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It is often said that there is no gravity theory based on local action principles giving rise to firewall black
hole solutions. Additionally, Guo and Mathur [Int. J. Mod. Phys. D 31, 2242009 (2022).] have cast doubt
on the observability of firewall echoes due to the closed trapped surface produced by a backreaction of
macroscopic in-falling wave packets. In this paper, we bring Einstein-Maxwell-Dilaton action as a toy
model that serves as counterexample to these assertions. Actions with Maxwell and dilaton fields emerge
from several fundamental theories, such as the low energy limit of (super) string theory or Kaluza-Klein
compactifications. In these systems, the black hole solution has two curvature singularities. We will show
that the outer singularity inside the event horizon can cause significant change to the outside, close to the
extremal limit, making a macroscopic reflective barrier near the event horizon that would lead to
“observable” gravitational wave echoes in this toy model. Additionally, we also call into question the
argument by Guo et al. [J. High Energy Phys. 07 (2018) 162.] claiming that a very small fraction of the
backscattered photons will be able to escape back to infinity from the firewall, using these black holes as a
counterexample.

DOI: 10.1103/PhysRevD.107.064004

I. INTRODUCTION

Black holes are potential gateways to groundbreaking
discoveries. Black hole (BH) astrophysics has undergone
an observational renaissance in the past six years. Notably,
the observation of gravitational waves has provided an
exciting new window to probe as close as possible to the
event horizon of observed binary BH mergers [1]. With
these observations, the closer to the event horizon we
probe, the place where we expect to see exciting and very
nontrivial behavior of quantum gravity, the higher energy
physics we achieve. As several approaches suggest evading
the information paradox [2] by replacing the region around
the event horizon by a firewall or exotic compact object
(ECO) makes it a potential target for discoveries on
departures from general relativity. One intriguing question
is how to keep both the equivalence principle and quantum
mechanics and still find BHs from local action principles
that carry a firewall and/or ECO. In this paper we bring a
toy model to answer this question. Another intriguing
question is whether having a firewall covered by an event
horizon can make observable echoes. Our answer to this

question is affirmative. This paper also brings Einstein-
Maxwell-Dilaton action as an example, to answer several
essential questions which are arising in the context of
observability of gravitation wave echoes, firewall, and
ECO [3,4].
The possibility of observing gravitational wave echoes

has led to several observational searches [5–24] with
positive [5,13,15,16,20,24], mixed [14,18,21], and negative
[6–8,11,12,15,19] results.
This system of Maxwell and dilaton fields coupled to

gravity emerges from a number of more fundamental
theories. Notably the (super) string theory at low energy
and Kaluza-Klein compactifications leads to such actions,
which have been studied for a long time [25–29].
Corresponding BHs and their evaporation have also been
studied previously [27,29]. The behavior of the theory in the
range of α ≥ 1 is significantly different and shows unex-
pected features [27,29]. Since this BH poses an electric
charge, it makes more sense to study the charged particles
scattering in this background. Here we chose fermions and
scalars. The greybody factors evaporation and evolution of
dilaton BHs for fermions studied by Abedi et al. [29].
Consideration of the backreaction draws a highly nontrivial
picture revealing a new phenomenon of evaporating to an
extremal limit as the fate of certain dilaton BHs [29].
Holzhey et al. [27] derived the potential barrier for scalars
which for α > 1 strongly impedes the particle radiation to
the extent that it may stop it. In contrast, Koga et al. [28]
showed by numerical computation that Hawking radiation
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wins over the barrier and the dilaton BH does not stop
radiating, despite the fact that the potential barrier becomes
infinitely high. Finally, considering the backreaction and
adiabatic approximations, Abedi et al. [29] have shown that
for fermions the potential barrier stops the BH from
radiation at the extremal limit although it has a divergent
Hawking temperature. Considering the next order of
dynamical effect as backreaction changes the fate of the
BH in which it becomes the key factor when the BH evolves
toward the extremal limit. In other words, the nontrivial
spacetime around the event horizon of this BH extinguishes
the Hawking radiation. Certain results on the scattering
parameters of the Dirac field such as quasinormal frequen-
cies or decay rates in the background of dilaton BH [30–32]
are also presented.

II. DILATON BLACK HOLES

Einstein-Maxwell-Dilaton gravity with the dimension-
less dilaton coupling constant α is given as follows:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½R − 2ð∇ϕÞ2 þ e−2αϕF2�: ð1Þ

Here ϕ is the dilaton field, and F2 ¼ FμνFμν. The Einstein-
Maxwell-Dilaton equations of motion of this gravity are

∇μðe−2αϕFμνÞ ¼ 0; ð2Þ

∂½ρFμν� ¼ 0; ð3Þ

Rμν ¼ e−2αϕ
�
−2FμρF

ρ
ν þ 1

2
F2gμν

�
þ 2∂μϕ∂νϕ; ð4Þ

gμν∇μ∇νϕ ¼ 1

2
αe−2αϕF2: ð5Þ

Static spherically symmetric BH solutions of this metric
are given by [25,26],

ds2 ¼
�
1 −

rþ
r

��
1 −

r−
r

�1−α2

1þα2dt2

−
dr2

ð1 − rþ
r Þð1 − r−

r Þ
1−α2

1þα2

− r2
�
1 −

r−
r

� 2α2

1þα2dΩ2; ð6Þ

with the Maxwell At ¼ − Q
r , and dilaton fields e2αϕ ¼

ð1 − r−
r Þ

2α2

1þα2 . The solution contains outer and inner horizons
located at

rþ ¼ M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − α2ÞQ2

q
; ð7Þ

r− ¼ 1þ α2

1 − α2
ðM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − ð1 − α2ÞQ2

q
Þ; ð8Þ

where M and Q are ADM mass and charge of the BH
respectively.
The Hawking temperature of the dilaton BH is given by

TH ¼ 1

4rþ

�
1 −

r−
rþ

�1−α2

1þα2 : ð9Þ

This BH exhibits some interesting and unique thermody-
namical properties [27–29,33,34]. For α < 1, it is similar to
the Reissner-Nordström (RN) BH where the temperature
approaches zero when it gets closer to the extremal limit.
Nontrivial behavior occurs for α > 1 and α ¼ 1. For α > 1,
at the extremal limit the temperature diverges, while for
α ¼ 1 it converges to a finite nonzero value TH ¼ 1=4πrþ.
For nonzero α and for extremal BHs the angular factor in

the metric (6) and correspondingly its area vanish at the
event horizon, and the geometry becomes singular, while
no such singularity exists for RN BH (α ¼ 0).
The surface area A of the BH and its entropy is given by

the Bekenstein-Hawking formula,

SBH ¼ 1

4
A ¼ πr2þ

�
1 −

r−
rþ

� 2α2

1þα2 : ð10Þ

As obtained in [29], the peak of the effective potential for
both scalars and fermions is approximately at

rmax

rþ
¼ 1 −

1

4

�
3 − α2

1þ α2
ϵ − 2

1 − α2

1þ α2

�

þ 1

4

��
3 − α2

1þ α2
ϵ − 2

1 − α2

1þ α2

�
2

þ 8ϵ

�1
2

; ð11Þ

where we have ϵ ¼ 1 − r−
rþ
.

For BHs with no charge (ϵ ¼ 1) the location of maximum
is at rmax ¼ 3

2
rþ which is what we anticipated from the

Schwarzschild BH. Increasing the charge changes the
position of the peak, where its moving direction depends
on the value of the coupling constant α. For the BHs in the
range 0 ≤ α < 1=

ffiffiffi
3

p
, with an increasing charge, the posi-

tion of the peak moves away from the horizon approaching
rmax →

2rþ
1þα2

at the extremal limit when ϵ → 0. For the

particular value of α ¼ 1=
ffiffiffi
3

p
, the location of the peak

remains fixed at rmax ¼ 3
2
rþ. For the range 1=

ffiffiffi
3

p
< α < 1,

by addition of the charge, the location of peak retreats
toward the event horizon and tends to rmax →

2rþ
1þα2

at the
extremal limit. In the case of α ≥ 1 which is the most
interesting range where the location of the peak always stays
in the range rþ⩽rmax⩽ 3

2
rþ, the near extremal BH acts like a

firewall. When it approaches the extremal limit, the peak
moves toward and finally touches the event horizon. At the
limit α → ∞, the peak approaches rmax ¼ ð1þ ϵ

2
Þrþ and for
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α ¼ 1, rmax → ð1þ ffiffi
ϵ
2

p Þrþ, and the case of α > 1 has

rmax → ð1þ 1
2
α2þ1
α2−1 ϵÞrþ.

For fermions with charge q and energy ω the approxi-
mate function of the peak in our region of interest α ≥ 1 is
as follows [29]:

ðV1;2Þmax ≃
κ2

r2þð1 − qQ
ωrþ

Þ2 ; α ¼ 1; ð12Þ

and

ðV1;2Þmax ≃
κðκþ 1−α2

1þα2
Þ

r2þð1− qQ
ωrþ

Þ2½1
2
α2−1
α2þ1

ð1− r−
rþ
Þ�2α

2−2
α2þ1

; α > 1; ð13Þ

where (κ ¼ �1;�2;…) are integer numbers.
For scalars the approximate function of the peak for

α ≥ 1 is given by [29]

ðVηÞmax ≃
ðlþ 1

2
Þ2

r2þ
; α ¼ 1; ð14Þ

and

ðVηÞmax ≃
ðlþ 1

2
Þ2 − 1

4
ð1−α2
1þα2

Þ2

r2þ½12 α2−1
α2þ1

ð1 − r−
rþ
Þ�2α

2−2
α2þ1

: α > 1: ð15Þ

Figure 1 shows the plot of the potential barrier for
fermions for the value of α ¼ 2 (α > 1) in near extremal
and extremal which are our regime of interest in this paper.
For details of the behavior of these potentials we refer
to [29].
Since the charge of the emitted particle appears as

ΦH ¼ qQ
rþ

in the denominators of the maximum of the

potentials (12) and (13), the peak is higher for the case
when the emitted charge and BH charge are the same.
Surprisingly, particles with opposite charge leave the BH
easily.1 As is shown in Fig. 1, we also see that these
potentials are divergent due to the same electrical
potential term ω ¼ qΦH ¼ qQ

rþ
. So these particles hardly

escape the BH. We will get back to this point in subsequent
discussions.
The effective potential is very unique for the dilaton

BHs. Unlike the standard BHs and the case α < 1 (where
the peak of the potential remains finite and tends to zero
when we approach the horizon), for α ¼ 1 the maximum
(12) does not vanish at the horizon limit, which replicates a
soft firewall. For α > 1, (13) becomes very large and

divergent and blows up at the horizon, which replicates
a hard firewall which is shown in Fig. 1.
These BHs evolve into two possible final states [29]:

spontaneously evaporating toward the extremal limit, or
complete evaporation. The boundary (transition line) of
the separation of these two conditions is specified in the
ðQ=M; αÞ plane (Fig. 2). In this plane, a region of
parameter where the final fate converges to extremal BH
is called the “extremal regime,” and the other one in which
it acts like trivial BHs with total evaporation is called the
“decay regime.” The approximate transition line is given in
Fig. 2. Assuming α ≫ 1 gives the following analytical
transition line,

Q
M

����
Transition

¼ 8πmMα20=α
1þ 8πmMα20=α

2
; ð16Þ

where for electron α0 ¼ 1ffiffiffiffiffiffiffiffiffi
4πε0G

p e
me

¼ 2 × 1021.

Let us explore an illuminating property of the large α
case. When α ≫ 1, the geometry (6) becomes flat at the
extremal limit which is the final state of the evolution for
any BH at extremal regime (Fig. 2). Taking r0 ¼ r − r−,

ds2 ¼ dt2 − dr02 − r02dΩ2: ð17Þ

Therefore, it resembles an even more accurate description
of an elementary particle [27].
Taking the asymptotic behavior of the solutions to the

wave equation for the particles (with angular parameter n)
leaving the horizon in terms of the transition Tn and
reflection Rn coefficients, and from conservation of flux
at the horizon and infinity we obtain

�
ω −

qQ
rþ

�
ð1 − jRnðωÞj2Þ ¼ ωjTnðωÞj2: ð18Þ

We see that for qQ > 0, flux at infinity vanishes at a
frequency due to the horizon electrical potential
ω ¼ qΦH ¼ qQ

rþ
. As stated previously these particles hardly

� � � �

FIG. 1. Effective potentials (barrier on right) due to angular
momentum (firewall) and electric potential (barrier on the left)
with α ¼ 2 and different values of charge (see the Appendix for
details). Here as we approach the extremal limit, the peak of the
barrier grows and approaches the event horizon. At the extremal
limit it touches the event horizon.

1Note that the total particle creation rate out of vacuum
dominates this effect [29], and the BH loses charge by time.
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escape the BH. Furthermore, low frequency modes
encounter this hard electrical barrier at rΦ ¼ qQ

ω . We have
observed this behavior in Fig. 1. Owing to the large value
of e

m ≃ 2 × 1021 for electrons, we can get an incredibly
large range for frequency and distance rΦ. The greybody
factors which are defined as the transition probability
of waves passing through the BH potential for a given
mode, are related to the reflection coefficient as
γnðωÞ ¼ 1 − jRnðωÞj2. We shall use this equation to show
how dilaton BHs act like a firewall and produce echoes in
the next section.

III. FIREWALL BEHAVIOR OF
DILATON BLACK HOLES

In the former section we have presented several unique
features of dilaton BHs not seen in other types of BHs.
Finally, in this section we end by bringing up several other
nontrivial features to establish the main scope of this paper.
We have the following differences between the tradi-

tional picture of a large mass BH and dilaton BHs:
(a) Curvature of spacetime near the event horizon is small

for large mass BHs, while for dilaton BHs due to the
curvature singularity at r− [26,27] it is not always true.

(b) As seen in (10) the area of the dilaton BH shrinks to
zero size, and consequently its Bekenstein-Hawking
entropy at the extremal limit, unlike Schwarzschild,
RN, or Kerr BHs.

(c) Hawking temperature of the dilaton BH can blow up at
the extremal limit for α > 1, unlike other types of BHs.

(d) We have a central curvature singularity at r ¼ 0 for the
Schwartschild BH, while dilaton BHs possess two
curvature singularities at r ¼ 0 and r ¼ r−.

(e) Unlike other types of BHs, this BH can evolve to
extremal limit and become stable through the Hawking
process as discussed in the former section and [29].
This process can take place in finite time, not being in
violation of the third law of BH thermodynamics (as
the temperature blows up for α > 1 and is finite for
α ¼ 1 at this limit).

(f) As discussed in the former section and [29], for large
α ≫ 1 and the extremal limit, the geometry becomes
flat. This appealing final state resembles even better
the elementary particle description of these BHs.

For both scalars and fermions we have seen the strong
dependence on α with three distinct behaviors for α < 1,
α ¼ 1, and α > 1. Our range of interest is α ≥ 1, where the
peak of the potential barrier can get arbitrarily close to the
horizon until it touches the event horizon at the extremal
limit. These BHs mimic a firewall behavior. The peak of the
potential barrier grows as ðrþ − r−Þ−2ðα2−1Þ=ðα2þ1Þ as one
approaches the extremal limit. For the case of α ¼ 1, the
height of the potential barrier at the extremal limit remains
finite, while for the class of BHs with α > 1 in this limit, it
diverges on the event horizon. These BHs with α > 1 act
like a perfect mirror at this limit. Interestingly the tortoise
coordinate r� for the case of α > 1 at the extremal limit and
at the event horizon is finite [29]. One may wonder at
having an exotic compact object with infinite compactness
at this stage, where the barrier turns into a perfect one
(infinite height). This unique feature occurs solely due to
curvature singularity at r− which is inside the event
horizon. This is an example of how a firewall inside the
event horizon induces nontrivial properties to the outside,
and how it creates an ECO.
Interestingly, a null ray that is trying to escape from the

surface of this ECO does not need to be in a particular angle
since the area of this ECO shrinks to zero at the extremal
limit as seen in Eq. (10) and [29]. In another words there is
no angular dependence for this metric (6) at this limit. This
is a main counterexample in this toy model to the argument
given by Guo et al. 2017 [4]. In another words, since the
area of the dilaton BH shrinks to zero at the extremal limit,
nothing can fall in. This example reveals how existing
theories of quantum gravity may twist and turn from our
trivial expectations. Since the Bekenstein-Hawking entropy
of these BHs shrinks to zero at the extremal limit, one may
wonder about presenting it as a featureless surface.
Here we provide two arguments pointing to the weakness

of nonobservable gravitational wave echoes to be as general
brought by Guo et al. 2022 [3] via this toy model:
(a) Because of the overall mass and charge dependence of

the peak of the barrier in (11), the in-falling particles/
fields hit the macroscopic reflective barrier before
making a trapped surface. Therefore, the surface of
ECO (barrier in the former section) remains outside
the trapped surface at least for the simple process of
nearly spherical BH formations. Additionally, we
always get an observable ringdown and quasi normal
modes (QNM) spectrum from the barrier itself due to
perturbations and partial reflection.

(b) Interestingly, although at the extremal limit and for
α ≥ 1, the peak of the barrier has touched the event
horizon, it still has width (shown in Fig. 1) which
extends its reflective behavior far from the horizon.

Let us bring up the same example raised by Guo et al.
2022 [3]: A BH of mass M that is created by N particles,
each moving radially inward at the speed of light. No causal
signal can travel from any of these particles to any other

FIG. 2. Transition line, extremal line, extremal regime, decay
regime, and direction of evolution and fate of dilaton BHs (see the
Appendix for details).
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particle. Since the causality also holds in dilaton gravity,
each particle must move exactly as it would if the other
particles were not present. Considering a static hole, each
particle definitely confronts the macroscopic near horizon
geometrical barrier with α ≥ 1 and runs into partial or total
reflection (depending on the amount of charge they pose and
value of the coupling constant α) before reaching the radius
r ¼ rþ. For the case of total reflection no trapped surface
and event horizon is formed. However, the particles shall
follow the trajectory dictated by the geometry formed in
dilaton gravity. In this case one may argue that this argument
justifies the dynamical black holes described in [3], given
that this process of dilatonic black hole formation at the
dynamical level may need numerical relativity computa-
tions. Consider an adiabatic approximation of spherically in-
falling particles (wave packet). They possess charge δQ and
mass δM, so the exterior geometry of this wave packet
changes (with M → M þ δM and Q → Qþ δQ) with a
trapped surface at rþ þ δrþ and maximum of the macro-
scopic effective potential barrier (11) at rmax þ δrmax > rþþ
δrþ. Now we have two scenarios: One is for small δQ
and δM where the trapped surface remains inside
rþ þ δrþ < rmax. In this case the particles will reflect back
at rmax before reaching the trapped surface at rþ þ δrþ.
Note that there is a similar argument in this scenario by
Dailey et al. 2023 [35] with numerical relativity justification
for a Schwarzschild black hole. For the other case (particles
with higher δQ and δM) where the trapped surface moves to
rþ þ δrþ > rmax, it becomes complicated to interpret the
outcome without extensive numerical relativity justifica-
tions, and there might occur scenarios against our argument.
However, in order to find a counterexample we can still
bring up some cases that we could argue in support of this
scenario. Consider the case of interest in this paper, the
extremal or near extremal black holes with α > 1. In this
example the black hole has zero or near zero area, with a
curvature singularity at rmax ¼ rþ or rmax ≃ rþ respectively.
However, the wave packet (collapsing particles) is an
extended object. The wavelength of the in-falling particles
is still much larger than that of the black hole zero or near
zero area even for smaller wavelengths. From a scattering
point of view for the in-falling waves it might be hard to
probe such small length scales. Let us assume δrþ ∼ 1

rþ
for

this case with rmax ¼ rþ or the trapped surface at rþ þ δrþ
with δrþ ≪ rþ. For these particles with potential barrier
VðrÞ, using the barrier equation in [29] for the waves
with frequencies ω ∼ 1

rþ
the reflection occurs around ω2 ∼

VðrreflÞ at distance rrefl where we get 1
r2þ
∼ 1

r2refl
ð1 − rþ

rrefl
Þ2−2α

2

1þα2

from the potential equation. For large α we find that
rrefl ¼ rþ þOðrþÞ, which is outside the trapped surface
at rþ þ δrþ.
In addition, as discussed in the former section dilaton

BHs with α ≫ 1 also contain the gently curved spacetime
assumption by Guo et al. 2022 [3].

We also solve wave equations for fermions to find the
greybody factors to bring an even more robust result
showing how BHs in this gravity act like firewall producing
echoes. As previously stated the peak of the potential
barrier approaches the horizon and can get an indefinitely
high value (growing as ðrþ − r−Þ−2ðα2−1Þ=ðα2þ1Þ at the
extremal limit) depending on the value of α and the BH
charge. The position of the peak for our interesting cases
α ≥ 1 at the extremal limit (ϵ → 0) approaches the event
horizon (rmax → rþ). For α > 1, the peak approaches as
rmax → ð1þ 1

2
α2þ1
α2−1 ϵÞrþ. This replicates an ECO/firewall

behavior which is shown in Fig. 1. Since the tortoise
coordinate is finite for these types of BHs, the particles are
reflected back in a finite time. For α ¼ 1 this peak
approaches rmax → ð1þ ffiffi

ϵ
2

p Þrþ remaining finite when it
touches the event horizon resembling a soft firewall. There
is also another barrier discussed in the former section due to
the electric potential of the BH. It reflects back low energy
particles at distance rΦ ¼ qQ

ω to the horizon, shown in
Fig. 1. So the existence of these two barriers makes a cavity
producing multiple echoes as seen in Fig. 3, where the
echoes in the time domain are presented as resonance
harmonics in the frequency domain.

IV. CONCLUSION

One may consider that the curvature singularity at r ¼ r−
breaks our semiclassical approximation near the event
horizon when we are at the extremal limit. Accordingly,
the quantum gravitational effects play a central role here
and force the geometry to change significantly, not only for
quantum gravitational effects, but also the vacuum expect-
ation of the stress tensor hTμνi for particles blow up as they
grow with the curvature of spacetime as seen in [36]. In this
scenario we may expect that these effects due to vacuum
fluctuations obstruct the singularity impeding the collapse
to form a horizon [36]. All these scenarios are leading to a
firewall behavior. We may have a hot bath of particle
creation acting again like a firewall. Since the Hawking

FIG. 3. Greybody factors for qQ > 0 at the near extremal limit
(see the Appendix for details). As seen in this plot this BH
replicates the ECO/firewall. These resonances at low frequency
are due to repeating reflections or echoes from two barriers shown
in Fig. 1.
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temperature of these BHs with α > 1 blow up at the
extremal limit, this is also consistent with our semiclassical
picture as well. One may argue that these BHs radiate away
their charge quickly through the Hawking radiation proc-
ess, while it was shown by Abedi et al. 2013 [29] that for
some parameter space and initial state, the BH evolves
toward the extremal limit (and the spacetime converges
to a flat geometry for α ≫ 1) when it reaches a stable
extremal situation.
wIn this paper we brought BHs from the basic local

action principle and show that we do not need to avoid the
event horizon to get gravitational wave echoes. The
singularity inside the event horizon changes the spacetime
outside in such a way to the favor the firewall behavior and
observable echoes. In particular, we brought counterex-
amples from BHs in the low energy limit of string theory
α ¼ 1, Kaluza-Klein theory α ¼ ffiffiffi

3
p

, and α ≥ 1 in general,

as our toy models answer the comments of Guo et al. 2017
and 2022 [3,4] about observable echoes without violating
any basic assumptions.
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APPENDIX: NATURAL UNITS
AND NUMERICAL VALUES

The natural units and numerical values in plots are
G ¼ ℏ ¼ c¼ 4πε0¼1, rþ ¼ 100, q½rþ� ¼ 0.005, ω½rþ� ¼
0.6, qQ=ωrþ ¼ 1.5, q

m ¼ 100, κ ¼ 1, α0 ¼ 40.
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