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Abstract

This thesis explores the mathematical concepts of differential forms and their applications in higher
dimensional geometries, known as manifolds. We will see how the topological invariants of a geometry
are related to whether a differential form can be solved or not. We will study some examples to
gain an understanding of how the number of solutions to Maxwell’s differential equations is related
to cohomology groups.
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1 Introduction Jenny Therese Hodne

1 Introduction

As long as humans has walked the earth, we have had a urge to understand and describe real
life experiences. Historians finds mathematical writings far back, and as we have discovered new
phenomenons, mathematics has developed in step with the discoveries. Mathematics has been and
still is in many ways a language used to explain and model the reality. New discoveries are made
every day, and mathematicians and physicists are working together to develop new tools to describe
these new discoveries.

Some physical theories presuppose that the mathematics tools to describe these are able to be applied
to higher dimensions. The goal for this thesis is exactly to benefit from the connection between some
mathematical branches, so it would be easier to work in higher dimensions:

Analysis /
Solutions to diff. eq.

←→ Algebra /
Cohomology

←→ Topology /
Geometry

Differential equations is a very useful part of mathematics and physics because it gives us the
opportunity to describe the relationship between the function and the change of the the function.
We remember that in order to solve a differential equation there must be specified some boundary
conditions, which says something about the geometry of the space we a solving the differential
equations on. In higher dimensions, we often use differential forms to describe our differential
equations.

Before we will see the connection between differential forms and geometries in higher dimension,
which we call manifolds, we have to introduce some group theory, which will give us the opportunity
to characterize and sort topology of a manifold in terms of differential forms.
Topology is a another part of mathematics where geometric objects are studied and classified based
on their ability to preserve its structure under continues deforming. A good way to describe topology
is to see the classical example of the torus and the cup:

Figure 1:
Original figure form [9]. All structure is preserved under deformation. Torus and the cup has the

same topology.

Generally, the topology of a geometry has a lot to say if the differential equation can be solved or
not in these particular geometries. For example, it is possible to find the solutions to Maxwell’s
equations in vacuum on the 2-sphere, but not on the 3-sphere. The number of solutions is related to
topological invariant of the geometry, known as the cohomology groups. It is often easier to find the
cohomology groups than the explicit solutions to the differential equation. Said with other words,
we can count number of solutions, even though we do not have a clue how they would look.
This shows a close connection between different parts of mathematics; analysis (differential equa-
tions), topology, and algebra (number theory, groups, etc.). This connection is often exploited in
modern mathematics, and is for example used to prove that there is a spot on the earth where it is
no wind. This would not be the case if the earth would have another topology, such as a torus.
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1 Introduction Jenny Therese Hodne

This thesis is organised as follows: Section 2 introduces differential forms, including the wedge
product and the exterior derivative. In section 3, we delve deeper into algebra, and present necessary
prior knowledge about group theory in order to take advantage of factor groups. In section 4, we
explore manifolds and how differential forms are relevant for defining geometric invariants. Section
5 connects the dots between the previous chapters. Firstly, we see how cohomology groups can give
us the number of solutions to Maxwell’s differential equations. Secondly, we generalise Maxwell’s
equations to higher dimensions. And finally, we look at the connection between boundary value
problem and topology.
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2 Differential forms Jenny Therese Hodne

2 Differential forms

We follow chapter 17 in [2].
Differential forms is a part of calculus that provides us the opportunity to explore and describe
physics and other sciences. Differential forms is a tool for multivariable calculus which is independent
of coordinates. Differential forms can be used on curves, surfaces and higher-dimensions, and is
therefore a very meaningful tool in calculus. In the following section we will look at the wedge
product and exterior derivative, and further on in the thesis we will see what a differential form on a
manifold means. We will then see how they can be used to extract geometric invariants of topologies
known as cohomology groups.

2.1 Differential k-forms

Definition 2.1. An arbitrary k-from on Rn is an element of the vector space of differential forms,
denoted as Ωk(Rn). Let κ ∈ Ω1(Rn). For 1 ≤ i ≤ n. dxi will be basis that assign κ to its i’th
component κi. With Einsteins summation notation, a differential k-form can be written as:

κ =
1

k!
κi1,...,ikdxi1 ∧ · · · ∧ dxik , ∈ Ωk (Rn)

Although all this may seem very abstract, we are already quite familiar with 0-form, 1-form, 2-from
and 3-form in R3. These are more commonly known as functions or scalars, vectors or line elements,
surface elements and volume elements. In vector calculus we normally denote these elements with
dx, dy and dz, but in differential calculus we use the notation dx1, dx2 and dx3.

Example From chapter 17 in [2]

a) 0-form: Any arbitrary function f ∈ Ω0 (R3)

b) 1-form: α = α1dx1 + α2dx2 + α3dx3, ∈ Ω1 (R3)

c) 2-form: β = β1dx2 ∧ dx3 + β2dx3 ∧ dx1 + β3dx1 ∧ dx2, ∈ Ω2 (R3)

d) 3-form: Γ = γdx1 ∧ dx2 ∧ dx3, ∈ Ω3 (R3)

Notice: for n ≥ 4, Ω4 (R3) is not defined in the domain.

2.2 Wedge Product

The wedge product, also known as exterior product, is a operator used in differential forms. The
wedge product has the following properties [6]:

1. Anti-symmetri:
dx ∧ dy = −dy ∧ dx

Corollary 2.1. The wedge product of a 1-form with itself will always be 0

Proof.

dx ∧ dx = −dx ∧ dx
⇒ dx ∧ dx+ dx ∧ dx = 0

⇒ 2dx ∧ dx = 0

⇒ dx ∧ dx = 0
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2.3 Exterior derivative Jenny Therese Hodne

2. Associative:

(dz ∧ dx) ∧ dy = dz ∧ (dx ∧ dy)

In a very practical point of view dx ∧ dy will form a square in R3, and give the normal-vector as an
output. It follows from this that the wedge product of dx and dy will point in z direction.

Corollary 2.2. Given α and β, where α, β ∈ Ω1 (R3). The cross product of α and β is equivalent
to the wedge product of α and β.

α = α1x1 + α2x2 + α3x3

β = β1x1 + β2x2 + β3x3

α× β ≃ α ∧ β ∈ R3

Proof.

α× β =(α2β3 − α3β2)x̂1 − (α1β3 − α3β1)x̂2 + (α1β2 − α2β1)x̂3

α ∧ β =α1β1dx1 ∧ dx1 + α1β2dx1 ∧ dx2 + α1β3dx1 ∧ dx3
+ α2β1dx2 ∧ dx1 + α2β2dx2 ∧ dx2 + α2β3dx2 ∧ dx3
+ α3β1dx3 ∧ dx1 + α3β2dx3 ∧ dx2 + α3β3dx3 ∧ dx3

α ∧ β =α1β2dx1 ∧ dx2 + α1β3dx1 ∧ dx3 + α2β1dx2 ∧ dx1
+ α2β3dx2 ∧ dx3 + α3β1dx3 ∧ dx1 + α3β2dx3 ∧ dx2

α ∧ β =(α1β2 − α2β1)dx1 ∧ dx2 + (α2β3 − α3β2)dx2 ∧ dx3 + (α3β1 − α1β3)dx3 ∧ dx1

As mentioned above, dx1 ∧ dx2 points in the z-direction. Hence dx1 ∧ dx2 ≃ x̂3

α ∧ β ≃ (α2β3 − α3β2)x̂1 + (α3β1 − α1β3)x̂2 + (α1β2 − α2β1)x̂3 = α× β

It is important to mention that this is only true for R3, precisely because this is where the cross-
product is defined.

2.3 Exterior derivative

We have already established that a 0-form is something we already know as a function in R3. If
we would take the derivative of function f(x, y, z) on R3 we would get df = ∂f

∂xdx + ∂f
∂y dy +

∂f
∂z dz.

Notice how by taking the derivative on f , the outcome describes each term in terms of the differential
direction dx1, dx2 and dx3.

Definition 2.2. The exterior derivative is a differential operator d which maps a k-form on Rn to
a (k + 1)-form on Rn:

d : Ωk(Rn)→ Ωk+1(Rn) .

Explicitly, from definition 2.1 we have κ ∈ Ωk(Rn), d acts as;

dκ = 1
k!∂jκi1i2...ikdx

j ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik .
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2.3 Exterior derivative Jenny Therese Hodne

Example: Applying the operator d = dxi∂i on V = dxmVm ∈ Ω1(R3), we get:

dV = ∂iVmdx
i ∧ dxm =

∂Vm
∂xi

dxi ∧ dxm

The exterior derivative has these three properties [6]:

1. The operator d is linear from Ωk into Ωk+1.
Let α and β ∈ Ωk(Rn)

d(α+ β) = d(α) + d(β)

2. If α is a k-form, and γ is a p-form, by applying the product rule:

d(α ∧ γ) = (dα) ∧ γ + (−1)kα ∧ (dγ)

3. d(dV ) = 0

Proof. We follow the proof of [2]
d(dV ) = 0

d(dV ) =
(
∂j∂iVmdx

j ∧ dxi
)
∧ dxm =

(
∂2Vm
∂xj∂xi

dxj ∧ dxi
)
∧ dxm

It is already been shown that if j = i, then dxj ∧ dxi = 0. So we set j ̸= i. And since the ∂i∂j
operator is symmetric, and dxi ∧ dxj is anti-symmetric, the terms inside the brackets will cancel
each other out:

∂2Vm
∂xj∂xi

dxj ∧ dxi +
∂2Vm
∂xi∂xj

dxi ∧ dxj

=
∂2Vm
∂xj∂xi

dxj ∧ dxi +
∂2Vm
∂xj∂xi

(
−dxj ∧ dxi

)
= 0

From vector calculus we are already familiar with the identities ∇·(∇×V⃗ ) = 0, and ∇×(∇ V⃗ = 0).
From the proof above we can connect vector calculus with exterior derivative. Lets consider following
example:

Example: Apply the exterior derivative on V ∈ Ω1(R3)

V = V1(x
1, x2, x3)dx1 + V2(x

1, x2, x3)dx2 + V3(x
1, x2, x3)dx3

dV =

(
∂V2
∂x1
− ∂V1
∂x2

)
dx1 ∧ dx2 +

(
∂V3
∂x2
− ∂V2
∂x3

)
dx2 ∧ dx3 +

(
∂V1
∂x3
− ∂V3
∂x1

)
dx3 ∧ dx1

Let us take the curl of V , and see how the exterior derivative is related to the curl in R3.

∇× V =

(
∂V3
∂x2
− ∂V2
∂x3

)
dx1 +

(
∂V1
∂x3
− ∂V3
∂x1

)
dx2 +

(
∂V2
∂x1
− ∂V1
∂x2

)
dx3 (1)

We remember how dx2 ∧ dx3 points in the direction of dx1, so the first term in ∇× V is:(
∂V3
∂x2
− ∂V2
∂x3

)
dx2 ∧ dx3

Which is exactly the same as we find in the second term in equation 1. We say that the exterior
derivative is equivalent to the curl in R3. From here it is obvious that since dV is equivalent
to ∇× V , there is also and equivalence between d(dV ) = 0 and ∇ · (∇× V ) = 0.
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3 Group Theory Jenny Therese Hodne

3 Group Theory

Before we move to study curved manifolds, we need to introduce some concepts from group theory
that we will need when we come to define geometric invariants for manifolds known as cohomology
groups.

We follow chapter 0 in [3].
A collection of elements is called a set, and we use the notation: A = {a, b, c, . . . }. A partition of a
set A is a collection of non-trivial subsets of A, such that each element a ∈ A exist in one and only
one subset. The subsets in the partition are called cells or coset, both terms will be used. We use
the notation x̄ or [x] for the cell containing x, x ∈ x̄. An equivalence relation on a set A is one that
satisfies these three properties:

1. x ∈ A⇒ x ∼ x for every x ∈ A (Reflexive).

2. x ∼ y ⇒ y ∼ x for every x, y ∈ A (Symmetric).

3. x ∼ y and y ∼ z ⇒ x ∼ z for every x, y, z ∈ A (Transitive).

An equivalence relation gives rise to a partition for A, and visa versa.

Example: Look at ∼ on Z such that a ∈ Z and b ∈ Z.

a ∼ b if a = b+ 2n for n ∈ Z (2)

Let us look at 1̄ = {x ∈ Z | x ∼ 1 by (2), so there exist a n ∈ Z such that x+ 2n = 1}
= {all odd numbers}

2̄ = {y ∈ Z | y ∼ 2 by (2), so there exist a n ∈ Z such that y + 2n = 2}
= {all even numbers}

Z = 1̄ ∪ 2̄

3.1 Binary operation

We follow chapter 1 in [3].
Let S and S be two sets. Then the set S × S = {(a, b) | a ∈ S and b ∈ S} is the direct product of
S and S. A binary operation or product ⋆ on a set S is a function mapping S × S → S. For each
(a, b) ∈ S × S we write: ⋆((a, b)) = a ⋆ b.

Example of different binary operations on numbers: Addition, subtraction, multiplication, divi-
sion,...

Remark: The operation has to be defined for every (a, b) ∈ S.

Definition 3.1. Let ⋆ be a binary operation on S. ⋆ is commutative if a ⋆ b = b ⋆ a

Definition 3.2. ⋆ is associative if a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c

Example: Addition and multiplication of integers are both commutative and associative binary
operations.

Example: Subtraction and division for integers are either commutative or associative binary oper-
ations.
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3.2 Group Jenny Therese Hodne

3.2 Group

We follow chapter 1 in [3].
We have looked at sets and binary operation and some associated properties. A set G together with
a binary operation ⋆ is called a group if and only if (G, ⋆) satisfies the group axioms:

1. ⋆ is associative: a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c.

2. (G, ⋆) has a identity element e ∈ G:

e ⋆ a = a ⋆ e = a ∀ a ∈ G.

3. For all a ∈ G there exist an a−1 ∈ G such that:

a ⋆ a−1 = e = a−1 ⋆ a.

Example: Look at (Z,+) and determine if it is a group:

1. Addition is associative.

2. The identity element e = 0 ∈ Z x ∈ Z⇒ x+ 0 = 0 + x = x.

3. Given a ∈ Z. a ⋆ a−1 = e ⇒ a+ (−a) = 0 → a−1 = −a

(Z,+) satisfies the group axioms, and is a group.

Definition 3.3. A group (G, ⋆) is called abelian if and only if ⋆ is commutative:

a ⋆ b = b ⋆ a, a, b ∈ G.

Definition 3.4. A mapping Φ from a group (G1, ⋆1) to a group (G2, ⋆2) which preserve the product
is called a homomorphisan. For a, b ∈ G, then following must be true for a homomorphism:

Φ(a ⋆1 b) = Φ(a) ⋆2 Φ(b).

Definition 3.5. Let Φ : G1 → G2 be a homomorphisan. If Φ has an inverse Φ−1 : G2 → G1, then
Φ is a isomorphism. We write G1

∼= G2.

3.3 Subgroup

We follow chapter 1 in [3].
In the beginning of this topic we talked about how sets could have subsets. This occurs for groups
as well, and are called subgroups, however with some conditions: Given H ⊆ G.

1. a, b ∈ H ⇒ a ⋆ b ∈ H
H is closed under ⋆.

2. The identity element e ∈ H.

3. For a ∈ H, then a−1 ∈ H
If H ⊆ G satisfies the subgroup axioms then we write H ≤ G.

Example: Is (Z,+) a subgroup of (Q,+)?

1. a, b ∈ Z : a+ b ∈ Z ⇒ Z is closed under +.

2. e = 0⇒ e ∈ Z.
3. a ∈ Z ⇒ a−1 = −a ∈ Z.

⇒ (Z,+) ≤ (Q,+)
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3.4 Factor group Jenny Therese Hodne

3.4 Factor group

Remember how a set is divided into cells, and the collection of all of these cells is called a partition.
Two elements in a set have an equivalence relation if and only if these two elements are in the same
cell. Factor groups is a way of representing a group by aggregating elements that have an equivalence
relation and preserve some of the group structure [4]. The cohomology group we will define later
are factor groups.

Definition 3.6. See the book [3], chapter 3.
Let N ≤ G. For a ∈ G, then Na will give us the coset of the right partition of G under N . In the
case where the right and left cosets are equal; aN = Na, we say that N is a normal subgroup of G.
A factor group is defined as:

G/N ∼= H

and reads ”G modulo N”. The group product of the factor group is the set of all cosets of N in G,
equipped with the group operation defined by (a1N) ⋆ (a2N) = (a1a2)N for all a1, a2 ∈ G.

Example: Let us consider example 3, and let ∼ be the equivalence relation on Z. The quotient
group to ∼ :

Z / ∼ = {1̄ , 2̄} ∼= Z2,

where Z2 is the only group of order 2.

The factor group gives us a lot of essential information, and I would argue that it is one of the key
elements for the essence of this thesis. As we will see, the factor group characterise topology of a
manifold in terms of the properties of differential forms [5]. But we need some more theory, so we
are going to introduce the fundamental homomorphism theorem, but for that we have to take a
recap of some basic knowledge from linear algebra:

Definition 3.7. The kernel of a homomorphism Φ : G1 → G2 is all the elements in G1 mapped to
the identity in G2

ker(Φ) = {x ∈ G1 | Φ(x) = e2 ∈ G2} ⊆ G1

Note that ker(Φ) ≤ G1 as a normal subgroup.
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3.4 Factor group Jenny Therese Hodne

Theorem 3.1. The fundamental homomorphism theorem
Given two groups G and H and a group homomorphism Φ : G → H. Let N be a normal subgroup
of G and Ker(Φ) = N Then.

G

Ker(Φ)
∼= Φ(G) ≤ H,

where the factor group is a representation of G in H under Φ, and is called Φ(G).

Figure 2: Original figure from [10]. Here we assume Φ is onto, so Φ(G) = H.

Proof. See the book [3] p.136

The factor group preserve some of the structure of G, and it is precisely this characteristic which
will prove to be particularly important as we will look further at differential equations on curved
geometries.
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4 Manifold Jenny Therese Hodne

4 Manifold

The mathematics that describes curves and surfaces in our 3-dimensional world is something we start
to learn already at the elementary school. But the more you study mathematics and physics, the
greater is the need to look at curves and surfaces in higher dimensions. These curves and surfaces
in higher dimensions are called manifolds.

Let us consider mother earth, which is a sphere. If you look out on the horizon form a mountain
top, or just from you window, it looks like we are living in a 2 dimensional space. But we all know
we are living on a sphere, which is a space in R3. The same analogy is used for manifolds in higher
dimensions. Look at a manifoldM ⊆ Rm. If you take a point and look at the area around this point
it may look like a space in Rn. A manifold is locally homeomorphic to Rn, but may be different
form Rn globally. Because of this homeomorphism we can divide the manifold into local patches
with local coordinates. With a coordinate function Φ, patches can be mapped to space in Rn.

Figure 3: Original figure form [7]. A manifold X ⊆ Rm with two local patches mapped to Rn
.

Definition 4.1. For us, a manifold M will be a designation for geometric forms embedded Rm
with dimension ≤ m [2]. A patch (U,Φ), also called a local surface, is a differentiable mapping
Φ : U → Rn, where U ⊆ M . The function Φ is differentiable, and can be taken to be bijection
without loss of generality.
Explicitly, a set of local patches (Ui,Φi) is called an atlas if the manifold M can be written as

M = ∪iUi .

In figure 3 there is an overlap between the two patches on the manifold. In this case the blue
region on the manifold will be represented in both maps. Let the green map to left be given by
x-coordinates, and the pruple map to the right be given by y-coordinates. Then will the function
φαβ be a coordinate transformation of the blue space form x-coordinates to y-coordinates. The local
coordinate maps are differentiable, and we use this to define differential forms on a manifold.
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4.1 Differential forms on a manifold Jenny Therese Hodne

4.1 Differential forms on a manifold

Differential forms is primarily the theory which makes it possible to integrate over a manifold, but
this is not something that will be covered in this thesis. Nevertheless, differential forms do play
a bigger part on manifolds than just integration. In particular, they are relevant for defining the
geometric invariants known as cohomology groups.

Let us continue with the blue region in figure 3. Lets say we have a 0-form, a function f on our
manifold X. So let us say this function gives us the amount of rainfall at some coordinates. Our
manifold X is built up by patches, for example lets say (Uα,φα) is the map including Oslo, and fα
the function which tells us the amount of rainfall in Oslo. And similarly, we say that (Uβ ,φβ) is
the map including Berlin, and fβ gives us the amount of rainfall. There is a overlapping in the blue
region, and in this region fα = fβ , which means the amount of rainfall in Oslo and Berlin is the
same. The function φαβ could be interpreted as a translator between Norwegian and German.

Note that it is only in the overlap region (Uα ∩ Uβ) we can have a coordinate transformation. We
will introduce this in the next section. Finally, the set of all k-forms on a manifold M is denoted as
Ωp(M). The highest p-form we can have on a manifold is dimension of the manifold itself.

4.2 Change of coordinates

Given the differential β = βµdx
µ ∈ Ω1(R2). The coordinate transformation for the differentials are

given by:
Coordinate xµ Coordinate yν

dxµ ∂xµ

∂yν dy
ν

However the form β never transforms. No matter which coordinate system, a n-form will stay the
same.

Example: Write the components in β = βµdx
µ ∈ Ω1(R2) in temrs of y-coordinates.

β = βµdx
µ

= βµ
∂xµ

∂yν
dyν

= β̂νdy
ν

βµ
∂xµ

∂yν := β̂ν , β̂ν : components in β in y-coordinates,
βµ: components in β in x-coordinates

So the component functions βµ of β transforms, but β itself does not. In the following example
will we consider the 2-sphere to illustrate how a manifold is built up by patches mapped into the
xy-plane.
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4.2 Change of coordinates Jenny Therese Hodne

Example: Stereographic projection
As we already have covered, we live on a 2-dimensional surface. But if we would map this
surface into the xy-plane there would be spots that wouldn’t be covered. So we need to
divide the sphere into two patches, respectively northern hemisphere and southern hemisphere
and map each of them into the xy-plane. We will find a coordinate transformation for each
hemisphere to the xy-plane, and finally find the coordinate transformation in the intersection
between these two maps.

α⃗

x1

x2

x3

θ

ϕ

z = 0

P = rcos(θ), rsin(θ)

(NP )

r

Figure 4: Figure based on [11]. Projection from the north-pole to the xy-plane

Let 0 ≤ ϕ ≤ π, 0 ≤ θ ≤ 2π. The point P is function of both r and the angle θ. The value of
r depends on the angle ϕ. If ϕ 7→ 0◦, then r 7→ ∞.

α⃗

cos(ϕ)
ϕ

P = rcos(θ), rsin(θ)

|1|

NP

sin(ϕ) r − sin(ϕ)

Figure 5: Figure based on [12]. Projection form the north-pole to the xy-plane with fixed θ.
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4.2 Change of coordinates Jenny Therese Hodne

To find the coordinate transformation from the north pole to the xy-plane we have to find
r(ϕ). Some straight forward trigonometry gives

r =
sin(ϕ)

1− cos(ϕ)
.

Note that:

• If ϕ → 0◦, then r → ∞ North.

• If ϕ → π
2 , then r → 1 Equator.

• If ϕ → π, then r → 0 South.

Note thar this coordinate transformation does not define r at the north pole. To get a coor-
dinate patch including the north pole we make a stereographic projection from south pole to
the xy-plane.

α⃗

cos(ψ)

P = rcos(θ), rsin(θ)

|1|

ψ

SP

sin(ψ) r − sin(ψ)

Figure 6: Figure based on [12]. Projection form the south-pole to the xy-plane with fixed θ.

r =
sin(ψ)

1− cos(ψ)

• If ψ → π, then r → 0 North.

• If ψ → π
2 , then r → 1 Equator.

• If ψ → 0◦, then r → ∞ South.

See Figure 8 for visual representation of the atlas.
Let’s define U1(θ, ϕ): Chart for S

2−NP , and U2(θ, ψ): Chart for S
2−SP . Then U1∪U2 = S2.

Let Φ be the transition function: Φ : U1 → U2.

Φ(θ, ϕ) = (θ, (π − ϕ)︸ ︷︷ ︸
ψ

)
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4.2 Change of coordinates Jenny Therese Hodne

Notice how ψ = π − ϕ is a linear transformation, which is quite special. We do not find the
same linearity if we insist on using xy-coordinates (x, y) = (rcos(θ), rsin(θ)).

The example above illustrates that local patches, such as M = S2, can be mapped to coordinates
in Rn. We may as well use local Rn coordinates to build up our geometries.
In general, for a manifold M ⊆ Rm whose dim(M) = n, and α ∈ Ωp(M). Locally on Ui ⊆M :

α =
1

p!
αi1 , . . . ,ip (x ∈ Ui)dxi1 ∧ · · · ∧ dxip. (3)

where dxi1 ∧ · · · ∧ dxip is the basis for αi1 , . . . ,ip on Ui. We have the differentiable mapping:
Φ : Ui → Rn
Φ−1
i : Rn → Ui, and by mapping Ui to Rn we get:

α =
1

p!
αi1 , . . . ,ip (Φ

−1(y) | y ∈ Rn)dΦ−1(y)i1 ∧ · · · ∧ dΦ−1(y)ip

=
1

p!
αi1 . . .ip ◦ Φ−1(y)

∂Φ−1(y)i1

∂yj1
dyj1 ∧ · · · ∧ ∂Φ

−1(y)ip

∂yjp
dyjp

=
1

p!
αi1 , . . . ,ip (Φ

−1(y))
∂Φ−1i1

∂yj1
· ∂Φ

−1i2

∂yj2
. . .

∂Φ−1ip

∂yjp
dyj1 ∧ · · · ∧ dyjp

Let α̃j1...jp(y) :=
1
p!αi1 , . . . ,ip (Φ

−1(y))∂Φ
−1i1

∂yj1
· ∂Φ

−1i2

∂yj2
. . . ∂Φ

−1
ip

∂yjp
, where dyj1∧· · ·∧dyjp is the basis

for α̃j1...jp on Rn. Form this it follows that α is now locally given as α ∈ Ωp(Rn), where y ∈ Rn:

α =
1

p!
α̃j1 , . . . ,jp (y)dy

j1 ∧ · · · ∧ dyjp (4)
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4.3 Closed and Exact form Jenny Therese Hodne

4.3 Closed and Exact form

Definition 4.2. α ∈ Ωp(M) is said to be closed on a domain M if dα = 0. The set of closed p-
forms on M is denoted Zp(M)

Definition 4.3. β ∈ Ωp(M) is globally exact if β = dγ for a global γ ∈ Ωp−1(M). The set of
exact p-forms on M is denoted Bp(M).

Example:

x

f

k ̸= 0

0 2π

Figure 7: S1 : A circle represented as a line segment where 0 ∼ 2π.

Consider the form α = df . The slope of f is constant, so df = cdx. But f is not well-defined on the
hole domain S1. It is clear that f do not have the same value on the point x = 0 = 2π. In such
cases df is said to be local exact, not globally exact ⇒ B1(S1) ⊊ Z1(S1).

Proposition 4.1. The closed forms and the exact forms satisfies the group axiom listed at 3.2 with
addition as binary operation. Without further proof, the closed forms and exact forms are a group;
(Zp(M),+) and (Bp(M),+). In addition they are both a abelian group, due to the commutative
property of +.

Proposition 4.2. An exact p-form Bp(M) = {α ∈ Ωp(M) | α = dγ, γ ∈ Ωp−1(M)} is a subgroup
of the closed p-forms, Zp(M) = {α ∈ Ωp | dα = 0}. Explicitly; Bp(M) ≤ Zp(M).

Proof.

α ∈ Bp(M)⇒ α = dγ

⇒ d(α) = d2(γ) = 0

⇒ α ∈ Zp(M).

Without further proof, the remaining subgroup axioms listed at 3.3 are satisfied, and it follows that
Bp(M) ≤ Zp(M).
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4.3 Closed and Exact form Jenny Therese Hodne

Let us take the example of the two-sphere a little further, and consider a function p that describes
pressure. As we know, the derivative of something gives you the rate of change. So if we take the
derivative of some pressure bar on our sphere, we will get the rate of change in pressure at this
point. Wind is a product of pressure difference, and it blows orthogonal on the pressure bars from
high pressure to low pressure. So if p represents a pressure-function, and the derivative of this gives
us the wind-field, we get:

v = −dp, v ∈ Ω1(M).

M :

U1

p1

U2

p2

Figure 8: The two patches builds up M , with the respective pressure function

Using stereographic projection, we have S2 = M = U1 ∪ U2. We will call the pressure function in
U1 for p1, and p2 for U2. In the intersection between U1 and U2, we will have the case where
dp1︸︷︷︸
v1

= dp2︸︷︷︸
v2

as v1 = v2 = v. It follows that d(p1− p2) = 0⇐⇒ p1− p2 = c12. In the intersection the

difference in pressure will be equal to a constant. We know that there exist a local p so the wind
field is locally exact. In order to say that the wind field is globally exact, there has to exist a global
pressure function p ∈ Ω0(M). Notice how the pressure must then have a maximum and minimum
somewhere on a closed and bounded manifold M , and at this position x0 ∈M we know that:

v = −dp(x0) = 0

Hence, there exist a point x0 on M where there is no wind.

It is already established that any exact form is also an closed form. Must a closed form also be an
exact form? For one-forms on S2 the answer to this question is yes, and is actually the explanation
to why there is a windless point on the sphere. I can already reveal that this is not the case for a
torus, which we will look at later.
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4.3 Closed and Exact form Jenny Therese Hodne

On the 2-sphere

To prove that there is always a point on the sphere where there is no wind, we have to show that
any closed one-form on the sphere is also an exact form.

B1(S2) = Z1(S2)

It follows from the definition of closed form that:

dα = 0

Lemma 4.3. On S2, for α ∈ Ω1(S2). If dα = 0 ⇒ α = df , for some function f

α⃗

x1

x2

x3

ϕ

θ

Figure 9: Figure from [12]

For simplicity, we will continuity to work with polar-coordinates. (ϕ, θ) is a point on the surface of
the sphere. α is a 1-form who is a function of (ϕ, θ):

α = A(ϕ, θ)dϕ+B(ϕ, θ)dθ, α ∈ Ω1(S2)

Where 0 ≤ ϕ ≤ 2π and 0 ≤ θ ≤ π.

Page 18



4.4 Boundry Jenny Therese Hodne

Proof. dα = 0 gives:

∂A

∂θ
=
∂B

∂ϕ

⇒
∫ θ̃

0

∂A

∂θ
dθ =

∫ θ̃

0

∂B

∂ϕ
dθ

⇒ A(θ̃, ϕ)−A(0, ϕ) = ∂

∂ϕ

∫ θ̃

0

B(θ, ϕ) dθ

⇒ A(θ̃, ϕ) =
∂

∂ϕ

∫ θ̃

0

B(θ, ϕ) dθ +A(0, ϕ)

⇒ A(θ̃, ϕ) =
∂

∂ϕ


∫ θ̃

0

B(θ, ϕ)dθ +

∫ ϕ

0

A(0, ϕ̃)dϕ̃︸ ︷︷ ︸
f(θ̃, ϕ)


We also have:

B(θ̃, ϕ) =
∂

∂θ̃

∫ θ̃

0

B(θ, ϕ)dθ

B(θ̃, ϕ) =
∂

∂θ̃


∫ θ̃

0

B(θ, ϕ)dθ +

∫ ϕ

0

A(0, ϕ̃)dϕ̃︸ ︷︷ ︸
f(θ̃, ϕ)


It follows that:

A(θ, ϕ) =
∂

∂ϕ
f(θ, ϕ)

B(θ, ϕ) =
∂

∂θ
f(θ, ϕ)

α =
∂f

∂ϕ
dϕ+

∂f

∂θ
dθ := df

Hence the wind field is described as α = ∂f
∂ϕdϕ+ ∂f

∂θ dθ, where α ∈ Ω1(S2) and f ∈ Ω0(S2).

To sum it up; for every closed one-form, dv = 0 ∈ Ω1(S2), there is a p ∈ Ω0(S2) so that
v = −dp ∈ Ω1(M). Any closed 1-form is also exact.

4.4 Boundry

The boundary of a area or surface is simply the edge [6], and this easy explanation applies for higher
dimension as well. The symbol used for boundary of a region M is ∂M . If dim(M) = n, then
dim(∂M) = n− 1.

Example: Let us consider the unit disc D in R2. The boundary ∂D is the unit circle.

Some regions does not have a boundary, and the sphere is one of these regions. We denote the
boundary for these region as ∂S = ∅, where ∅ is the empty set. It must be mentioned that the
orientation of the boundary is impotent to take into consideration. Yet this is not something that
will be addressed further due to the thesis’ limitation.
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Stokes theorem

In conjunction with boundary it will be natural to talk about Stokes theorem. This is a theorem
which is really fundamental and useful for both mathematicians and physicists.

Theorem 4.4. Stokes theorem:
Let Σ be a surface in R3, and ∂Σ be the respectively boundary. If v⃗ is defined on the surface Σ, then
according to Stokes theorem ∫

Σ

∇× v⃗ =

∫
∂Σ

v⃗

Figure 10: Original figure from [8]. Visuel representation of Stokes theorem.

Stokes theorem can be generalized to apply for any dimension. Let us considerM which is a oriented
manifold on Rm of dimension n. If ω ∈M is a differentiable (n− 1)-form [2], then∫

∂M

ω =

∫
M

dω.

We will use Stokes theorem as a tool in this paper, and see how this theorem simplifies many
problems.

5 Connecting the dots

So far, we have looked at several examples of differential forms, and how they can be used as a
meaningful tool on a manifold. We saw how the 2-sphere has a point where there is no wind, and
it has something to do with the geometry of the sphere. We will see that the cohomology factor
group characterises topology on a manifold in terms of differential forms. Based on all of the exam-
ples and knowledge we have retrieved so far, we should have enough information to put it all together;

Analysis /
Solutions to diff. eq.

←→ Algebra /
Cohomology

←→ Topology /
Geometry
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5.1 Cohomology Jenny Therese Hodne

We will see more practical applications to build on understanding of this connection, further on in
this section.

5.1 Cohomology

It has already been shown that both the exact and closed forms satisfies the group axioms, and that
they are an abelian group. The p-th cohomology factor group for any arbitrary manifold M ∈ Rm
that is built up by local patches is given by:

Hp(M) :=
Zp(M)

Bp(M)
.

We take all the closed p-forms, and factor out the exact ones. The elements in Hp(M) are the
equivalence classes of closed forms which differ by exact forms [5] p. 101. The p-th cohomology
group of M describes the solution space to generalisations of Maxwell’s differential equations on
the manifold, which are to be defined below. In other words, if we manage to find the cohomology
group, we know how many solutions to look for, without even knowing how they look like! The factor
group is topologically independent of coordinate choices. It is a topological invariant! The coordinate
transformation done at the end of section 4.2 represented in equation 3, where α ∈ Ωp(M) to 4, where
α ∈ Ωp(Rn) can be done for any local patch on M . So no matter what coordinate representation
we choose for α, the factor group is the same.

We are now going to look further to our example of the sphere, in order to get a practical view of
the connection between cohomology group and differential forms.

Cohomology group for 2-sphere

From the proof of lemma 4.3 we know that in order for there to be a place on the sphere where there
is no wind, the exact 1-forms has to be the same as the closed 1-forms. The cohomology group for
the differential 1-forms over the 2-sphere is given by:

H1(S2) :=
Z1(S2)

B1(S1)

H1(S2) contains only elements of closed forms that differs form the exact forms, but since Z1(S2) =
B1(S2), there is no difference. So the factor group has no essential information about the structure
of Z1(S2) that is not present in B1(S2), so we get:

H1(S2) :=
Z1(S2)

B1(S1)
= {0}

There is no solution to Maxwell’s differential equations for one-forms, exactly as anticipated.

Let us look at the 0-forms on the sphere:

H0(S2) :=
Z0(S2)

B0(S2)
.

Z0(S2): dα = 0 ⇒ α has to be a constant; α = c. B0(S2): α = dγ,where γ ∈ Ω−1(M). But
Ω−1(M) = {0} as there are no forms of negative degree. Hence

H0(S2) = {α | dα = 0} ∼= R1
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Z0(S2) consists of constants, and there exist as many constants as real numbers, henceH0(S2) ∼= R1.
Form finding the cohomology group of 0-forms on S2, we know that Maxwell’s quations for 0-forms
has one solution. This is quite remarkable!

Regarding the 2-forms, we are going to prove that H2(S2) ∼= R1 is true:

H2(S2) :=
Z2(S2)

B2(S2)
=
{α ∈ Ω2(S2) | dα = 0}
{α = dα | γ ∈ |Ω1(S2)}

=
{Ω2(S2)}

{α = dγ | γ ∈ Ω1(S2)}
∼= R1 (5)

In order for equation 5 to be true we will use theorem 3.1 to proceed. Let us define the homomor-
phism:
Φ : Ω2(S2)→ (R1,+)
α ∈ Ω2(S2); Φ(α) =

∫
S2

α.

Express α in polar coordinates for simplicity; α = α(ϕ, θ)dϕ ∧ dθ. Consider α = c dϕ ∧ dθ. Then
the integral becomes a constant c × area of the sphere. This shows that Φ is surjective.
It follows from theorem 3.1:

Ω2(S2)

ker(Φ)
∼= R1.

For an abelian group the identity element is 0 → ker(Φ) = {α(ϕ, θ) |
∫
S2

α(ϕ, θ) = 0}. Hence if we

can show that B2(S2) = ker(Φ) we are done.

B2(S2) ⊆ ker(Φ): α ∈ B2(S2),

α = dγ = (dϕ∂ϕ+ dθ∂θ)γ

= (dϕ∂ϕ+ dθ∂θ)(γϕdϕ+ γθdθ)

= (∂ϕγθ − ∂θγϕ)dϕ ∧ dθ

Φ(α) = Φ(dγ) =

∫
S2

(∂ϕγθ − ∂θγϕ)dϕdθ (6)

But ∂ϕγθ − ∂θγϕ ∼ ∇ × γ (γ ∈ Ω1). This implies we can use the Stoke´s theorem 4.4. Since the
2-sphere does not have any boundary, ∂S2 = 0, it follows that Φ(α) = 0, hence B2(S2) ⊆ ker(Φ).

ker(Φ) ⊆ B2(S2): We have the vector space Ω2(S2). Let us choose two elements α, β ∈ Ω2(S2).
The inner product written as (α, β); Ω2(S2)× Ω2(S2)→ R1, is given by:

(α, β) :=

∫
S2

α(ϕ, θ)β(ϕ, θ)dϕdθ ∈ R1.

We will define the sets H = {α ∈ Ω2(S2) | α = cdϕ∧dθ, c ∈ R1}, B2(S2) = {α ∈ Ω2(S2) | α = dγ}.
Let α ∈H 2(S2), β = dγ. Then

(α, β) =

∫
S2

α(ϕ, θ)β(ϕ, θ)dϕdθ = c

∫
S2

β(ϕ, θ)dϕdθ = c Φ(β) = 0.

So α and β have to be orthogonal, since the inner product is 0 ⇒ H 2 ⊥ B2(S2).
So far we have considered 2-forms included H 2(S2) and B2(S2), but there could be more to take into
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consideration. Therefore all the 2-forms will be expressed as Ω2(S2) = H 2(S2)×B2(S2)×R(S2),
where R(S2) ⊥ H (S2) and R(S2) ⊥ B2(S2). Choose a element κ ∈ R(S2), κ = κ(θ, ϕ)dθ ∧ dϕ.
We will define: d†κ := ∂θκ(θ, ϕ)dϕ− ∂ϕκ(θ, ϕ)dθ ∈ Ω1(S2). Then

d(d†κ) = (dθ∂θ + dϕ∂ϕ)(∂θκdϕ− ∂ϕκdθ)
= (∂2θκ+ ∂2ϕκ)dθ ∧ dϕ
= ∆κ(θ, ϕ)dθ ∧ dϕ,

where ∆ is the laplace operator.
Now lets look at:

∫
S2

(
(∂θκ)

2 + (∂ϕκ)
)
dθdϕ. First note that

∇κ(θ, ϕ) = (∂θκ, ∂ϕκ) → κ(θ, ϕ)∇κ(θ, ϕ) = (κ∂θκ, κ∂ϕκ).
Consider the integral of the divergence, which will be zero by Stokes theorem.

0 =

∫
S2

∇ ·
(
κ(θ, ϕ)∇κ(θ, ϕ)

)
dθdϕ

0 =

∫
S2

(∂θκ)
2 + (∂ϕκ)

2︸ ︷︷ ︸
*

dθdϕ+

∫
S2

κ∆κdθdϕ︸ ︷︷ ︸
**

**: This is the inner product (κ, dd†κ), which is equal to zero due to the assumption that κ ∈ R2(S2)
is orthogonal on H 2(S2) and B2(S2). The first term * then gives
=⇒ ∂ϕκ = ∂θκ = 0.
=⇒ κ = constant = 0 due to κ ⊥H 2(S2). So there exists no such κ ∈ R(S2) since they are already
represented in H 2(S2). So we can exclude R2(S2), and conclude Ω2(S2) = H (S2)×B2(S2).
Let α = αh + dγ, αh = cdθ ∧ dϕ ∈H 2(S2). Assume that α ∈ ker(Φ)

0 = Φ(α) = Φ(αh) + Φ(dγ)︸ ︷︷ ︸
0

Φ(α) = Φ(αh)

=

∫
S2

cdθdϕ

= c

∫
S2

dθdϕ

= c4π

If in fact α ∈ ker(Φ) then 0 = c4π ⇒ c = 0.
And if c = 0, then αh = 0, so α = dγ ⇒ ker(Φ) ⊆ B2(S2).

If two sets are a subset of each other, just like for ker(Φ) and B2(S2), then ker(Φ) = B2(S2). Now
that this has been proven we can make use of the theorem 3.1.

H2(S2) =
Ω2(S2)

B2(S2)
=

Ω2(S2)

ker(Φ)
∼= Im(Φ) = R1.

We can for sure conclude that there is one solution for Maxwell’s equations for differential 2-forms
over S2, just as for the differential 0-forms, H0(S2) and H2(S2) has the same cohomology.
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5.2 Other topologies

We know that differential equations could have infinitely many solutions. As the introduction alludes
to, it would be much easier to count how many solutions there exist, than having to find an explicit
solution. And as we have seen on the 2-sphere, the connection between analysis, algebra and topology
makes this possible. We are now going to look at some other mathematical tools, in order to benefit
from this connection for more complex geometries, like the torus or n-sphere.

We let X be a manifold with some determined properties, a Riemannian manifold with n-dimension
[1]. A famous mathematician called Hodge deduced the ”Hodge duality” for Riemannian manifolds:
Hp(X) ∼= Hn−p(X). Then Poincaré built further on this with the following ”Poincaré duality”:
Hn−p(X) ∼= Hp(X). With both duality’s together we get:

Hp(X) ∼= Hn−p(X) ∼= Hp(X) ∼= Rbp (7)

Hp(X) = p′th homology group. This is the group of non-trivial connected and closed sub-p-manifolds
modulo deformations. p is the dimension of the submanifold. And b is the betti number in p-
dimension, counting the number of sub-manifolds.

By using equation 7, we are going to see how we can find the number of solutions to Maxwell’s
equations on more complex geometries, starting out with the torus.

Torus: Let us consider the torus, and use equation 7, which states that the homology group is
isomorphic to the cohomology group. We have already walked through in the previous section the
logic around how many possible solutions there is for the differential equations, and will use the
same analogy for the torus.

Let us start out by looking at the 0-forms, which in homology corresponds to a lot of points on the
torus. All of these points may be collected together to just one point, hence the 0′th homology group
which is given by all of these points modulo deformation is H0(T

2) ∼= R1. Explicitly, the homology
group is isomorphic to cohomology group, H0(S

2) ∼= H0(T 2) ∼= R1.
The differential 1-forms on the torus is represented in figure 11, respectively by the red and purple
arrows, corresponding to the red and purple arrows in cohomology. So just by looking at the visual
representation of differential 1-forms on the torus we have already taken advantage of the connection
between analysis and topology. By adding our knowledge about cohomology and equation 7, we get
H1(T

2) ∼= H1(T 2) ∼= R2, and can conclude that Maxwell’s equations for differential 1-forms have 2
solutions on the torus!
What applies to the differential 2-forms will be in principle the same procedure, so there should be
no surprise that H2(T

2) ∼= R1 and one solution. Due to the isomorphism between homology and
cohomology, notice how H0(T 2) and H2(T 2) has the same cohomology.

n-sphere: We have already established the cohomology groups for 2-sphere in section 5.1, and
with equation 7 it is straight forward to count the number of solutions.

• H0(S
2) ∼= R1, there is only one point modulo deformation → one solution

• H1(S
2) ∼= 0, every connected and closed 1-loop is trivial → no solution

• H2(S
2) ∼= R1, the hole surface → one solution
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And this obtained result can in fact be generalized into the n-sphere.

Hp(S
n) ∼=


R1, p = 0

0, 0 < p < n

R1, p = n

At this level, we are adequately satisfied with the observations and results obtained to settle with
this generalization. Anyway, this is a powerful generalization which makes is possible to say how
many solutions there are, in addition, we can say with certainty that there is always a spot on the
n-sphere where it is windless. Namely due to the duality between the homology group and the
cohomology group, where the latter characterise the solutions space to the differential equations.

We have spend a lot of time looking at the wind-field on the 2-sphere and used the connection
between analysis, algebra and topology to say something about the wind-field on the n-sphere. Let
us go back to the torus and see how the wind-field, which would be the 1-forms, would act on it.

Figure 11: Visual representation on how the wind-field acts on a unfolded torus.

As seen in figure 11 the wind-field can act in a vertical and horizontal direction on the surface. We
take it to be a closed, constant field. The purple vectors represents the wind-field that acts along
the purple circle, and points in the same direction, correspondingly for the red vectors. From just
analysis and topology we can already tell that there is no point on the torus where it is windless.
Furthermore, the elements in the homology group is given by the circles modulo deformation, and as
we know from equation 7, the number of elements in homology group is equivalent to the cohomology
group, which gives us the number of solutions to the differential equations. We have already seen
H1(T

2) ∼= R2, so H1(T 2) ∼= R2. Just at we excepted from the observation and the homology group,
we get two solutions, the constant wind fields represented by the purple and red arrows

5.3 Generalization of Maxwell’s

Until now, we have claimed that Hp(M) count the number of solutions to Maxwell’s equations for
p-forms. Let ut make this connection more explicit.

James Maxwell was a major contributor in physics, and his equation provided us with a mathematical
model to describe and understand electromagnetic fields. Those equations are in general restricted
to differential 2-forms on M4, which is the Minkowski space. Field theory is a part of classical
physics, and although classical physics has provided us with a lot of information about our world,
there is still much left to learn and theories to prove.
Up until now, we have looked at differential forms, and been able to generalize them to apply to
manifolds, and made use of their connection with algebra to find the solution space of Maxwell’s
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equations. By generalizing Maxwell’s equation to higher dimensions, mathematicians and physicists
believes we could get one tiny step closer to explaining the world.

Maxwell’s equations

To illustrate some notation, let us consider Maxwell’s equations:
Aµ =

[
A0 A1 A2 A3

]
is a electromagnetic four-potential, where t = x0 represents time, and

x1, x2, x3 are the directions in R3. xν ∈ {x0, x1, x2, x3} is an spacetime point with four elements.
We take the derivative of Aµ with respect to xν ;

∂Aµ
∂xν

= ∂µAν → ∂ν =
∂

∂xν

The differential of the electromagnetic potential is Fµν = ∂µAν − ∂νAµ, where Fµν is the antisym-
metric matrix

Fµν =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B2 0 B1

−E3 B2 −B1 0


Here E⃗ = (E1, E2, E3) and B⃗ = (B1, B2, B3) are the electric and magnetic fields. Then we will have

dF ∼ ∂[σFµν] =
1

3
(∂σFµν + ∂µFνσ + ∂νFσµ) = 0, (8)

And equation 8 gives two of Maxwell’s equations, given that we are in vacuum, and the constants
ρ = J = 0, and ϵ0 = µ0 = 1. And the same will be true for

ησµ∂σFµν = 0,

using Einstein summation convention, where η is the Minkowski Metric.

We have the electromagnetic potential, F ∈ Z2(X). F is a closed 2-form on a n-dimensional curved
manifold.
dF = 0⇒ F̄ ∈ H2(X), where F̄ is the coset in the cohomology group containing elements equivalent
to F , such as dF = 0. Additionally, to solve Maxwell’s we want an element so that ησµ∂σFµν = 0
on M4, which is not curved, but flat.

Generalising Maxwell

Let us assume that X is a Riemannian, then it exist a isomorphism such as:

⋆ : Ωp(X) −→ Ωn−p(X) (9)

where equation 9 is the Hodge duality. We are now going to set the electromagnetic field to be a
arbitrary p-from; F ∈ Ωp(X). Then

dF = 0

d ⋆ F = 0

}
Maxwell’s equations on a p-forms for n-dimensions

The solutions to Maxwell’s equations is called harmonic p-forms: H p(X) = {F ∈ Ωp(X) | dF =
0, d ⋆ F = 0}. While the harmonic forms describes the solutions to Maxwell’s equations, is does not
say anything about how many there are.
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Theorem 5.1. Hodge theorem:
There is a isomorphism between the harmonic p-forms and the p-th cohomology group

H p(X) ∼= Hp(X).

By Hodge theorem can we count solutions of Maxwell/harmonic forms using cohomology and topol-
ogy without knowing what they look like. Let us look at the 2-sphere, and use Hodge theorem
to find out how many solutions there is to Maxwell’s equations. As we already know, Maxwell’s
equations are for differential 2-forms, so we get:

H 2(S2) ∼= H2(S2) ∼= R1.

Hence, there is only one solutions to Maxwell’s equations on the 2-sphere. For the 3-sphere Maxwell’s
equations has H 2(S3) ∼= H2(S3) ∼= 0, so no solutions.
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5.4 Boundary value problem and topology

Differential equations that we are familiar with from calculus are not always easy to solve. It is not
always given that there exist a solution, and if there does exist a solution it is not given that this is
a unique solution. As you may expect at this point, there for sure exists a connection to topology
which gives us the answer if there does exists a solution, and in this case, also how many. Let us
consider following example:

Example:

i) Find the harmonic 1-forms on a disk D ∈ R2 with the given boundary values:

D

∂D

v ∈ Ω1(D)
dv = 0
d ⋆ v = 0
v takes the same value on all of the ∂D

We can collect all of the points on ∂D and gather them together so they form a ball
H 1(D) ∼= H 1(S2) ∼= H1(S2) ∼= 0. So there is no solution to this boundary value problem.

ii) Find the harmonic 1-forms on a disk D ∈ R2 with given boundary values:

D

∂D

∂D

v ∈ Ω1(D)
dv = 0
d ⋆ v = 0
v takes the same value on pairwise points on the inner
boundary and outer boundary.

Similar to the previous example, we collect pairs of points on ∂D v takes the same value and
gather them together so they form a doughnut. H 1(D) ∼= H 1(T 2) ∼= R2. This boundary
value problem has two solutions.

Without even knowing how the solutions looks like, we can still find out how many solutions there
are! We see how analysis, boundary value problems and topology are related.
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6 Summary

This thesis started out by introducing the need of mathematics in higher dimension in order to have
an language to describe physical theories. To do so we have encountered different mathematical
branches, and learned how they are all connected together.

Analysis /
Solutions to diff. eq.

←→ Algebra /
Cohomology

←→ Topology /
Geometry

On the way we have learned a lot of analysis, which gave us the remarkble tool to make it possible
to do mathematics in higher dimension. We saw how differential forms is used to describe our
differential equations in higher dimensions. From algebra learned some concepts from group theory
which gave us the opportunity to define geometric invariants for manifolds known as cohomology
groups. And before we connected all the dots we became well acquainted with topology.

We have seen how a manifold is built up by local patches, and can be locally mapped into Rn.
Through an example, we saw how the sphere could be mapped into the plane, and how the local
coordinate maps are differentiable, and used this to define differential forms on a manifold. We
learned that the geometry affects whether a differential closed form also is an exact form, and
used our knowledge about factor groups to characterize which closed forms differ from exact forms.
This is what we called cohomology groups, which gave us the the number of solutions to Maxwell’s
differential equations on the manifold. From Hodge duality and Poincarè duality we saw how we
could count the number of solutions in more complex geometries. And with these dualities we
were able to find the number of solutions to Maxwell on the torus and n-sphere. For more general
differential equations, the geometry is given by its boundary conditions, and we saw how the Hodge
theorem could be used to count solutions to boundary value problems.

The goal for this thesis was to see and use the connection between analysis, algebra and topology.
From here, be able to use this connection in physics, and see how Maxwell’s equations could be
generalized in higher dimensions, which we successfully have done. The successful generalization
of Maxwell’s equations in higher dimensions opens up new possibilities for further research and
innovation in this field.
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