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Abstract: In medicine and sport science, postural evaluation is an essential part of gait and posture
correction. There are various instruments for quantifying the postural system’s efficiency and deter-
mining postural stability which are considered state-of-the-art. However, such systems present many
limitations related to accessibility, economic cost, size, intrusiveness, usability, and time-consuming
set-up. To mitigate these limitations, this project aims to verify how wearable devices can be assem-
bled and employed to provide feedback to human subjects for gait and posture improvement, which
could be applied for sports performance or motor impairment rehabilitation (from neurodegenerative
diseases, aging, or injuries). The project is divided into three parts: the first part provides experimen-
tal protocols for studying action anticipation and related processes involved in controlling posture
and gait based on state-of-the-art instrumentation. The second part provides a biofeedback strategy
for these measures concerning the design of a low-cost wearable system. Finally, the third provides al-
gorithmic processing of the biofeedback to customize the feedback based on performance conditions,
including individual variability. Here, we provide a detailed experimental design that distinguishes
significant postural indicators through a conjunct architecture that integrates state-of-the-art postural
and gait control instrumentation and a data collection and analysis framework based on low-cost
devices and freely accessible machine learning techniques. Preliminary results on 12 subjects showed
that the proposed methodology accurately recognized the phases of the defined motor tasks (i.e.,
rotate, in position, APAs, drop, and recover) with overall F1-scores of 89.6% and 92.4%, respectively,
concerning subject-independent and subject-dependent testing setups.

Keywords: biofeedback; wearable sensors; neurodegenerative diseases; movement anticipation;
machine learning

1. Introduction

The control of the postural system is one of the fundamental neurophysiological
mechanisms of the human body. It is fundamental to ensuring balance against gravity and
fixing body orientation, and functions as a reference frame for perception–action coupling
while efficiently dealing with the external world. Postural control is a dynamic process that
requires sensory detection of body motions and integration of sensorimotor information
within the central nervous system. In more detail, the central nervous system triggers
the execution of appropriate musculoskeletal responses in order to obtain an equilibrium
between destabilizing and stabilizing forces [1].

It has been shown, in the reference literature of physiatric medicine, that measure-
ments of postural stability are critical for determining predictors of performance [2], for
evaluating musculoskeletal injuries [3], for determining the effectiveness of physical train-
ing and rehabilitation treatments [4], and to provide injury prevention through the study
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of injury risk-factor analysis [3,5]. The body’s motion is mainly based on the integration of
the proprioceptive, visual, and vestibular inputs [6]. Afferent proprioceptive inputs are
conveyed to different levels of the central nervous system [7–9]; however, most of them
remain unconscious. The joint positions and movement sensing (kinaesthesia) are the
expressions of the conscious component, but postural control is primarily based on the
unconscious component [9]. Specifically for the antigravity movements, proprioceptive
control represents the expression of the effectiveness of the stabilizing reflexes in control-
ling vertical stability [8]. In fact, antigravity movements are the activities that counteract
gravity and postural instability with at least a phase of single-limb stance [6]. In this way,
proprioceptive input represents the most relevant sensory system in the maintenance of
static postural stability at all ages and fitness levels [10]. This topic is also relevant in
neurodegenerative diseases such as Parkinson’s disease (PD). For example, PD patients
with postural instability have worse reactions to brief perturbations, more stance sway,
and trouble switching between tasks. Moreover, quantifying balance changes in early and
moderate-stage PD and the comparison to healthy subjects using clinical assessments of
balance and musculoskeletal activation is paramount, primarily if performed through less
invasive and costly systems [11,12].

Many tools to detect musculoskeletal activation have been used in sport and rehabili-
tative medicine. Mainly, electromyography (EMG) is employed for this purpose. However,
EMGs are not yet widely used in combination with accelerometers for forecasting and
customizing measures for the analysis of the human body’s motion to achieve different
goals. This is mainly due to the limited number of investigations that have been focusing on the
nature of musculoskeletal response to a broad spectrum of stimuli able to identify the thresholds
that establish the standard/ideal status of the postural system. Hence, there is a lack of low-cost
technology that habilitates these measurements.

Furthermore, in the last decade, with the advent of the Internet of Things (IoT), em-
bedded sensors have been integrated into personal devices such as smartphones and
smartwatches. In several applications, sensors are integrated into clothes or other equip-
ment/objects of daily life, becoming a central research topic due to their importance in
many areas, including healthcare, interactive gaming, sports, and monitoring systems for
general purposes in controlled and uncontrolled settings [13–15].

The primary purpose of the investigation we carried out in this project was to present
a preliminary study on the design of a portable and reliable postural system prototype com-
posed of HW and SW, adapted to diverse individual profiles concerning the performance
viewpoint, from patients needing rehabilitation to top-level athletes. It is widely accepted
in the community of psychiatric medicine that proper quantification of the postural system
efficiency represents an essential assessment for improving the quality of life. However,
most of the actual measurements are developed in a laboratory environment where natural
movements are usually constrained by the instruments applied to subjects’ bodies and
the environment. This process is performed to distinguish, as precisely as possible, in the
limits of the experimental setting, the roles of proprioception, visual and vestibular input
using a low-cost and portable instrument. This habilitates the individuals to move freely
and perform activities at home or in other uncontrolled environments (e.g., gyms or sports
facilities) [5,16].

The technology integrated into such project includes state-of-the-art apparatus (i.e.,
force platform, EMG, and motion capture cameras) and wireless three-dimensional iner-
tial units performing computation and data analysis over low-cost devices (i.e., sensors
themselves, smartphones, and tablets) or cloud platforms.

In the project, we considered variants of these configurations’ implementations to
evaluate possible solutions to different settings. Subsequently, another essential goal will be
the usability of the envisioned technology. Thus, the possibility to perform a comparative
study with existing state-of-the-art validated systems is needed to obtain a well-ground
assessment. Moreover, fundamental analysis of the specific characteristics of the exercises
existing in the literature and a combinational calculation will define the subsequent exercise
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prescriptions; a multitude of exercise combinations will be available to satisfy the actual
needs of the different clinical conditions. To identify these exercises, in future works, we are
going to investigate the potential of reinforcement learning as a tool for customization (in
order to adapt the response of the portable tool to the needs of the setting, such as medical
diagnosis, performance test, training evaluation, and training progress measurements) and
personalizing (in order to adapt to the individual variability of the applications mentioned
above).

The project has a threefold scope:

(a) providing a theoretical foundation of a set of motor tasks employed to evaluate
the performance of posture and gait in at least three contexts: rehabilitation, sports
performance, and good health training at different ages;

(b) devising and testing a set of sensors that allow obtaining the above measures;
(c) defining a preliminary set of experiments and algorithms to identify individual profiles

and compute, via machine learning methods, the correct set of functional exercises.

Finally, this paper presents the experimental apparatuses and describes the experi-
mental design strictly related to the goals mentioned above. The experiments conducted
were structured for a final purpose: obtaining an experimental system for identifying the
correct patterns to be devised in the project’s future developments.

The rest of the paper is organized as follows. Section 2 provides an overview of the
relevant references to similar studies. Section 3 discusses the project’s expected research
outcome, and Section 4 introduces the overall experimental design. Section 5 presents
a preliminary evaluation of the data collected by the designed setup. Finally, Section 6
presents some conclusions and sketches further work.

2. Related Work

Posture is studied in two aspects: (a) postural control and (b) postural orientation.
The former involves studying the positional control of the body in space and orientation.
Instead, the latter involves studying the relationships between body segments. A neutral
state (also known as neutral posture) is observed when the upper trunk and head are
at zero degrees concerning the vertebral column. Subjects deviating from this neutral
posture are said to have low stability that can provoke accelerated intervertebral disc
(IVD) degeneration, damage, and misalignment of vertebrae, producing nerve compression
that can cause radicular manifestations, such as sensorimotor deficiencies and pain in
the involved regions [17]. When considering the maintenance of the vertical posture in
everyday life situations, postural control might become a complex task that requires the
ability to anticipate and compensate postural strategies when fast actions are performed
and when environmental perturbations are applied [18]. How individuals control their
preparatory and compensatory postural adjustments is still under debate [19]. Several
mechanisms help individuals to keep their posture when task conditions change due to
self-inflicted perturbation (e.g., I am suddenly moving my upper arm forward [20] or
when somebody is pushing me [21]). These mechanisms are represented by changes in the
activation levels of postural muscles called early postural adjustments (EPAs), starting up
to 1000ms prior to the impact [22], and anticipatory postural adjustments (APAs), starting
0–150ms prior to the impact [23]. The primary role played by the EPAs is to adjust the
posture and facilitate action planning. Typical examples are seen in preparation for making
a step [24] or to avoid contact with an approaching object [25]. On the other hand, the
function of APAs is to generate forces that act against an effect (mechanical) of a predictable
perturbation [26]. Here we concentrate on these ecological motor tasks where individuals
are challenged to control posture when facing a highly dynamic situation. The tasks selected
in this experimental design involve sequences of actions that require the maintenance of
stable posture while standing on an unstable proprioceptive platform and receiving in
an unexpected or expected way a perturbation requiring sudden balance recovery. These
motor tasks will help unveil the individual strategies adopted given the individual’s level of



Electronics 2023, 12, 644 4 of 21

skill. Based on the literature background, a single limb stance is regularly used to examine
the postural system [16,27–29],

EMG, electrocardiography (ECG), and inertial sensors integrated into wearables are
emerging as promising low-cost and easily usable solutions in everyday life [13] and
health care contexts [30]. Inertial measurement unit (IMU)-based movement identification
can be achieved by statistical classification or be threshold-based [31]. Such statistical
methods utilize supervised machine learning, which links features of a movement to
possible movement states in terms of the observation’s possibility [32]. Many of these
studies are devoted explicitly to disabled people with diminished gait/posture abilities.
This holds for multiple sclerosis patients [33] and Parkinson’s disease sufferers [30,34,35].
The ability to monitor the gait of multiple sclerosis patients and provide correct biofeedback
can help prevent falls and detect freezing (an aspect that can be fruitful also for Parkinson’s
patients) [33,36]. Prototype systems often include integrated sensors located on the ankles
to track gait movements. Body sensors are positioned near the cervical vertebra or on the
shoulders to monitor body posture [13]. Many systems can also measure parameters that
might be difficult to provide manually, such as the maximum acceleration of the patients
during standing up, or the time it takes from sitting to standing [37,38].

Moreover, the current diffusion of machine learning methods employed in gait, posture
analysis, and feedback is not comprehensive, but a few significant results have already been
achieved. A relevant group of investigations has been designed for decoding algorithms for
brain–machine interactions (BMIs) that use the spiking activity as their control signal [39].
These approaches are powerful in devising usable technologies. Specifically, feedback for
reinforcement-learning-based brain–machine interfaces using confidence metrics has been
addressed [40]. Some studies show how to derive the required evaluative feedback from a
biological source, using both the feedback’s quantity and quality, and incorporate it into
reinforcement learning controller architecture to maximize performance. Analogously, the
Berlin BCI has developed an accurate system that works from the first session in BCI-naive
Subjects [41].

An overview of the various steps in the brain–computer interface (BCI) cycle, i.e., the
loop from the measurement of brain activity, classification of data, feedback to the subject,
and the effect of feedback on brain activity, is the focus of [30,42]. On the other hand, the
role of technology for accelerated motor learning in sports is investigated in [43]. Finally,
parallel man–machine training in ECG-based cursor control development is the subject
of [30,44]. Some references should be given to smart environment previous investigations as
a foundation of the method developed here, emphasizing some development related to en-
ergy management [45] and concerning the design of energy-efficient transmission protocols
for wireless body area networks [46,47]. However, the systems mentioned above present
many limitations related to accessibility, economic cost, size, battery life, intrusiveness, and
usability (i.e., controlled and uncontrolled home or working context) environments.

3. Expected Research Outcomes of the Project

This section illustrates the project goals, reporting the most suitable application sce-
narios of the technology we envision and an overview of the presented architecture design.
For better comprehension, the goals are presented from a top-down perspective.

(a) basic application scenarios;
(b) envisioned technology;
(c) system architecture workflow.

3.1. Application Scenarios

Three different potential application scenarios have been devised under the super-
vision and collaboration of psychiatric medicine personal and sports training experts.
Scenario 1 was a controlled environment enriched with a set of sensors to the extent that
it makes this environment smart. Scenario 2 was set without specifying whether the per-
formed activities were to be carried out indoors or outdoors. It is legitimate to suppose that
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the environmental setting shall be relatively poor regarding available interactions, includ-
ing the potential unavailability of an Internet connection. Scenario 3 identified variations
determined by post-traumatic rehabilitation, personalized performance control over the
evolution of illnesses with harmful consequences on the patient’s stability, and training of
athletes with special needs.

Scenario 1: Diagnostic Evaluation

In the context of a psychiatric medical practice, a patient who suffers from postural instability
due to a traumatic event (e.g., car accident) or neurodegenerative disorder is visited by
medical personnel. The diagnostic process is assisted with the envisioned technology. The
patient is asked to execute a sequence of three exercises: single-stance stability test, forward
movement of arms with weights, and step-on gait on a free-range. During the exercises,
the patient wears a jacket equipped with a set of sensors and interacts with a visual focus
tool that helps her to identify a fixed point at a given distance. The jacket interacts with an
application that works on the cloud, measures the reaction time or other variables, including
anticipation’s effectiveness in the movements, and provides the operator the possibility of
marking progress in performance quality based on a fixed threshold that the operator can
define concerning age, sex, and the clinical condition of the patient. The whole process is
recorded on video, and the instrumental measures are saved on the patient’s profile.

Scenario 2: Sport performance benchmarking

An athlete training for a sporting event is monitored by her coach. He provides her with a
performance benchmark in line with the event requirements and expectations. The athlete
has a given training period for preparing for the event and a performance level she has to
accomplish in order to be competitive. The performance benchmarks have been defined by
the coach based on the athletic preparation path of the athlete. While following the coach’s
requests, the athlete executes some training exercises while wearing the jacket described in
Scenario 1. Every athlete’s exercise is compared against the benchmark performance and
consequently identified in terms of a negative gradient concerning the benchmark itself.

Scenario 3: Rehabilitation Follow-Up

During the rehabilitation period, a patient wearing the jacket described in Scenario 1 attends
a program consisting of a series of exercises. Each step in the series requires comparing the
performance with the provided reference benchmark defined by the psychiatrist during the
diagnostic process. The patient measures are the same as in Scenario 2 and represent how a
patient uses the jacket in a medical context.

3.2. Envisioned Technology

Our project’s aim is to design an accessible, low-cost, small, dedicated low-cost tech-
nological solution (i.e., Gait and Posture Smart Jacket (GPSJack)) suitable for the previously
introduced application scenarios. Figure 1 shows a graphic representation of the envisioned
technology where the subject is wearing the GPSJack and is immersed in the Gait and
Posture Smart Environment (GPSEnv). Numbers 1–5 mark the sensors attached to the
jacket, and number 6 marks the tablet application used by the top-level user. Medical and
potentially sports training staff can interact with the GPSJack/GPSEnv through a tablet to
guarantee total portability and versatility of the envisioned technological solutions.
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Figure 1. Visual description of the GPSJack technology and application scenario.

Therefore, the GPSJack system represents the low-cost inertial sensor-based system,
which is the project’s final goal. GPSEnv represents the adaption of the existing state-of-
the-art technologies to the presented scenarios for validation purposes. The final GSP-
Jack/GPSEnv architecture will provide to medical/sports staff the capability to perform
the following actions:

• register a GPSJack/GPSEnv administrator;
• start setup of a GPSJack/GPSEnv;
• registration of a new user;
• definition of the profile of a registered user;
• eliminate a profile;
• execution of a base test for a registered user;
• registration of a new exercise;
• registration of a new benchmark for an existing exercise;
• assignment of a benchmark for a given exercise to a specific user;
• execution of an exercise;
• registration of a sequence of exercises as a training path;
• association of benchmark values for a training path;
• assignment of benchmark values for a training path to a given user;
• visualization of a single test progresses along a temporal interval;
• visualization of progresses with respect to a given benchmark;

Based on the above-defined functions, several background software instruments are
required. The technologies for managing and analyzing the data from the sensors, which we
may name the GPSJack Framework, have been envisioned. Nevertheless, machine-learning-
based algorithms will guide the personalization of the benchmark process by employing
intelligent reinforcement learning methods. Finally, since the proposed technology has its
main applications in healthcare, it will provide, in addition to the classical data protection
techniques, a physical protection layer that, based on the radio signals’ propagation patterns,
will habilitate the possibility of utilizing the tablet if and only if the tablet is under a certain
distance (e.g., 5 m) from the GPSJack nodes.

3.3. Architecture Workflow

The system’s architecture is composed of several modules, each one with a single
responsibility, the logic model of which is reported in Figure 2.
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Figure 2. Logic model of system architecture.

Every module is related to at least another one:

User Interface: allows the user to input "environments" and provides visualization of all
data/results returned by the Machine Learning module;

Configurator: takes as input a set of environments and gives as output a set of feasible
"exercises" to be used by the Trainer, according to user input and machine learning
algorithms’ indications;

Trainer: uses the exercises and determines the "should be" paths, meaning which exercises
shall be executed and with which environment;

Evaluator: responsible for the evaluation of data and automatic comparison with benchmarks;

Sensor: deals with wearable sensors, collecting and normalizing data;

Machine Learning: gathers data and induces models.

The User Interface’s output is an ordered set of "environments", which are one of the
inputs of the Configurator. The Configurator continuously computes, and at given times
uses models from the Machine Learning module to produce a set of feasible "exercises".
These exercises are to be given to the Trainer, whose outputs are chains of exercises, also
named "paths", to be executed by patients (or athletes). At different times, different paths
are possible due to the work of the Trainer. The data are then gathered from the Sensor
module and sent to the Evaluator to be stored, visualized, and compared with benchmarks.
They are also used to devise possible "paths" and exercises to be delivered as hints to the
user. This is the responsibility of Machine Learning, which acts as a feedback generator for
the whole system, enabling the system to enhance performances continuously.

4. Methodology Design Workflow

This section presents the overall project information concerning hardware composing
the GPSEnv and GPSJack, and software regarding edge computation and the prelimi-
nary data analysis pipeline. To achieve the system’s architectural requirements, we have
designed a four-step method, illustrated in Figure 3.

- the first step consists of the identification of the most suitable motor tasks;
- the second step consists of the description and design of the used data collection

systems composing the GPSEnv/GPSJack;
- the third step exploits the collected data analysis workflow;
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- the fourth step exploits the modeling of individuals’ gait and posture invariants by
machine learning.

Figure 3. GPSJack/GPSEnv system design workflow.

4.1. Identification of Motor Tasks

The motor tasks should contain specific characteristics. We aimed to select tasks that
challenge postural stability and require the ability to foresee and anticipate the conse-
quences of actions given the presence of a sudden perturbation that might change posture
from a stable to an unstable state. In this way, we will be able to train fundamental motor
skills such as action adaptation, compensation, and anticipation, while, on the other hand,
measuring the performance of such skills. We will describe a typical trial involving a
sequence of movements that satisfies the task requirements stated above:

1. The subject stands on an unstable proprioceptive board (Figure 4) while holding a
heavy ball. The task is to rotate at an angle of 30◦ or 60◦ or 90◦, both right and left,
while keeping his feet still and rotating only the torso, without losing equilibrium.
Body balance is evaluated by analyzing the center of pressure (COP) migration. This
sequence of activities identifies two distinct motor task phases: (a) rotate and (b) in
position.

2. Once in position, the subject is asked to drop the ball quickly (in the 150 ms preced-
ing this action, the anticipatory postural adjustments (APAs) can be identified and
analyzed) captured by the EMG and the force platform. This sequence of activities
identifies two distinct motor task phases: (c) APAs and (d) drop.

3. After the loss of balance (due to the fast drop of the ball), the subject is asked to regain
the balance as fast as possible. The analysis of COP migration for defining the balance
recovery after the perturbation is considered. This activity identifies one motor task
phase: (d) recover.

Figure 4. The wooden board: bottom and lateral views.

We analyzed different experimental conditions to define the departure from the stan-
dard measurements by considering the same task while changing the biomechanical and
perceptual conditions and testing different populations ranging from elite athletes to in-
dividuals affected by neuromuscular diseases. Figure 5 presents an overview of the force
platform x-axis data of a motor task. As shown, it is composed by five different move-
ments: (a) rotate, (b) in position, (c) APAs, (d) drop, and (e) recover. The task starts at most
10 s after the emission of an audio signal. Such a signal is later used during the manual
synchronization of the GPSJack and GPSEnv data streams.
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Figure 5. Overview of motor task phases: (blue) rotate, (red) in position, (green) APAs, (purple)
drop, and (yellow) recover.

Data Collection Procedure

To validate the GPSJack system, subjects of different ages, genders, and motor back-
grounds performed the introduced protocol of exercises. This protocol aimed to analyze
the tested subjects’ gait and posture using state-of-the-art instrumentation to identify the
anticipatory movements and minimum requirements that the GPSJack nodes (as shown in
Figure 1) will have to implement.

Figure 4 presents the proprioceptive board. Area dimensions were 0.45 m × 0.45 m,
and height was 0.025 m. On the bottom of the surface, the board was touching the ground
utilizing a beam glued along the board mid-line, having the same length as the wooden
board, and being 0.025 m in height and 0.06 m in width. Figure 6, on the left, presents how
the board was used during the exercise.

Figure 6. Experimental setup: the task.

4.2. Data Collection Systems

This section presents the instruments involved in the design of the GPSEnv and
GPSJack systems. GPSEnv is defined as a state-of-the-art apparatus. GPSJack was designed
to be a low-cost and long-battery-life system on chip (SoC).

4.2.1. GPSEnv Apparatus

It performs gait and posture analyses based on the combination of three different
instruments:

• Force platform;
• Surface EMGs;
• Motion capture cameras.

Force Platform

The forces in three orthogonal directions, along with the COP migration, are measured
by a force platform (https://tinyurl.com/rhkktv4 accessed on 10 December 2022), coupled

https://tinyurl.com/rhkktv4
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with a 6-channel strain gauge amplifier (https://tinyurl.com/zy2efpn8 accessed on 10
December 2022), with a sampling frequency of 1000 Hz, presenting a size of 0.9 m × 0.9 m.
The AMTI Biomechanics Force Platform, model BP900900, features composite construction,
resulting in a low-mass instrument with excellent frequency response. Specifically designed
for the precise measurement of ground reaction forces, the BP900900 measures the three
orthogonal force components, the moments about the three axes, and the center of pressure
in the horizontal plane producing a total of eight outputs. The high sensitivity, low crosstalk,
excellent repeatability, and long term stability of this platform make it ideal for research
and clinical studies. The BP900900 is easy to use and is available with 1000, 2000, or 4000
pound (4450, 8900, or 17,800 Newtons) vertical capacity. This force platform is shown in
Figure 6, on the left part, under the subject’s feet, and in right image, represented virtually
as platform 1.

Surface electromyography (EMG)

The surface EMG activity of sixteen postural muscles, on both sides of the body, is
recorded using electrocardiographic electrodes located on the subject’s body, as shown
by the red markers in Figure 7. The muscles used are: the rectus abdominis (RA), erector
spinae (ES), rector femoris (RF), biceps femoris (BF), vastus lateralis (VL), tensor fasciae
latae (TL), tibialis anterior (TA), and soleus (SO). Guidelines from the http://www.seniam.
org/ accessed on 10 December 2022 (Surface ElectroMyoGraphy for the Non-Invasive
Assessment of Muscles) are used to guarantee consistency in the muscles’ anatomical
localization. The https://fccid.io/VH6ZWTX07/User-Manual/User-Manual-903877 accessed
on 10 December 2022 EMG system, produced by Aurion S.r.l., is used to collect and amplify EMG
signals at a sampling rate of 1000 Hz.

Figure 7. Locations of retro-reflective markers (black) and EMG electrodes (red). EMGs were placed
on both sides of the body.

Motion Capture Cameras

Concerning the kinematic analysis, five retro-reflective markers are attached to each
subject. Markers’ positions are located on the subject’s body as shown by the black markers
in Figure 7.

The markers are placed on the backs of both hands, on the forehead, on the lowerback,
and on the lateral malleoulus on the dominant leg. The position, velocity, and acceleration of
every marker are recorded at a sampling rate of 200 Hz, using eight motion capture cameras
(https://www.evl.uic.edu/sjames/mocap/resources/Doc/MXhardware_Reference.pdf ac-

https://tinyurl.com/zy2efpn8
http://www.seniam.org/
http://www.seniam.org/
https://fccid.io/VH6ZWTX07/User-Manual/User-Manual-903877
https://www.evl.uic.edu/sjames/mocap/resources/Doc/MXhardware_Reference.pdf


Electronics 2023, 12, 644 11 of 21

cessed on 10 December 2022), featuring multiple high-speed processors that perform
real-time proprietary image processing and Vicon Nexus 2.6 software.

4.2.2. GPSJack Apparatus

The GPSJack prototype uses the nRF52840 system on chip (SoC), built over the 32-bit
ARM CortexTM-M4 CPU with a floating-point unit running at 64 MHz. The nRF52840 is
the most advanced member of the Nordic Semiconductor nRF52 Series SoC family (https:
//www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840 accessed
on 10 December 2022). It is fully multi-protocol and capable of supporting Bluetooth
5, Bluetooth mesh, Thread, Zigbee, 802.15.4, ANT, and 2.4 GHz proprietary stacks [48].
Furthermore, the nRF52840 uses a sophisticated on-chip adaptive power management
system achieving exceptionally low energy consumption.

This SoC interfaces with various electronic devices capable of perceiving different
types of measurement of the movement context. In the setup we discuss here, the nRF52840
defines the core of each GPSJack node. On the same HW board, each SoC core commu-
nicates with various sensors, such as an accelerometer, gyroscope, and magnetometer.
However, since the design of every single node of the GPSJack from scratch would require
further targeted effort, and since the goal of the project is to show the suitability of the
system in recognizing the different phases of the defined task, we made use of the Nordic
Thingy 52 IoT Sensors kit shown in Figure 8. In future developments, the Nordic Thingy 52
can be replaced by dedicated data collection nodes based on the nRF52840 SoC, presenting
reduced dimensions and integrating only sensors relevant to the scenario. It transmits data
to/from its sensors and actuators to a receiver implemented through a PC, single board
computing (SBC) (e.g., Raspberry pi 4 or Odroid H2+), or a mobile application running on
a tablet or smartphone [48]. Extended device characteristics are listed in the following:

• Dimensions: 5 cm × 5 cm × 1.5 cm, weight: 47 g;
• Motion-tracking sensors: nine axis motion sensor including 3-axis gyroscope, 3-axis

accelerometer, and 3-axis magnetometer;

– Sampling frequency: up to 200 Hz;
– Full scale: up to 16 g for accelerometer and up to 2000 dps for gyroscope;

• Battery: rechargeable Li-Po battery with 1440 mAh capacity;
• Microprocessor: 64 Mhz Cortex M4 MCU;
• Communication: Bluetooth Low Energy (BLE);
• Cost: 38 Dollars.

Figure 8. Nordic Thingy 52 board (on the left) and its usage in the data collection setup (on the
right).

Nodes positions and number are not definitive, since their positions directly depend on
the preliminary study carried out with the previously introduced instrumentation. The GP-
SJack sampling frequency, the number of nodes, and the positions will be adjusted (reduced)
based on the previous phase’s outcome, thereby reducing the battery consumption of the
overall system.

https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF52840
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Moreover, the designed GPSJack system can be composed of up to 11 different nodes
that collect data and communicate with a single tablet or SBC device. Based on the
performed tests, the designed GPSJack (configured as shown in Figure 1, 5 nodes and
1 data aggregator) can communicate, without data loss, with the tablet device at a maximal
distance of 45 m. Concerning the battery life, the GPSJack data collection nodes can
compute for more than 48 h at a sampling frequency of 200 Hz.

Figure 9 presents an overview of the main characteristics of the GPSJack android mo-
bile application running over a tablet device, presenting data collection and visualization.

Figure 9. GPSJack Android mobile application running on the tablet: node connection and data
visualization.

The raw data (aka, time series), perceived by the GPSJack prototype (at a maximal
sampling frequency of 200 Hz) and the existing in-laboratory architecture (perceived at a
frequency of 200–1000 Hz), will be pre-treated by applying different data processing steps.

Finally, the GPSJack android mobile application executing on a tablet device has the
ability to video-record at 60 FPS the performed tasks. Such recording is synchronized with
the data stream perceived by the data collection nodes (i.e., Nordic Thingy 52).

4.2.3. GPSJack/GPSEnv Synchronization

The GPSJack and the GPSEnv data streams present different timestamps and are
not synchronized. The synchronization is manually performed offline, using the audio
start signal emitted by the Vicon system and the video recording of the task performed
by the GPSJack system. The annotator identifies the precise timestamp of the GPSJack
system where the start audio signal is emitted by the GPSEnv system. In particular, the
annotator identifies the precise video frame during which the signal is emitted (i.e., a
granularity of 16 ms). In future developments, the aim will be to automatically synchronize
the GPSJack/GPSEnv data streams using existing solutions [49], thereby excluding the
time-consuming offline synchronization process.

4.3. Data Analysis

This section presents, starting with the data collected by the mentioned instruments
(i.e., EMGs, force platform, kinematic, and GPSJack), the main data processing steps,
performed with different processing methods in a defined order [50]. This workflow is
presented in Figure 10.

Figure 10. Data analysis workflow.
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4.3.1. Data Cleaning

This phase emphasizes data patterns by reducing their dependence on environmen-
tal/HW noise and the data collection architecture, which often leads to data loss or corrup-
tion during transmission. In particular, dedicated data cleaning techniques must handle
missing or corrupted data to maintain the time series structure and information. In this step,
the corrupted and missing data issue is handled by applying an interpolation data-filling
method that replaces such data with a value that follows the time series’s previous and
consequent pattern [51]. The noise’s impact is reduced by applying a 4-order low-pass
filter with a cut-off frequency of 20 Hz. We do not apply any data cleaning method to the
existing in-lab architecture, since the architecture’s proprietary software already performs
such a step.

4.3.2. Feature Extraction

Furthermore, since standard pattern-recognition models are not always suitable for
raw data, the machine learning training phase is anticipated by a feature extraction step
during which time-series are represented as a set of features in the time and/or frequency
domain [52,53]. We make use of the https://github.com/fraunhoferportugal/tsfel accessed
on 10 December 2022 [54] to represent each time window of 150 ms (equal to the APAs
movement duration) perceived by the mentioned instrumentation in a set of 160 features in
the frequency and time domains.

Table 1 shows the most commonly extracted time (e.g., min, max, mean, std, etc.) and
frequency (e.g., Fast Fourier Transform (FFT), Discrete Fourier Transform (DFT), Discrete
Wavelet Transform (DWT), etc.) domain features that are usually combined, further in-
creasing the recognition accuracy. Other features, extracted by using other frameworks or
handcrafted (extracted manually), can be used, since the proposed workflow is modular.
Thus, we can easily substitute each module.

Table 1. Most used time and frequency-domain features.

Time Domain Features Frequency Domain Features

(1) maximum, (2) minimum, (3) mean, (4) standard deviation,
(5) root mean square, (6) range, (7) median, (8) skewness,

(9) kurtosis, (10) time-weighted variance, (11) interquartile
range, (12) empirical cumulative density function,

(13) percentiles (10, 25, 75, and 90), (14) sum of values above or
below percentile (10, 25, 75, and 90), (15) square sum of values
above or below percentile (10, 25, 75, and 90), (16) number of

crossings above or below percentile (10, 25, 75, and 90),
(17) mean amplitude deviation, (18) mean power deviation,

(19) signal magnitude area, (20) signal vector magnitude,
(21) covariance, (22) simple moving average of sum of range of a

signal, (23) sum of range of a signal, (24) sum of standard
deviation of a signal, (25) maximum slope of simple moving
average of sum of variances of a signal, (26) autoregression.

(1) Fast Fourier Transform (FFT) coefficients, (2) Discrete Fourier
Transform (DFT), (3) Discrete Wavelet Transform (DWT),

(4) first dominant frequency, (5) ratio between the power at the
dominant frequency and the total power, (6) ratio between the
power at frequencies higher than 3.5 Hz and the total power,

(7) two signal fragmentation features, (8) DC component in FFT
spectrum, (10) energy spectrum, (11) entropy spectrum,

(12) sum of the wavelet coefficients, (13) squared sum of the
wavelet coefficients and energy of the wavelet coefficients,
(14) auto-correlation, (15) mean-crossing rate, (16) spectral
entropy, (17) spectral energy, (18) wavelet entropy values,

(19) mean frequency, (20) energy band.

BUsers could also decide not to apply the feature extraction step and use the date in
the form provided by the previous block applying a standard data segmentation phase. In
such a case, the feature selection algorithm is not applied [13,50].

4.3.3. Preprocessing of Features

The extracted features could present a wide range of values that will govern the
training process, but such features are not those that primarily represent the dataset’s char-
acteristics or the final pattern-recognition model’s accuracy. Data normalization transforms
multi-scaled data to the same scale, and all variables equally influence the model, improv-
ing the learning algorithm’s stability and performance [55]. Our methodology makes use

https://github.com/fraunhoferportugal/tsfel
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of the robust scaling normalization technique that scales each feature of the dataset by
subtracting the median (Q2(x)) of this feature and then dividing by the interquartile range
(IQR) (Q3(x)− Q1(x)). This scaler is robust to outliers, in contrast with the other scalers
that arehighly affected by outliers. When working with datasets in which different features
are used to represent every single sample, the datasets perform independent normalization
for every feature.

Moreover, a large number of features does not imply high recognition quality, since
they can positively or negatively impact the recognition process. Therefore, feature selec-
tion techniques identify features that positively and negatively influence the recognition
process, reducing the model’s dependence on irrelevant features. The exclusion of a certain
number of features decreases the training process’s complexity, since a smaller dataset
generally requires less training time. The main benefits of such techniques are (i) reducing
overfitting by eliminating redundant data, which consequently reduces noise-related is-
sues; (ii) improving accuracy, since misleading data are eliminated; (iii) reducing training
time due to fewer data points; and iv) raising interest in certain features demonstrating
higher importance [55,56]. We use the tree-based feature selection technique to compute
impurity-based feature importances, discarding irrelevant features in cooperation with
other feature selection techniques.

In conclusion, the execution of this series of data treatment steps transforms the raw
data, subject to noise and errors, to an optimal number of features in the time and frequency
domains. This features set will be used by the machine learning models in the fourth phase
of the methodology, as shown in Figure 3. The features-preprocessing step is anticipated
by the hold/leave-out validation techniques, generating the training and testing datasets.
Then, the training dataset will be preprocessed as mentioned above, and then the testing
dataset is preprocessed based on the training dataset’s requirements.

5. Preliminary Experimental Evaluation

Following the experimental design of Section 4, we collected data from 12 different
male subjects, whose physical characteristic are shown in Table 2.

Table 2. Subjects’ characteristics.

Subject Age (Years) Height (cm) Weight (kg)

22 24 182 72.6
23 24 183 61.1
24 22 186 97.7
25 28 176 65.1
26 28 172 69.7
28 23 170 64.7
29 24 174 69.0
30 28 176 78.0
31 25 187 86.9
32 23 189 78.1
33 23 176 66.9
34 19 175 72.8

Min. 19 170 61.1
Max. 28 189 97.7
Avg. 24.76 178.65 73.71
Std. 2.78 6.15 9.97

At the end of the data collection phase, each subject had performed a total of 84 7 tasks
(i.e., do not rotate, rotate of an angle of 30◦ or 60◦ or 90◦, both right and left) × 2 statuses
(i.e., stable/unstable) × 6 repetitions) data collection sessions. Each session involved the
five movements phases (i.e., rotate, in position, APAs, drop, and recover) described in
Section 4.1 and shown in Figure 5.

In this preliminary evaluation, the collected data are divided based on the data col-
lection technologies we utilized (force platform, EMGs, or acceleration data) into three
different datasets, as shown in Table 3.
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Table 3. Overview of the three types of datasets analyzed.

Dataset Time Force Platform EMG’s Acceleration Sampling
Frequency

ID [ms] (#1) (#10) (#9) [Hz]

A 1000
B 200
C 200

(# val) number of sensors.

Subsequently, for each dataset type (i.e., A, B, and C), we applied the data-processing
pipeline defined in Section 4.3 and shown in Figure 10. In particular, the data, in segmen-
tation and feature representation forms were segmented in time windows of 150 ms as
the hypothetical duration of the APA movement phase), were used to train three different
machine learning models, whose performances in recognizing the movement phases of
Figure 5 were measured in terms of accuracy A), precision (P), recall (R), and F1-score (F1),
defined as follows [57]:

A = tp+tn
tp+tn+ f p+ f n P = tp

tp+ f p

R = tp
tp+ f n F1 = 2 × P×R

P+R

Here, tp represents the number of true positives, n represents the number of true
negatives, fn represents the number of false negatives, and fp represents the number of false
positives.

5.1. Preliminary Results

Tables 4 and 5 present the results of our preliminary analysis. Table 4 presents the
results for datasets A, B, and C from all subjects simultaneously by performing a k-fold test
(k = 5) on all subjects’ data. Table 5 presents the results for datasets A, B, and C for every
single subject by performing a k-fold test (k = 5) on each subject’s data.

Table 4. Average results for segmentation and feature-extraction data representation of all 12 subjects’
data.

Segmentation Feature Extraction

A B C A B C

Model A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

k-NN 58.1 56.2 58.1 55.2 47.4 45.0 47.4 44.0 57.3 55.5 57.3 54.4 42.7 39.4 42.7 40.2 38.9 36.8 38.9 35.8 71.4 67.7 71.4 69.2
RF 77.7 80.2 77.7 76.0 54.5 55.3 54.5 48.3 88.8 89.3 88.8 88.2 84.0 84.8 84.0 83.5 63.0 68.6 63.0 59.5 89.9 90.2 89.9 89.6
LDA 49.2 48.9 49.2 47.3 42.5 64.7 42.5 25.7 49.5 49.2 49.5 48.4 36.8 34.6 34.5 31.45 61.3 67.6 61.3 56.9 65.1 67.4 65.0 63.6

The results of Table 4 show that the random forest performed the best on all three
datasets (i.e., A, B, and C), and for both data-treatment types (i.e., segmentation and feature
extraction). Moreover, when differentiating by dataset type, the results show that the
conjunct information of dataset A (i.e., EMGs and Force Platform) and dataset B (i.e.,
acceleration values) was put to use significantly better than when used separately. In
particular, in terms of F1-score, there was an increment of 12.2% from dataset A to dataset C
and 39.9% from dataset B to dataset C. Such results indicate that the acceleration provides
precious information concerning the recognition of the studied activities. Overall, the
achieved F1-scores for all subjects using the random forest model and dataset C were 88.2%
and 89.6%, respectively, in segmentation and feature representation modes.
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Table 5. Results on segmentation and feature extraction data representation for each subject.

Segmentation Feature Extraction

A B C A B C

Subject Model A P R F1 A P R F1 A P R F1 A P R F1 A P R F1 A P R F1

P22
k-NN 56.8 55.6 56.8 54.4 40.0 42.1 40.0 39.0 56.5 55.3 56.5 54.2 39.4 37.4 39.4 37.7 34.5 31.9 34.5 32.6 44.5 60.5 44.5 48.9
RF 83.6 84.8 83.6 82.7 54.1 55.9 54.1 49.2 84.9 85.7 84.9 84.1 83.6 84.8 83.6 83.0 61.5 63.3 61.5 59.4 83.9 85.1 83.9 83.2
LDA 59.5 59.5 59.5 59.4 32.1 30.8 32.1 31.2 54.8 56.4 54.8 55.5 39.3 76.0 39.3 40.0 3.0 8.3 3.0 0.4 44.5 60.5 44.5 48.9

P23
k-NN 66.7 67.3 66.7 64.3 42.1 42.8 42.1 37.4 65.8 63.5 65.8 63.0 49.1 46.8 49.1 47.8 37.8 34.7 37.8 35.0 82.9 81.4 82.8 80.3
RF 86.1 87.7 86.1 85.6 48.9 47.9 48.9 43.5 99.8 99.8 99.8 99.8 87.6 88.0 87.6 87.2 62.4 64.9 62.4 60.3 100 100 100 100
LDA 61.1 61.9 61.1 61.4 37.8 33.7 37.8 33.4 98.6 98.7 98.6 98.6 30.5 0.1 3.1 0.01 3.6 12.9 3.6 1.2 97.4 97.5 97.4 97.4

P24
k-NN 63.7 64.0 63.7 62.6 46.1 43.9 46.1 41.0 64.4 63.7 64.4 63.1 46.1 44.2 46.1 44.9 40.9 38.0 40.9 37.2 65.8 61.6 65.8 63.5
RF 89.4 90.8 89.4 88.8 56.2 60.6 56.2 49.8 88.1 89.6 88.1 87.3 91.4 91.7 91.4 91.1 65.3 70.5 65.3 62.3 92.1 92.3 92.1 91.7
LDA 59.7 60.8 59.7 60.0 35.0 32.3 35.0 33.8 52.8 57.2 52.8 54.5 58.2 66.6 58.2 57.1 30.0 34.4 30.0 15.0 61.8 64.3 61.8 62.9

P25
k-NN 63.3 62.8 63.3 60.9 49.5 50.9 49.5 46.5 63.4 63.0 63.4 61.1 48.0 45.4 48.0 46.4 37.6 37.6 37.6 34.9 68.3 65.0 68.3 66.2
RF 85.0 85.6 85.2 84.7 55.9 63.4 55.9 52.1 90.1 90.3 90.1 89.7 86.1 85.9 86.1 85.8 65.2 72.3 65.2 62.4 90.1 90.0 90.1 89.7
LDA 55.9 56.1 55.9 55.7 37.5 35.2 37.5 35.6 54.1 54.4 54.1 54.1 20.0 7.8 20.0 10.5 3.7 11.6 3.7 1.9 40.0 46.4 40.0 31.8

P26
k-NN 65.0 64.1 65.0 62.3 48.1 46.4 48.1 43.1 65.0 64.1 65.0 62.3 49.7 46.7 49.7 47.5 37.3 32.9 37.3 34.2 80.4 76.9 80.4 77.7
RF 86.3 86.5 86.3 85.9 58.7 61.5 58.7 52.7 99.8 99.8 99.8 99.8 88.4 88.3 88.4 88.1 65.3 65.2 65.3 60.8 100 100 100 100
LDA 57.9 58.6 57.9 58.2 41.7 38.7 41.7 38.6 98.3 98.4 98.3 98.3 41.3 25.7 41.3 31.0 31.4 11.2 31.4 15.8 98.3 98.4 98.3 98.3

P28
k-NN 65.5 64.3 65.5 62.8 46.7 46.2 46.7 41.7 65.5 64.3 65.6 62.8 52.3 49.5 52.3 50.2 38.7 33.6 38.7 35.0 64.0 60.7 64.1 62.2
RF 84.2 85.4 84.2 83.1 56.7 60.7 56.7 49.7 85.8 86.5 85.8 84.8 86.1 86.8 86.1 85.4 63.4 67.1 63.4 59.0 85.5 86.1 85.5 84.8
LDA 58.8 59.3 58.8 59.0 46.7 41.4 46.7 39.1 53.6 56.2 53.5 54.5 56.6 62.7 56.6 60.6 3.4 17.9 3.4 0.6 50.8 57.0 50.1 52.5

P29
k-NN 61.0 60.1 61.0 58.1 46.8 47.5 46.8 42.7 61.1 60.6 61.1 58.4 49.0 46.0 49.0 46.7 39.6 37.9 39.6 36.5 69.4 65.4 69.4 67.0
RF 85.0 87.0 85.0 84.3 59.3 59.5 59.3 51.4 84.8 86.5 84.8 84.0 86.1 87.4 86.1 85.6 65.1 68.4 65.1 58.9 87.8 88.8 87.8 87.3
LDA 61.7 61.3 61.7 61.3 39.0 35.1 39.0 35.9 54.6 57.4 54.6 55.4 59.9 65.6 59.9 61.5 46.9 22.9 46.9 30.5 49.2 54.9 49.2 50.3

P30
k-NN 59.2 62.0 59.2 55.9 51.4 54.5 51.4 43.5 59.7 59.3 59.7 56.5 42.6 39.8 42.6 40.4 37.9 34.9 37.9 34.6 77.8 75.3 77.8 74.2
RF 84.6 85.8 84.6 83.6 61.8 65.0 61.8 57.2 99.8 99.8 99.8 99.8 86.4 87.1 86.4 85.9 69.9 72.8 69.9 67.3 99.8 99.8 99.8 99.8
LDA 53.4 55.3 53.4 54.1 41.1 38.3 41.1 38.9 99.0 99.0 99.0 99.0 11.9 45.4 11.9 13.4 30.1 17.5 30.1 14.9 98.7 98.8 98.7 98.8

P31
k-NN 58.2 55.4 58.2 54.8 45.8 44.3 45.8 38.3 55.6 52.6 55.6 52.5 42.9 39.8 42.9 39.4 38.9 37.1 38.9 35.7 77.8 72.7 78.8 74.4
RF 81.2 83.1 81.2 80.2 53.7 59.6 53.6 47.5 99.8 99.8 99.8 99.8 86.4 87.3 86.4 85.8 62.0 67.2 62.0 58.9 99.9 99.9 99.9 99.9
LDA 59.8 60.0 59.8 59.7 44.1 41.1 44.1 40.4 98.9 98.9 98.9 98.9 65.3 66.1 65.3 65.3 16.8 66.1 16.8 20.5 98.4 98.4 98.4 98.4

P32
k-NN 68.3 67.8 68.3 65.1 30.7 36.8 30.7 30.2 68.3 67.8 68.3 65.0 56.3 53.7 56.3 54.3 41.0 37.5 41.1 38.2 71.2 67.5 71.2 68.7
RF 87.2 87.3 87.2 86.1 58.5 63.6 58.5 53.2 89.3 87.0 89.3 87.9 88.3 87.5 88.3 87.5 67.4 66.1 67.4 64.4 88.6 87.9 88.6 87.9
LDA 56.8 56.7 56.8 56.7 42.3 37.5 42.3 37.9 53.6 55.5 53.6 54.4 15.3 3.9 15.3 06.2 18.6 20.3 18.6 7.0 42.2 25.4 42.2 28.8

P33
k-NN 69.2 65.5 69.2 66.5 45.0 46.1 45.0 43.4 69.4 65.3 69.4 66.7 53.2 49.0 53.2 50.3 38.1 35.0 38.1 34.8 70.4 66.5 70.4 67.7
RF 89.8 90.3 89.8 89.2 53.9 54.8 53.9 48.2 92.0 92.5 92.0 91.3 91.4 91.2 91.4 90.9 63.9 64.7 63.9 59.6 93.8 94.0 93.8 93.2
LDA 60.0 60.3 60.0 60.1 38.9 37.7 38.9 37.3 54.2 56.4 54.2 55.0 14.3 45.8 14.3 18.3 3.3 35.1 3.3 0.8 50.0 57.6 50.0 46.9

P34
k-NN 73.4 73.3 73.4 71.6 52.8 51.4 52.8 45.6 73.9 73.9 73.9 72.0 57.6 54.1 57.7 55.6 40.5 36.4 40.5 37.2 76.4 73.0 76.4 74.5
RF 91.6 91.8 91.6 91.3 58.8 67.9 58.8 52.1 93.8 94.1 93.8 93.4 91.7 91.6 91.6 91.5 66.2 70.1 66.2 60.5 92.4 92.3 92.4 92.2
LDA 63.3 63.5 63.3 63.4 43.1 37.6 43.1 39.0 57.7 58.9 57.7 58.2 28.8 9.1 28.8 13.4 28.9 26.8 28.9 13.7 49.5 49.2 49.5 48.4

k-NN
Min 56.8 55.4 56.8 54.4 30.7 36.8 30.7 30.2 55.6 52.6 55.6 52.5 39.4 37.4 39.4 37.7 34.5 31.9 34.5 32.6 44.5 60.5 44.5 48.9
Max 69.2 67.8 69.2 66.5 51.4 54.5 51.4 46.5 69.4 67.8 69.4 66.7 56.3 53.7 56.3 54.3 41 38 41.1 38.2 82.9 81.4 82.8 80.3
Avg 63.4 62.6 63.4 60.7 44.7 45.6 44.7 40.6 63.2 61.8 63.2 60.5 48.1 45.3 48.1 46.0 38.4 35.6 38.4 35.3 70.2 68.5 70.3 68.3

RF
Min 81.2 83.1 81.2 80.2 48.9 47.9 48.9 43.5 84.8 85.7 84.8 84.0 83.6 84.8 83.6 83 61.5 63.3 61.5 58.9 83.9 85.1 83.9 83.2
Max 89.4 90.8 89.4 88.8 61.8 65 61.8 57.2 99.8 99.8 99.8 99.8 91.4 91.7 91.4 91.1 69.9 72.8 69.9 67.3 100 100 100 100
Avg 85.3 86.4 85.3 84.5 56.4 59.8 56.4 50.6 92.2 92.5 92.2 91.7 87.0 87.5 87.0 86.5 64.8 67.8 64.8 61.4 92.8 93.0 92.8 92.4

LDA
Min 53.4 55.3 53.4 54.1 32.1 30.8 32.1 31.2 52.8 54.4 52.8 54.1 11.9 0.1 3.1 0.01 3.0 8.3 3.0 0.4 40.0 25.4 40.0 28.8
Max 61.7 61.9 61.7 61.4 46.7 41.4 46.7 40.4 99.0 99.0 99.0 99.0 65.3 76.0 65.3 65.3 46.9 66.1 46.9 30.5 98.7 98.8 98.7 98.8
Avg 58.5 59.0 58.5 58.6 39.7 36.4 39.7 36.5 71.8 73.2 71.8 72.3 39.8 42.0 37.1 34.6 18.8 22.3 18.8 10.8 68.1 70.2 68.1 66.8

Table 5 shows that when training and testing the models with one specific subject,
the models’ performances are subject-dependent. As shown from the statistics of each
model for all subjects (bottom of the table), the RF model performed much better (F1
score > 91.6%) in both segmentation and feature representation modes, showing that the
recognition accuracy, in terms of F1-score, is on average 5% higher than when training and
testing with all 12 subjects’ data (see Table 4). Again, differentiating by dataset type, the
results show that the conjunct information of dataset A (i.e., EMGs and Force Platform)
and dataset B (i.e., acceleration values) performed significantly better than when used
separately. In particular, on average, there was an increment of 7.3% in the F1-score from
dataset A to dataset C and 31.1% from dataset B to dataset C.

5.2. GPSJack Evaluation

Concerning the suitability and principal characteristics of the GPSJack system, this sec-
tion presents its evaluation in terms of RAM, storage, CPU, battery consumption, and data
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loss. In particular, a Samsung Galaxy Tab A7 with the following HW/SW characteristics
has been tested in the setup described below.

• Processor: Qualcomm Snapdragon Octo-Core (4 × 2 GHz + 4 × 1.8 GHz);
• Operating system: Android 10;
• RAM: 3 GB;
• Storage: 32 GB;
• Connectivity: Bluetooth 5.0, Wi-Fi a/b/g/n/ac Dual Band;
• Battery: 7040 mAh;
• Dimension: 247.6 × 157.4 × 7 mm per 476 g;
• Price: $140.

Three Nordic Thingy 52 were connected to the Samsung Galaxy for three consecutive
hours. The setup was tested once for each sampling frequency: (i) 50 Hz, (ii) 100 Hz, and
(iii) 200 Hz. Table 6 presents the evaluation results obtained using the Android Studio
Profiler suit.

Table 6. Data aggregators’ profiling using Android Studio 4.1.2.

Galaxy Tab A7

Frequency (Hz) 50 100 200

RAM (MB/h) 147 180 224
Storage (Mb/h) 50 102 185

CPU (%) 31 40 46
Battery (mAh) 312 325 342

Data loss (%) 0 0 0

As observed, the designed system can work on various setups with no data loss and
low storage, RAM, and CPU usage. Moreover, its battery consumption allows a data
collection phase of almost 8 h. Based on the tests performed during the project, the Nordic
Thingy 52 can efficiently compute for more than 48 consecutive hours at 200 Hz.

5.3. Discussion

The results of these preliminary experiments clearly show that the conjugate of EMG,
Force Platform, and acceleration data performs considerably better than their separate
utilization. This improvement enables a better understanding and in-depth study of human
motion. In fact, the GPSJack prototype has good potential to capture relevant information,
enabling the possibility to recognize the studied motion classes with an average F1-score of
89.6% when using all the subjects’ data at once. Furthermore, when tested on single subjects,
the F1-score ranged from a minimum of 83.2% to a maximum of 100%, outperforming
the usage of only one of the aforementioned data sources. Even though the collected
acceleration data present precious information, further work must be conducted to increase
the overall performance and reduce the dependence on state-of-the-art technology. This
can be done by: (i) implementing more complex recognition models than the used k-NN,
RF, and LDA; and (ii) exploiting the utilization of a larger number and different positions
of data collection nodes on the human body. Nevertheless, the information generated by
the EMG and Force Platforms is paramount; thus, a possible next step in addition to those
mentioned above would be the integration of EGM sensors into the same GPSJack nodes.

6. Conclusions and Further Development

This paper has dealt with defining the experimental design of the "Biofeedback Wearable
and Environmental Technologies for Postural Correction" project. We illustrated the target
technology, described the project’s evaluation workflow (i.e., state-of-the-art instruments and
low-cost wearable sensors, data processing flow, and machine learning-based analysis), and
provided a high-level description of the context in which the envisioned technologies are
forecasted to operate. In particular, we devised a methodology investigating how to build the
parameters that allow the physiatric medical staff to evaluate the patient. Three challenging
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motor tasks were identified to, on the one hand, train fundamental motor skills such as
action adaptation, compensation, and anticipation, and on the other hand, to measure the
performance levels fir such skills. To measure the quality of the performed motor tasks, we
evaluated a low-cost body area network (aka GPSJack). GPSJack uses at most eleven data
collection nodes integrating an accelerometer, gyroscope, and magnetometer sensors and
can compute for 48 h at a sampling frequency of 200 Hz. Moreover, we used an android
mobile application that works as a data aggregator and controller for the GPSJack system,
through which the user can observe the collected data and the posture and gait quality
indicators. Nevertheless, in conjunction with the GPSJack, we integrated the GPSEnv based
on state-of-the-art gait and posture evaluation systems.

Tests on data collected from 12 subjects for a total of 84 data collection sessions each
showed that the designed system could highly accurately recognize the phases of the de-
fined motor tasks. In particular, in a subject-independent setup, we achieved an F1-score of
89.6% in recognizing the five studied movement states (i.e., rotate, in position, APAs, drop,
and recover). With a subject-dependent setup, the F1-score ranged from 100% for subjects
23 and 26 to 83.2% for subject 22. These results show that the acceleration information that
we will add to the state-of-the-art systems significantly increases recognition capabilities.

It is widely accepted in the community of psychiatric medicine that proper quantifica-
tion of the postural system’s efficiency represents an essential assessment for improving
quality of life in the elderly, patients with neurological pathologies, and athletes. Moreover,
since most of the actual measurements are made in a laboratory environment where nat-
ural movements are constrained by the instruments applied to subjects’ bodies and the
environment, a system usable in uncontrolled and unconstrained environments (e.g., home,
gym, or sports facilities) habilitates the individuals to move freely in their natural envi-
ronment and perform the required motor tasks. Thus, the designed system will evaluate
profiles from the performance viewpoint of individuals ranging from patients undergoing
rehabilitation to top-level elite athletes in controlled and uncontrolled environments.

Since the final goal of the project is performing the defined task in uncontrolled
environments and using only the acceleration information provided by a system such as
GPSJack, the next step will concern the exploitation of the data collection phase while
making use of a large number of nodes positioned on different body parts and of more
complex pattern-recognition models than the used k-NN, RF, and LDA. In particular, deep
learning models such as recurrent neural networks (RNN) and long short-term memory
(LSTM) have shown optimal results in such fields. Moreover, since the information captured
by the EMG sensors is paramount, integrating an EMG sensor into the GPSJack nodes
should be considered.
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