-rank test.
Wiley encyclopedia of clinical trials, pages 1–3,
2007. doi: 10.1002/9780471462422.eoct979.

8


	Introduction
	Data
	Pre-processing and data splitting

	Approach and Evaluation
	Dynamic and static approach
	Linear probing and fine-tuning
	Bootstrapping and statistical significance

	Results
	Linear probing
	Fine-tuning
	Dynamic vs static approach
	Contrastive learning vs MIM

	Conclusions

