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1 Motivation

Strongly correlated quantum systems underlie some of the most pressing open questions
in modern theoretical physics. Whether it is the transport of highly energetic partons
through a liquid of deconfined quarks and gluons [1], created in heavy-ion collisions [2] or
the transport of non-relativistic fermions [3], captured in the iconic Hubbard model [4]
at low energies. When formulated in Minkowski time, quantum field theories so far have
defied a treatment by conventional Monte-Carlo simulation techniques, due to the presence
of the notorious sign problem [5, 6]. And while progress has been made in extracting
real-time dynamics from Euclidean time simulations using e.g. Bayesian inference [7], the
sign problem prevails by rendering the extraction ill-posed and equally exponentially hard.
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The sign problem has been proven to be NP-hard [8], which entails that no generic
solution method is likely to exist. In turn, if we wish to make inroads towards overcoming
the sign problem, system-specific solutions are called for.

Over the past decade, several approaches to tackle the sign problem have been put
forward [5, 9]. They can be divided into system-specific and system-agnostic approaches.
The reformulation strategies discussed e.g. in refs. [10–12] are an example of the former
class, where the partition function of the original system is re-expressed in terms of new
degrees of freedom, for which no sign problem exists. While highly successful in the
systems for which a reformulation has been discovered, no systematic prescription exists to
transfer the approach to other systems. The other approaches, among them reweighting,
extrapolation from sign-problem free parameter ranges [13–16], density of states [17–19],
tensor networks [20, 21], Lefschetz thimbles [22–24] and complex Langevin (CL) [25, 26]
all propose a generic recipe to estimate observables in systems with a sign problem. As
the NP-hard sign problem however requires system-specific strategies, all of these methods
are destined to fail in some form or the other. Be it that their costs scale excessively when
deployed to realistic systems (e.g. reweighting, Lefschetz thimbles, tensor networks) or that
they simply fail to converge to the correct solution (complex Langevin).

Both the Lefschetz Thimbles and complex Langevin belong to the class of complexifica-
tion strategies [9]. They attempt to circumvent the sign problem by moving the integration
of the Feynman integral into the complex plane. After complexifying the degrees of freedom,
the former proposes to integrate over a specific subspace on which the imaginary part of
the Feynman weight remains constant (thimble), while the latter proposes to carry out
a diffusion process of the coupled real- and imaginary part of the complexified degrees
of freedom.

In this paper our focus lies on the complex Langevin approach, as it has been shown
to reproduce correctly the physics of several strongly correlated model systems, albeit
in limited parameter ranges [27]. Most importantly in its naive implementation it scales
only with the volume of the system, similar to conventional Monte-Carlo simulations. In
the past, complex Langevin had suffered from two major drawbacks: the occurrence of
unstable trajectories, called runaways and the convergence to incorrect solutions. In a
previous publication [28] we have shown how to avoid runaways by deploying inherently
stable implicit solvers (cf. the use of adaptive step size [29]). In this study we propose a
novel strategy to restore correct convergence in the complex Langevin approach.

One crucial step towards establishing complex Langevin as reliable tool to attack the
sign problem is to identify when it converges to incorrect solutions. The authors of ref. [30]
and later [31] discovered that in order for CL to reproduce the correct expectation values
of the underlying theory, the histograms of the sampled degrees of freedom must fall off
rapidly in the imaginary direction. Otherwise boundary terms spoil the proof of correct
convergence. The absence of boundary terms has been established as necessary criterion and
efforts are underway [32] to compensate for their presence to restore correct convergence.

With QCD at the center of attention, the gauge cooling strategy [33, 34], based on
exploiting gauge freedom, has been proposed. It has recently been amended by the dynamic
stabilization approach [35, 36], which modifies the CL stochastic dynamics with an additional
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drift term. Both are based on the idea that by pulling the complexified degrees of freedom
closer to the real axis, boundary terms can be avoided. Their combination has led to
impressive improvements in the correct convergence of complex Langevin in the context of
QCD thermodynamics with finite Baryo-chemical potential [37] and is currently explored
in the simulation of real-time gauge theory [38].

We focus here on scalar systems formulated in real-time on the Schwinger-Keldysh
contour (for a Lefschetz thimble perspective see [39, 40]). For scalars, gauge freedom does
not offer a rescue from the convergence problems. The fact that dynamical stabilization
introduces a non-holomorphic modification of the drift term means that the original proof of
convergence is not applicable, which is why we refrain from deploying it here. Furthermore
the boundary term correction requires that the eigenvalues of the Fokker-Planck equation
associated with the original system lie in the lower half of the complex plane, which is not
necessarily the case in the scalar systems that we investigate.

The convergence problem in real-time complex Langevin is intimately connected with
the extent of the real-time contour [41]. In a previous publication [28] we showed that
for a common benchmark system, the strongly correlated quantum anharmonic oscillator,
real-time simulations directly on the SK contour are feasible for times up to mtmax = 0.5.
Convergence quickly breaks down when extending the contour beyond this point.

Within the complex Langevin community, coordinate transformations and redefinitions
of the degrees of freedom have been used in the past to weaken the sign problem in a system
specific manner (see e.g. discussion in [42]). All of these reformulations can be captured
mathematically by introducing a so called kernel for complex Langevin. It amounts to a
simultaneous modification of the drift and noise contribution to the CL stochastic dynamics.
In the past it has been used to improve the autocorrelation time in real-valued Langevin
simulations [26] and has been explored in simple model systems to restore the convergence
of complex Langevin (see e.g. [43]). The construction of the kernels, as discussed in the
literature applies to a specific system only and so far no systematic strategy exists to make
kernels work in more realistic theories.

Our study takes inspiration from both conceptual and technical developments in the
machine learning community. In machine learning, an optimized functional, based on
prior knowledge and data is used to train an algorithm to perform a specific task. The
algorithm depends on a set of parameters, e.g. the weights of a neural network, which need
to be tuned to minimize the prescribed optimization functional. Highly efficient automatic
differentiation programming techniques [44] have been developed to compute the dependence
of the outcome of complex algorithms on their underlying parameters. Here we utilize them
to put forward a systematic strategy to incorporate prior knowledge about the system into
the CL evolution by learning optimal kernels.

In section 2 we review the concept of kernelled Langevin, first in the context of Euclidean
time simulations and subsequently for use in complex Langevin. In section 3 we show how
the concept of a kernel emerges in a simple model system and how it relates to the Lefschetz
thimbles of the model. Subsequently we discuss that a constant kernel can be used to restore
convergence of real-time complex Langevin for the quantum harmonic oscillator. The kernel
found in this fashion will help us to improve the convergence of the interacting theory too.
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Section 4 introduces the central concept of our study: a systematic strategy to learn optimal
kernels for complex Langevin, based on system-specific prior information. Numerical results
from deploying a constant kernel to the quantum anharmonic oscillator are presented in
section 4.3 (Source code for the kernel optimization and simulation is written in Julia
and available at [45]), leading to a significant extension of correct convergence. In the
appendices, we discuss some of the limitations of constant kernels and show in the context
of simple models that correct convergence requires not only the vanishing of boundary
terms but in addition requires the spectrum of the associated Fokker-Plank equation to
remain negative.

2 Neutral and non-neutral modifications of Langevin dynamics

Stochastic quantization, the framework underlying Langevin simulations, sets out to con-
struct a stochastic process for fields in an artificial additional time direction τL with a noise
structure, which correctly reproduces the quantum statistical fluctuations in the original
theory. In the context of conventional Monte-Carlo simulations in Euclidean time, where
expectation values of observables are given by the path integral

〈O〉 = 1
Z

∫
Dφ O[φ]e−SE [φ], SE [φ] =

∫
ddxLE [φ], (2.1)

with Euclidean action SE , the goal thus is to guarantee at late Langevin times a distribution
of fields Φ[φ] ∝ exp

(
−SE [φ]

)
. The chain of configurations φ(τL) underlying the distribution

Φ[φ], can then be used to evaluate the expectation values of observables O from the mean of
samples 〈O〉 = limτL→∞

1
τL

∫ τL
0 dτ ′LO[φ(τ ′L)]. The simplest stochastic process, which realizes

this goal and which is therefore commonly deployed is

dφ

dτL
= −δSE [φ]

δφ(x) + η(x, τL) with

〈η(x, τL)〉 = 0, 〈η(x, τL)η(x′, τ ′L)〉 = 2δ(x− x′)δ(τL − τ ′L).
(2.2)

Its drift term is given by the derivative of the action SE and the noise terms η are
Gaussian. The associated Fokker-Planck equation reads

FFP =
∫
ddx

∂

∂φ(x)

(
∂

∂φ(x) + δSE [φ]
δφ(x)

)
,

∂Φ(φ, τL)
∂τL

= FFPΦ(φ, τL). (2.3)

For an in-depth review of the approach see e.g. ref. [26].
In the following we will discuss the fact that there exists the freedom to introduce

a so called kernel into eq. (2.3), which as a purely real quantity allows us to modify the
above Fokker-Planck equation without spoiling the convergence to the correct stationary
solution Φ[φ] = limτL→∞Φ[φ, τL] ∝ exp

(
− SE [φ]

)
. One may use this freedom to improve

autocorrelation times of the simulation and for other problem-specific optimizations as has
been explored in the literature.

Subsequently we will turn our attention to the case of complex Langevin, where the
simplest stochastic process proposed by stochastic quantization is not guaranteed to converge
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to the correct solution. In that case we will explore how a reparametrization of the associated
Fokker Planck equations through in general complex kernels can be used to not only change
the convergence speed but actually to change the stationary distribution itself, allowing us
to recover correct convergence where the naive process fails.

2.1 Kernelled real Langevin

As alluded to above, there exists a freedom to reparametrize the Fokker-Planck eq. (2.3) by
introducing a real-valued kernel function Kij(x, x′, φ; τL)

FFP =
∑
i,j

∫
ddx

∫
ddx′

∂

∂φi(x)Kij(x, x′, φ; τL)
(

∂

∂φj(x′)
+ δSE [φ]
δφj(x′)

)
. (2.4)

Written in its most generic form, it may couple the different degrees of freedom of the
system (according to the ij indices), it may couple different space-time points (according to
its x and x′ dependence) and may depend explicitly both on the Langevin time τL, as well
as the field degrees of freedom φ. The corresponding Langevin equation reads

dφi(x, τL)
dτL

=
∑
j

{
−
∫
ddx′Kij(x, x′;φ) δSE [φ]

δφj(x′, τL) +
∫
ddx′

δKij(x, x′;φ)
δφj(x′, τL)

+
∫
ddx′Hij(x, x′;φ)η(x′, τL)

}
with

K(x, x′;φ) =
∑
k

∫
ddx′′Hik(x, x′′;φ)Hjk(x′, x′′;φ),

(2.5)

where in the last equation we assume that K is factorizable. In practice we will either
choose kernels, which can be factorized using the square root of their eigenvalues or will
start directly by constructing the function H that can be combined into an admissible K.

Let us gain a bit of intuition about the role of the kernel when considering it in its
simplest form, a constant scalar kernel, which multiplies each d.o.f. with a real number
γ. Inspecting eq. (2.5) we find that, as it appears in front of the drift term and as square
root in front of the noise term, γ simply leads to a redefinition of the Langevin time
coordinate τ ′L = γτL. While the stationary solution is left unchanged, the convergence time
has been modified.

Even for more general kernels, the fact that K appears in the generalized Fokker-Planck
eq. (2.4) on the outside of the parenthesis

(
∂

∂φi(x) + δSE [φ]
δφi(x)

)
tells us that the stationary

distribution remains unchanged. It goes without saying that choosing Kij(x, x′;φ) =
δijδ(x′ − x) we regain the standard Langevin eq. (2.2).

2.2 Kernelled complex Langevin

Let us now consider the application of stochastic quantization to complex-valued path
integrals, in particular to those describing real-time physics in Minkowski time. Here the
observables are given by Feynman’s path integral

〈O〉 = 1
Z

∫
Dφ O[φ]eiSM [φ], SM [φ] =

∫
ddxLM [φ], (2.6)
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which houses the Minkowski time action of the theory SM . Stochastic quantization in this
case proposes to modify the real-valued stochastic process of eq. (2.2) via the substitution
−SE → iSM such that

dφ

dτL
= i

δSM [φ]
δφ(x) + η(x, τL) with

〈η(x, τL)〉 = 0, 〈η(x, τL)η(x′, τ ′L)〉 = 2δ(x− x′)δ(τL − τ ′L).
(2.7)

It is obvious that even if one starts out with purely real degrees of freedom at τL = 0, the
presence of the complex drift term necessitates the complexification φ = φR + iφI, each of
which will obey a coupled stochastic evolution.

In the complexified scenario, the question of correct convergence is not as simple to
answer as in the purely real case. The most stringent criterion refers to whether complex
Langevin reproduces the correct expectation values

lim
τL→∞

1
τL

∫ τL

0
dτ ′LO[φR + iφI ]

?= 1
Z

∫
Dφ O[φ]eiSM [φ] (2.8)

of the theory, defined on the right. And indeed it has been found that the dynamics of
eq. (2.7) may violate the equal sign of eq. (2.8). I.e. complex Langevin converges, but
it does not converge to the correct solution. In this study we set out to recover correct
convergence by introducing kernels into the complex Langevin dynamics.

To this end we consider a not-necessarily real kernel function K(x, x′;φ) which enters
the complexified dynamics as

dφ

dτL
=
∫
ddx′

{
iK(x, x′;φ) δSM [φ]

δφ(x′, τL) + ∂K(x, x′;φ)
∂φ(x′, τL) +H(x, x′;φ)η(x, τL)

}
with 〈η(x, τL)〉 = 0, 〈η(x, τL)η(x′, τ ′L)〉 = 2δ(x− x′)δ(τL − τ ′L)

and K(x, x′;φ) =
∫
ddx′′H(x, x′′;φ)H(x′, x′′;φ).

(2.9)

Expressed as two separate but coupled stochastic processes for the real- and imaginary part
of the complexified field we obtain

dφR
dτL

=
∫
ddx′

{
Re
[
K[φ]iδSM [φ]

δφ
+ δK[φ]

δφ

]
+ Re [H[φ]] η

}∣∣∣∣
φ=φR+iφI

,

dφI
dτL

=
∫
ddx′

{
Im
[
K[φ]iδSM [φ]

δφ
+ ∂K[φ]

∂φ

]
+ Im [H[φ]] η

}∣∣∣∣
φ=φR+iφI

.

(2.10)

Note that at this point we are dealing with two different concepts of Fokker-Planck
equations. One describes how the probability distribution Φ[φR, φI ] of the real- and
imaginary part φR, φI of the complexified field evolve under eq. (2.9)

∂Φ
∂τL

=
[(

∂

∂φR
HR + ∂

∂φI
HI

)2
− ∂

∂φR
Re
{
iK

∂SM
∂φ

+ ∂K

∂φ

}
− ∂

∂φI
Im
{
iK

∂SM
∂φ

+ ∂K

∂φ

}]
Φ = LKΦ.

(2.11)
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We define the operator for the real Fokker Planck equation, which has been separated
into real and imaginary part, as LK , not to be confused with the original now complex
Fokker Planck equation FFP , which was only defined on the real part of φ. For the term
quadratic in derivatives, we have split the kernel K into the product of H functions, as
shown in eq. (2.9), such that each derivative acts on either the real or the imaginary part of
H respectively. Since it is the noise term of the Langevin eq. (2.9) that translates into a
term quadratic in derivatives in the Fokker-Planck language, it is there that H appears
in eq. (2.11).

It is important to recognize that the correct late Langevin-time distribution of this
Fokker-Planck equation is purely real and therefore is not related in a trivial manner to the
Feynman weight exp[iSM] of the original path integral, as has been established in simple
models in the literature as discussed e.g. in refs. [46–50].

The other Fokker-Plank equation is not a genuine Fokker-Planck equation, in the
statistical sense, as it does not describe the evolution of a real-valued probability density
P [φ, τL] but instead that of a complex-valued distribution ρ(φ, τL)

∂

∂τL
ρ(φ, t) = FFPρ(φ, τL), (2.12)

FFP =
∑
i,j

∫
ddx

∫
ddx′

∂

∂φi(x)Kij(x, x′, φ; τL)
(

∂

∂φj(x′)
− iδSM [φ]

δφj(x′)

)
.

It is this equation whose late time limit we expect to reproduce the Feynman weight
limτL→∞ ρ(φ, τL) = exp[iSM] and we will refer to in the following as the complex Fokker-
Planck equation.

Significant progress in the understanding of the convergence properties of complex
Langevin had been made starting with ref. [30] in the form of so-called correctness criteria.

The criteria most often discussed in the literature are boundary terms (for a detailed
exposition see refs. [30, 31]). They tell us if the expectation value calculated from the real
distribution Φ(φR, φI ; τL) (eq. (2.11)), which we can sample using the CL, is the same as
the expectation value obtained from the complex distribution ρ(φ; τL). The latter one can
only be obtained from solving the complex Fokker-Planck equation, eq. (2.12). The two
expectation values, 〈O〉Φ(τL) = 〈O〉ρ(τL) only agree if Φ(φR, φI ; τL) falls off exponentially
fast. If it does not fall of sufficiently fast, it will produce boundary terms and the equal sign
in eq. (2.8) is not valid. This criterion is however not sufficient as it does not guarantee the
equilibrium distribution of the complex Fokker-Planck equation to be exp[iSM]. These two
criteria combined are however sufficient to claim convergence of the CL to the true solution.
For a proof that the correctness criterion still holds after introducing a kernel into the CL,
we revisit the proof in appendix A.

How can a kernel help to restore the correct convergence? Not only do we need to
make sure that no boundary terms arise in sampling eq. (2.10) but also that the complex
Fokker-Planck equation has a unique and correct complex stationary distribution. I.e. we
need in general a non-neutral modification of the complex Langevin dynamics.

If we were to introduce a real-valued kernel, similarly to the case of conventional
real-valued Langevin, we will be able to change the speed of convergence but not the
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stationary solution. On the other hand, since the drift term is complex, there is no reason
not to consider also complex valued kernels, which will act differently on the stochastic
process for φR and φI , representing a genuine non-neutral modification in the corresponding
Fokker-Planck eq. (2.11). Similarly in the complex Fokker-Planck eq. (2.12) the presence of
a complex Kij can change the stationary distribution through a reshuffling of the associated
eigenvalues, as is discussed in more detail in appendix A. For a comprehensive discussion of
different modifications to complex Langevin, including kernels, see also ref. [42].

In the following sections we will start off with constructing an explicit example of
a field-independent kernel that improves convergence in the free theory and find that it
can restore correct convergence in the interacting theory to some degree. We will then
continue to present our novel strategy to learn optimal kernels for the restoration of correct
convergence and showcase their efficiency in a benchmark model system. Subsequently we
discuss the limitations of field-independent kernels and shed light on how kernels connect
to the correctness criteria.

3 A field independent kernel for real-time complex Langevin

In this section, we will manually construct one specific field-independent kernel and demon-
strate its use to improve convergence in real-time simulations of the quantum anharmonic
oscillator. The form of the kernel is motivated by insight gained in a simple one d.o.f. model
and reveals an interesting connection between kernelled Langevin and the thimble approach.
Since in the following only low dimensional model systems are considered, we will refer to
the dynamical degrees of freedom from now on as x.

3.1 A kernel for the simplest real-time model

Following ref. [43] let us investigate the simplest model of real-time physics, the integrals

〈xn〉 = 1
Z

∫
dxxn exp[−1

2 ix
2], Z =

∫
dx exp[−1

2 ix
2]. (3.1)

Attempting to solve this expression using the complex Langevin approach for x(τL), leads
to a stochastic process

dx

dτL
= −ix+ η, (3.2)

with Gaussian noise η. Eq. (3.2) fails at reproducing correct values of 〈xn〉.
We can understand this failure by recognizing that without regularization the original

integral in eq. (3.1) is not well defined and this lack of regularization is inherited by the
Langevin eq. (3.2).

One way to proceed is to explicitly modify the action by introducing a regulator term,
such as εx2. The integral becomes well-defined and its value is obtained when we let ε→ 0
at the end of the computation. In a numerical setting this would require to explicitly
include the regulator term, carry out the corresponding simulation for different values of ε
and extrapolate ε→ 0. There are two drawbacks to this strategy: first it requires several
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evaluations of the simulation, which can be expensive for large systems. The second reason
is that the relaxation time for the simulation grows, the smaller ε becomes, and hence in
practice we cannot make ε arbitrarily small.

Let’s consider an alternative strategy of solving the integral of eq. (3.1), which relies on
contour deformations, the so-called Lefschetz thimble method. We will carry out a change
of variables in the integral which moves the integration path into the complex plane and
which in turn will weaken the oscillatory nature of the integrand. This method is based on
a continuous change of variables according to the following gradient descent equation

dx̃

dτ
= dSE [x̃]

dx̃
, (3.3)

which complexifies the degree of freedom, x̃ = a+ ib. Eq. (3.3) evolves the formerly real-
valued x towards the so called Lefschetz thimble which is the optimal contour deformation
where the imaginary part of the action stays constant.

Following the steps outlined in [51], we solve the flow of eq. (3.3) analytically which
gives x̃(x, τ) = x(cosh(τ)− i sinh(τ)). For large values of τ it leads to

x̃(x, τ) τ�1≈ x(1− i) 1
2e−2τ = x

2e−2τ e
−iπ4 . (3.4)

The above equation tells us that the optimal thimble in this system lies on the downward 45◦
diagonal in the complex plane z(x) = xe−i

π
4 . On this contour the integrand of the original

integral eq. (3.2) reduces to a real Gaussian e−x2 for which no regularization is required.
If we flow for just a very small τ = ε, we obtain on the other hand cosh(τ)− i sinh(τ) ≈

1− iε and∫
dx exp[−1

2 ix
2] =

∫
dx

∂x̃

∂x
exp[−1

2 ix̃
2] (3.5)

= (1− iε)
∫

dx exp[−1
2 ix

2(1− iε)2] ≈ (1− iε)
∫

dx exp[−1
2 ix

2 − εx2].

We see that the term ε here takes on the role of a regulator in the action but due to its
presence also in the Jacobian, the value of the integral is not changed. This is different
from introducing the regulator only in the action itself.

Hence the obvious benefit of the deformation method is that we can introduce a
regulator to tame oscillations without the need to extrapolate that regulator in the end. The
closer we approach the optimal thimble, the easier the integral will be to solve numerically.

How can such a coordinate transformation be implemented in complex Langevin?
Intuitively the action in the integral is what influences the drift in complex Langevin
and the measure is related to the noise structure. The above tells us that the change we
introduced will therefore affect the drift quadratically, while it occurs in the noise linearly.
Thinking back to eq. (2.9), we see that this is just how a field-independent kernel modifies
the complex Langevin equations.

For the optimal thimble with z(x) = xe−i
π
4 the modification in the drift therefore

becomes K = e−i
π
2 = 1

i and for the noise H =
√
K =

√
−i. This leads to the following
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Figure 1. Distribution of a complex Langevin simulation (scatter points) and the Lefschetz thimble
(red line) for the model eq. (3.1). (left) simulation according to the naive CL eq. (3.2) and (right)
simulation after introducing the kernel in eq. (3.6). The color of the scatter points refers to the
number of measurements recorded at the corresponding position, a lighter color indicates a larger
number. Note that the optimal kernel has moved the sampling onto the single thimble present in
this simple system.

stochastic process
dx

dτL
= −x+

√
−iη, (3.6)

which had been identified as optimal already in ref. [43]. This stochastic process converges
to the correct solution of the integral eq. (3.1). Interestingly the imaginary unit has
disappeared from the drift term since the kernel K exactly canceled it there and instead
moved it over into the noise term.

As the last step, let us show explicitly that the choice of kernel above indeed amounts
to a coordinate transform. Following [42] we have

dx

dτL
= −HHT ∂SE(x)

∂x
+Hη (3.7)

⇒ H−1 dx

dτL
= −HT ∂SE(x)

∂x
+ η (3.8)

⇒ du

dτL
= −HT (HT )−1∂T (u)

∂u
+ η = −∂T (u)

∂u
+ η. (3.9)

Here x = Hu and T (u) = SE(Hu) = SE(x). We find that introducing a kernel K = HHT in
the evolution equation for x has the same effect as carrying out a coordinate transformation
to u = H−1x.

As an example of the complex Langevin dynamics in the absence (left panel) and
presence (right panel) of the kernel discussed above, we show the corresponding scatter
plots in figure 1. The kernel has indeed rotated the noise into the direction of the thimble,
along which the system now samples. Note that while the naive CL dynamics have been
implemented using the semi-implicit Euler-Maruyama scheme to avoid runaways, we are
able to carry out the kernelled dynamics with a fully explicit solver without adaptive step
size. The reason is that on the deformed contour the integral has already been regularized.

This result shows that in the simple model discussed here we can find a kernel that
both restores correct convergence of the complex Langevin dynamics and at the same time
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removes the need for a regulator. Both are related to the fact that the kernel effectively
instituted a coordinate transform that amounts to a deformation of the integration contour
into the complex plane. In the next section, we will consider a similar kernel for the
harmonic oscillator.

We investigate the relation between the Lefschetz thimbles and kernel controlled complex
Langevin in appendix B.2, where a similar analysis is performed in a system where a λ

4x
4

term has been added to the action. As such a one-degree-of-freedom model has a non-linear
drift term, a constant kernel in that case will not suffice to remove the imaginary unit from
the drift term, and hence the complex Langevin will not sample directly on the thimble as
was the case for the example above.

3.2 A kernel for the harmonic oscillator

When constructing a kernel for the harmonic oscillator, we encounter similar difficulties
related to stability and convergence of complex Langevin process as in the previous section.
In order to see how an optimal kernel can be chosen we revisit the discussion originally
found in refs. [26, 43].

The continuum action of this one-dimensional system is given by

SM =
∫
dt

{
1
2

(
∂x(t)
∂t

)2
− 1

2m
2x2(t)

}
=
∫
dt

{1
2x(t)

(
− ∂2

t −
1
2m

2
)
x(t)

}
. (3.10)

In quantum mechanics the fields φ are the position x and the coordinates, previously called
x, are the time t. The corresponding complex Langevin equation reads

dx(t, τL)
dτL

= −i
(
∂2
t +m2

)
x(t, τL) + η(t, τL). (3.11)

In the absence of a regularization, this stochastic process is unstable and does not show
convergence to the correct result. In analogy with the results for the simple model system
in the previous section we will argue analytically that correct convergence can be achieved
in this system via a kernel with the property

(
∂2
t +m2

)
K(t− t′) = iδ(t− t′). This kernel

will render the drift term trivial, proportional to x itself and move all complex structure
into the noise.

Following [26, 43] we solve eq. (3.11) analytically and obtain for the two-point correlator
in Fourier space

〈x(ω, τL)x(ω′, τ ′L)〉 = δ(ω + ω′) i

ω2 −m2

(
ei(ω

2−m2)|τL−τ ′L| − ei(ω2−m2)(τL+τ ′L)
)
. (3.12)

Obviously this expression does not have a well defined value in the late Langevin-time limit.
Introducing an explicit regulator of the form iεx(t)2 yields

SM =
∫
dx

1
2
{
∂0φ(x)∂0φ(x)− (m2 − iε)φ2(x)

}
(3.13)

and improves the situation, as now the stochastic process correctly converges to

lim
τL→∞

〈x(ω, τL)x(ω′, τL)〉 = δ(ω + ω′) i

ω2 −m2 + iε
. (3.14)
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A careful analysis of the associated Fokker-Planck equation in ref. [52] however reveals that
the relaxation time towards the correct solution scales with 1/ε. I.e. carrying out a CL
simulation based on a small regulator ε will lead to slow convergence. In addition one also
needs to take the limit ε→ 0 as well as ∆τL → 0, which may not commute [53].

Since the action of the harmonic oscillator in Fourier space decouples into a collection
of non-interacting modes we may deploy a similar strategy for each mode as we considered
in the simple model of the preceding section. I.e. we introduce a kernel, which moves the
integration onto the single thimble for each mode.

∂

∂τL
x(ω, τL) = iK̃(ω) δSM [x]

δx(ω) +
√
K̃(ω)ξ(ω, τL), (3.15)

〈ξ(ω, τL)〉 = 0, 〈ξ(ω, τL)ξ(ω′, τ ′L)〉 = 2δ(ω + ω′)δ(τL − τ ′L). (3.16)

This train of thought leads us to choose the following field-independent kernel, which
had been explored in ref. [43] before

K̃(ω) = iA(ω)
ω2 −m2 + iε

, K(t) =
∫

dω

(2π)K̃(ω)e−iωt, (3.17)

where A(ω) is a real, positive and even function of ω. Thus for a constant A(ω), K̃(ω) is
nothing but the propagator of the free theory in momentum space.

The corresponding correlation function is found to read

lim
τL→∞

〈φ(ω, τL)φ(ω′, τL)〉 = δ(ω + ω′)K̃(ω)
A(ω) = δ(ω + ω′) i

ω2 −m2 + iε
(3.18)

which is the correct result. The most important difference to simply introducing a regulator
in the action however lies in the fact that now the relaxation time for each mode is
proportional to 1/A(ω) and not proportional to 1/ε and no extrapolation in ε needs to
be carried out. For completeness let us note the corresponding coordinate space complex
Langevin process

∂

∂τL
x(t, τL) = i

∫
dt′ K(t− t′) δSM [x]

δx(t′) + χ(t, τL), (3.19)

χ(t, τL) =
∫
dωeiωt

√
K̃(ω)ξ(ω, τL). (3.20)

3.3 A kernel for real-time Langevin on the thermal SK contour

The analytic study of the one d.o.f. model and the harmonic oscillator have provided us
with insight into how a kernel can be used to both satisfy the need for regularization of
the path integral and achieve convergence to the correct solution of the associated complex
Langevin equation in practice.

We will now construct the corresponding kernel for the harmonic oscillator at finite
temperature, discretized on the Schwinger-Keldysh contour. Numerical simulations will
confirm the effectiveness of the kernel in the non-interacting theory.

The Schwinger-Keldysh contour for a quantum system at finite temperature encompasses
three branches. The forward branch along the conventional time axis reaches up to a real-
time tmax and the degrees of freedom associated with it are labeled x+(t). The backward
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t
x+(t)

x-(t) tmax

β
x(ɣ) = {x+,              ɣ<tmax

x-,       tmax<ɣ<2tmax
xE 2tmax< ɣ }

xE(-iτ)

Re[〈x²(ɣ)〉]
Re[〈x(0)x(ɣ)〉]

Im[〈x(0)x(ɣ)〉]

Im[〈x²(ɣ)〉]

real-time
domain

Euclidean
domain

Figure 2. (left) Sketch of the Schwinger-Keldysh contour deployed in our study with forward x+(t)
and backward x−(t) branches on the real-time axis, connected to an imaginary time branch xE(−iτ).
The contour parameter γ is used to address all branches in a unified manner. (right) Sketch of
the visualization of our observables along the contour parameter γ for the example of mtmax = 1.
The analytic solution of the real- and imaginary part of the equal time correlator 〈x2(γ)〉 and the
unequal time correlator 〈x(0)x(γ)〉 will be plotted in the real-time γ < 2mtmax and subsequently
Euclidean domain γ > 2mtmax.

branch with x−(t) returns to the initial time t0 in reverse and the Euclidean branch which
houses xE(−iτ) and extends along the negative imaginary time axis. The physical length
of the imaginary time branch dictates the inverse temperature of the system. A sketch of
our contour setup is shown in the left panel of figure 2.

In the action of the system, the integration over time is rewritten into an integration over
a common contour parameter γ. The d.o.f. on the different branches are then distinguished
by the values of the contour parameter x(γ) and we will drop the superscript in the
remainder of the text.

As sketched in the right panel of figure 2, we will refer to the equal- and unequal-time
two-point correlation functions along the SK contour in the following, plotted against the
contour parameter. The reader can identify the values along the forward and backward
branch as being mirrored, connecting to the values on the Euclidean branch that show the
expected periodicity of a thermal theory.

When discretizing the action for use in a numerical simulation the direction of each
branch of the SK contour is encoded in a contour spacing ai ∈ C. Computing the drift term
for an arbitrary contour yields

i
∂SM [x]
∂xj

= i
1
2 (|aj |+ |aj−1|)

{
xj − xj−1
aj−1

− xj+1 − xj
aj

− 1
2 [aj−1 + aj ]

∂V (xj)
∂xj

}
. (3.21)

This expression simplifies if we use a constant magnitude step-size |ai| = |a|, such that the
prefactor in the above equation can be reduced to i

|a| . In that case we can go over to a
convenient matrix-vector notation

i∇xSM [x] = 1
|a|

iMx, (3.22)
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where

Mjk =


1

aj−1
+ 1

aj
− 1

2 [aj−1 + aj ]m2, j = k

− 1
aj
, j = k − 1

− 1
aj−1

, j = k + 1.

(3.23)

Based on the findings in the previous sections the form of the optimal discrete free
theory kernel in coordinate space will be the inverse propagator

K = H HT = iM−1, (3.24)

where H is the factorized kernel used in the noise term. The form of this kernel relies on
the matrix M to be invertible, and M−1 to be factorizable, both of which holds. We obtain
H =

√
iM−1 by using the square root of the eigenvalues. Written in differential form with

Wiener processes dW , the corresponding Langevin equation reads

dx = 1
|a|

(
i

M
iMx

)
dτL +

√
2 i

M
dW = − 1

|a|
xdτL +

√
2 i

M
dW , (3.25)

which leaves us with a complex non-diagonal noise coefficient
√

2i
M and a drift term pointing

in the direction of −x.
Let us demonstrate the effect of this kernel by carrying out a simulation for the following

parameters. We discretize the canonical SK contour with Nt = 50 points on the forward
and backward branch each and Nτ = 5 points on the imaginary branch. Note that we
do not introduce any tilt here. Choosing a mass parameter m = 1, the imaginary branch
extends up to mτmax = 1. As real-time extent, we choose mtmax = 10. The value chosen
here is arbitrary as the kernelled dynamics of the free theory are stable and converge for any
real-time extent. The results of the simulation without a kernel are given in the top panel of
figure 3 and rely on the implicit Euler-Maruyama scheme to avoid the occurrence of runaway
solutions. The results with our choice of kernel are shown in the bottom panel and were
obtained using a simple forward-stepping Euler scheme at ∆τL = 10−3 without adaptive
step size. In each case we generate 100 different trajectories, saving configurations at every
m∆τL = 0.1 in Langevin time up to a total of mτL = 100. Each panel in figure 3 showcases
four quantities plotted against the contour parameter γ. Their values for 0 < mγ < 10 are
obtained on the forward branch, those for 10 < mγ < 20 on the backward branch and the
small piece 20 < mγ < 21 denotes the Euclidean time results. The real- and imaginary
part of the equal time expectation value 〈x2(γ)〉 are plotted as green and pink data points
respectively. The real- and imaginary-part of the unequal time correlator 〈x(0)x(γ)〉 on the
other hand are plotted as orange and blue data points. The analytically known values from
solving the Schrödinger equation are underlaid as black solid lines.

The results without a kernel show both deviations from the correct result and exhibit
relatively large uncertainties. The reason lies in the slow relaxation rate to the correct result
due to the presence of an explicit regulator. Here the regulator is provided by our use of an
implicit numerical scheme (Euler-Maruyama with implicitness parameter θ = 1.0 and an
adaptive step-size with a maximum step size of 10−3), but could equally well be introduced
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Figure 3. The result of a complex Langevin simulation of the real time harmonic oscillator without
a kernel (top) and with a kernel (bottom) for the observables 〈x2〉, and the correlator 〈x(0)x(t)〉.
Simulations are carried out with 100 trajectories and up to mτL = 100 in Langevin time, saving at
every m∆τL = 0.1 using the implicit scheme Euler-Maruyama with θ = 1.0 with adaptive step-size
with tolerance 10−3 (top) and the explicit scheme Euler-Maruyama with θ = 0 with fixed step-size
∆τL = 10−3 (bottom). Values of the correlators from the solution of the Schrödinger equation are
given as solid black lines.

by adding a small term iεx2 to the system action. Using a stronger regulator, e.g., tilting
the contour, would yield a shorter relaxation time, but any such explicit regulator distorts
the results away from the actual ε→ 0 physical solution. It is interesting to note that it is
the equal time observable 〈x2〉 that is performing the worst. We will see later on that this
is the hardest observable to accurately reproduce.

For the bottom plot we use the free theory propagator kernel, eq. (3.24). This simulation
now aligns excellently with the true solution for all the observables.

After applying the kernel, the problem is regularized and thus less stiff, and we can
revert to using a fixed step-size explicit Euler-Maruyama scheme. The step-size here is
dτL = 10−3. The fact that we do not need to impose an explicit regulator term is important
as in this case we only need to take the limit ∆τL → 0 to obtain a physical result, and
do not need to extrapolate the regulator term to zero (ε→ 0). This might be important
considering the recent work in ref. [54], which shows that one encounters subtleties in taking
the limit of the regulator ε→ 0.
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3.4 A kernel for the quantum anharmonic oscillator

Not only did the kernel in the free theory change the convergence behavior of the complex
Langevin simulation, it also removed the need of a regulator in the action. The obvious next
step is to explore the interacting theory where the problem of convergence to the wrong
solution is more severe. The potential term in the action is now given by

V (x) = 1
2mx(t)2 + λ

4!x(t)4, (3.26)

where we use m = 1 and λ = 24. This choice of parameters has been deployed in the past as
benchmark for strongly-interacting real-time complex Langevin in refs. [28, 41]. As ref. [41]
formulated the real-time dynamics on a tilted contour they found correct convergence
up to tmax = 0.8, while ref. [28] worked with an untilted contour and observed onset of
incorrect convergence already above tmax = 0.5. In the following we will remain with an
untilted contour.

We find that using the free kernel of eq. (3.24) the convergence to the correct solution
can be extended slightly to around tmax = 0.75. If in addition we modify the free theory
kernel by rescaling the contributions from the kinetic term with a common prefactor g and
modify the mass term away from the free theory value m

Mjk(g,mg) =


g

aj−1
+ g

aj
− 1

2 [aj−1 + aj ]m2
g, j = k

− g
aj
, j = k − 1

− g
aj−1

, j = k + 1.

(3.27)

convergence can be pushed up to tmax = 1.0 by using the heuristically determined parameter
values g = 0.8 and mg = 1.8. The CL equation we simulate is given by

dx = 1
|a|

[
i

M(g,mg)
i

(
M(1,m)x + λ

3x
2x

)]
dτL +

√
2i

M(g,mg)
dW . (3.28)

We carry out simulations, assigning Nt = 10 points to the forward and backward
branches each and Nτ = 10 points to the imaginary branch of the contour. Here we use the
implicit Euler-Maruyama scheme with implicitness parameter θ = 0.5. Even though we do
not need a regulator in the presence of the kernel, the system retains some of its stiffness in
contrast to the free theory. The use of an explicit scheme with e.g. adaptive step size is
possible, however we find it more efficient to rely on an implicit scheme, as it allows the use
of much larger Langevin step sizes.

The results of two simulations with a maximum real-time extent tmax = 1.0 are shown
in figure 4. One is carried out without a kernel and using an implicit scheme (top) and
the other in the presence of a kernel based on the parameters g = 0.8 and mg = 1.8
(bottom). The graphs show the real and imaginary part of the equal time 〈x(t)x(t)〉 (green
and pink data points) and unequal time correlator 〈x(0)x(t)〉 (orange and blue datapoints)
plotted against the contour parameter γ. For 0 < mγ < 1 and 1 < mγ < 2 it refers to the
forward and backward branch of the contour and for 2 < mγ < 2.9 denotes the imaginary
time branch.
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Figure 4. Anharmonic oscillator at m = 1 and λ = 24 up to tmax = 1 in real-time without (top)
and in the presence (bottom) of the heuristic free theory kernel with g = 0.8 and mg = 1.8 from
eq. (3.28). Both simulations are carried out generating 100 trajectories simulated up to mτL = 100
in Langevin time, saving configurations at every m∆τL = 0.01. We deploy the Euler-Maruyama
solver with θ = 1.0 without kernel (top), and θ = 0.5 with kernel (bottom). Values of the correlators
from the solution of the Schrödinger equation are given as solid black lines.

The top panel indicates that naive complex Langevin fails to converge to the correct
solution at this real-time extent of mtmax = 1. It is interesting to point out the failure of
CL at two specific points along the contour, the first one is the starting point at γ = 0,
which is connected by periodic boundary condition to the Euclidean path. Then at the
turning point of the contour at maximum real-time extent, corresponding to mγ = 1, the
real part of the 〈x2〉 observable lies significantly away from the true solution. This points
seems to be most affected by the convergence problem of the CLE.

In the lower panel, the simulation in the presence of the modified free theory kernel is
presented. The outcome of the kernelled complex Langevin evolution is very close to the
correct solution and shows only small statistical uncertainties. Note however that especially
the observable 〈x2〉 still shows some deviation from the true result beyond the statistical
error bars indicating that exact correct convergence has not yet been achieved.1

1This behavior may be understood in terms of boundary terms. The kernel manages to significantly
reduce the magnitude of boundary terms for 〈x2〉 where it differs from the true solution the boundary terms,
while small, are not exactly zero.
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The above results are promising, as they indicate that in principle the convergence
problem of real-time complex Langevin can be attacked by use of a kernel. At the same
time explicitly constructed kernels, such as the modified free theory kernel are limited in
the range of real-time extent in which they are effective. The question at hand is how to
systematically construct kernels that will restore convergence at even larger real-time extent.

4 Learning optimal kernels

In this section, we introduce our novel strategy to systematically construct kernels to improve
the convergence of real-time complex Langevin. Our goal is to overcome the limitations
of explicitly parametrized kernels, such as the one of eq. (3.27). While optimal parameter
values g and mg were found for this kernel, they only achieved correct convergence for a
limited mtmax ≤ 1. Most importantly it is not clear how to systematically modify that
kernel for realizing convergence at larger real-time extent.

Instead we set out to use a generic parametrization of the kernel. We propose to use an
expansion in a set of complete basis functions of the dynamical d.o.f. In this study, as a proof
of principle, we will restrict ourselves to a field-independent kernel, which can be understood
as the first term in an expansion in powers of the field. This field-independent kernel for the
quantum anharmonic oscillator on the Schwinger-Keldysh contour will take the form of a τL
independent matrix K with (2Nt +Nτ )2 entries, multiplying the 2Nt d.o.f. on the forward
and backward contour and the Nτ ones on the imaginary time branch. It is the values of
these matrix entries that we set out to tune in order to achieve optimal convergence.

And even though simple model systems indicate that a field-dependent kernel is needed
to achieve correct convergence in case of strong complex drift terms, we find that an optimal
field-independent kernel can already extend the range of convergence of the anharmonic
oscillator out to mtmax = 1.5, three times larger than the previous record set for CL
in ref. [41].

In order to obtain kernel values that restore correct convergence, we formulate an
optimization problem based on a cost functional, which incorporates prior knowledge about
the system of interest. Taking advantage of modern programming techniques that allow
us to compute the dependence of a full complex-Langevin simulation on the entries of the
kernel we propose to iteratively learn the optimal kernel. The fact that we incorporate prior
information into the simulation opens a novel path to beat the notorious sign problem, i.e.
for the first time complex Langevin can be amended by system-specific information in order
to restore correct convergence.

4.1 The optimization functional

In order to guarantee that a complex Langevin simulation converges to the true solution we
must fulfill the correctness criteria of [30]. First we must ensure the absence of boundary
terms and second that the late-time distribution of the complex Fokker-Planck equation
is indeed exp[iSM]. Constructing a loss function for both criteria however is only feasible
for very low dimensional models, as it entails calculating the eigenvalues and eigenvectors
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of the complex Fokker-Planck operator, which is prohibitively expensive already for the
anharmonic oscillator discussed here.

Instead we will retain only the first ingredient of the correctness criteria, the absence
of boundary terms and use other prior information in order to guide the kernelled complex
FP equation to the correct stationary solution. The boundary terms can be calculated
via the expectation value 〈LcO〉Y where Lc is the Langevin operator and O refers to any
observable (for a detailed discussion see e.g. [55]). In appendix A we demonstrate that the
correctness criterion still holds with a kernel and how to calculate these boundary terms.

Besides the boundary terms, we often possess additional relevant prior information
about the system at hand. We can e.g. compute correlation functions in Euclidean time
using conventional Monte-Carlo methods. In addition, we know that in thermal equilibrium
the correlation functions on the forward and backward branch are related due to the KMS
relation. In order to exploit this prior information it is vital for the CL equations to be
formulated on the canonical SK contour, whose real-time branches lie parallel to each other
and connect to the Euclidean branch at the origin. In a tilted contour setup, access to the
Euclidean branch is limited and the comparison of the values on the forward and backward
branch is much more involved. In addition, symmetries provide powerful constraints to the
simulation, as e.g. time-translation invariance in a thermal system renders local observables
such as 〈xn(γ)〉 constant along the full contour.

We quantify the distance of the simulated result from the behavior dictated by prior
knowledge via a loss function Lprior. The comparison is carried out on the level of expectation
values of observables, where apriori known values from conventional Euclidean simulations
are referred to as 〈O〉MC and those from the complex Langevin simulation in the presence
of a kernel by 〈O〉K .

In principle one can distinguish between four categories of prior knowledge:

• Euclidean correlators (Leucl), which are accessible via conventional Monte-Carlo
simulations:

Leucl =
∑
O

∫
dτ
∣∣∣ 〈O(τ)〉K − 〈O(τ)〉MC

∣∣∣2/σ2
〈O(τ)〉K τ ∈ imaginary time

• Model symmetries (Lsym), which exploit that the expectation values of observables O
must remain invariant under a symmetry transformation Tξ governed by a continuous
(or discrete) parameter ξ:

Lsym =
∑
O

∫
dξ|〈TξO〉K − 〈O〉K |2/σ2

〈O(τ)〉K

• Contour symmetries (Lrt), which arise predominantly in systems in thermal equilib-
rium:

LC =
∑
O

∫
dγ
∣∣∣〈OC+(γ)〉K − F [〈OC−(γ)〉K ]

∣∣∣2/σ2
〈O(τ)〉K with F analytically known
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• Boundary terms (LBT), which can be explicitly computed from the outcome of the
kernelled Langevin simulation:

LBT =
∑
O

∣∣∣〈Lc(K)O〉K
∣∣∣2/σ2

〈O(τ)〉K

In practice one wishes to combine as many of these different contributions as possible.
To this end they must be added as dimensionless quantities. This is why each of the terms
above is normalized by the variance of the complex Langevin simulation. In order for the
combined functional to provide a meaningful distinction of the success of convergence (also
in the case of e.g. the free theory as shown in figure 3) we propose to introduce an overall
normalization for the combined prior functional

Lprior = Ntot
(
Leucl + Lsym + LC + LBT

)
. (4.1)

There is an element of arbitrariness in what overall normalization to choose, and we find
that the best distinction between wrong and correct convergence is achieved if one uses the
relative error of the most difficult observable to reproduce. In case of the systems studied
here this amounts to the relative error of the equal time correlator obtained in the complex
Langevin simulation with respect to the correct known value from Euclidean simulations
Ntot = maxγ{σ〈x2〉K (γ)/〈x2〉MC(γ)}.

We carry the subscript K in the expectation values above, in order to emphasize that
the loss functional depends implicitly on the choice of kernel used in the underlying complex
Langevin simulation. The number of observables O contained in the cost functional is
not specified here and depends on the problem at hand. In practice, we find that often
including the apriori known Euclidean one- and two-point functions already allow us to
reliably distinguish between correct and incorrect convergence.

In the next section, we will discuss both fully general numerical strategies to locate
the minimum of the optimization functional, as well as an approximate low-cost approach,
which we have deployed in the present study.

4.2 Optimization strategies

4.2.1 General approach

The task at hand is to find the critical point of a cost functional that is comprised of a subset
of the contributions listed in the previous section, i.e. of Leucl,Lsym,LC or LBT. Generically
each contribution can be written as the expectation value of a known function G, depending
on the dynamical degrees of freedom x and the kernel K, i.e. Lprior[K] = |〈G[x,K]〉K |

2. In
order to make the dependence of the expectation value on the kernel explicit we consider
the d.o.f. within the simulation to explicitly depend on K as x(K). This allows us to
remove the subscript K from the expectation value so that Lprior[K] = |〈G[x(K),K]〉|2.

Let us characterize the kernel via a set of variables κ. We emphasize that this does
not limit the general nature of the approach, as κ may refer to the prefactors of a general
expansion of the kernel in a complete set of basis functions.
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To efficiently locate its critical point we deploy standard numerical optimization
algorithms, which utilize the information of the gradient of the functional with respect to
the parameters of the kernel. The computational challenge lies in determining the gradient
robustly. In the continuum, the gradient of the loss reads

∇κLprior[K] = 2 〈G[x(K),K]〉
|〈G[x(K),K]〉| 〈∇κG[x(K),K]〉 (4.2)

= 2 〈G[x(K),K]〉
|〈G[x(K),K]〉| {〈∇xG[x(K),K] · ∇κx〉+ 〈∇κG[x,K]〉} (4.3)

In order to evaluate eq. (4.3) we need to compute the change in the field x(K), which
depends on the kernel. This requires taking the gradient of the CL simulation itself. While
a demanding task, dedicated methods to evaluate such gradients have been developed,
which underpin the recent progress in the machine learning community. They are known as
differential programming techniques (for an in-depth review see e.g. ref. [44]).

As a first option, we considered using direct auto-differentiation2 on the full loss
function, as we are dealing with the standard setting of estimating the gradient of a highly
dimensional functional whose output is a single number. For small systems with a number
of degrees of freedom O(10), forward-auto-differentiation is feasible as it requires multiple
runs of the full CL simulation. As the number of independent d.o.f. grows, backward-
auto-differentiation offers us to reduce the number of necessary simulation runs, trading
computational cost for increased memory demands to store intermediate results of the chain
rule it computes internally. We find that already for the quantum anharmonic oscillator
this direct computation of the gradient is too costly and thus not practical.

A more advanced approach, which promises to avoid the cost and memory limitations
of direct auto-differentiation are so-called sensitivity analysis methods, such as e.g. adjoint
methods for stochastic differential equations. A detailed discussion of these methods is
beyond the scope of this paper and the interested reader is referred to refs. [58–60] for
further details.

We find that for the specific case of real-time complex Langevin, these methods in their
standard implementation, as provided e.g. in [60] are challenged in estimating the gradient
robustly. We believe that the difficulty here lies in the stiffness of the underlying stochastic
differential equation. One possible way out is to deploy sensitivity analysis methods
specifically developed for chaotic systems, such as Least Square Shadowing algorithms,
discussed e.g. in refs. [61, 62]. While these methods at this point are still too slow to
be deployed in CL simulations, the rapid development in this field over the past years
is promising.

Our survey of differential programming techniques indicates that while possible in
principle, the optimization of the loss functional L(K) is currently plagued by issues of
computational efficiency. We believe that implementing by hand the adjoint method for the
real-time complex Langevin systems considered here will offer a significant improvement in

2Auto-differentiation is a method to compute derivatives to machine precision on digital computers based
on an efficient use of the chain rule, exploiting elementary arithmetic operations in the form of dual variables
(see e.g. [56]). We have used the Julia library Zygote.jl [57] and ForwardDiff.jl for computing gradients.
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speed and robustness compared to the generic implementations on the market. This line of
work goes beyond the scope of this manuscript and will be considered in an upcoming study.

To make headway in spite of these methods limitations we in the following propose
an approach to compute an approximate low-cost gradient, which in practice allows us to
significantly reduce the values of the optimization functional.

4.2.2 A low cost update from an heuristic gradient

Our goal is to compute a gradient, which allows us to approximately minimize the cost
functional Lprior[K] without the need to take derivatives of the CL simulation. The approach
we propose here relies on using a different optimization functional, whose form is motivated
by the need to avoid boundary terms. While updating the values of the kernel according to
a heuristic gradient obtained from this alternative functional, we will monitor the values
of the true optimization functional, selecting the kernel which achieves the lowest value
of Lprior[K].

We saw that the optimal kernel for the free theory reduces the drift term to a term in
the direction of −x. This drift term points towards the origin. In this spirit we construct a
functional that penalizes drift away from the origin.

The starting point is the following expression, where we define D = −iK∂SM/∂x as
the drift term modified by the kernel

D(x,K) · (−x) = ||D(x,K)||||x|| cos θ. (4.4)

Here cosθ denotes the angle between the drift and the optimal direction. As we wish to
align the drift and −x, our optimization problem becomes finding a kernel K such that

min
K
{D(x,K) · (−x)− ||D(x,K)|| ||x||} . (4.5)

We can write down different loss functionals which encode this minimum

LD =
〈∣∣∣D(x) · (−x)− ||D(x)|| ||x||

∣∣∣ξ〉 = 1
T

∫ ∣∣∣D(x(τL)) · (−x(τL))− ||D(x)|| ||x||
∣∣∣ξ

(4.6)
The choice of ξ determines how steep the gradients on the functional are and we find that
in practice a value between 1 < ξ < 2 leads to most efficient minimization, when LD is used
to construct the heuristic gradient we describe below.

Note that turning the drift towards the origin differs from the strategy employed by
dynamic stabilization. The scalar counterpart to minimizing the unitarity norm is driving
the values of the complexified x towards the real axis. In addition, in dynamical stabilization
a non-holomorphic term is added to the action. Here the CL equation is modified only
by a kernel, which still leads to a holomorphic complex Langevin equation that leaves the
correctness criteria intact.

The exact gradient of the functional LD of eq. (4.6) also contains the costly derivatives
over the whole CL simulation. However we find that in practice for values 1 ≤ ξ ≤ 2 in
LD these contributions can be neglected. We believe the reason to lie in the fact that LD
consists of the difference between two terms that contain the same powers of x. I.e. we find
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that carrying out the optimization using only the explicit dependence of LD on the kernel
K, which is computed using standard auto-differentiation. The approximate gradient allows
us to locate kernel values, which significantly reduce the values of the true optimization
functional Lprior[K]. The kernels identified in this way in turn achieves correct convergence
on contours with larger real-time extent than previously possible.3
The full optimization scheme can be summarized as follows:

1. Initialize the kernel parameters yielding the initial kernel K1

2. Carry out the CL simulation with K1 and save the configurations {xj}1, where the
subscript indicates that this is the first iteration

3. Compute the values of the loss functions LD and Lprior[K1]

4. Compute the gradients of the loss function LD({xj}1,K1) with respect to the kernel
parameters using auto-differentiation

5. Update the kernel parameters using one step of the ADAM optimization scheme

6. Rerun the CL simulation with the new kernel Ki+1 and save a new set of configura-
tions {xj}i+1

7. Loop over step 3–6 for N steps, or until LD have reached a minimum and then select
the kernel parameters with the smallest Lprior[Ki]

We will demonstrate the efficiency of the proposed optimization based on the heuristic
gradient in the next section, where we learn optimal kernels for the quantum harmonic and
anharmonic oscillator on the thermal Schwinger-Keldysh real-time contour.

4.3 Learning optimal kernels for the thermal harmonic oscillator

To put the strategy laid out in the previous section to a test we set out here to learn a
field-independent kernel for the quantum harmonic oscillator on the canonical Schwinger-
Keldysh contour at finite temperature. In section 3.3 we had identified one kernel by hand,
which actually minimizes the low-cost functional eq. (4.6). We will compare it to the learned
kernel at the end of this section.

We simulate on the canonical Schwinger-Keldysh contour with real-time extent mtmax =
10 and an imaginary time branch of length mβ = 1. The contour will be discretized with
steps of equal magnitude |ai| = |a| such that Nt = 25 points are assigned to the forward
and backward branch each and Nτ = 5 to the imaginary time axis.

The field-independent kernel therefore is a complex 55×55 matrix, which we parametrize
via two real matrices A and B such that K = eA+iB . This choice is arbitrary and is based
on the observation that the minimization procedure is more robust for the exponentiated
matrices than when using A+ iB directly. The kernel is initialized to unity before the start
of the optimization by setting all elements of A and B to zero. The optimization itself, as

3Note that disregarding the costly terms in the gradient of the true cost functional Lprior[K] introduced
in section 4.1 did not lead to a viable minimization of its values.
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discussed in the previous section, is carried out using the approximate gradient following
from LD with a choice of ξ = 2.

One needs to choose the actual cost functional Lprior based on prior knowledge through
which to monitor the optimization success. We decide to include the known values of
the Euclidean two-point correlator 〈x(0)x(−iτ)〉 and exploit the knowledge about the
symmetries of the system, which require that 〈x〉 = 〈x3〉 = 0, as well as 〈x2(γ)〉 = 〈x2(0)〉.
This leads us to the following functional

Lprior = Ntot
(

(4.7)∑
i∈SK

{
|〈x(γi)〉K |2/σ2

xK + |〈x3(γi)〉K |2/σ2
x3

K
+ |〈x2(0)〉MC − 〈x2(γi)〉K |2/σ2

x2
K

}
+

∑
i∈Eucl.

|〈x(0)x(τi)〉MC − 〈x(0)x(τi)〉K |2/σ2
xxK

)
where the first sum runs over all points of the discretized Schwinger-Keldysh contour, while
the second sum only contains the correlator on the Euclidean branch. As discussed before,
the overall normalization is based on the uncertainty of the equal-time x2 correlator.

Since we start from a trivial kernel, we must make sure that our simulation algorithm
provides a regularization and remains stable even for stiff dynamics. Therefore we solve
the complex Langevin stochastic differential equation using the Implicit Euler-Maruyama
scheme with implicitness parameter θ = 1.0 and adaptive step-size. For every update of the
CL configurations we simulate 30 different trajectories up to a Langevin time of mτL = 30,
with a thermalization regime of mτL = 5 in Langevin time before we start collecting the
configurations at every m∆τL = 0.05 in Langevin time. To calculate the expectation values,
we compute sub-averages from the saved configurations in each trajectory separately. The
final mean and variance are then estimated from the results of the different trajectories.

The iterative optimization of the kernel values, based on the low-cost functional and its
approximate gradient, is performed using the ADAM (Adaptive Moment) optimizer with
a learning rate of 0.001. This is an improved gradient descent optimizer, which combines
gradient descent momentum and an adaptive learning rate.

Since we know that the complex Langevin simulation will be the slowest part of the
optimization scheme we will only run the full CL simulation for every five optimization steps.
For this simple model it would not be a computation time problem to update the expectation
values in LD after every kernel update, but for realistic models in higher dimensions this
might be too expensive. As the distributions of the observables should be similar for a
small change in the kernel we indeed find that not updating the CL configurations at every
update steps still allows us to obtain a good estimate of the heuristic gradient.

Starting with the unit kernel, the functionals LD = 6.58× 1011 and Lprior = 107 show
appreciable deviation from zero. After 32 steps of the ADAM optimizer we manage to
find values of K which reduce the value of Lprior = 26.5 indicating that the apriori known
information has been well recovered.

The results for the simulation with the optimal learned kernel are plotted in figure 5,
based on 100 trajectories (top) and 400 trajectories (bottom) each of which progresses up
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Figure 5. Harmonic oscillator in the presence of our learned optimal kernel, based on the heuristic
gradient from the loss function in eq. (4.6). We simulate on the SK contour with mtmax = 10 in
real-time and choose m = 1. Simulating up to mτL = 100 in Langevin time, we combine samples
from 100 (top) and 400 (bottom) different trajectories. Note that improved statistics diminishes the
residual oscillatory artifacts in 〈x2〉. Values of the correlators from the solution of the Schrödinger
equation are given as solid black lines.

to mτL = 100 in Langevin time. The x-axis refers to the contour parameter γ, such that
at mγ = 10 we are at the turning point of the real-time branch of the Schwinger-Keldysh
contour and at mγ = 20 the contour has returned to the origin, before extending along
the imaginary axis to mt = −i. We plot the real- and imaginary part of the unequal time
correlator 〈x(0)x(γ)〉 as orange and blue data points, while the real- and imaginary part
of the equal time expectation value 〈x2(γ)〉 are given in green and pink respectively. The
analytically known values from solving the Schrödinger equation are underlaid as black
solid lines.

How has the learned kernel improved the outcome? When comparing to a simulation
without kernel in the top panel of figure 3 we see that using the same amount of numerical
resources (i.e. 100) trajectories at mτL = 100 the learned kernel has reduced the resulting
errorbars significantly. On the other hand in the top panel of figure 5 residual oscillations
in 〈x2〉 seem to persist. One may ask whether these indicate incorrect convergence, which
is why we provide in the lower panel the result after including 400 trajectories at the same

– 25 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
7

Im
[K
]

R
e[
K]

Ɣ

Ɣ

Ɣ

++

--

EE

+-

-+ -E

+E

E+ E-

++

--

EE

+-

-+ -E

+E

E+ E-

Figure 6. (left) An explanatory sketch of our visualization of the complex kernel used in the
simulations. The top major panel denotes the values of the real part and the lower major panel those
of the imaginary part of the kernel. Inside each panel the values of the kernel are ordered along the
contour parameter, indicating which parts of the kernel couple which range on the contour. (center)
The free theory kernel in eq. (3.24), constructed explicitly in the previous section for mtmax = 10.
The repeating pattern indicates an oscillatory behavior in coordinate space arising from the fact
that this kernel is just the propagator of the free theory. (right) In the optimal learned kernel based
on the low-cost update we have subtracted the unit matrix from the real-part to avoid it dominating
the other structures. We find that the learned kernel exhibits some of the structure of the manually
constructed kernel but in general has a more simple form, which nevertheless manages to achieve
correct convergence of the complex Langevin dynamics.

Langevin time extent. One can see that not only the errorbars further reduce but also
that the oscillatory artifacts have diminished. The improvement amounts to another factor
of two in terms of Lprior from the value Lprior = 26.5 in the top panel to Lprior = 13.4 in
the lower panel. We emphasize that we did not use the analytically known solution of the
system for the optimization procedure.

Let us inspect the learned kernel and compare it to the free theory propagator kernel
of eq. (3.24). In figure 6 we visualize the structures of the kernel by plotting a heat-map of
the matrix entries of the complex matrix kernel. The right sketch shows how the matrix is
structured, where the top panel refers to the real part and the lower panel to the imaginary
part. The entries of the matrices are laid out corresponding to the contour parameter γ.
The smaller regions inside the two panels indicate how the kernel mixes points along the
time contour. The ++ corresponds to the mixing of the forward branch of the contour,
while +− mixes the forward and backward branch time points. There exists also a small
strip involving the Euclidean points, mixing with the real-time points (E+ and E−), as
well as a small corner (EE) mixing within the Euclidean points.

The different regions shown in the sketch can easily be recognized in the two kernel
structure plots. Note that we have subtracted the unit matrix from the real-part of the
optimized kernel to more clearly expose off-diagonal structures, if present. The manually
constructed free theory propagator kernel (middle), as expected from being the inverse
free propagator, exhibits an oscillatory pattern. It leads to a significant coupling between
the forward and backward time points, due to an anti-diagonal structure in the real and
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imaginary parts, forming an oscillatory cross pattern. This anti-diagonal behavior is much
less pronounced in the optimized kernel (left). In its real-part it mainly exhibits a diagonal
which is not as wide as in the manually constructed kernel. There is however a small negative
structure present, an off-diagonal band, similar to the black part in the middle panel.

For the imaginary part, the patterns close to the diagonal are similar between the
manually constructed kernel and the optimal learned kernel. Both possess a diagonal close
to zero and a broad sub/super-diagonal that switches sign at the turning points between
the ++ and −− part of the time contour. We also see that the anti-diagonal structure is
similar for a very short part in the +− and −+ quadrants in the imaginary panel. The rest
of the +− and −+ quadrant seems to contain noise.

While some similarities exist between the explicit kernel and the optimal learned kernel,
it appears that correct convergence requires some non-trivial structure in the imaginary
part of K. The learned kernel achieves correct convergence with much less structure than
the manually constructed one.

4.4 Learning optimal kernels for the strongly coupled anharmonic oscillator

After successfully testing the learning strategy for a field-independent kernel in the free
theory in the previous section, we are now ready to attack the central task of this study:
learning an optimal kernel for a strongly coupled quantum system in order to extend the
correct convergence of the corresponding real-time complex Langevin simulation.

We deploy the same parameter set as before with m = 1 and λ = 24. In section 3.4 we
showed that for a real-time extent of mtmax = 1 an explicit kernel based on insight from
the free theory can be constructed, which allows us to restore correct convergence within
statistical uncertainties (see figure 4).

Here we set out to learn an optimal kernel based only on the combination of our low-cost
functional and prior knowledge of the Euclidean two-point functions and time-translation
invariance of the thermal system. Since we restrict ourselves to a field-independent kernel
we expect that our approach will be able to improve on the manually constructed kernel
but will itself be limited in the maximum real-time extent up to which correct convergence
can be achieved.

As testing ground we selected three different real-time extents, mtmax = 1, mtmax = 1.5
and mtmax = 2, all of which show convergence to the wrong solution when performing naive
complex Langevin evolution.

We discretize the real-time contour with a common magnitude of the lattice spacing
|ai| = |a|. I.e. depending on the maximum real-time extent the number of grid points
changes. E.g. in case of mtmax = 2 we use Nt = 20 on the forward and backward part of
the real-time contour each, and Nτ = 10 for the imaginary part of the contour. Due to
the stiffness of the complex Langevin equations in the interacting case, all CL simulations
are performed with the Euler-Maruyama scheme with θ = 0.6 and adaptive step-size. We
simulate 40 different trajectories up to mτL = 40 in Langevin time, computing observables
at every m∆τL = 0.02 step.

The setup for learning the optimal kernel is very similar to that in the previous section.
The kernel parametrization is given by K = eA+iB, where A and B are real matrices. We
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Figure 7. Complex Langevin simulation of the strongly coupled anharmonic oscillator on the
thermal Schwinger-Keldysh contour in the absence (left) of a kernel and in the presence of the
optimal learned field-independent kernel (right). The top row corresponds to results from a contour
with real-time extent mtmax = 1, while the center row shows results for mtmax = 1.5 and the bottom
row for mtmax = 2. Values of the correlators from the solution of the Schrödinger equation are given
as solid black lines.

search for the critical point of the true loss function Lprior (see eq. (4.7)) via the heuristic
gradient obtained from the loss function LD of eq. (4.6). We find that minimization proceeds
efficiently, when choosing the parameter ξ = 1 in LD. The optimal kernel is chosen according
to the lowest values observed in Lprior.

We find that for a trivial unit kernel where complex Langevin fails, the cost functional
Lprior based on prior information indicates values of Lprior

mtmax=1 = 942, Lprior
mtmax=1.5 = 597320

and Lprior
mtmax=2 = 12923. The left column of figure figure 7 shows, from top to bottom, the

rows corresponding to the results of the naive CL simulation for mtmax = 1, mtmax = 1.5
and mtmax = 2 respectively. As in previous comparison plots the real- and imaginary part
of the unequal time correlation function 〈x(0)x(γ)〉 is given by orange and blue data points,
while the real- and imaginary part of the equal time expectation value 〈x2(γ)〉 is represented
by the green and pink symbols respectively. The analytically known values from solving
the Schrödinger equation are underlaid as black solid lines.

– 28 –



J
H
E
P
0
4
(
2
0
2
3
)
0
5
7

The results of real-time CL in the presence of the optimal learned kernel for the
anharmonic oscillator are shown in the right column of figure 7. For mtmax = 1 we achieve
to lower the value of Lprior

mtmax=1 = 14.3. At this low value all the correlation functions plotted,
agree with the true solution within uncertainties. Note that we manage to restore correct
convergence for the unequal time correlation function on the real-time axis, even though no
prior information about these points was provided in Lprior nor LD. In contrast to the use
of the modified free theory kernel, we see here that 〈x2〉 does not show a systematic shift
on the real-time branches anymore.

We continue to the second row, where, via an optimal learned kernel, we achieve
extending the correctness of CL into a region inaccessible to the modified free theory kernel
at mtmax = 1.5. The value of the functional encoding our prior knowledge has reduced to
Lprior
mtmax=1.5 = 48.1. We find that the unequal time correlation function values are reproduced

excellently, while the real- and imaginary part of 〈x2〉 show residual deviations from the
correct solution around those points along the SK contour, where the path exhibits sharp
turns, i.e. at the end point γ = tmax and the point where the real-time and Euclidean
branch meet γ = 2tmax.

The results shown in the third row clearly spell out the limitation of the field-independent
kernel we deploy in this study. At mtmax = 2 we do not manage to reduce the value of the
cost functional below Lprior

mtmax=2 = 759. Correspondingly in the bottom row of figure 7 it is
clear that CL even in the presence of the field-independent kernel fails to converge to the
correct solution. Interestingly the imaginary part of the unequal-time two-point correlator
still agrees very well with the true solution on the forward branch while its real part already
shows significant deviations from the correct solution. This deviation of the unequal time
correlation function affects also the values of the equal-time correlation function which
is far from constant and thus leads to a penalty in Lprior, correctly indicating failure of
correct convergence.

There are two possible reasons behind the failure of convergence at mtmax = 2. One is
that the low-cost gradient obtained from LD is unable to bring the kernel close to those
values required for restoring correct convergence. The other is that the field-independent
kernel is not expressive enough to encode the change in CL dynamics needed to restore
correct convergence. In simple models it is e.g. known from ref. [63] that field-independent
kernels may fail to restore correct convergence for large imaginary drift. We believe that,
as a next step, the investigation of field dependent kernels is most promising.

The unequal time correlation function is most relevant phenomenologically, as it encodes
the particle content and occupation numbers in the system. We thus compare in figure 8 the
values of 〈x(0)x(t)〉 along the forward real-time extent of the contour for mtmax = 1.0, 1.5
and 2.0 to the correct solution given as black solid line. Here we can see in more detail that
for a real-time extent of 1 and 1.5 CL with the optimal learned kernel converges to the true
solution within uncertainties. At 2 the real part of the correlator begins to deviate from
the correct solution. Note that the most difficult points to achieve convergence at are t = 0
and at t = tmax. Similarly we find that these points are also the ones, where the equal time
correlator deviates the most from the correct solution, an important fact as this allows this
deviation to contribute to the penalty in Lprior.
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Figure 8. A detailed comparison of the unequal time correlation functions 〈x(0)x(t)〉 from figure 7
evaluated in the presence of the optimal learned field-independent kernel on contours with mtmax =
1, 1.5 and 2 respectively.The different colored circles correspond to the real-part while the squares to
the imaginary part of the correlator. Values of the correlators from the solution of the Schrödinger
equation are given as solid black lines.

Figure 9. (left) Free theory kernel for the SK contour with mtmax = 1.5. (center) The optimal
learned kernel in the interacting theory for mtmax = 1.5, which achieves correct convergence of CL.
The diagonal entries with values close to unity are subtracted from the kernel. (right) The kernel
obtained as a result of the optimization procedure in the case of mtmax = 2.0, which does not achieve
correct convergence. At the turning point at tmax and when connecting to the Euclidean domain
the kernel for the interacting theory shows nontrivial structure not present in the free theory.

In figure 9 we plot a heat map of the values of the kernels with mtmax = 1.5 (center)
and mtmax = 2 (right) compared to the free theory propagator kernel from eq. (3.24) (left)
for mtmax = 1.5. (for a sketch of the structure of the heat map see the left panel of figure 6).
We have subtracted the unit matrix from the real-part of the two optimized kernels. They
both exhibit a diagonal band in the real part, which is thinner than the one in the free
theory kernel. It is interesting to see that both show non-trivial structures passing through
the tmax point and when connecting to the Euclidean branch. In the imaginary part the
structures have more similarity with the free theory propagator kernel, where a sign change
occurs as one moves away from the diagonal. The difference in the optimal kernels between
mtmax = 1.5 and mtmax = 2 is small overall.
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5 Summary and conclusion

In this paper we proposed a novel strategy to recover correct convergence of real-time
complex Langevin simulations by incorporating prior information into the simulation via a
learned kernel. The effectiveness of the strategy was demonstrated for the strongly coupled
anharmonic oscillator on the Schwinger Keldysh contour by extending correct convergence
in this benchmark system up to mtmax = 1.5, three times the previously accessible range
of mtmax = 0.5.

After discussing the concept of neutral and non-neutral modifications of Langevin
dynamics by use of real and complex kernels, we demonstrated that an explicitly constructed
complex kernel can be used to improve the convergence behavior of real-time complex
Langevin on the Schwinger-Keldysh contour. Taking insight from a single d.o.f. model
and the harmonic oscillator, approximately correct convergence in the strongly coupled
anharmonic oscillator was achieved up to mtmax = 1. As no systematic extension to the
explicit construction of that kernel exists, we instead proposed to learn optimal kernels
using prior information.

The ingredients to learning an optimal kernel are prior information and an efficient
prescription for computing gradients. Prior information comes in the form of apriori known
Euclidean correlation functions, known symmetries of the theory and the Schwinger-Keldysh
contour, as well as information on the boundary terms. Here we included only the first
two types of information, which sufficed to achieve improvements in convergence. We
surveyed different modern differential programming techniques that in principle allow a
direct optimization of the kernel based on the full prior information, but found that in their
standard implementations they are of limited use in practice due to runtime or memory
limitations. Instead we constructed an approximate gradient based on an alternative
optimization functional, inspired by the need to avoid the presence of boundary terms. This
optimization functional possesses a gradient, which can be approximated with much lower
cost than that of the original optimization functional. The low-cost gradient in practice
is computed using standard auto-differentiation. By minimizing with this gradient and
monitoring success via the full prior information cost functional we proposed, we were able
to locate optimal kernels.

Our strategy was successfully applied first to the harmonic oscillator on the thermal
SK contour. We managed to restore correct convergence with an optimal learned field-
independent kernel that shows a simpler structure compared to the manually constructed
kernel. This result bodes well for future studies, where we will investigate in detail the
structure of the optimal learned kernel to draw conclusions about the optimal analytic
structure for extending the approach to a field-dependent kernel.

The central result of our study is the restoration of correct convergence in the strongly
correlated anharmonic oscillator on the thermal SK contour up to a real-time extent of
mtmax = 1.5, which is beyond the reach of any manually constructed kernel proposed so
far. We find some remnant deviations of the equal-time correlation function 〈x2〉 from the
true solution at the turning points of the SK contour. The phenomenologically relevant
unequal-time correlation function 〈x(0)x(t)〉 on the real-time branch on the other hand
reproduces the correct solution within statistical uncertainty.
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While our strategy based on a field-independent kernel is successful in a range three
times the previous state-of-the-art, we find that the restricted choice of kernel limits its
success at larger real-time extent.

We conclude that our study provides a proof-of-principle for the restoration of correct
convergence in complex Langevin based on the inclusion of prior information via kernels.
Future work will focus on extending the approach to field-dependent kernels, carefully
reassess the discretization prescription of the SK at the turning points and improve the
efficiency of the differential programming techniques necessary to carry out a minimization
directly on the full prior knowledge cost functional.
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A Correctness criterion in the presence of a kernel

In this section we discuss the correctness criterion in the presence of a kernel in the CL
evolution. As mentioned in section 2.2 there are two parts to the correctness criterion that
need to be fulfilled in order for complex Langevin to converge to the correct solution. We
must avoid boundary terms for the real-valued distribution Φ(xR, xI , τL) and the complex
Fokker-Planck eq. (2.12) must have the correct equilibrium distribution. If both conditions
are fulfilled the equal sign of eq. (2.8) holds.

To check if the equilibrium distribution of ρ(x, τL) is exp[iSM] we need to either solve the
Fokker-Planck equation explicitly, or inspect the eigenvalue spectrum of the Fokker-Planck
equation [46]. To make inference about correct convergence based on the eigenspectrum,
the eigenvectors of the Fokker-Planck operator must form a complete set, as otherwise there
exist non-orthogonal zero modes competing with the eiSM stationary distribution. For a
non-self-adjoint operator this is not always the case.

To show the connection between the eigenvalues of the Fokker-Planck equation and the
equilibrium distribution we use a similarity transform to define the operator G from the
Fokker-Planck operator L including the kernel

G(x) =UL(x)U−1 = e−
1
2 iSM (x)L(x)e

1
2 iSM (x)

=
(
∂

∂x
+ 1

2 i
∂SM
∂x

)
K[x]

(
∂

∂x
− 1

2 i
∂SM
∂x

)
,

(A.1)

which by definition has the same eigenvalues as L. The transformation is carried out here
to follow closely the conventional way of proving the correct convergence for a real action
S. I.e., when S is real, G becomes a self-adjoint and hence negative semi-definite operator.
For complex actions, iSM , this transformation is not necessary for the following arguments.
It is however useful in practice as a pre-conditioner for calculating the eigenvalues of the
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Fokker Planck operator. The complex distribution ρ(x, τL) is also transformed based on
the same transformation, such that

ρ̃(x, τL) = e−i
1
2SMρ(x, τL), where ˙̃ρ(x, τL) = G(x)ρ̃(x, τL) (A.2)

is the Fokker-Planck equation for the transformed operator. Since we are interested in the
stationary distribution, we construct the eigenvalue equation

G(x)ψn(x) = λnψn(x). (A.3)

Due to the form of the operator we know that it must have at least one zero eigenvalue,
λ = 0, associated with the eigenvector ei 1

2SM .
The formal solution of the Fokker-Planck equation after the similarity transform of

eq. (A.2) is given by
ρ̃(x; τL) = eτLG(x)ρ̃(x, 0) (A.4)

and by expanding ρ̃(x; 0) in the eigenbasis ψn, and using ψ0e
λ0t = e

1
2 iSM we get

ρ(x; τL) = e
1
2 iSM (x)ρ̃(x; τL) (A.5)

= e
1
2 iSM (x)

∞∑
n=0

anψn(x)eλnτL = ceiSM (x) +
∞∑
n=1

anψn(x)eλnτL (A.6)

such that when τL → ∞ only the first term is left, namely the equilibrium distribution
exp[iSM]. This is however only true if Re λn ≤ 0, in which case the spectrum of G provides
information of the equilibrium distribution of the Fokker-Planck equation.

The second condition, which needs to be satisfied is that the sampling of CL gives the
same distribution as the complex Fokker-Planck equation. To establish that it does, we
follow the correctness criterion of ref. [30]. Let us show that the criterion also holds in
the presence of a kernel by revisiting some central steps of the original proof. We start
with the Fokker-Planck equation for complex Langevin eq. (2.11), which operates on a real
distribution Φ(xR, xI ; t) for the complexified degrees of freedom xR and xI . Let us take a
look at the Fokker-Planck equation, which evolves the distribution of an observable O

∂τLO(xR,xI) =
[
(HR∂xR+HI∂xI )2+Re

{
iK[xR+ixI ]∇SM+ ∂K[xR+ixI ]

∂xR

}
∂xR

+Im
{
iK[xR+ixI ]∇SM+ ∂K[xR+ixI ]

∂xR

}
∂xI

]
O(xR,xI) =LTKO(xR,xI),

(A.7)
where we can identify the operator LK to be the bilinear adjoint of the Fokker-Planck
operator LTK [30]. If we assume that O is holomorphic, we know that ∂xIO = i∂xRO →
i∂zO, where for the last equality we have used the following relation between derivatives
∂xRO(xR + ixI) → ∂zf(z) with z = xR + ixI . Replacing derivatives yields the following
Langevin equation for the holomorphic observable O expressed in the complex variable z

∂tO =
[
K[z]∂2

z + iK[z]∇SM∂z + ∂K[z]
∂z

∂z

]
f = [∂z + i∇SM ]K[z]∂zO = L̃TKO, (A.8)
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where in the last equality we have used that K[z]∂2
z + (∂zK[z])∂z = ∂zK[z]∂z based on

integration by parts. We have now shown that (L̃TK−LTK)O = 0 for a Fokker-Planck equation
with a field dependent kernel. In turn, we conclude that the correctness criterion also holds
for a kernelled complex Langevin equation.

For the above derivation to hold there may not arise any boundary terms given by [55]

Bn =
∫
dxRdxIΦ(xR, xI)

(
L̃TK

)n
O(xR + ixI) (A.9)

where L̃TK is the Langevin operator given by

L̃TK = (∂z + i∇SM )K[z]∂z. (A.10)

The formal criterion is then that the observable 〈L̃TKO〉 should be zero. This expression
for B includes contributions from the full range of values of the d.o.f. between −∞ to
∞. Including all of these will introduce significant amounts of noise in the expectation
value. This can be avoided by introducing a cut-off Ω for the values for xR and xI in the
calculation of the observable. The boundary terms of eq. (A.9) are thus calculated using

BΩ
n =

〈(
L̃TK

)n
O(xR + ixI)

〉
Ω

=
〈

(
L̃TK

)n
O(xR + ixI), if xR ≤ ΩxR and xI ≤ ΩxI

0, otherwise

〉
(A.11)

where ΩxR and ΩxI denote the individual cutoffs for the real- and imaginary part respectively.
In the case of scalar fields (which in contrast to gauge fields do not feature a compact
dimension), we need to cut off in both xR and xI direction. We will in this paper stick
to considering the cut-off to be a square. For all the values outside the square we set the
contributions to the expectation value to zero.

Since the observable of interest in the simple models is z2 (i.e. it is the most difficult to
capture accurately), we find the boundary terms observable from eq. (A.11) to be

L̃TK z2 = (∇z + i∇SM )K(z)∇zz2 = (∇z + i∇SM )K(z)2z

= 2((∇zK(z))z +K(z) + i∇SMK(z)z)

= 2K(z)(1 + i∇SMz) + 2(∇zK(z))z, (A.12)

which for a field-independent kernel reduces to 〈L̃TK z2〉Ω = 〈2K + iz∇SM 〉Ω.
We have discussed both ingredients necessary to establish correct convergence of our

simulation in the presence of a kernel, i.e. the behavior of the Fokker-Planck spectrum and
boundary terms. The boundary terms can be calculated in practice without problems, while
the eigenvalues of the Fokker-Planck operator of eq. (A.3) so far remain out of reach for
realistic systems, due to computational cost.

B Constant kernels and correct convergence in simple models

In this appendix we investigate concrete examples of our optimization procedure and the
corresponding learned kernels in one-degree of freedom models, for which in the literature
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(see e.g. [43, 63]) kernels have been constructed by hand. The motivation behind this
appendix is to understand how the kernels affect the behavior of the complex Langevin
simulation, in particular how they are connected to the idea of minimizing the drift loss
in eq. (4.6). To this end we connect complex Langevin to the Lefschetz thimbles and the
correctness criterion [30].

We investigate the one-degree of freedom model with the action

S = 1
2σx

2 + λ

4x
4, (B.1)

which leads to the following partition function

Z =
∫
dxe−S , (B.2)

i.e. we use the same convention as in the literature [43, 63, 64]. Note that this is a different
convention from the main text as S can now have a imaginary part. This model is interesting
as it exhibits similar properties as the interacting real-time model: the convergence problem
appears, breaking both the boundary term condition and the equilibrium distribution of
the Fokker-Planck equation for various parameters.

We will therefor take a closer look at two specific sets of parameters. The first one is
σ = 4i and λ = 2 where we can find an optimal kernel, and as second parameter we choose
σ = −1 + 4i with the same λ = 2, where for correct convergence we have to go beyond a
constant, field-independent kernel.

In section 3.1 we looked at a variant of this model corresponding to σ = i and λ = 0 in
eq. (B.1). The optimal field independent kernel K = −i transforms the complex Langevin
equation such that it samples exactly on the Lefschetz thimble. In contrast, the models
considered here have more than one critical point, and hence the relation to the Lefschetz
thimbles is not as simple. The critical points for eq. (B.1), can be found via

∂S(x)
∂x

= 0, (B.3)

which are located at x = 0,±
√
σ/λ [30]. We see that the smaller the real-part of the σ

parameter becomes, the further out into the complex plane the two critical points away
from the origin are located.

B.1 Non-uniqueness of the optimization

In this study we used the optimization functional

LD =
〈∣∣∣D(x) · (−x)− ||D(x)|| ||x||

∣∣∣ξ〉 (B.4)

with D = KδS/δx, to compute an approximate gradient for the minimization of the true
cost functional Lprior. LD was constructed with the idea in mind that in order to remove
boundary terms we wish to penalize drift away from the origin. In this appendix we discuss
the fact that there exist multiple critical points to LD, which may or may not correspond
to a kernel that restores correct convergence. In practice we distinguish between these
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solutions by testing the success of the corresponding kernel in restoring correct convergence
via the value of Lprior.

Let us start with the parameter set σ = 4i and λ = 2 in eq. (B.1). For this choice
ref. [43] showed that a constant kernel can be constructed that restores correct convergence.

In a one-degree of freedom model, where the constant kernel is nothing but a complex
number, we can optimize by brute force. Using the parametrization

K = eiθ, H =
√
K = ei

θ
2 (B.5)

we only have to consider a single compact parameter: θ ∈ [0, 2π). A scan of the θ values
reveals two minima of the LD loss function. One at θ1 = π

3 and one at θ2 = 2π
3 , where the

first one corresponds to the kernel found manually in ref. [43]. When deriving the optimal
kernel, the authors also obtained two solutions, which correspond to these two kernels.
They selected the correct one by requiring the kernel to belong to the first Riemann sheet
when taking a square root. In our case, we too need to select the correct one and in this
simple model can use the correctness criteria directly to do so.

To proceed in this direction, let us take a look at the complex Langevin distribution
according to the two kernels found in the optimization process and compare them to the
Lefschetz thimble structure of the model. The thimble here consist of three different parts
as shown by red lines in figure 10, together with the critical points (green points). Note
that the thimbles always cross through the critical points. The distribution of the complex
Langevin evolution is shown as a point cloud. The three different distributions shown in each
panel correspond to the case of (top left) K0 = 1, (top right) K1 = exp[−iπ/3] and (bottom)
K2 = exp[−i2π/3]. One can clearly see that for the trivial kernel complex Langevin tries to
sample parallel to the real axis. As we saw in section 3 the angle parametrizing the kernel
translates into a preferred sampling direction.

In the top right and bottom of figure 10, we have plotted the complex Langevin
distribution obtained after introducing one of the two kernels that minimize LD. Again we
find that the angle of the noise term decides where CL samples. We see that the highest
density of the CL distribution lies along the direction in which the thimble passes through
the critical point at the origin. Further out from the origin, the distribution follows closely
the angle of the noise term, which is H1 =

√
e−iπ/3 = e−iπ/6 for the first kernel (top left)

and H2 =
√
e−i2π/3 = e−iπ/3 for the second (bottom). I.e. we can distinguish that sampling

with the first kernel leads to samples slightly closer to the thimbles going out along the
real-axis, compared to the other kernel which favors sampling more closely along the parts
of the thimble that eventually run off to infinity. We will give a formal explanation for this
behavior in the next paragraphs.

As shown in appendix A the correctness criterion consist of two parts, the first one
states that no boundary terms may appear and the second requires that the eigenvalues
of the complex Fokker-Planck equation need to have a negative real part. For this simple
model we can compute both of these criteria, which is illustrated in figure 11.

The left plot contains the boundary terms for the real-part of the observable 〈x2〉. Each
of the curves corresponds to one of the three kernels Ki. They are computed using the
boundary term expectation value of eq. (A.11). We see that both of the kernels lead to
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Figure 10. Distribution of the complex Langevin simulation and the Lefschetz thimble (red line)
for the model of eq. (B.1) with σ = 4i and λ = 2, using different kernels; K0 = 1 (top left),
K1 = exp[−iπ/3] (top right) andK2 = exp[−i2π/3] (bottom). The green points denote the critical
points given by the solution to eq. (B.3). The color in the distribution heat map corresponds to the
number of samples at the corresponding position (a lighter color refers to a higher value).

Figure 11. (left) Boundary term according to the x2 observable for the model of eq. (B.1) with
σ = 4i and λ = 2, evaluated for the three different kernels Ki discussed in the main text. (right) the
five eigenvalues of the Fokker-Planck operator with the largest real part (blue lines) plotted against
the kernel parameter θ. The position of the two kernels that optimize LD are indicated by red lines.

very small values of the boundary terms for this observable, while the complex Langevin
process without kernel exhibits a clear boundary term. However at this point we cannot
yet say which of the two kernels produces the correct solution, if any.

In order to see which of them is correct, we need to look at the right plot in figure 11
where the five eigenvalues of the Fokker-Planck operator are plotted, which have the largest
real-part (blue lines). They are plotted against different kernel parameters θ and the red
lines indicate the position of the two kernels that optimize LD. The eigenvalue calculation
is carried out using a restarted Arnoldi method solver, which internally uses a Krylov-Schur
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Figure 12. Distribution of the complex Langevin simulation and the Lefschetz thimbles (red line)
for the model of eq. (B.1) with σ = −1 + 4i and λ = 2, using different kernels; K0 = 1 (top left),
K3 = e−i 3π

4 (top right) and K4 = ei
π
2 (bottom). The green points are the critical points given by

the solution to eq. (B.3).

method. We see that there is a region of θ where the eigenvalues are all satisfying Re(λ) ≤ 0,
which includes the kernel θ1 = −π

3 . It is exactly this kernel, which, when incorporated into
the complex Langevin evolution gives the right solution for the model. For smaller θs, the
eigenvalues will eventually cross the zero. This is the region where one finds the second
kernel θ2 = −2π

3 . We can therefore attribute the failure to restore correct convergence with
the second kernel to a violation of the correctness criterion pertaining to the spectrum of
the complex Fokker-Planck equation.

The interesting point here is that the boundary terms do not seem to distinguish
between the two kernels as both lead to quickly diminishing distributions.

B.2 Limitation of constant kernels and boundary terms

Let us now go to the set of parameters σ = −1+4i and λ = 2, for which there does not exist
a constant kernel, which restores correct convergence. It is however possible to construct a
field-dependent kernel that solves the problem [63].

We can understand this behavior, as the constant kernel that is optimal in the sense
of removing boundary terms, does not achieve correct convergence of the complex Fokker-
Planck equation to the correct e−S .

This can be seen again by plotting the CL distribution for some of the local minima
of the LD loss function. For this parameter space there are more than two, but we have
picked out two of the solutions which have the interesting property that they both have no
boundary terms, and still do not converge to the true solution. The kernels that are picked
have the parameters θ3 = −3π

4 and θ4 = π
2
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Figure 13. (left) Boundary term according to the x2 observable for the model of eq. (B.1) with
σ = −1+4i and λ = 2, evaluated for the three different kernels Ki discussed in the main text. (right)
the five eigenvalues of the Fokker-Planck operator with the largest real part (blue lines) plotted
against the kernel parameter θ. The position of the two kernels that optimize LD are indicated by
red lines.

The CL distribution together with the thimble is plotted in figure 12 for the three
different kernels K0 = 1 (top left), K3 = exp(iθ3) (top right) and K4 = exp(iθ4) (bottom).
We see that the thimbles show three distinct structures, connecting at infinity. To obtain
the thimbles we evolve the gradient flow equation starting from a small offset from the
critical points (which all are saddle points) and then combine the six part of the thimbles.
The CL distribution without a kernel (top left plot in figure 12) again favors sampling
parallel to the real-axis, while the two other kernels sample completely different parts of
the thimbles. The distribution for K3 is located along the thimble crossing the origin. The
other kernel (K4), follows the other two thimbles crossing the critical points away from the
origin. We can explain this behavior with the angle of the noise coefficient. For K3 we have
an angle of −3π

8 against the real axis and for K4 we have an angle of π4 against the real axis.
In figure 13 (left) the boundary terms for this set of model parameters is calculated for

the observable Re 〈x2〉 and plotted for increasing square box cutoff. We see that without
a kernel, there are boundary terms present, as the blue datapoints do not go to zero for
large cutoff. This can also been seen directly from the distribution in figure 12 which
exhibits a large spread and hence the falloff of the distribution is not fast enough. For the
two kernels, K3 and K4, that correspond to a local minimum in LD, the system does not
show any boundary terms. This is an important point as even though we have avoided
boundary terms, the CL dynamics under the kernels K3 and K4 still does not converge
to the correct solution. In turn it appears that it is in general not enough to remove the
boundary terms to achieve correct convergence. In fact one also needs to be sure that the
complex Fokker-Planck equation converges to the desired equilibrium distribution.

In figure 13 (right) we show the five eigenvalues of the Fokker-Planck equation with
the largest real-part plotted against the parameter θ which determines the kernel K = eiθ.
For the parameters chosen here, we find that both kernels lie outside of the admissible
region,4 where <λ ≤ 0. Interestingly at θ = 0 the eigenvalues actually all lie in the lower

4An interesting observation was made in [63], that combining kernels, which sample different parts of the
thimble into a field-dependent kernel seems to work well. The motivation was to find a kernel that would
reduce the drift term to −x when either the x2 or the x4 term in the action dominates. A similar argument
for constructing a field-dependent kernel can now be made via the minima of the LD loss function, which
favor sampling different parts of the thimbles.
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half complex plane but there the boundary criterion is not fulfilled. But as one increases
the imaginary part of σ, e.g. at σ = −1 + 5i, one finds that the eigenvalues for the identity
kernel K = 1 already take on positive real-parts.

Including the calculation of eigenvalues in the cost functional would be possible for
simple models such as the one of eq. (B.1), but for larger, more realistic systems the
dimension of the Fokker-Planck operator scales as Nd, where N is the number of points
along in each dimensions d. Even for the anharmonic oscillator on the SK contour, the
calculation of the Fokker-Planck eigenvalues is too costly in practice. We therefore need
a different way of distinguishing which kernel leads to correct convergence. As discussed
in detail in the main text of this manuscript we thus propose to collect as much prior
information about the system as possible in the cost functional Lprior, based on which the
success of the optimal kernel according to LD is judged.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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