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Abstract

The motivation for this thesis is to grasp general theory and principles for mod-
eling time series, for the application to financial data. By going through the
theory that makes up this field and bringing that perception to the implemen-
tation of modeling. To then evaluate the applicated models in their sense, and
further draw conclusions from the data. The basis for this thesis will be the
application of the ARMA model and the GARCH model to a transformation
of the stock price for each day. The data is gathered from the closing price of
Orkla AS, a company listed on the Oslo Stock Exchange (Oslo Bgrs).

In the first example, we first determine the order of the ARMA model by looking
at significant sample partial autocorrelations and sample autocorrelations. Af-
ter the order is determined we evaluate the ¢; and 6; with maximum likelihood
estimation. Furthermore evaluating the ARMA model with residual plots and
forecasting it. The plot of predicted values for the ARMA model varies largely
in amplitude compared to actual returns.

We then apply the GARCH model that can measure volatility. The evaluation
of the GARCH and ARMA parameters is also done by maximum likelihood esti-
mation. As the predicted values of the GARCH model behave more similarly to
the returns than what the ARMA model does, and the diagnostics are accepted
we can use the forecasted values to determine a good investment strategy for
this financial asset.
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1 Introduction

This thesis is inspired by the book "Introduction to Time Series and Forecasting’
by Peter J. Brockwell and Richard A. Davis.

Any process that is occurring over a period of time can be modeled as a time
series. The objective of time series is to generate an understanding of the
underlying system of time-varying data. Time series is generally used in fields
such as engineering, finance, and economics. We will specifically look at the
log-return of the Orkla AS stock in this thesis. Further evaluating time series
models with the diagnostics checkers available. Accompanying the theory with
the manually calculated models and then forecasting these models. We can
draw conclusions and make strategies for the financial asset we are evaluating
over the course of a year.

Through the first two chapters, we will cover the basic theory of statistics which
is fundamental to understanding the following topics. Thoroughly explaining
random variables, stochastic processes, basic statistical notation, and basics of
probability distributions. Furthermore covering the basics of time series before
actually applying the theory to the models.

In the third chapter, we cover the ARMA model. With the fundamentals of
time series describing the structure and traits of the ARMA model. The first
example of time series modeling is the ARMA model. We then use the residuals
as the main checker in various ways such as the autocorrelation function, and
partial autocorrelation function. These are very important for evaluating the
order of model and for evaluating the fit of the model.

In the fourth chapter, we discuss the use of GARCH models and the advantages
of this model when handling financial data, and the reason for it being a very
popular model for financial data. While evaluating the volatility and forecasting
in contrast to the ARMA model.



2 Theory
2.1 Random Variables

This section will cover the basic principles of statistics used for time series anal-
ysis, such as the specifications of random variables and probability distributions.

2.1.1 Discrete Probability Distributions

The probability mass function of a random variable X, denoted as f(x), has
these attributes

L f(z) =0,
2. Y fla)=1,
3. P(X =z)= f(z)

This in turn helps define the cumulative distribution function F' of a random
variable X can be defined as

F(z) = P[X <z, Ve eR

For situations when the possible values of X are not continuous, as such {zg, x1, ...},
the pmf denoted as F' can usually be written as

F(x) =) f(1)

t<x

2.1.2 Continuous Probability Distributions

As for a continuous probability distribution the density function f(z) has similar
conditions as the discrete distributions.

1. f(x) >0, VreR
2. /_00 flx)=1,

3. P(a<X<b)/bf(:c)dx

Thus, the cumulative distribution function, F(x), of a continuous random vari-
able X is



F(x):P(XSm):/_x f)dt, vxeR

2.1.3 Expectation Value

When analyzing a probability distribution such as above one important thing
to compute is the expectation value. The expectation can be viewed as the
“center” value of the distribution.

Y. xf(x), for discrete distributions
ffooo xzf(x), for continuous distributions

MZE(X):{

This p can be understood as the limit of the sample mean as n — oo. The
sample mean and other sample values we will use a hat over as the notation, as
will later will be shown.

2.1.4 Variance and Covariance

We have seen that when analyzing probability distributions the expectation is
an important value. Another quantity to look at is the variance.

o® = Var (X) = B[(X — )’ = Y (& — )? f (@)

x

The variance is a measure of the deviation from the expectation as viewed in
this term, (x — p)2. Another property of the variance, which is a simplification
to determine the variance is such

The relational behavior between two random variables, X and Y, can be mea-
sured as a number between 0 and 1, called covariance. From here on a random
variable will be abbreviated to “r.v.”. For r.v.s X and Y with joint distribution
f(x,y), the definition of the covariance

oxy =Cov(X,Y) = E[(X = ux)(Y = )] = D> (¢ — ) (y — p1y)) £(,y)
2.1.5 Correlation

Correlation is a measure of the linear relationship with the value of correlation
varying in values between —1 to 1. A value of zero means no linear relationship.



Whilst values of 1 and —1 means full linear relationship and full negative linear
relationship repsectfully. Correlation is denoted as such.

Cov(X,Y)

px,y =Corr(X,Y) =
Ox0y

if oxoy >0 (1)

2.2 Concepts

In this chapter we will go through some of the important concepts that use the
fundamentals of statistical analysis to provide an understanding of how random
variables behave by looking at their traits and their relationship to one another.
Furthermore how we use these calculations to predict the future values and
critically conclude the outcome.

2.2.1 Basic Notation

A stochastic process is a set of random variables indexed, in our case by time.
The random variables X; is the value of the stochastic process at time t, it
represents the random variables of an observation z;. As for time series, you
have continuous-time time series and discrete-time time series. We will mainly
focus on discrete-time time series which is a discrete-time stochastic process.

{z;}, are the realized values

{w} = {21, 22, 23, 24,... }

This is a general representation of observation data used to make time series
models. Whereas {X;} is referred to the whole process of the random variables
{X1, Xa,...}. Without curly brackets, X;, this means the value of the random
variable at time t.

In a time series model the means and covariances of the set of r.v.s, {X,}, are
among the components we try to estimate. For any t.s.m. {X;} we have the
mean function with E(X?) < oo

px(t) = E(Xt)
and the covariance function
x(t,h) = Cov(Xy, Xp) = E[(X¢ — pux (8))(Xn — px (h)]

No as we now from [1I| that the correlation function must be as follows

vx (h)
x(0)

PX (ta h) =

=2

S



2.2.2 Weakly Stationary Models

A weakly stationary process has

px(t) = px not dependent of t
vx(t,t +h) =vx(0,h) not dependent of t for each h (2)
E(X?) < o0

The first equation means that the mean is independent of time. Furthermore
that the auto-covariance is independent of time, and finite variance of the pro-
cess.

For a time series { X;} to be strictly stationary (X1, ..., X;,) and (X14p, ..., Xntn)
has to have the same joint distributions V A and n > 0, where h,n € Z. There
are different types of stationarities in processes other than weakly and strict,
see [2]. When referring to a stationary time series, stationary will mean weakly
stationary.

In time series the covariances between the random variables at different times are
the ones we pay attention to. Hence we look at Cov(Xy, Xiyp), which actually
just refers to the difference h, when the process is stationary. The covariance in
a time series is measured for each variable over different lags, and the function
that encapsulates the covariances of all the r.v.s is called the autocovariance
function and has the symbol «. I will refer to this function as ACVF.

x (h) == vx(0,h) = vx (t,t + h)
s.t.
vx (h) = Cov(X¢, Xi1n)

This “h” is what we call lag and refers to the index-shift or time-shift between
the variables. E.g. The variable X; has its one-lag difference variable X;,.

Another function used is the autocorrelation function of {X;} at lag h, its
abbreviation ACF will be used.

= COT'(Xt, Xt-i—h)

In practice a time series model with data used from a real world would have
properties that depend on time. These properties are called trend and season-
ality. A stationary time series model doesn’t have properties that depend on
time. Thus, a stationary t.s.m. doesn’t have trend or seasonality. Usually when
we have a t.s.m. we can remove the trend and seasonality, then what we are
left with are the stationary residuals.



2.2.3 Sample Autocovariance function

In the pursuit of finding the best time series model in a practical setting we are
not handed the solution of the most accurate fitted model. Usually, we start
out with a set of observed data. Among other things, we use the sample ACF
as a pointer for which model is of the best fit. The sample covariance is

1 n—|h|
i(h) = > (@epn — D)@ —F), h<|n|

Furthermore the sample autocorrelation function is

2.2.4 White Noise

Now that we have discussed fundamentals of time series the most basic t.s.m.
is the one called white noise. The r.v.s of a white noise process are independent
of each other with zero mean and constant variance. This is the notation we
use for white noise

{X,;} ~WN(0,0%)

Since white noise is not dependent on time, it is stationary as in [2] with ACF

o2, ifh=0
By =17
7x(h) {07 ifh 0

White noise is one of many types of stationary processes.

2.2.5 Components of a Time Series

In a time series model, there are usually time-dependent components of real
data. Trend is an occurrence over the long term, theoretically, it can be rep-
resented by any function (linear, quadratic, exponential). Seasonality is the
changes over time that occur at specific frequencies. These cycles have frequen-
cies that can be evaluated. In real terms, they are hours, days, weeks, years,
etc.

The residuals are the errors or deviations that exist between the actual values
of a time series and the predicted values of a model. As for any real-world
situation, the imperfectness is shown in the differences between the model to
the data. They represent the portion of the variation in the data that is not
accounted for by the model. Residuals can be positive or negative, depending



on whether the actual values are higher or lower than the predicted values. The
residuals are very useful as they can be used to measure the accuracy of the
model. Hence, we use residuals to assess the goodness of fit of the model and to
identify any patterns or trends in the data that are not captured by the model.

The way we assess the goodness of a model is by looking at the residuals plotted
over time. This plot should be concentrated around a mean and have a constant
variation around this mean. This is the assumption of constant mean and
variance.

When representing the seasonal component and trend component of a t.s.m. we
can separate them from each other as such

Xi=my+ 5+ Y,

where m; is the trend, s; is the seasonal, and Y; is the random noise which is
stationary as in [2| It is called the classical decomposition model.

The objective is to estimate m; and s;, such that when extracting them such
that the residual or noise component, Y;, is stationary.

2.2.6 Differencing

We define a operator V as the 1-lag difference
VX, =X, — X1 =(1-B)X,
B is the backward shift operator,
BXy =X
It then follows that,
BI(X;) = X
VIX,)=V(V'7YX,)), 7>1  with V(X,) =X,

Differencing is described here and is of importance to the concept of forecasting.
It is used for the predicted values [3.6] of models.



3 Autoregressive Moving Average

The autoregressive moving average is a time series model composed of two other
models, the moving average and the autoregressive model. At this point, we will
review these models further and apply them to a data sample. This chapter is
heavily influenced by the book [2].

3.1 Autoregressive model

The autoregressive (AR) model assumes that any current value is a function of
previous values, with an added stochastic term, usually white noise W N (0, 02).
The stochastic term is also called the error term, due to its trait of fluctuations.
Also referred to as the stationary term. The first-order autoregressive model
expresses the current value as a linear function of the previous value with the
stationary term.

Xt = ¢Xi 1+ 2
where |¢| < 1, {Z;} is a white noise process WN(0,0?) and Z; is uncorrelated
with the random variables of X for every previous value of Z;.

The general autoregressive model is denoted as AR(p), with p being the number
of lags that the model is using to make the linear function for forward values.
The generalized model for order p, looks like.

Xe=0+1 Xec1 + 02 Xe o4+ ..+ 0p X p + 74

3.2 Moving Average

As opposed to the AR-model the moving average (MA) model does not look at
the past value, instead, it looks at the error term of the previous value. It is a
linear function of past error terms. An MA(g) model is generalized as such

X =Zi+ 021+ ..+ 0,7,
Z; is again a WN(0,02) and 6; are constants.

3.3 ARMA model

The autoregressive moving average (ARMA) model brings both the AR and
MA model into one model. Denoted ARMA(p, q), with p autoregressive terms
and ¢ moving average terms. An ARMA model has the general equation

p q
Xi =2+ Z diXi—i + Zﬁjzt—j

i=1 j=1



Where all the parameters ¢; and 0; have no common factors. The MA and AR
models usually need a large number of terms to accurately depict a set of data
as a time series. This is one of the benefits of the ARMA model as it produces
a model with far fewer terms, this is illustrated in chapter ARMA(p, q)
process has the characteristics of being causal and invertible.

3.4 Partial Autocorrelation function

When determining an ARMA models fit to the data, we use the sample ACF
to see the correlations at different lags for the MA(q) part of the ARMA(p, q).
For the AR(p) part we use the partial autocorrelation function, «(h). We will
refer to it as PACF.

a(0)=1

ah) =¢nn  h2>1

The PACF at lag h is the last component of

én =T5"
Here T, the autocovariance-matrix T'y, = [y(i—j)]7,;_, and y, = [y(1),7%(2), ..., 7(h)]

The difference between the ACF and PACF is that the PACF measures the
correlation between two observations after removing the effects of all the other
observations between them, whereas the ACF measures the correlation of the
variables and all of their lagged values. The PACF is used to determine the
order of the autoregressive terms in the ARMA model. While ACF is used
for the order of moving average terms. This will be visualized further in the
example of the ARMA model.

3.5 Estimation and Forecasting

As previously seen, a lot of theory goes into just understanding how time series
operate. Now we have come to the point of how we use the theory to acquire
the attributes and be equipped to utilize them. In order to determine the best
ARMA (p,q)-model of a stationary time series, we must look at the decision
of p and q, the estimation of the mean, the white noise variance o2, and the
coefficients of ¢; and §; where i ranges from 1 to p and j from 1 to q.

3.6 Predictors

To predict a future variable of a time series we introduce a linear predictor
operator P,. Its purpose is to forecast the value X, based on observations
up to time n, with minimum squared error and its behavior is such that



Pan+h :a0+a1Xn+"'+anXl

When applying the predictor to predict a variable X, the following properties
apply

1P Xpsn =p+ Zai(Xn+1—i —u), an = (ay,..,an)"
i=1
2'E(Xn+h - Pan+h)2 = ’7(0) - a;w 'Yn(h) = (’V(h)7 “~7’7(h +n-— 1))T
3.E(Xntn — P Xoyn) =0
AE[(Xpsn — PuXnin)X;] =0, j=1,...n

The predictor is crucial when understanding the theory behind forecasting. For
proofs of these properties see [2], Section 2.5.

3.7 Maximum Likelihood Estimation

We define the likelihood of X, if X, is the vector (X1, ..., X,,)T with E(X;) =0
and where X, is multivariate normally distributed. The covariance matrix as
such I',, = B(X,X]T)

1 1 1
L(T,) = —=XTr-lx,

This is the generalized likelihood function for a time series model. When ap-
plying this likelihood function to an ARMA process we can express the I',;1 by
only the p + ¢ parameters.

Now to determine the coefficients ¢; and 6; we first assume {Z;} ~ IID(0, 0?).
Then by the innovations algorithm ([2], Section 2.5.4) we have that the one-step
predictor of the time series {X,} is

% E;;ll 0i;(Xe—j — Xt—j)7 1 <t < max(p,q),
S X+ 0 05(Xemy — Xiy), > max(p,q),

Then by E(X, 41 — Xni1)? = 0%r, we reach the desired likelihood function of
the parameters

1 1 o (X; — X;)?
L(¢,0,0%) = exp ,ﬁzw
\/(202)n Hj:l Tj—1 = i1

10



It is called the Gaussian Likelihood Function of an ARMA model. In particular
it can be shown that r1,rg,...,7, can be expressed in terms of ¢1,...,¢, and
01, ...,84. A more detailed review can be seen in [2], Section 5.2.

To simplify calculations we next take the logarithm:

1(¢,0,0%) =1n L(¢,0,0%) = —g Ina-— % In | (27)? H ri—1| — L S(,6)

: 202
Jj=1
with
2 oA - (X - X)?
S(d)7 0) — Z ( J ])
= it
then partially differentiating by o2,
ol(¢,0,5%) n 1 oA
S A S T o
90> 202 T a7 (@9

202 o

I (n + 125((5,90

1 ~ A
2—7
a _nS(¢79)

This ¢° is the MLE estimator and then will be referred to as such 6. With )
and 0 being the values that minimize the simplified

1 1 n
I($,0,0%) =In <n5(¢, 9)) +- ;m i

3.8 Estimating and Forecasting ARMA

Let’s look at an example of the ARMA model. When modeling using time
series it is natural not to compute the coefficients and all the sample values
for every time index. This would require a lot of time to calculate without a
computer program. As it happens we have tools that can make the calculations
for us. The only thing we have to do is supply the values we want to model,
then evaluate the model. There are many computer programs that are capable
of modeling time series, we will use R-Studio which runs on the programming

11



language R. To visualize the process of modeling and forecasting we will use a
set of functions from different packages in R that calculates and computes the
models with the use of all theory we have explained.

We will make a transformation of the data to simulate the return on an invest-
ment. The transformation is done as such:

by

X; =1 3
‘ nPtfl ®)

Where P; is the price of a stock at day t. This tranformation is also called
log-return, we will just call it return.

Closing Price of Orkla AS in NOK

85-

80-

Price in NOK

w

Days
Figure 1: Closing price of Orkla AS throughout period .

The chosen stock is Orkla AS which is a grocery retail company mostly directed
to the Norwegian market with smaller shares in other markets around Norway.

12



Transformed Closing Price
0.03-

0.00-

-0.03-

Relative Return

-0.06-

Days

Figure 2: Logarithmic returns of Orkla AS of the period .

The data are collected from Yahoo Finance between the dates 722.02.2022 —
22.02.2023”. The raw data can be viewed in figure

13



First, to determine the order of p and ¢ we look at the ACF and PACF of the
ARMA respectively.

Partial Autocorrelation

0.8-

0.4-

PACF

L Lo Ll

Lag
Figure 3: PACF of the transformed data of Orkla AS.

In the PACF of figure [3| we see that the PACF has a significant correlation at
lag 5 and lag 20. Since the absolute value of the correlation is larger at lag 5.
This would be a good choice for order p.

In {4} we observe that the ACF has similar, but not identical values. The choice
of g would therefore be 5.

To try to understand the reason for a 5-day correlation. The data collected
is from a stock that is listed on Oslo Stock Exchange (Oslo Bgrs). The stock
exchange is only open Monday through Friday, which suggests some form of re-
lationship between the closing price on a weekly basis (since a week on the stock
exchange is five days). Furthermore, we see that the second-largest correlation
at a 20-day difference occurs on what we might suggest being an approximately
monthly basis. As a week on the stock exchange is 5 days then a month is ap-

14



Autocorrelation

0.8-

0.4-

ACF

L [T R

Lag

Figure 4: ACF of the transformed data of Orkla AS.

proximately 20 days. With the knowledge of this, we choose our ARMA model
to account for these correlations.

There are other ways to determine the best order of an ARMA model called the
AIC, FPE, and BCE criterions. These will not be discussed, but are diagnostic
checks that are mentioned in [2].

15



The applied ARMA model has the fitted values as such

Modeled Returns of Orkla AS

0.005 -

0.000 -

-0.005 -

Return in NOK

-0.010-

-0.015-

0 50 100 150 200 250
Days

Figure 5: ARMA model of returns

The fitted values of the ARMA model are the predicted values for each of the
values. By inspection, the similarities are substantial to the values before they
have been run through the ARMA model. To visually inspect we plot them
over each other.

Xy =—0376X;_; —0.414X;_5 —0.312X;_3 — 0.831X;_4 — 0.043X;_5
+0.354Z;_1 +0.49Z;_5 4+ 0.347Z,_3 + 0.95Z; _4 + 0.212Z,_5

These are the values of ¢; and 6; that were calculated by maximum likelihood
by the function in R.

16



Modeled Returns of Orkla AS
0.03-

-0.03-

Return in NOK

-0.06 -

Days

Figure 6: The predicted returns of the ARMA model over the returns.

In perspective, we can now see the predicted returns are closer to 0 than the
returns of the stock. One diagnostic check is looking at the predicted values and
the observed values should be similar. As we saw they follow a very common
structure however the predicted values are one order of magnitude smaller. This
is a sign of not generally being the best fit.

17



0.025 -

° L4 °
. . o o & . e ° . ®
... Y ) L] L]
. oo .
e % o L/ ° ° o °° o’ *
L] o o
° O * o0 * es.® LS N ® =
oo ® ° (1] ° 0e*2 ° L4
. o, o "o ST A . e o oo
0.000 ° ° ° ° bl A X ) O L G701 X
) ° d ..... d". L) D ® .-.\. ... TN
° o O .. » % % ® . o ° % %% % °
. ° e ® o, o° ¥ s °
. ° . o' .
. . O R . oo
o )
o« ° o N O
° . . - A
S o
& -0.025-
= .
.
.
.
.
-0.050 -
.
-0.075-
.
(I) 5‘0 160 1éO 2(‘)0 ZéO

1:length(residl)

Figure 7: The residuals plotted over the days.

From we need to see that the constant variance assumption is upheld. By
examining figure [7] the residuals are concentrated around the mean p = 0. This
is testing for stationarity and for randomness. Assessing the data we see that
the residuals are to some degree at a constant distance from the mean. Although
there should not be any trend in this residual plot there may be a pattern of
the variance decreasing.

18



0.05-

-0.05-

-0.10-

Lag

Figure 8: ACF of residuals with the upper and lower bounds of ¢ - 1.96/y/n

The diagnostics of residuals involves also looking at the PACF and ACF of the
residuals. For large number of observations n, the sample autocorrelations of
an iid process {X;} with finite variance are approximately normally distributed
N(0,1/n) (2], p-146). To verify this we have to count how many of the residuals
fall outside the lower and upper bounds of the ACF or PACF. In figure [3] only
one falls outside the bounds which we determine to be not enough to reject the
hypothesis of normal distribution.

19



0.05-

PACF

-0.05-

-0.10-

Lag

Figure 9: PACF of residuals with the upper and lower bounds of ¢ - 1.96/y/n

The main motives of time series analysis are to model a process as accurately
as possible to describe the behavior of such processes. The other main motive
is forecasting which will be covered in the last part of this chapter.

20



0.02-

0.00-

Return

-0.02-

Days

Figure 10: Forecasted ARMA model 30 days forward. The red area is the 80%
prediction interval, while blue area is 95% prediction interval.

The forecast is using the value of ¢; and 6; and the same equations to determine
predicted values to calculate forecasted values with uncertainty in the form of
prediction intervals. In figure [L0| we see that for n — oo E(X;) = 0, which also
is a component of an ARMA model.

In the mind of an asset manager, the way to earn the most money is to sell the
stock when the return is at its highest. In our model, this is at 8 days after
the last day of the observed price. As investment strategy varies vastly on what
outcome you would like to accomplish with an investment. We will discuss this
in greater detail in the discussion.

We will see that there is a time series model that is better to predict the fluctu-
ations, since up til now we have assumed stationarity in the process of returns.
We will try to change our assumption to view a time series in a different manner.
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4 GARCH Models

The following equations and explanations are interpreted as explained by [2]
and [5].

Now the representation of financial data is not best modeled with an ARMA
model mostly because the returns on a stock price aren’t entirely a stationary
process. The way we improve our modeling to account for this serial dependence
is that we incorporate a second term in the stochastic term. The conditional
variance, which is the main part of this model, as shown in figure [7] is denoted
h: and was postulated by Engle [3]

Xt = v heer where {e;} ~IID N(0,1) (4)

The ARCH model that Engle [3] presented as in [2] was

p
h: = oo + Z OtiXthi

i=1

A generalization of the ARCH model was introduced by Bollerslev [1] called
GARCH, where the conditional variance h; is

14 q
ht = Qo + Z Oéith—i + Z ﬂjht_j, (5)

i=1 j=1

with o > 0 and a;, 83 > 0 and j is an integer larger than 1.

A very common expression in economics is volatility. Volatility describes the
change in the variance compared to the mean. A period with high volatility
means that the deviation from the mean is large in amplitude. Volatility in the
GARCH model is actually just h;. From equatiorfd we see that h; is related to
X2. For a more economic explanation of volatility see [7].

We call this model the GARCH(p, ¢)-model which stands for general autore-
gressive conditional heteroscedasticity. Heteroscedasticity means that the finite
variance of the process {X;} is not constant and the term can be interpreted as
volatility. Conditional means that heteroscedasticity is not independent of time,
hence where at a different time t the volatility is dependent on the volatility of
the previous observed values. In this way, the GARCH model takes into account
the previous change in errors.

The reason why we use the GARCH model as opposed to the ARCH model
is due to a trait in the ARCH model that it may tend to burst as opposed to
modeling a process with persistent fluctuations (volatility), where the GARCH
model will model the fluctuations greater for longer than the ARCH model
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would. The extra term that differentiates the GARCH from the ARCH does
contribute when modeling certain types of data.

When referring to the GARCH model we only refer to the X; term that is now
an error term as in equation We will apply this error term in an ARMA
model.

By choosing the GARCH(1, 1) order model we obtain the following model using
the R package "rugarch”, [6].

As previously mentioned there is a criterion used to evaluate orders of the types
of time series models. The one that is vastly used for GARCH is called AIC
(Akaike Information Criterion). It has to be calculated after the estimation of
parameters for a model with order p and gq. Therefore I have manually computed
the AIC for GARCH models with the use of R Studio. The model with the lowest
AIC value is determined to be the best fit for the observed values that are at
hand. For the mathematical equation of the AIC see [2]| p.149.

After computing the AIC value for GARCH models we found the lowest AIC
value to be obtained by the GARCH model with the order (1,1) and ARMA
order (5,5). As we can see the ARMA order is the same as in the previous

example [3.8]
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Figure 11: The predicted values of GARCH model.

The GARCH model does give more fluctuated data as we know from equation
We can also see that the fluctuations are heavy due to the dependence of
the 3;. Thus, fluctuating patterns are followed by fluctuations over many days.
The volatility is apparent. As the fluctuations roam heavily the dependence on
the volatility for each day preserves the volatility even further.
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Figure 12: The predicted values of the GARCH model (red) vs. observed values
of returns.

In figure we see the predicted values of the GARCH model. The predicted
values behave in a similar pattern with lower amplitude than observed returns.
The amplitude of predicted values is following the volatility of the observed
returns. We see also that the extreme values of observed returns are not followed
with as high amplitude in predicted values this is due to the short interval of
days that the extreme values occur.
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Figure 13: Conditional variance (h;) plot of returns in GARCH model.

ACF
ACF

Figure 14: ACF of residuals (left), and ACF of squared residuals (right).

In our case we see in figure in the ACF of residuals that we may have
significant autocorrelation at lag 5. The significance of residuals points to a
dependence between the residuals which in turn might make the extrapolated
white noise sequence not entirely stationary (the extrapolated white noise se-
quence can be seen in figure . Hence the model might indicate that this not
necessarily is the best model, for such a process. This can also indicate that
the model has a systematic failure in capturing this change at lag 5. What
we saw from the previous example with ARMA model is that the stock return
exhibits a correlation on a weekly basis. This might be something that can be
represented as a seasonal component.
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Figure 15: Sample quantiles plotted over theoretical standard normal distribu-
tion quantiles. A perfect normal distribution would see all the points on the
line.

The diagnostics for GARCH model depends on the normality of residuals. We
see here that although there are a few residuals that differ from the quantile-line
the data appear to be approximately normally distributed.
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Residuals

0.025- 5
L] ° o
L]
L] “ b
° it e
° ° °
Y * L, % e % ° o« °
° 5 P ° ° © ¥}
L] [ ] L] L ]
e® o o * °® o o ... ° %o ° °
*ee ® e % 0" PoC ‘e o )
4 . o %, %" . oo * ) 4 o0,
° 4 o’ o o 'O o o ° o ® .: °
0.000 ve -ty . = = ==
o % © ° ° o
L4 ° ° A Poo 0, 4 oo § . ....'. ° S
e® 0% o o L ®
A ° o® ° o I. °
° | . o® - ok
° 5 o L) °
s ¢ o, ° o °
° LY (]
e o
° °
L]
—0.025- ®
°
°
L]
L]
L]
—0.050 -
L]
°
\ \ \ \ \
0 50 100 150 200 250
Days

Figure 16: The residuals plotted over each day in index.
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Figure 17: The extrapolated white noise sequence from the GARCH model.

As we know white noise is a stationary sequence, that would obey the properties
from equation 2] While the residuals shouldn’t exhibit any trend with constant

variance. They appear to be as such.
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Figure 18: Forecasted values of relative return in GARCH model.

The forecasted values have a dependence on volatility but we see that the volatil-
ity is not upheld in the long term. A reason for that is the GARCH model will
eventually 'flatten out’ as the volatility is decreasing. It might be useful to only
forecast in a short-term perspective after collected data. Although it may be
more useful to increase the collection of days for the stock price.
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Figure 19: Forecasted values of GARCH model (red) compared to the ARMA
(blue).

In figure we see that actually the ARMA model will larger amplitudes at
the extreme but they have ”bursty” tendencies. This means that when a fluc-
tuated value is forecasted the ARMA model will "usually” predict a value in
the opposite direction very quickly as is seen for day 4 in figure While the
GARCH model has the capability to withstand the volatility after a day with
high amplitude. On day 6 to 8, we see the volatility is upheld largely in the
GARCH model, where the ARMA ”bursts” back.
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5 Discussion

5.1 Choice of Data

The chosen data set is the stock price of a company called Orkla ASA. We will
use the stock price for each day over a year. Orkla AS is a Norwegian grocery
retail company. Although its biggest consumer is the Norwegian population it
has market shares in neighbouring countries. For our purpose, this is a stock
with very little volatility over time. This means that the trend of this stock
is small since the gradual increase or decrease of the stock price is low in contrast
to other stocks. Yet we still postulate that we can model this as a stationary
process. This is a very important aspect as it affects the credibility of the use
of time series analysis.

The data is downloaded as a CSV file from Yahoo Finance [4]. From each day
in the data set, we get an opening price and a closing price. We only use the
closing price. In similar analyses of the price of a stock the closing price is used,
or an average between the opening and closing price.

The chosen stock may not be volatile enough to see the effects of the GARCH
model in the way volatility is exploited in some investment strategies. This is
discussed further.

5.2 Evaluating the Models

In figure [3] and [4] there was a significant autocorrelation of residuals. This may
be due to a seasonal component that could be differences, thus may be taken
care of and improve the accuracy of the model.

5.3 Usage as Investment Tool

As a trader you try to take advantage of fluctuations, assuming that the returns
of stock prices can be viewed as a stationary process. Modeling the fluctuations
with previous values you can make an investment on a certain day and sell when
your model is predicting an apex then selling. As seen by the figures of modeled
returns (figure @ the returns are very small. Since fluctuations are very
small in percentage terms. The way a trader can make money is by buying
with a large position (amount). In this way, you could make a decent yield with
small fluctuations in stock price. The downside of this investment strategy is
that it is very risky. When investing a large amount, the loss will be much more
disastrous if the price then doesn’t act as predicted.

Another strategy that is more long-term is that we can take a larger amount
of stocks and model them by comparing the fluctuations and at what value of
t where X; can be approximated to zero. This is what’s called risk aversion,
and securing assets for the long-term. Where you would, due to macroeconomic
factors, invest in stocks that would give you the most predictable investment.
Compared to the market the loss is less, than the downfall in the market.
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6 Conclusion

The purpose of modeling with time series is to try and understand the underlying
data. If using time series models can help make investment decisions then it
should be used. The main weakness in time series is that the models may not
represent the data, in the instance of ARMA models that the data are not
stationary. Although the logic behind GARCH models, that a period with high
volatility will be followed by a period with high volatility, does make sense.
There is always a possibility that it doesn’t. We therefore represent the data
with models with confidence intervals, to account for this possibility with an
uncertainty that the next observed value may actually differ from what the
forecasted value actually predicts. This may be one of the limits to time series
analysis since it is purely theoretical. Therefore it may not be the only tool to
evaluate an investment but it, with other economic tools can be very effective
to evaluate an investment.

33



7 Appendix
7.1 Appendix I
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Figure 20: The coefficients of evaluated ARMA model in R.
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7.2 Appendix IT

GARCH Model : sGARCH(1,1)
Mean Model : ARFIMA(S,0,5)
Distribution : norm

Optimal Parameters

Estimate Std. Error t value Pr(>1tl)
mu -0.000446 0.000008 -5.3106e+01 0.00000
arl -0.970801 0.000273 -3.5499e+03 0.00000
ar2 -0.334251 0.000132 -2.5275e+03 0.00000
ar3 -0.328678 0.000100 -3.284%e+03 0.00000
ar4 -0.653168 0.000169 -3.8561e+03 0.00000
ar5 -0.573736 0.001286 -4.4626e+02 ©0.00000
mal 1.055567 0.000242 4.3551e+03 0.00000
ma2 0.517465 0.000138 3.7565e+03 0.00000
ma3 0.550988 0.000162 3.3946e+03 0.00000
ma4 0.873316 0.000196 4.4516e+03 0.00000
maS 0.856237 0.000214 4.0027e+03 0.00000
omega 0.000000 0.000001 2.0021e-01 0.84132
alphal 0.000020 0.000709 2.8882e-02 0.97696
betal 0.998854 0.000153 6.534%e+03 0.00000
Robust Standard Errors:
Estimate Std. Error t value Pr(>1tl)
mu -0.000446 0.000073 -6.1095e+00 0.00000

arl -0.970801 0.000342 -2.8378e+03 0.00000
ar2 -0.334251 0.000218 -1.5356e+03 0.00000
ar3 -0.328678 0.000389 -8.4520e+02 ©0.00000
ar4 -0.653168 0.001478 -4.4192e+02 0.00000
ar5 -0.573736 0.012253 -4.6826e+01 0.00000
mal 1.055567 0.001493 7.0694e+02 ©0.00000

ma2 0.517465 0.000188 2.7556e+03 0.00000

ma3 0.550988 0.000514 1.0720e+03 0.00000

ma4 0.873316 0.000251 3.4727e+03 ©0.00000

ma5 0.856237 0.001462 5.8560e+02 0.00000

omega ©.000000 0.000017 8.9150e-03 0.99289

alphal 0.000020 0.001981 1.0336e-02 0.99175
] 5

betal 998854 0.001677 5.9552e+02 0.00000

LogLikelihood : 777.0266

Information Criteria

Akaike -6.0081
Bayes -5.8131
Shibata -6.0137

Hannan-Quinn -5.9296

Weighted Ljung-Box Test on Standardized Residuals

statistic p-value
Lag[1] 0.08624 0.7690
Lag[2*(p+q)+(p+q)-11[29] 14.40493 0.8447
Lag[4*(p+q)+(p+q)-1][49] 21.53615 0.8248
d.o.f=10
HO : No serial correlation

Weighted Ljung-Box Test on Standardized Squared Residuals
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statistic p-value
Lag[1] 0.07399 0.7856
Lag[2*(p+q)+(p+ad-11[5] ©@.32413 0.9811
Lag[4*(p+q)+(p+ad-11[9] ©.63598 0.9966
d.o.f=2

Weighted ARCH LM Tests

Statistic Shape Scale P-Value
ARCH Lag[3] ©.07153 0.500 2.000 0.7891
ARCH Lag[5] ©.46704 1.440 1.667 0.8933
ARCH Lag[7] 0.55746 2.315 1.543 ©0.9729

Nyblom stability test
Joint Statistic: 49.467
Individual Statistics:
mu 0.03585

arl 0.03539
ar2 0.03519
ar3 0.03537
ar4 0.03421
ar5 0.03820
mal 0.03622
ma2 0.03637
ma3 0.03628
ma4 0.03617
ma5 0.03603
omega 8.11632
alphal 0.06823
betal ©.05104

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 3.08 3.34 3.9
Individual Statistic: 0.35 0.47 0.75

Sign Bias Test

t-value prob sig
Sign Bias 0.7891 0.4308
Negative Sign Bias 0.4153 0.6783
Positive Sign Bias ©.1854 0.8531
Joint Effect 1.4274 0.6991

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)

1 20 31.20 0.03841
2 30 49.31 0.01071
3 40 46.47 0.19165
4 50 69.23 0.03003

Figure 22: The coeflicients of evaluated GARCH model.
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