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experiments or underground neutrino detectors. The mechanism also significantly enhances
sensitivity to models with very large nuclear scattering rates, where the atmosphere and
rock overburden efficiently stop standard non-relativistic dark matter particles before they
could reach the detector. In this article, we demonstrate that cosmic-ray upscattering
essentially closes the window for strongly interacting dark matter in the (sub-)GeV mass
range. Arriving at this conclusion crucially requires a detailed treatment of both nuclear
form factors and inelastic dark matter-nucleus scattering, as well as including the full
momentum-transfer dependence of scattering amplitudes. We illustrate the latter point by
considering three generic situations where such a momentum-dependence is particularly
relevant, namely for interactions dominated by the exchange of light vector or scalar
mediators, respectively, and for dark matter particles of finite size. As a final concrete
example, we apply our analysis to a putative hexaquark state, which has been suggested as
a viable baryonic dark matter candidate. Once again, we find that the updated constraints
derived in this work close a significant part of otherwise unconstrained parameter space.
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1 Introduction

The strategies to search for a dark matter (DM) component in the Universe are nowadays
extremely varied, targeting many possible gravitational and non-gravitational properties
such as the DM mass or standard model (SM) couplings [1]. In astrophysical, cosmological,
and laboratory settings, this broadband approach has yet to conclusively reveal any non-
gravitational signatures. However, via both indirect and direct searches, the very wide
DM model space has been significantly restricted. The focus of this article concerns the
reach of the generic class of experiments aiming to directly detect DM through a possible
DM-nucleon coupling [2], known as direct detection facilities. Currently, world-leading
examples of this setup include e.g. LUX-ZEPLIN (LZ) [3], PandaX-4T [4], and Xenon-1T [5],
which set the strongest limits in the DM mass mχ vs. spin-independent nuclear coupling
σSI parameter space.

The sensitivity of a given direct detection experiment is controlled by a number of
factors. Firstly, the event rate ΓN scales with the number of DM particles that have a
sufficiently large kinetic energy. Specifically, the DM energy must be large enough to induce
a nuclear recoil that can trigger a signal above the detector threshold. Secondly, the rate
also scales linearly with the DM-nucleon cross section dσχN/dTN , at least in the above
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examples, where TN is the nuclear recoil energy. Thirdly, as in any count-based experiment,
this signal rate should be compared to some background event rate to derive a statistically
significant detection threshold. Notably, in direct detection facilities, the background rates
are typically extremely low as necessitated by the small expected signal rates, although
there are some important exceptions, such as a dedicated CRESST surface run [6].

The standard target for these experiments is the DM in the Galactic halo, which
has characteristic velocities of the order vχ ∼ 10−3c and in any case cannot exceed the
Galactic escape velocity vesc ∼ 540 km/s [7, 8]. For a given DM mass mχ, there is hence
unavoidably a maximum DM kinetic energy available to excite nuclear recoil signals of the
order TN ∼ m2

χv
2
esc/mN . For some DM mass mmin

χ this recoil energy must fall below the
detectable threshold, and the experimental sensitivity drops to zero. For experiments such
as Xenon, PandaX and LZ, it is well-known that this cut-off lies around the GeV-scale,
corresponding to a detectable threshold in the keV range. As such, even though these
detectors have impressive reach — currently down to the level of spin-independent cross
sections of σSI ∼ 10−47 cm2 [3–5], and even approaching the neutrino floor [9, 10] with
ongoing searches — there is ample motivation (and hence, in fact, both experimental and
theoretical activity) for methods to probe the sub-GeV mass range [11, 12]. This describes
the first “window” in which DM can hide — it could just be that DM has a small mass out
of the reach of direct detection experiments. There is yet another window at large values of
the cross section σSI, however, which will be a key focus of this article. This arises due to
the fact that if DM interacts too strongly, then it can actually be the case that DM particles
are unable to reach the detectors due to the attenuation of the flux in the atmosphere or
the rock overburden [13–15]. This typically becomes the main prohibitive factor for cross
sections at the level of σSI & 10−28 cm2 [16].

There have been a number of promising experimental proposals to probe these two
open windows. Attempts to extend the sensitivity to DM-nucleus interactions into the
sub-GeV realm include searches for Migdal electrons [17, 18] or bremsstrahlung photons [19],
accompanied by an intense low-threshold direct detection program in the development
of novel detector concepts (for a recent review, see ref. [12]). Cross sections sufficiently
large for DM to scatter inside the Earth before reaching underground detectors, on the
other hand, can be probed by surface runs of conventional direct detection experiments
(like the one performed by the CRESST collaboration [6]), or by targeting the expected
diurnal modulation in the signal in this case [20, 21]. As far as this work is concerned,
however, we will be interested in the role played by the irreducible astrophysical flux of
highly boosted DM that originates from cosmic ray collisions with DM particles in the
Galactic halo (CRDM). This was pointed out only relatively recently [22, 23], and subverts
the issue of a loss in sensitivity by noting that a sub-dominant component of DM with
velocities well above those in the Galactic halo can produce a detectable signal even if it
is very light, i.e. for DM masses (well) below 1 GeV. The sub-dominant nature of the flux
naturally introduces a trade-off with the interaction rates that can be probed, quantitatively
resulting in limits at the level of σSI ∼ 10−31 cm2 [22]. Interestingly, CRDM does not only
probe previously open parameter space at small DM masses but also results in bounds
extending into the relevant regime of the second open window described above. After
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this initial work pointed out the advantages of considering such a boosting mechanism, a
large number of further analyses have addressed various aspects of the production [24–45],
attenuation [46, 47], and detection [48–62] of astrophysically boosted DM. For a recent
comprehensive (re-)analysis of all of these aspects see, e.g. Xia et al. [63], who stressed in
particular that form-factor suppressed attenuation in the overburden seemingly allows us to
exclude cross sections much larger than σSI ∼ 10−28 cm2.

This article builds on this literature in three important ways: firstly, we point out
that when DM acquires such large energies, inelastic scattering in the rock overburden
above detectors such as Xenon-1T will at some point become the dominant attenuation
mechanism. As such, to avoid being over-optimistic in terms of how much parameter space
is excluded, we show how to include this physical effect in a self-consistent manner and
derive the resulting bounds. Secondly, we broaden the applicability of these limits to models
that are more realistic for DM with sub-GeV masses, moving beyond simplified contact
interactions to interactions mediated by vector or scalar mediators, or DM that has some
internal structure. Finally, we argue that with these improvements, and when taking into
account fully complementary constraints from cosmology, there is generically no remaining
open parameter space left unconstrained for nuclear cross sections exceeding 10−30 cm2,
for DM masses in the entire MeV to GeV range. We demonstrate that possible loopholes
to this statement — still allowing an open window at larger cross sections — require a
combination of (i) questioning the principal ability of CRESST to probe DM masses down
to the published limit of mχ = 140MeV [6] and (ii) choosing a rather narrow range of
mediator masses mφ ∼ 30MeV (or finite DM extent rχ ∼ 10 fm). For our numerical analysis
throughout the article, we use the package DarkSUSY [64]. The improved CRDM treatment
reported in this work, including also updated cosmic ray fluxes and a more sophisticated
use of form factors in the attenuation part, will be included in the next public release of
the code.

The rest of the article is organized as follows: we start in section 2 by briefly reviewing
the production of CRDM and the attenuation of the subsequent flux on its way to the
detector, establishing our notation and setting up the basic formalism that our analysis
relies on. In the next two sections, we discuss in more detail how to model nuclear form
factors (section 3) and the impact of inelastic scattering (section 4) on the attenuation of
the flux. In section 5, we consider a number of generic options for the Q2- and s-dependence
of the scattering amplitude that are more realistic than assuming a constant cross section.
We complement this in section 6 with the analysis of a specific example, namely a baryonic
DM candidate that has been argued to evade traditional direct detection bounds despite
its relatively strong interactions with nuclei. We conclude and summarise our results in
section 7.

2 Cosmic-ray upscattering of dark matter

We describe here, in turn, how initially non-relativistic DM particles in the Galactic halo
are up-scattered by cosmic rays (CRs), how the flux of these relativistic CRDM particles is
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attenuated before reaching detectors at Earth, and how to compute the resulting elastic
scattering rate in direct detection experiments.

Production. The basic mechanism that we consider is the elastic scattering of CR nuclei
N , with a flux of dΦN/dTN , on non-relativistic DM particles χ in the Galactic halo. For a
DM mass mχ and density profile ρχ(r), this induces a relativistic CRDM flux incident on
Earth of [22, 46]

dΦχ

dTχ
=
∫
dΩ
4π

∫
l.o.s.
d`

ρχ
mχ

∑
N

∫ ∞
Tmin
N

dTN
dσχN
dTχ

dΦN

dTN
(2.1)

≡ Deff
ρlocal
χ

mχ

∑
N

∫ ∞
Tmin
N

dTN
dσχN
dTχ

dΦLIS
N

dTN
. (2.2)

Here r denotes the Galactic position, and dσχN/dTχ is the differential elastic scattering
cross section for accelerating a DM particle to a kinetic recoil energy Tχ. For DM particles
initially at rest, this requires a minimal CR energy Tmin

N of

Tmin
N =



(
Tχ
2 −mN

) [
1−

√
1 + 2Tχ

mχ

(mN+mχ)2

(2mN−Tχ)2

]
for Tχ < 2mN√

mN
mχ

(mN +mχ) for Tχ = 2mN(
Tχ
2 −mN

) [
1 +

√
1 + 2Tχ

mχ

(mN+mχ)2

(2mN−Tχ)2

]
for Tχ > 2mN

. (2.3)

Furthermore, in the second line of eq. (2.2), we have introduced an effective distance Deff
that allows us to express the CRDM flux in the solar system in terms of the relatively
well measured local interstellar CR flux, dΦN

LIS/dTN , and the local DM density, for which
we adopt ρlocal

χ = 0.3 GeV/cm3 [65] (noting that our final limits are independent of this
choice). The advantage of this parameterisation is that uncertainties deriving from the
integration over the volume relevant for CRDM production,

∫
dΩ
∫
d`, are captured in a

single phenomenological parameter Deff . Indeed, despite the complicated underlying physics,
this parameter is surprisingly well constrained, with uncertainties dominated by the vertical
extent of the confinement zone of Galactic CRs. In what follows, we will use a fiducial value
of Deff = 10 kpc.1 We note that our final limits only depend logarithmically on this quantity,
for large interaction rates, or scale as D−1/2

eff when attenuation in the soil or atmosphere is
inefficient, respectively.

When computing the CRDM flux in eq. (2.2), we take into account the four most
abundant CR species, N = {p,He,C,O}, for which high-quality determinations of the
local interstellar fluxes exist [68]. The fluxes of heavier nuclei are subject to significant
uncertainties for the energies of interest to us, see e.g. the discussion in ref. [69], not least due
to apparent discrepancies between AMS-02 data [70–72] and earlier measurements. We also
note that the CRDM flux contribution from these heavier elements is strongly form-factor
suppressed at large Tχ, see section 3, and hence anyway not relevant for constraining DM
with masses mχ & 0.1GeV.

1When assuming an Einasto profile [66] for the DM density, and a cylindric CR diffusion model tuned
with GalProp [67] to describe the observed flux of light CR nuclei, a more detailed analysis reveals that Deff

varies between ∼ 9 kpc and ∼ 11 kpc for DM recoil energies above 1MeV [63].
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Attenuation. On its way to the detector, the CRDM flux given by eq. (2.2) is attenuated
due to scattering of the CRDM particles with nuclei in the atmosphere and soil (overburden)
above the experimental location. This effect can be well modelled by the energy loss
equation

dT zχ
dz

= −
∑
N

nN

∫ ωmax
χ

0
dωχ

dσχN
dωχ

ωχ , (2.4)

which can be used to relate the average kinetic energy at depth z, T zχ , to an initial energy
Tχ at the top of the atmosphere. Here, the sum runs over the nuclei N in the overburden,
i.e. no longer over the CR species, and ωχ is the energy loss of a DM particle in a single
collision. For elastic scattering, ωχ is equal to the nuclear recoil energy TN . In that case,
the maximal energy loss of a DM particle with initial kinetic energy T zχ is given by

ωmax
χ = Tmax

N = 2mN

s

[(
T zχ

)2
+ 2mχT

z
χ

]
, (2.5)

where
s = (mN +mχ)2 + 2mNT

z
χ (2.6)

is the (squared) CMS energy of the process. For inelastic scattering on the other hand,
which we will discuss in more detail in section 4, the energy loss can in principle be as high
as ωmax

χ = T zχ . For the purpose of this work we will mostly be interested in the Xenon-1T
detector, located at a depth of z = 1.4 km in the Gran Sasso laboratory. In this case the
limestone overburden has a density of 2.71 g/cm3 [73], mostly consisting of an admixture
of CaCO3 and MgCO3, and attenuation in the atmosphere can be neglected; in terms of
weight percentages the dominant elements are O (47.91%), Ca (30.29%), C (11.88%), Mg
(5.58%), Si (1.27%), Al (1.03%) and K (1.03%) [74]. We note that eq. (2.4) only provides
an approximate description of the stopping effect of the overburden, which is nonetheless
sufficiently accurate for our purposes. For a detailed comparison of this approach with
Monte Carlo simulations of individual particle trajectories, see refs. [16, 63, 75–77]

Detection. The elastic scattering rate of relativistic CRDM particles arriving at under-
ground detectors like the Xenon-1T experiment is given by

dΓN
dTN

=
∫ ∞
Tmin
χ

dTχ
dσχN
dTN

dΦχ

dTχ
. (2.7)

Note that the above integral is over the energy of the DM particles before entering the
atmosphere. On the other hand, the elastic scattering cross section dσχN/dTN must
still be evaluated at the actual DM energy, T zχ , at the detector location, which requires
numerically solving eq. (2.4) for T zχ(Tχ). The lower bound on the integral then represents
the minimal initial CRDM energy that is needed to induce a nuclear recoil of energy
TN at depth z, i.e. Tmin

χ = Tχ(T z,min
χ ). This can be obtained by inverting the solution of

eq. (2.4), where T z,min
χ is given by the right-hand side of eq. (2.3) under the replacement

(Tχ,mχ,mN ) → (TN ,mN ,mχ). In general, the elastic nuclear scattering cross section
dσχN/dTN is a function of both s and the (spatial) momentum transfer,

Q2 = 2mNTN . (2.8)
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If the dependence on s can be neglected or the (dominant) dependence on Q2 factorizes —
as in the case of standard form factors — then the rate in the detector given in eq. (2.7)
will have an identical Q2-dependence as compared to the corresponding rate expected
from the standard population of non-relativistic halo DM. As pointed out in ref. [22],
this salient feature makes it possible to directly re-interpret published limits on the latter
(conventionally expressed as limits on the scattering cross section with protons) into limits
on the former. Otherwise, for an accurate determination of the expected count rate in a
given analysis window, one would in principle have to also model the detector response
in the evaluation of eq. (2.7) and then infer limits based on the full detector likelihood
(e.g. with a tool like DDCalc [78, 79]).

3 Nuclear form factors

The target nuclei used in direct detection experiments are typically larger than the de
Broglie wavelength of DM with standard Galactic velocities, at least for heavy nuclei,
implying that the incoming DM particles only ‘see’ part of the nucleus. Since the elastic
scattering process is fundamentally induced by a coupling between DM and the constituents
of these nuclei, this means that it should be suppressed by a nuclear form factor, G2(Q2),
compared to the naive expectation that the nuclear cross section is merely a coherent sum
of the cross sections of all the constituents (for recent pedagogic accounts of conventional
direct DM searches, see e.g. refs. [80, 81]).2 For CRDM, this effect is amplified, given the
smaller de Broglie wavelengths associated to the faster moving upscattered DM particles.

These nuclear form factors are essentially Fourier transforms of the number density of
nucleons inside the nucleus, usually approximated by the experimentally easier accessible
charge density. A common parameterization is the one suggested by Helm [82], which is
based on modelling the nucleus as a hard sphere with a Gaussian smearing (in configuration
space). For heavy nuclei we follow instead a slightly more accurate approach and implement
model-independent form factors [83], based on elastic electron scattering data. Concretely,
we implement their Fourier-Bessel (FB) expansion approach, with parameters taken from
ref. [84]. For nuclei where the FB parameters are not available, notably Mg and K, we use
model-independent Sum of Gaussians (SOG) form factors instead.

For Q2 � (0.1 GeV)2 one starts to resolve the inner structure of the nucleons themselves,
which we discuss in more detail in section 4. Let us however briefly mention that in the
case of He, this effect is already largely captured by the above description in that we take
the SOG form factors from ref. [84] (thus improving on the simple dipole prescription used,
e.g., in ref. [22]). For the proton, we adopt the usual dipole nucleon form factor, noting
that the nuclear form factor would formally equal unity,

G2
p(Q2) =

(
1 +Q2/Λ2

p

)−4
, (3.1)

2We focus here on spin-independent elastic scattering. For spin-dependent scattering, the sum would not
be coherent and hence generally result in much smaller cross sections. This prevents standard DM from
being stopped in the overburden before reaching the experimental location — unless the scattering cross
section per nucleon is so large that it becomes incompatible with other astrophysical constraints. A detailed
treatment of attenuation in the Earth’s crust is, hence, less relevant in this case.
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Figure 1. Left panel. Expected CRDM fluxes for DM masses mχ = 0.001, 0.01, 0.1, 1, 10GeV, from
top to bottom, assuming a constant spin-independent scattering cross section of σp,nSI = 10−30 cm2

(solid lines). The effect of inelastic scattering is neglected. Dashed lines show the CRDM fluxes
that would result when not taking into account the effect of form factors. Right panel. Black lines
indicate the individual contributions to the CRDM flux from scattering on CR p, He, C and O, for
the example of mχ = 100MeV. Other lines (highlighted only for the mχ = 100MeV case) show the
total flux, as in the left panel.

with Λp = 0.843GeV. This provides a very good fit to experimental data up to momentum
transfers of at least Q2 ∼ 1GeV2, with an agreement of better than 10% for Q2 ≤
10GeV2 [85, 86]. We note that our final results are highly insensitive to such large momenta.

In the rest of the section, we will briefly describe the impact of nuclear form factors on
the CRDM flux and the attenuation of this flux on its way to the detector. In both cases
the effect is sizeable, motivating the need for a precise modelling of G2(Q2).

3.1 Impact on production

The solid lines in figure 1 show the expected CRDM flux before attenuation, cf. eq. (2.2),
for a range of DM masses. For the purpose of this figure, we have assumed a constant
elastic scattering cross section σpSI = σnSI on nucleons, i.e. a nuclear cross section given by

dσχN
dTχ

= C2 × σpSI
Tmax
χ

×G2(2Tχmχ) . (3.2)

Here,

C2 = A2µ
2
χN

µ2
χp

(3.3)

describes the usual coherent enhancement, in this case proportional to the square of the
atomic number A of nucleus N . In the rest of the expression, µχN (µχp) is the reduced
mass of the DM/nucleus (DM/nucleon) system and the maximal DM energy Tmax

χ that can
result from a CR nucleus with energy TN is given by the right-hand side of eq. (2.5) after
replacing T zχ → TN and mχ ↔ mN .
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In the left panel of the figure, we show that neglecting nuclear form factors (dashed
lines) would lead to a significant overestimate of the CRDM flux at high energies. For
mχ & 0.1GeV, the form factor suppression even becomes the dominant effect to determine
the overall normalization of the flux, while for lower DM masses, the peak of the distribution
is entirely determined by the fact that the CR flux itself peaks at GeV energies. This
suppression in the flux leads to a rapid deterioration of CRDM limits. Modelling form
factors correctly is thus particularly important for the highest DM masses that can be
probed by cosmic-ray upscattering, i.e. for mχ ∼ 1− 10 GeV.

In the right panel of figure 1, the contributions from the individual CR nuclei to the
CRDM flux are shown. At low energies the dominant contribution is always from Helium,
closely followed by the one from protons. The high-energy part of the CRDM flux, on
the other hand, is almost exclusively due to CR protons because the contribution from
heavier CR nuclei is heavily form-factor suppressed. In addition, for mχ & 1GeV, the
peak amplitude of the CRDM flux — which typically has the most constraining power in
direct detection experiments — is almost exclusively determined by CR p and He nuclei
(see also figure 2 below to better gauge the relevant range of energies after attenuation
in the overburden). For lower DM masses, on the other hand, including further high-Z
CR species than those taken into account here could in principle increase the relevant part
of the CRDM flux by up to ∼ 50% [63]. In what follows, we conservatively neglect these
contributions, in view of both the larger uncertainties in the underlying CR fluxes and the
fact that we are mainly interested in DM masses around the GeV scale.

3.2 Impact on attenuation

We now turn our attention to assessing the effect that the form factor suppression has on the
attenuation of DM particles on their way to the detector in a direct detection experiment.
For concreteness we will again focus on the case of Xenon-1T, where Xe nuclei recoiling with
an energy of at least TXe = 4.9 keV trigger a detectable signal [5]. In figure 2, we show the
minimal initial DM energy that is required to kinematically allow for this, after penetrating
through the Gran Sasso rock. In practice this is done by numerically solving eq. (2.4) with
DarkSUSY. Dash-dotted lines indicate the result when conservatively assuming that the
stopping power in the overburden is as efficient as in the zero-momentum transfer limit
(as in ref. [22]), while dashed lines show the effect of adding the additional form factor
suppression for high Q2 (as in refs. [38, 63]). Solid lines, finally, demonstrate the effect of
also adding the attenuation power of inelastic scattering events, as described in detail below
in section 4.

For small cross sections, attenuation is inefficient and, as expected, the three approaches
give the same answer. In this limit, the difference in the required DM energy is entirely
due to the well-known kinematic effect, cf. eq. (2.3), that lighter particles require a higher
energy to induce a given recoil of much heavier particles (up to a minimum energy of
Tχ ≥

√
mXeTXe/2 = 17.3MeV in the limiting case where mχ → 0). Correspondingly, this

also means that the CRDM fluxes cannot actually be probed by Xenon-1T for the entire
range of Tχ shown in figure 1; unless mχ . 10MeV, however, the lowest detectable energy
is always smaller than the energy at which the CRDM flux peaks.
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Figure 2. Minimal kinetic energy Tχ that a DM particle must have at the surface of the Earth
(z = 0) in order to trigger a signal in the Xenon-1T experiment, as a function of a (constant)
spin-independent scattering cross section σp,nSI on nucleons. Different colors correspond to different
DM masses, as in figure 1. Dash-dotted lines show the kinetic energies that would be necessary
when computing the attenuation in the zero momentum transfer limit. Dashed lines illustrate the
effect of adding the expected form factor suppression, cf. section 3, while solid lines show the result
of our full treatment, including also inelastic scattering events (discussed in section 4).

For large cross sections, on the other hand, figure 2 shows a pronounced difference
between the three approaches: while in the case of a constant cross section (dash-dotted
lines) the energy loss equation results in an exponential attenuation, adding form factors
(dashed lines) implies that the required initial DM energy only rises as the square root of
the scattering cross section in the Q2 = 0 limit. In fact, we note that this is exactly the
behaviour one would expect from eq. (2.4) for a cross section that falls off very rapidly
at large momentum transfers. Comparing again to figure 1, this correspondingly enlarged
range of kinetic energies that becomes kinematically accessible to Xenon-1T will inevitably
lead to significantly larger rates in the detector — which, indeed, is exactly the conclusion
reached in refs. [38, 63]. However, such a strong suppression of the physical stopping power
of the Gran Sasso rock for a relativistic particle is highly unphysical. As we discuss in the
next section, this is simply because the DM particles will start to scatter off the constituent
nucleons themselves, albeit not coherently across the whole nucleus. Adding this effect
(solid lines), results again in exponential attenuation in the overburden — though only at
significantly larger cross sections than what would be expected when adopting a constant
cross section for simplicity.
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4 Inelastic scattering

Our discussion so far has largely neglected the impact of inelastic scattering events of
relativistic DM particles incident on nuclei at rest, or vice versa. Physically, the inclusion of
inelastic scattering processes is non-negotiable and should be considered in a full treatment.
This is because, whilst the form factor suppression described above is the relevant feature in
the transition from coherently scattering off the whole nucleus to only parts of it, once the
DM or nucleus transfers a sufficiently large amount of energy ω, the scattering will probe
individual nucleon-, or even quark-level processes. The result is an additional contribution
to the total scattering cross section that can easily dominate in the large energy transfer
regime. As far as CRDM limits are concerned, the most important effect that the inclusion of
inelastic scattering modifies is the attenuation of the flux through the Earth or atmosphere.
Not including it, therefore, will lead to an overly optimistic estimate as to the amount of
parameter space that is ruled out via this mechanism.3 Let us note that inelastic scattering
of non-relativistic DM, resulting in the excitation of low-lying states in the target nuclei, was
previously both studied theoretically [19, 87–89] and searched for experimentally [90–93].
Here we concentrate on different types of inelastic processes that are only accessible to
nuclei scattering off high-energy DM particles.

The rest of this section is organised as follows: firstly we give a qualitative description
of the most important inelastic scattering processes, such as the excitation of hadronic
resonances or quasi-elastic scattering off individual nucleons. Secondly, we explain how we
obtain a quantitative estimate of these complicated nuclear interactions by making a direct
analogy to the case of neutrino-nucleus scattering. In this regard, we make use of the public
code GiBUU [94, 95]. Finally, we will explain how to build this into the formalism described
in section 2 in terms of the DM energy loss, see eq. (2.4).

4.1 Scattering processes and associated energy scales

There are a number of relevant contributions to scattering cross sections on nuclei that
are associated to certain characteristic energies or nuclear length scales. In the highly non-
relativistic limit, as described above, coherently enhanced elastic scattering dominates. At
somewhat higher energies, more specifically momentum transfers corresponding to (inverse)
length scales smaller than the size of the nucleus, the elastic scattering becomes form factor
suppressed — a description which physically assumes a smooth distribution of scattering
centres throughout the nucleus. The main characteristic of elastic scattering in both of
these regimes is that the energy loss of the incident DM particle is uniquely related to the
momentum transfer by ω = Q2/(2mN ).

This relation no longer holds for inelastic scattering processes, which are expected to
become relevant at even higher energies. For our purposes, these inelastic processes can be
broadly split up into three scattering regimes, depending on the energy that is transferred

3In order to keep our results conservative, we neglect the effect of inelastic scattering on CRDM production
in our analysis. We leave the study of this additional contribution of the flux to future work, noting that we
expect it to mostly improve limits for larger DM masses (where the form factor suppression nominally leads
to a significant reduction of the CRDM flux, see figure 1).
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(see also figure 3 below, as well as a review [96] for the discussion of the analogous situation
in the case of neutrino-nucleus scattering):

• Quasi-Elastic Scattering (ω & 10−2 GeV). At suitably large energy transfers, the
form factor suppression cannot be totally physical. This is because the incident DM
particles will probe directly the constituent nucleons, which are inherently not smoothly
distributed. Quasi-elastic scattering (QE) dominates for 10−2 GeV . ω . 1 GeV, and
describes this situation, i.e. where the dominant scattering is directly off individual
protons (and neutrons) inside the nucleus, χp(n)→ χp(n).

• Excitation of Hadronic Resonances (ω & 0.2 GeV). At higher energies still,
DM-nucleon scattering can excite nuclear resonances such as χp→ χ (∆→ pπ0) etc.,
leading to a wide variety of hadronic final states. Often, the contribution due to
the lowest lying ∆ resonances (DR) is distinguished from contributions from higher
resonances (HR) since the former can be well resolved and starts playing role at
considerably smaller transferred energies. In a complicated nucleus such as 16O,
both the QE and resonance contributions to the scattering cross section must be
resolved numerically, taking into account effects such as the nuclear potential and
spin statistics.

• Deep Inelastic Scattering (ω & 1 GeV). Most DM couplings to nuclei and nu-
cleons result from more fundamental couplings to quarks or gluons. As such, once
the energy transfer is large enough to probe the inner structure of the nucleons
(ω & 1 GeV), then deep inelastic scattering (DIS) of DM with partons inside the
nucleons can occur. Again, this should be resolved numerically to give an accurate
estimate of the impact at the level of the scattering cross section.

4.2 Computation of the inelastic cross section for neutrinos

Due to the complicated nuclear structure of the relevant atomic targets in the Earth, or
in the composition of cosmic rays, it is typically not possible to analytically compute all
the contributions to DM-nucleus scattering described above. Instead, to estimate their
impact on our conclusions and limits, we will make a direct connection with the physics of
neutrino-nucleus scattering for which numerical codes — such as GiBUU [94] — are capable
of generating the relevant differential cross sections.

In more detail, we draw the analogy between neutral current neutrino-nucleon scattering
via processes such as ν p → ν p and DM-nucleon scattering. Numerically modelling the
neutral current quasi-elastic scattering, resonances and deep inelastic scattering as a function
of the energy transferred to the nucleus, ω, allows us to understand the relative importance
of these processes as a function of the incoming neutrino energy (or DM kinetic energy
Tχ). Of course, since these codes are tuned for neutrino physics, simply outputting the
differential cross sections such as dσνN/dω is not sufficient. To map the results onto DM,
see section 4.3 below for further details, we should re-scale the results so as to respect both
the relative interaction strengths and model dependences such as e.g. the mediator mass.
In general, we expect this approach to provide a good estimate of the DM-nucleus cross
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section (at least) for contact interactions and scattering processes dominated by mediators
in the t-channel.

At the level of implementation, we choose the settings in the GiBUU code described
in table 1 (see end of text). Since we are interested in quantifying the effect of inelastic
scattering on the attenuation of the CRDM flux as it passes through the Earth, we mostly
focus on the total inelastic scattering cross section, i.e. the sum over all the processes
described in the previous section. We numerically calculate this for the most abundant
nuclei in the Gran Sasso rock, N = {O,Ca,C,Mg, Si,Al,K}. Fundamentally, inelastic cross
sections are expressed in terms of double-differential cross sections like d2σνN/dQ2dω, since
for inelastic scattering Q2 and ω are independent variables. For integrating the energy loss
equation, eq. (2.4), however, it suffices to compute

dσνN
dω ≡

∫
Q2

d2σνN
dQ2 dω dQ2 . (4.1)

On the other hand, the full information about the Q2-dependence of d2σνN/dQ2dω provided
by GiBUU still remains a highly useful input to our analysis. This is because the double-
differential cross sections of the individual inelastic processes turn out to sharply peak at
values of Q2 that have simple relations to ω. For example, the peak position for the QE
contribution corresponds to the ‘elastic’ relation (2.8) for nucleons. As described below,
this information will be used for setting realistic reference values of Q2 to capture the
model-dependence of the DM cross sections.

4.3 Mapping to the dark matter case

Having described the technical details of how we obtain the neutrino-nucleus inelastic cross
sections using GiBUU, we now turn our attention to the mapping of these quantities onto
DM models. This is a necessary step for two broad reasons: (a) the interaction strength
governing the DM-nucleus interactions is typically very different from the neutrino-nucleus
SM value, and (b) the way the interaction proceeds via e.g. a contact interaction or mediator
exchange can lead to substantially different kinematics and non-trivial Q2- or s-dependences.

The total scattering cross section dσχN/dω consists of the coherent elastic scattering
contribution that we compute analytically for each of the models considered in this work,
and the inelastic scattering cross section that we want to estimate based on the GiBUU
output:

dσχN
dω = dσχN

dω

∣∣∣∣
el

+ dσχN
dω

∣∣∣∣
inel

≡ dσχN
dω

∣∣∣∣
el,Q2=2ωmN

+
∑
i

dσSI
dω

∣∣∣∣
el,Q2=Q2

i,ref

× Iχ,i(Tχ, ω) . (4.2)

Here dσSI/dω|el is the differential DM-nucleon elastic cross section, excluding nucleon form
factors such as the one given in eq. (3.1). The sum runs over the various individual processes,
i ∈(QE, DR, HR, DIS), which all have characteristic reference values of Q2 = Q2

i,ref(ω) where
the respective inelastic cross section peaks. In the second step above, we thus choose to
rescale the inelastic scattering events to the elastic scattering off a point-like nucleon. This
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rescaling is motivated by the fact that for inelastic contributions like QE, the underlying
process is much better described by scattering on individual nucleons than on the entire
nucleus. The factor

Iχ,i(Tχ, ω) ≡
dσiχN/dω

∣∣
inel

dσSI/dω
∣∣
el,Q2=Q2

i,ref

(4.3)

thus quantifies the ratio of the inelastic scattering process on a nucleus to the elastic
scattering on an individual nucleon.

We now make the simplifying assumption that this ratio is to a certain degree model-
independent, based on the expectation that DM should probe the inner structure of nucleons
in a similar way as neutrinos do when only neutral current interactions are involved.
Physically, indeed, this closely resembles the situation both for contact interactions and
t-channel mediators. The model dependence thus dominantly comes from the structure of
the term dσSI/dω|el, and we approximate

Iχ,i(Tχ, ω) ≈ Iν,i(Eν , ω) ≡
dσiνN/dω

∣∣
inel

dσiν,SI/dω
∣∣
el
. (4.4)

Here, the inelastic neutrino-nucleus cross section dσiνN/dω
∣∣
inel (Eν , ω) can be obtained using

the GiBUU code, as described in section 4.2, and we evaluate it at the incoming DM kinetic
energy, Eν = Tχ. On the other hand, a possible estimate for the denominator — the elastic
neutral current neutrino-nucleon cross section without the form factor — is the average of
the proton and neutron cross sections in the ω → 0 limit [96]:

dσiν,SI
dω

∣∣∣∣∣
el

= 1
2
∑
j=n,p

mjG
2
F

4π
[
(gAτ j3 −∆S)2 + (τ j3 − 2(1 + τ j3 ) sin2 θW )2

]
. (4.5)

Here τp3 = 1 and τn3 = −1, θW is the weak mixing angle and GF is the Fermi constant. The
axial vector and strange quark contributions are encoded in the parameters ∆S ≈ −0.15
(see, e.g., ref. [97] for a discussion) and gA = 1.267 [98], respectively. Numerically the square
bracket evaluates to a factor of ∼2.24 (2.01) for neutrons (protons). Let us stress, however,
that this formula is valid only for energies relevant for inelastic scattering, 0.1 GeV . Eν .
10GeV. At much smaller energies, only the valence quarks contribute to the scattering, and
we would instead have

dσiν,SI
dω

∣∣∣∣∣
el

= mnG
2
F

4π (4.6)

for neutrons, while the scattering on protons is strongly suppressed by a factor of Q2
W =

(1− 4 sin2 θW )2 ≈ 0.012.
It is worth noting that in principle, we could improve the assumption made in eq. (4.4)

for the quasi-elastic process, because there is a well-controlled understanding of the analytic
QE cross section via the Llewellyn-Smith formalism (see section V of ref. [96]). For clarity,
we choose to take a consistent prescription across all inelastic processes, and we have checked
that including the full QE cross section would only introduce an additional O(1) factor in
the DM QE cross section. For the numerical implementation in DarkSUSY, we pre-tabulate
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Iν,i from Tχ = 0.01GeV up to energies of Tχ = 10GeV, with 200 (101) equally log-spaced
bins in Tχ (ω) and a normalization as given by eq. (4.5), and then interpolate between
these values.4

We also must choose the reference values for the transferred momentum Q2
i,ref , which

allows us to account for e.g. mediators that may be much lighter than the electroweak scale.
Importantly, each process (quasi-elastic, ∆-resonance,. . . ) is expected to have a different
characteristic Q2-ω dependence that takes into account the relevant binding energies and
kinematic scaling. For example, in the case of elastic scattering, the relation Q2 = 2mNω

holds, whilst for quasi-elastic processes, the relevant scattering component is a nucleon
such that the cross section is peaked around Q2 ∼ 2mω, where m ≡ (mn +mp)/2. The
resonance of a particle with mass mres can be accounted for by noting that part of the
transferred kinetic energy is used to excite the resonance, such that the cross section peaks
around Q2 ∼ 2m (ω − (mres −m)). We have confirmed these expectations numerically by
comparing directly to the doubly-differential cross section extracted from GiBUU. From this
numerical comparison we further extract that Q2 ∼ 0.6m (ω−ωDIS), with ωDIS = 1.0GeV,
constitutes a very good fit to the peak location of the DIS cross section. In summary, we
take the following reference values across the four inelastic processes:

Q2
QE,ref = 2mω , Q2

∆,ref = 2m (ω −∆m∆)
Q2

res,ref = 2m (ω −∆mres) , Q2
DIS,ref = 0.6m (ω − ωDIS) . (4.7)

Here, ∆m∆ = 0.29 GeV is the mass difference between the ∆ baryon and an average nucleon,
and ∆mres = 0.40 GeV is an estimate for the corresponding average mass difference of
the higher resonances (we checked that our final limits are insensitive to the exact value
taken here).

To illustrate this procedure concretely, we consider the simple case of a contact in-
teraction where, cf. eq. (3.2), dσSI/dω|el. = σSI/ω

max and ωmax = 2m(T 2
χ + 2χTχ)/((m+

mχ)2 + 2mTχ). The results for the rescaled inelastic cross section (blue) are shown in
figure 3 for a DM mass mχ = 1 GeV incident on a 16O nucleus. In this figure, we also
compare to the coherent elastic contribution (green) and highlight the balance between
the relative contributions to the total (integrated) cross section σtot

χN . In particular, we
see that above kinetic energies Tχ & 0.2 GeV, the inelastic contribution dominates, clearly
motivating the necessity of its inclusion. This is consistent with the picture previously

4For significantly higher energies, GiBUU is no longer numerically stable. Furthermore, the underlying
equations that describe the interaction processes begin to fall outside their ranges of validity as the Z
boson mass starts to get resolved. At higher energies, where anyway only the DIS contribution is non-
negligible, a reasonable estimate can still be obtained by a simple extrapolation Iν,i(Tχ, ω)→ Iν,i(T ref

χ , ωref),
with ωref = ω (T ref

χ /Tχ)0.25, beyond some reference energy T ref
χ ≈ 10GeV. By running GiBUU up to

Eν ∼ 30GeV, we checked that this prescription traces the peak location (in ω) of the DIS contribution
very well, independently of the exact choice of T ref

χ . We also confirmed that the peak value of I becomes
roughly constant for such large energies. On the other hand, higher-order inelastic processes are expected
to become increasingly important at very large energies, not covered in GiBUU. We therefore only add the
above extrapolation as an option in DarkSUSY, and instead completely cut the incoming CRDM flux at
10GeV in the default implementation. As a result, our bounds on the interaction strength may be overly
conservative for small DM masses mχ . 0.1GeV.
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Figure 3. Comparison between the elastic (green, lower energies) and inelastic (blue, higher
energies) contributions to the DM-nucleus differential cross section dσχN/dω, where ω is the DM
energy loss. This figure shows these contributions for a constant isospin-conserving DM-nucleus
cross section, with mχ = 1 GeV and N = 16O. The small colorbar on the inset of the plots, along
with the stated numerical ratio, indicates the balance between elastic and inelastic scattering in
terms of the contribution to the integrated cross section σtot

χN .

encountered in figure 2, where we could see the impact of inelastic scattering on the energy
loss. More concretely, the result lies in some intermediate regime between the G(Q2) = 1
and G(Q2) 6= 1 cases, the former/latter leading to conservative/overly optimistic limits
respectively. In the next section we will derive the relevant CRDM limits in the σSI −mχ

plane for a number of models to make this point quantitatively.
Let us conclude this section by briefly returning to the implicit assumption of isospin-

conserving DM interactions that we made above, with σSI = σpSI = σnSI. Interestingly, neutral-
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current induced inelastic scatterings between neutrinos and nucleons hardly distinguish
between protons and neutrons [96], such that the factor Iχ,i ≈ Iν,i indeed becomes, by
construction, largely independent of the nucleon nature. Naively, one would thus conclude
that isospin-violating DM couplings can easily be incorporated in our treatment of inelastic
scattering by replacing σSI → (1/A) × (ZσpSI + (A − Z)σnSI) in eq. (4.2). When doing so,
however, it is important to keep in mind that the nucleon cross sections should be evaluated
at energies that are relevant for inelastic scattering, not in the highly non-relativistic limit.
At these high energies, isospin symmetry is typically largely restored because the nucleon
couplings are no longer exclusively determined by the valence quarks, and instead receive
corrections from a large number of sea quarks (and, in principle, gluons). As pointed out
above, the example of neutrino scattering illustrates this effect very clearly: even though
isospin is almost maximally violated at low energies, the effective neutrino couplings to
neutrons and protons agree within ∼ 5% at energies around 0.1GeV, cf. eqs. (4.5) and (4.6).
In practice, however, a possible complication often arises in that the nucleon couplings gn
and gp are only provided in the highly non-relativistic limit. In that case, an educated
guess for σSI in the second term of eq. (4.2) is to anyway take the leading order (Born)
expression — but to adopt (effective) values for both nucleon couplings that correspond to
the maximum of |gp| and |gn| in the non-relativistic limit. This induces a model-dependent
uncertainty in the normalization of the inelastic contribution that can in principle only
be avoided by fully implementing the concrete interaction model in a code like GiBUU. On
the other hand, the neutrino example illustrates that this error should generally not be
expected to be larger than a factor of ∼ 2, implying that for most applications such a more
sophisticated treatment is not warranted.

5 Contact interactions and beyond

In sections 3 and 4 we have discussed in detail the Q2-dependence that arises due to
both form factor suppression and inelastic scattering, as well as the impact this has on
the production and attenuation of the CRDM flux. This does not yet take into account,
however, the possible angular and energy dependence of the elastic scattering cross section
itself. In fact, for (sub-)GeV DM, a significant dependence of this type is actually expected
in view of null searches for new light particles at colliders. For example, it has been
demonstrated in a recent global analysis [99] that it is impossible to satisfy all relevant
constraints simultaneously (even well above GeV DM masses) and at the same time maintain
the validity of an effective field theory description at LHC energies.

Of course, this necessarily introduces a model-dependent element to the discussion,
and in this section, the aim will be to analyse the most generic situations that can appear
when considering models beyond simple contact interactions. Concretely, in section 5.2 we
will study the case of a light scalar mediator, a light vector mediator in section 5.3, and
the scenario where DM particles have a finite extent in section 5.4. In all these cases, we
will re-interpret the published Xenon-1T limits and assess whether there is a remaining
unconstrained window of large scattering cross sections for GeV-scale DM. Just before
this, however, in section 5.1 we will briefly revisit the (physically less motivated) case of a
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Figure 4. Left panel. Limits on a constant spin-independent DM-nucleon scattering cross section
as a function of the DM mass, based on a re-interpretation of Xenon-1T limits on non-relativistic
DM [5] for the CRDM component studied in this work (solid lines). Dash-dotted lines show the
excluded region that results when assuming a constant cross section in the attenuation part (as
in ref. [22]). Dashed lines show the effects of adding form factors in the attenuation part, but no
inelastic scattering, resulting in limits similar to those derived in ref. [63]. For the latter case, for
comparison, we also show the effect of artificially cutting the incoming CRDM flux at the indicated
energies. Right panel. Updated CRDM limits (coinciding with the solid lines from the left panel) in
comparison to limits from the Lyman-α forest [100], the Milky Way satellite population [101], gas
clouds in the Galactic Centre region [102], the XQC experiment [76, 103], and a recently analysed
storage dewar experiment [104, 105]. We also show upper limits on the cross section as published by
the CRESST collaboration [6] (solid green lines), based on a surface run of their experiment, along
with the maximal cross section where attenuation does not prevent DM from leaving a signal in
the detector [16]. Alternative limits are indicated by green dashed [76] and dash-dotted lines [106],
based on the assumption of a thermalization efficiency of εth = 2% and εth = 1%, respectively,
which is significantly worse than the one adopted in the CRESST analysis.

constant cross section, which can be viewed as the highly non-relativistic limit of a contact
interaction. This will allow us to illustrate how the resulting CRDM constraints compare
with established bounds from both surface and astrophysical experiments, as well as provide
a more direct comparison with the existing literature.

5.1 Constant cross section

For the discussion of a constant cross section, we will again consider the case of spin-
independent scattering with isospin conserving nucleon couplings, cf. eq. (3.2). In the left
panel of figure 4, we show our improved constraints from a re-interpretation of the Xenon-1T
limits in this case. Broadly, these updated and refined CRDM limits cover the mass range
up to mχ . 10 GeV for cross sections 10−31 cm2 . σSI . 2× 10−28 cm2.

For comparison, we also indicate (with dash-dotted lines) the limits that result when
neglecting both form-factor dependence of the cross section and inelastic scatterings in the
attenuation part. As expected, this leads to a shape of the excluded region very similar
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to that originally derived in ref. [22], where the same simplifying assumptions were made.
As a result of our improved treatment of CR fluxes and form factors, however, the limits
indicated with dash-dotted lines are overall slightly more stringent than what is reported in
that analysis. We find that for very light DM, with mχ . 10MeV, this simplistic treatment
actually leads to rather realistic limits, the reason being that for highly relativistic particles
the typical momentum transfer is always so large that efficient inelastic scattering becomes
relevant. For heavier DM masses, on the other hand, this treatment clearly overestimates the
stopping power because it neglects the form factor suppression relevant for semi-relativistic
DM scattering on nuclei.

Dashed lines furthermore show the effect of adding the form factor suppression during
the attenuation in the soil, as done in ref. [63], but still not including inelastic scattering.
Clearly, this vastly underestimates the actual attenuation taking place and therefore appears
to exclude very large cross sections.5 In order to gain a better intuitive understanding for
the shape and strength of our final limits, finally, we also indicate the effect of neglecting
inelastic scattering and instead artificially cutting the CRDM flux (prior to entering the
soil) above some given energy. The resulting upper limit on the cross section that can be
probed in this fiducial setup strongly suggests that inelastic scattering events very efficiently
stop the incident CRDM flux in the overburden as soon as they become relevant compared
to elastic scattering events. From figure 4, and well in accordance with the expectations
from section 4, this happens at CRDM energies Tχ & 0.2GeV.

In the right panel of figure 4 we show our improved constraints from a re-interpretation
of the Xenon-1T limits in comparison with complementary limits from direct probes of the
DM-nucleon scattering cross section. At small DM masses the dominant constraint results
from analysing the distribution of large-scale structures as traced by the Lyman-α forest.
This is based on the fact that protons scattering too strongly off DM would accelerate
the latter and thereby suppress the matter power spectrum at sub-Mpc scales. Such
limits have recently been significantly tightened [100], utilizing state-of-the-art cosmological
hydrodynamical simulations of the intergalactic medium at redshifts 2 . z . 6. Similar
bounds from the CMB (not shown here) are generally weaker by up to three orders of
magnitude [100, 107, 108], while the Milky Way satellite population [101] — as inferred from
the Dark Energy Survey and PanSTARRS-1 [109] — places bounds that are roughly one
order of magnitude weaker. Beyond cosmological bounds, cold gas clouds near the Galactic
Center provide an interesting complementary testbed, in particular at high DM masses,
where halo DM particles scattering too efficiently on the much colder baryon population
would heat up the latter [110]. Here we show updated constraints [102] based on the cloud
G357.8-4.7-55, noting that these constraints might be improved by more than one order
of magnitude if G1.4-1.8+87 is indeed as cold as T ≤ 22K (as reported in refs. [111, 112]
but disputed in ref. [113]). We also display the limits [76] that result from the ten minutes’

5Compared to ref. [63], we also find that the excluded region extends to somewhat larger DM masses,
mostly as a result of our updated treatment of elastic form factors. On the other hand, we recall that our
attenuation prescription is based on the analytical energy loss treatment outlined in section 2, rather than a
full Monte Carlo simulation. This likely overestimates the maximally excluded DM mass, but only by less
than a factor of 2 [63].
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flight of the X-ray Calorimetry Rocket (XQC) [103], based on the observation that ambient
DM particles scattering off the silicon nuclei in the quantum calorimeter would deposit
(part of) their energy in the process [14, 114, 115]. In deriving these XQC limits, one
must take into account that the recoil energy of a silicon nucleus potentially thermalizes
much less efficiently in the calorimeter than the e± pairs produced from an incoming X-ray
photon, such that a nuclear recoil energy TN will leave a signal equivalent to a photon
with a reduced ‘thermal’ recoil energy TT = εthTN . Concretely, the limits shown in the
plot are based on the very conservative assumption of a thermalization efficiency factor of
εth = 0.02.6

Furthermore, in order to directly probe sub-GeV DM with very large cross sections,
the CRESST collaboration has performed a dedicated surface run of their experiment [6],
deliberately avoiding the shielding of the Gran Sasso rock used in the standard run [116].
The result of this search is the exclusion region indicated by the solid green line in figure 4.
Here, upper bounds on the cross section correspond to the published limits, obtained
under the assumption that any attenuation in the overburden can be neglected. Modelling
the effect of attenuation with detailed numerical simulations also results in the exclusion
region limited from above [16], coming from the fact that one must have a sufficiently
large flux of DM particles at the detector location. In a series of papers, Farrar et al. have
claimed that the CRESST thermalization efficiency adopted in the official analysis is too
optimistic [76, 105, 106, 117], challenging the general ability of the experiment to probe
sub-GeV DM. We indicate the resulting alternatives to the published CRESST limits in
the same figure, albeit noting that the underlying assumption of an efficiency as low as
εth ∼ 1% is not supported by data or simulations. For example, no indication for such a
dramatic loss of efficiency at low energies is observed for neutrons from an AmBe neutron
calibration source [118].

To summarise, figure 4 illustrates the fact that the existence of the CRDM component
provides an important probe of strongly interacting light DM. In particular, below mχ .
100MeV, it restricts parameter space that is otherwise either unconstrained or only testable
with cosmological probes (which — at least to some degree — are subject to modelling
caveats regarding the Lyman-α forest and the non-linear evolution of density perturbations
at small scales; see, e.g., refs. [119, 120]). The CRDM component also leads to highly
relevant complementary constraints up to DM masses of a few GeV, especially when noting
that these constraints are independent of the thermalization efficiency discussion above.

5.2 Scalar mediators

As our first example beyond a constant scattering cross section we consider the case where
a new light scalar particle φ mediates the interaction between DM and nucleons. We thus

6When the scattering is mediated by a Yukawa-like interaction, a perturbative description of the scattering
process may no longer be adequate. In that case the constraints shown here, in particular for XQC, receive
corrections due to non-perturbative effects leading to resonances or anti-resonances in the scattering cross
section [106]. Here, we will not consider this possibility further, noting that a variation of the relatively
uncertain value of εth anyway has a larger impact on the XQC limits [76].
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consider the interaction Lagrangian

Lint = −gχφχχ− gpφpp− gnφnn , (5.1)

and assume, for simplicity, isospin conservation (gp = gn). At the level of the effective nuclear
interaction Lagrangian, the dominant interaction terms with scalar (N0) and fermionic
(N1/2) nuclei are thus given by7

Lint = −gN
(
2mNN0N0 +N1/2N1/2

)
. (5.2)

Here, the dimensionful coupling to scalar nuclei has been normalized such that both terms in
the above expression result in the same scattering cross section in the highly non-relativistic
limit. In addition, the coupling to individual nucleons is coherently enhanced across the
nucleus, resulting in an effective coupling to both scalar and fermionic nuclei given by

g2
N = A2 g2

p ×G2
N (Q2) , (5.3)

where GN is the same form-factor as in the case of a ‘constant’ cross section. For the
resulting elastic scattering cross section for DM incident on nuclei at rest we find

dσχN
dTN

= C
2σNR

SI
Tmax
N

m4
φ

(Q2 +m2
φ)2

m2
N

(
Q2 + 4m2

χ

)
4s µ2

χN

×

 1 for scalar N
1 + Q2

4m2
N

for fermionic N

×G2
N (Q2) ,

(5.4)
where µχp is the reduced mass of the DM/nucleon system and

σNR
SI =

g2
χg

2
pµ

2
χp

πm4
φ

(5.5)

is the spin-independent scattering cross section per nucleon in the ultra non-relativistic
limit. For reference, the kinematic quantities Tmax

N , s and Q2 are given by eqs. (2.5), (2.6)
and (2.8), respectively. For the production part of the process, where CR nuclei collide
with DM at rest, one simply has to exchange TN ↔ Tχ and mχ ↔ mN in these expressions
for kinematic variables — but not in the rest of eq. (5.4) — in order to obtain dσχN/dTχ.

In the left panel of figure 5 we show the resulting CRDM fluxes for this model. For
small kinetic energies these fluxes are, as expected, identical to those shown in figure 1 for
the case of a constant cross section. This is the regime where Q2 = 2mχTχ is smaller than
the masses of both the mediator and CR nuclei, such that eq. (5.4) reduces to eq. (3.2). For
Q2 & m2

φ, on the other hand, the presence of a light mediator clearly suppresses the fluxes.
Note that the matrix element also contains a factor of (Q2 + 4m2

χ), which additionally leads
to a flux enhancement for fully relativistic DM particles, Tχ & 2mχ. In the figure, this
latter effect is clearly visible for the case of mχ = 10MeV and a heavy mediator. In general,

7While the dominant cosmic-ray nuclei are either scalar or spin 1/2 particles, some heavier nuclei in
the overburden have higher spins. For simplicity we treat those nuclei as scalars when determining their
contribution to the energy loss, as described by eq. (2.4), noting that this induces a neglible error in the
estimated elastic scattering cross section, of the order of Q2/m2

N � 1. Moreover, nuclei with higher spins
make up only about 2% of the total mass in the overburden.
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Figure 5. Left panel. Solid lines show the CRDM flux before attenuation for a constant interaction
cross section, as in figure 1, for DM masses mχ = 10MeV and mχ = 1GeV. For comparison
we also indicate the corresponding CRDM flux for a scalar mediator, cf. eq. (5.4), with mass
mφ = 100MeV (dash-dotted), mφ = 10MeV (dashed) and mφ = 1MeV (dotted), for a cross section
(in the non-relativistic limit) of σNR

SI = 10−30 cm2. Right panel. Minimal kinetic energy Tχ that a
DM particle must have, prior to attenuation, in order to trigger a signal in the Xenon-1T experiment.
Line styles and colors match those of the left panel. In particular, solid lines show the case of a
constant spin-independent scattering cross section and are identical to those displayed in figure 2.

the appearance of such model-dependent features demonstrates the need to use the full
matrix element for the relativistic cross section. This is in contrast to the non-relativistic
case, where a model-independent rescaling of the cross section by a factor of (1 +Q2/m2

φ)−2

is usually sufficient to model the effect of a light mediator (see, e.g., refs. [121–123]).

In the right panel of figure 5, we explore the minimal CRDM energy Tχ that is needed
to induce a detectable nuclear recoil. Compared to the situation of a constant scattering
cross section (depicted by the solid lines for easy comparison), the attenuation is as expected
rather strongly suppressed when light scalar mediators are present (with the exception
of the case with mχ = 10MeV and mφ = 100MeV, where the cross section is enhanced
due to the (Q2 + 4m2

χ) factor in the squared matrix element). In order to understand the
qualitative behaviour of Tmin

χ (z = 0) better, we recall from the discussion of figure 2 that
there are two generic scaling regimes for solutions of the energy loss equation. Firstly,
for cross sections with no — or only a mild — dependence on the momentum transfer,
Tmin
χ (z = 0) grows exponentially with increasing σNR

SI . Secondly, in the presence of an
effective cutoff in the cross section (like when form factors or light mediators are introduced),
Tmin
χ (z = 0) ∝

√
σNR

SI for large energies Tχ. These different regimes are clearly visible in
the figure. For the green dot-dashed curve (mχ = 1GeV, mφ = 100MeV), for example,
one observes as expected an initial steep rise at the smallest DM energies — until the
form factor and mediator suppression of the cross section cause a scaling with

√
σNR

SI for
kinetic energies above a few MeV. At roughly Tχ & 0.1GeV, inelastic scattering kicks in,

– 21 –



J
H
E
P
0
1
(
2
0
2
3
)
1
2
3

leading again to an exponential suppression of the flux. For even higher energies, finally,
the scattering cross section falls off so rapidly that the required initial DM energy once
again only grows as

√
σNR

SI .
Turning our attention to the resulting CRDM limits, it is worth stressing here that σNR

SI ,
as introduced in eq. (5.5), is a somewhat artificial object that only describes the cross section
for physical processes restricted to Q2 . m2

φ. In a direct detection experiment like Xenon-1T
this is necessarily violated for mφ .

√
2mNT thr

N ∼ 35MeV, given that T thr
N = 4.9 keV is the

minimal recoil energy needed to generate a signal. A natural consequence of this is that
making a straight-forward comparison to the σSI appearing in the ‘constant cross section’
case discussed in section 5.1 is challenging. Instead, the best we can achieve in terms of a
meaningful comparison is to define a reference cross section

σ̃pXe,SI ≡ σ
NR
SI ×

m4
φ

(Q2
Xe,ref +m2

φ)2
Q2

Xe,ref + 4m2
χ

4m2
χ

, (5.6)

where QXe,ref ∼ 35MeV. It follows from eq. (5.4) and eq. (3.2), and the fact that s ≈
(mχ + mN )2 for the energies of interest here, that σ̃pXe,SI should be interpreted as the
effective CRDM cross section per nucleon that is dominantly seen in the Xenon-1T analysis
window. It is thus this quantity, not the σNR

SI from eq. (5.5), that should be compared to
the published Xenon-1T limits on the DM-nucleon cross section.

This also allows us to address the question of how the limits on the DM-nucleon coupling
coming from the CRDM component compare to the complementary constraints introduced
in section 5.1 (cf. the right panel of figure 4). In order to do so, one first needs to realize that
all of those limits are derived under the assumption of non-relativistic DM and a constant
cross section. In reality, however, they probe very different physical environments and
typical momentum transfers. In order to allow for a direct comparison, therefore, they also
need to be re-scaled to a common reference cross section. Assuming that the DM energies
in eq. (5.4) are non-relativistic, a reported limit on the DM-nucleon cross section σpSI from
an experiment probing typical momentum transfers of the order Q2

ref would correspond to a
cross section of

σ̃pXe,SI = σpSI ×
(

Q2
ref +m2

φ

Q2
Xe,ref +m2

φ

)2
Q2

Xe,ref + 4m2
χ

Q2
ref + 4m2

χ

(5.7)

in the Xenon-1T detector. As an example, consider the CRESST surface run [6], where a
threshold energy of ∼ 20 eV for the sapphire detector would imply Q2

ref ∼ (0.98 MeV)2/εth.
Similarly, a thermal recoil energy of 29 eV in XQC corresponds to Q2

ref ∼ (8.7 MeV)2 for
the nuclear recoil on Si nuclei (assuming εth = 0.02 as for the unscaled limits). Turning
to cosmological limits, a baryon velocity of vrms

b ∼ 33km/s at the times relevant for the
emission of Lyman-α photons [124] implies typical momentum transfers from the Helium
nuclei to DM of Q2

ref ∼ 4µ2
χHe × 10−8. This means that, for the range of DM and mediator

masses considered here, the cross section at these times becomes roughly constant and we
can approximate Q2

ref ≈ 0 in eq. (5.7). The same goes for the constraints stemming from
the MW satellite abundance, which are sensitive to even lower redshifts and thus smaller
momentum transfers [101, 125].
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In figure 6 we show a subset of these correspondingly rescaled constraints8 — for
mediator masses mφ = 1MeV, 10MeV, 100MeV and 1GeV — along with the full CRDM
constraints derived here. We also indicate, for comparison, with dotted black lines where
non-perturbative couplings would be needed in this model to realize the stated cross
section. This line is only visible for the case of mφ = 1GeV, which demonstrates that it
is generically challenging to realize large cross sections without invoking light mediators.
The presence of an abundant species with a mass below a few MeV, furthermore, would
affect how light elements are produced during big bang nucleosynthesis (BBN). For a
1MeV particle with one degree of freedom, like φ, this can be formulated as a constraint
of τ > 0.43 s [130] on the lifetime of such a particle. Physically, this constraint derives
from freeze-in production of φ via the inverse decay process. Since φ → γγ (apart from
φ→ ν̄ν) is the only kinematically possible SM decay channel, the translation of this bound
to a constraint on the SM coupling gp is somewhat model-dependent. For concreteness we
consider the Higgs portal model, where τ > 1 s at mφ = 1MeV corresponds to a squared
mixing angle sin2 θ = (8.62× 102gp)2 > 3.8× 10−4 [131]. The area above the dashed line in
the top left panel of figure 6 requires either a larger value of gp than what is given by this
bound, or a non-perturbative coupling g2

χ > 4π. This confirms the generic expectation that
for very light particles BBN constraints are more stringent than those stemming from the
CRDM component [46, 132].

Our results demonstrate that in the presence of light mediators the largest DM mass
that can be constrained due to CR upscattering is reduced from about 10GeV, cf. figure 4,
to just above 1GeV (for mφ ∼ 1MeV). This is a direct consequence of the suppressed
CRDM production rate discussed above. On the other hand, the reduction of the cross
section also implies a smaller attenuation effect, thus closing parameter space at larger
cross sections. More importantly, complementary constraints from cosmology and dedicated
surface experiments become more stringent in the presence of light mediators, once they are
translated to a common reference cross section. To put this in context, let us first recall that
in the constant cross section case, figure 4 tells us that cross sections σSI & 2 · 10−31 cm2 are
safely excluded across the entire DM mass range (or σSI & 6 ·10−31 cm2 when assuming that
the thermalization efficiency of CRESST is indeed as low as 2%). From figure 6 we infer that
these limits can be somewhat weakened for sub-GeV DM, when considering light meditators
in the mass range 10 MeV . mφ . 100 MeV (as we will see further down, the situation
of a vector mediator is not appreciably different from that of the scalar mediator shown
here). Concretely, the upper bound on the cross section now becomes σ̃SI . 3 · 10−31 cm2,

8Upper bounds on the excluded cross section, due to attenuation effects, cannot simply be rescaled
as in eq. (5.7). For the sake of figure 6, we instead adopt a rather simplistic approach [16, 126–128] to
estimate these limits by requiring that the most energetic halo DM particles, with an assumed velocity
vmax, can trigger nuclear recoils above the CRESST threshold of 19.7 eV/εth after attenuation in the Earth’s
atmosphere. For the average density and distribution of elements in the atmosphere, we follow ref. [129].
By treating vmax and the effective height of the atmosphere, ha, as free parameters, we can then rather
accurately fit the results of more detailed calculations [16, 76] for the case of a constant cross section —
with numerical values in reasonable agreement with the physical expectation in such a heuristic approach.
Finally, we adopt those values of vmax and ha to derive the corresponding limits for the case of a scalar
mediator, as displayed in figure 6.
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Figure 6. Limits on the DM-nucleon scattering cross section evaluated at a reference momentum
transfer of QXe,ref = 35MeV, as a function of the DM mass mχ. From top left to bottom right, the
panels show the case of a scalar mediator with mass mφ = 1MeV, 10MeV, 100MeV and 1GeV.
Solid purple lines show the updated CRDM limits studied in this work. We further show limits from
the Lyman-α forest [100], the XQC experiment [76, 103], the CRESST surface run [6, 16] and an
alternative analysis of the CRESST limits [76]. All these limits are rescaled to match the situation
of a light mediator, as explained in the text. The parameter region above the dotted black line in
the bottom right panel requires non-perturbative couplings, while the area above the dotted line in
the top left panel is excluded by BBN.
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independently of the DM and mediator mass. For a 2% thermalization efficiency of
CRESST [76] and a narrow range of mediator masses, 10 MeV . mφ � 100 MeV, a small
window opens up above the maximal cross section that can be probed with CRESST. The
reason is the gap between Lyman-α bounds and the weakened CRESST limits from ref. [76]
that is visible in the figure, for mφ & 10 MeV, and which is closed by the CRDM limits only
for mediator masses of mφ & 30MeV. Nominally, for mχ ∼ 2GeV and mφ ∼ 30MeV, this
would allow for cross sections as large as σ̃SI ∼ 4 · 10−29 cm2. In either case, the conclusion
remains that CRDM leads to highly complementary limits, and that this relativistic
component of the DM flux is in fact crucial for excluding the possibility of very large
DM-nucleon interactions.

5.3 Vector mediators

We next consider the general case of a massive vector mediator V , with interactions given by

L = Vµ (gχχγµχ+ gppγ
µp+ gnnγ

µn) . (5.8)

We will again assume gn = gp for simplicity, noting that smaller values of the ratio gn/gp
can lead to significantly smaller cross sections (see, e.g., refs. [123, 133]); in our context this
would mostly imply that the attenuation in the overburden becomes less relevant, leading
to more stringent constraints. In analogy to eq. (5.2), this implies the following dominant
interaction terms with scalar and fermionic nuclei, respectively:

Lint = −gNVµ
(
iN∗0

↔
∂µN0 +N1/2γ

µN1/2

)
, (5.9)

where the effective mediator coupling to nuclei, gN , is again given by the coherent enhance-
ment stated in eq. (5.3). For the elastic scattering cross section on nuclei we find

dσχN
dTN

= C
2σNR

SI
Tmax
N

m4
A

(Q2 +m2
A)2 ×G

2
N (Q2) (5.10)

× 1
4sµ2

χN

{
m2
χQ

2 −Q2s+ (s−m2
N −m2

χ)2 for scalar N
1
2Q

4 −Q2s+ (s−m2
N −m2

χ)2 for fermionic N .

Here, the cross section in the ultra-nonrelativistic limit,

σNR
SI =

g2
χg

2
pµ

2
χp

πm4
A

, (5.11)

i.e. for Q2 → 0 and s→ (mN +mχ)2, agrees exactly with the result obtained for the scalar
case, as expected. For large energies and momentum transfers, on the other hand, the
behaviour is different.

The resulting CRDM fluxes are nonetheless so similar to the scalar case shown in
the left panel of figure 5 that we refrain from plotting them separately. Differences do
exist, however, for the stopping power in the overburden. In the left panel of figure 7 we
therefore show the minimal initial kinetic energy needed by a CRDM particle to induce
detectable nuclear recoils in Xenon-1T. Compared to the scalar case, cf. the right panel
of figure 5, the attenuation is more efficient for highly relativistic DM particles due to the
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Figure 7. Left panel. Minimal kinetic energy Tχ that a DM particle must have, prior to attenuation,
in order to trigger a signal in the Xenon-1T experiment for DM nucleus interactions via a vector
mediator, as a function of the spin-independent DM-nucleon scattering cross section in the highly
non-relativistic limit, σNR

SI . Yellow (green) lines indicate a DM mass mχ = 10MeV (mχ = 1GeV),
and different line styles correspond to mediator masses mA = 1, 10, 100MeV as indicated. Solid
lines show the case of a constant spin-independent scattering cross section and are identical to those
displayed in figure 2. Right panel. Constraints on σNR

SI as a function of the DM mass mχ. Solid
purple lines refer to the case of a constant cross section, as in figure 4, while other line styles show
the case where the interaction is mediated by a light scalar (red) or vector (green) particle with
mass mmed = 10MeV and 1GeV, respectively.

s-dependence of the terms in the second line of eq. (5.10). As before, the effect of these
model-dependent terms from the scattering amplitude is most visible for highly relativistic
particles, with small mχ, and large mediator masses, where the suppression due to the
factor (1 +Q2/m2

A)−2 is less significant.
In the right panel of figure 7 we compare the final exclusion regions for the situations

considered so far, i.e. for a contact interaction, scalar mediators and vector mediators,
respectively. For the sake of comparison in one single figure, we plot here the cross section
in the ultra-nonrelativistic limit. For an interpretation of these limits in comparison to
complementary constraints on DM-nucleon interactions we thus refer to the discussion
of figure 6, noting that the rescaling prescriptions for vector and scalar mediators are
qualitatively the same. The first thing to take away from figure 7 is that, as expected, the
exclusion regions for heavy mediators resemble those obtained for the constant cross section
case. The figure further demonstrates that the only significant difference between scalar
and vector mediators appears at smaller mediator masses, where the former are somewhat
less efficiently stopped in the overburden. It is worth noting, however, that this region
of parameter space where the vector and scalar cases differ substantially is nonetheless
excluded by Lyman-α bounds. The general discussion and conclusions from the scalar
mediator case explored in the previous subsection thus also applies to interactions mediated
by vector particles.
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5.4 Finite-size dark matter

As a final generic example of a Q2-suppressed cross section let us consider the situation where
the DM particle itself has a finite size that is larger than its Compton wavelength. Various
models of such composite DM have been extensively studied in the literature [134–141]. In
fact, ref. [142] even suggests that DM with masses above 1GeV cannot be point-like for
DM-nucleon cross section & 10−25 cm2. The corresponding scattering cross section then
takes the same form as in the point-like case, multiplied by another factor

∣∣Gχ(Q2)
∣∣2 that

reflects the spatial extent of χ [143–145]. Specifically, just as for nuclear form factors, we
have

Gχ(Q2) =
∫
d3x eiq·xρχ(x) , (5.12)

where ρχ(x) is the distribution of the effective charge density that the interaction couples
to. For simplicity we will choose a dipole form factor of the form9

Gχ(Q2) =
(

1 +
r2
χ

12Q
2
)−2

, (5.13)

with rχ being the r.m.s. radius of the DM particle, r2
χ =

∫
d3xx2ρχ(x). We then multiply

G2
χ(Q2) with eq. (3.2) in order to obtain dσχN/dTN , thus describing an effective scalar

interaction with the usual coherent enhancement inside the nucleus — but where each of
the nucleons only ‘sees’ some fraction of the entire DM particle.

In a very similar fashion to what happens in the presence of a light mediator φ, such a
cross section features a sharp suppression for momentum transfers exceeding a ‘mass’ scale
mφ ∼

√
12/rχ. Sharper than in that case, in fact, as the suppression scales with a power of

Q−8 rather than just Q−4. This is clearly visible in the left panel of figure 8, where we plot
the expected CRDM flux for DM with a finite size, for various values of mχ and rχ. For
example, for rχ = 10 fm, we have

√
12/rχ ∼ 68MeV and the cutoff indeed appears at only

slightly smaller values of Tχ than in the case of the 100MeV mediator displayed in figure 5
(for mχ = 1GeV). The slope above the cutoff, however, is twice as steep — as expected
from the Q−8 suppression.

In the right panel of figure 8 we show how the constraints on a constant DM-nucleon
cross section weaken when considering the situation where the DM particles themselves
have a finite extent. Concretely, for a DM radius of rχ = 1 fm (rχ = 10 fm) the maximal
DM mass that can be probed decreases from ∼ 10GeV to about 4.5GeV (1.1GeV). The
reduced CRDM flux for extended DM, cf. the left panel of the figure, also visibly weakens
the lower bound on the exclusion region. At the same time, attenuation is also less efficient
for a given cross section in the non-relativistic limit (inelastic scattering still effectively cuts
off the incoming CRDM flux above ∼0.2GeV, explaining e.g. the upper, almost horizontal
boundary of the exclusion region in the rχ = 10 fm case). For rχ & 1 fm, this starts to
significantly enlarge the excluded region to higher cross sections. On the other hand, it

9The exact choice of the form factor does not significantly affect our results, as long as Gχ(Q2) < Gχ(0) = 1.
An interesting, qualitatively different situation occurs when Gχ(0) = 0, i.e. for a form factor that grows with
Q2. This is, e.g., realized if the scattering is mediated by a dark U(1)′ under which χ is neutral [143, 145].
We will not consider this class of models in this work.
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Figure 8. Left panel. Solid lines show the CRDM flux before attenuation for a constant interaction
cross section, as in figure 1, for DM masses mχ = 10MeV and mχ = 1GeV. For comparison we
indicate the corresponding CRDM flux for finite size DM, with rχ = 1 fm (dotted) and rχ = 10 fm
(dashed), for a cross section of σNR

SI = 10−30 cm2. Right panel. Limits on the spin-independent
DM-nucleon cross section, with line styles and colors matching those of the left panel. In particular,
solid lines show the case of a constant scattering cross section and are identical to those displayed in
the left panel of figure 4.

should be noted that for composite DM particles the interaction cross section may not
actually continue to drop as Q−8 for very large momentum transfers, as would be implied
by eq. (5.13). At some point, instead, inelastic scattering events on the DM constituents
will take over, in analogy to what we discussed for nuclei in section 4. This is particularly
relevant if the DM constituents are themselves finite in size, in which case the upper
boundaries of the exclusion regions shown in figure 8 would be overly optimistic for very
large rχ.

Similar to the discussion in section 5.2, a comparison of the limits shown in figure 8
with complementary limits requires a re-scaling of σSI to a common reference cross section.
Due to the strong form factor suppression, this rescaling has an even larger effect than in
the light mediator case; concretely, instead of eq. (5.7), the rescaling of reported limits, σpSI,
to those relevant for the Xenon-1T detector now takes the form

σ̃pXe,SI = σpSI ×
(

Q2
ref + 12/r2

χ

Q2
Xe,ref + 12/r2

χ

)4

. (5.14)

Qualitatively, however, this does not change the lesson learned in the light mediator
case: while limits from the CRDM component can be weakened by increasing rχ, this
will inevitably strengthen complementary bounds from cosmology. As a result, we find
once again an absolute upper bound on the cross section of about σ̃SI ∼ 3 · 10−31 cm2,
independently of the DM mass and size. Also in this case there is a small loophole to this
statement if one is willing to assume that the thermalization efficiency of CRESST is as
small as 2%: when tuning the size of the DM particles to rχ ' 10 fm, we find that cross
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sections two orders of magnitude larger may in that case be viable for DM masses in a
narrow range between around 1GeV and 2GeV.

6 Hexaquarks: a viable baryonic dark matter candidate?

In section 5 we discussed various generic situations where the amplitude for elastic scattering
shows a significant dependence on the momentum transfer, and how this impacts the
conclusions about whether a window of large scattering cross sections remains open or not.
In this section we complement those more model-independent considerations by taking
a closer look at a specific DM candidate in the GeV range, with relatively large nuclear
interactions. Concretely, it has been conjectured that a neutral (color-flavor-spin-singlet)
bound state of six light quarks uuddss may exist, and provide a plausible DM candidate that
would evade all current constraints despite its baryonic nature [14, 146–149]. In particular,
this sexaquark S (to be distinguished from a generic 6-quark state, often referred to as
hexaquark) would form early enough to behave like standard cold DM during both big bang
nucleosynthesis and recombination. It would thus not be in conflict with the independent,
and rather precise, measurements [150, 151] of the cosmological baryon density during
these epochs.

Compared to the H-dibaryon that was suggested earlier [152] and thoroughly studied
both theoretically and experimentally (see refs. [153, 154] for reviews), furthermore, the
S should be much more tightly bound, leading to weaker interactions with ordinary
baryons and thus evading direct searches. Such a particle would be absolutely stable for
mS < mD +me ' 1.88GeV, and decay with a lifetime exceeding the age of the Universe for
mS . 2GeV [148]. Determining its expected mass exactly, however, is challenging; lattice
simulations, for example, remain somewhat inconclusive (see, e.g., refs. [155–158] where
the results for binding energies of the H-dibaryon state range from ∼17MeV to ∼75MeV
relying, however, on unrealistically large quark masses). Even if the sexaquark is stable
on cosmological timescales, its relic abundance would generally be much smaller than the
observed DM abundance if one assumes that its interactions in the early universe are of the
order of the strong force [159, 160]. If instead, one postulates much weaker interactions
due to the assumed compactness of the sexaquark, thermal equilibrium with the SM heat
bath would not be possible to maintain after the QCD phase transition and the correct
DM abundance might be achieved — in a region of parameter space claimed to evade all
existing constraints [148].

Motivated by this intriguing possibility, for simplicity we will adopt the description
of sexaquark interactions from ref. [148], i.e. we model the interaction with nucleons by
the exchange of a vector meson. In particular, the relevant interaction terms with the
flavour-neutral mixture of φ and ω, denoted by V , are given by

L = Vµ

(
igSS

† ↔∂µS + gppγ
µp+ gnnγ

µn

)
, (6.1)

and we adopt the value mV = 1GeV used in ref. [148] for our calculations. The value of
gn = gp ∼ 2.6

√
4π can be inferred from the literature on the one-boson-exchange model [161]
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although O(1) uncertainties can be expected here.10 The coupling gS is largely unknown,
though simple scaling arguments suggest that

αSN ≡
gSgp
4π (6.2)

is very roughly of the order of ∼ 0.1 [148]. Following that reference, we will treat αSN as a
free parameter that we will generously vary in the interval (10−3, 10). Importantly however
— at least in this parameter range — the DM relic abundance is independent of αSN. Instead,
the final abundance of S is set by an independent coupling constant g̃ [148] that describes
the (much weaker) sexaquark-breaking interactions within the effective description. This
coupling does not directly enter the analysis presented here.

We treat the interaction of V with nuclei similarly to that in section 5.3, i.e. we describe
it by the effective Lagrangian (5.9) with the coherently enhanced, effective coupling gN
given by eq. (5.3). For the elastic scattering cross section on nuclei we thus find

dσSN
dTN

= C
2σNR

SI
Tmax
N

m4
V

(Q2 +m2
V )2 ×G

2
N (Q2)G2

V (Q2) (6.3)

× 1
4sµ2

SN


(
s− 1

2Q
2 −m2

N −m2
χ

)2
for scalar N

m2
NQ

2 −Q2s+ (s−m2
N −m2

S)2 for fermionic N
.

Here,

σNR
SI =

16πα2
SNµ

2
Sp

m4
V

(6.4)

is the scattering cross section on nucleons in the non-relativistic limit and µSp (µSN ) is the
reduced mass of the sexaquark-nucleon (nucleus) system.

Compared to the treatment in section 5.3, we introduce an additional form factor GV
related to the cutoff in the one-boson-exchange models. In this context, exponential cutoffs

GV (Q2) = e
− Q2

Λ2
V (6.5)

are mostly used and the cutoff mass ΛV is fitted to data (and can in principle differ for
different meson exchange channels). For example, within the fit to data taking into account
hyperon-nucleon interactions [161], these cutoff masses were found to range between 820MeV
and 1270MeV. Since yet lower cutoff masses appear in related literature (e.g., down to
590MeV in [164]), we generously vary ΛV between 500 and 1500MeV. We note that for
ΛV & 1500MeV, CRDM limits become in fact independent of the cutoff scale.

In figure 9 we show the parameter space in the αSN vs. mS plane where sexaquark DM
is excluded because of the irreducible CRDM component. For a better direct comparison, we
also indicate the preferred mass range according to ref. [148], along with the complementary
limits presented in that analysis. From this figure, it is clear that our new limits close a

10In particular, we note that modern analyses of low-energy baryon-baryon scattering consider processes
beyond single meson exchange [162], and that baryon-baryon interactions can also be treated within the
more systematic approach of chiral perturbation theory [163]. However, given the significant uncertainties on
the sexaquark couplings we consider the one-boson-exchange approximation to be sufficient for our purposes.
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Figure 9. Effective sexaquark coupling αSN vs. sexaquark mass mS . The purple region shows the
parameter range that is excluded by the analysis in this work, assuming that sexaquarks make
up all of the cosmologically observed DM; different line styles correspond, as indicated, to cutoff
masses ΛV /GeV ∈ {0.5, 1, 1.5} in the one-boson exchange approximation. All other constraints are,
for easier comparison, directly reproduced from figure 10 of ref. [148], conservatively assuming an
attractive Yukawa force between S and nuclei. The thin vertical stripe corresponds to the mass
range where, according to that analysis, the sexaquark would be a viable DM candidate without
being in conflict with other particle physics observation, in particular the stability of deuterons
based on SNO data [165]. The upper end of that mass range may increase from 1890MeV to up to
2054MeV if sexaquark DM does not accumulate in the Earth at the level claimed in ref. [166].

significant part of the viable parameter region where sexaquarks could be the dominant DM
component — even without taking into account the CRESST results. In particular, we note
that the Lyman-α limits [100] shown in figures 4 and 6 were presented subsequent to the
analysis of ref. [148] and are significantly stronger than the CMB limits indicated in figure 9.
The apparently open window at αSN ∼ 0.3 is thus also robustly excluded. On the other
hand, a small open window remains for αSN . 4 · 10−3. While not being in conflict with
the DM abundance, as explained above, we recall that such values of αSN are somewhat
smaller than intrinsically expected.

Let us, finally, briefly comment on the fact that the DM-nucleon scattering cross section
can, strictly speaking, only be calculated perturbatively in the Born limit, αSNµχN . mV .
Outside this regime, non-relativistic scattering in a Yukawa potential exhibits parametric
resonances where the scattering amplitude is significantly enhanced or suppressed. This
non-perturbative effect is well-known from the self-scattering of cold DM in the presence of
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light mediators [167], and it is the origin of the resonant structure in the complementary
limits from ref. [148] that is visible in figure 9. For our CRDM limits, on the other hand, this
additional complication does not arise because such non-perturbative corrections are largely
irrelevant for relativistic scattering; in fact, already for the typical velocities during the freeze-
out process of thermally produced DM, vχ ∼ 0.3, the impact is strongly suppressed [167].
The CRDM limits are thus also robust w.r.t. underlying model assumptions such as whether
the force mediated by the Yukawa potential is attractive or repulsive.

7 Summary and conclusions

For sizeable elastic scattering rates between DM and nuclei there is an irreducible relativistic
component of the flux of DM particles arriving at Earth. This extends the sensitivity of
conventional direct detection experiments both to sub-GeV masses and to scattering cross
sections above the limit set by a too efficient attenuation of the DM flux on the way to the
detector. While such large scattering cross sections are also constrained by complementary
probes from astrophysics and cosmology, it has repeatedly been pointed out that there
might be an open window of relatively strongly interacting DM with a mass in the ballpark
of ∼ 1GeV.

We find that the CRDM component in the DM flux generically closes this window,
under rather minimal assumptions. In order to arrive at this conclusion, we included in
our analysis a detailed treatment of the inelastic scattering of DM off nuclei (section 4).
We demonstrate that this provides an important additional stopping channel for CRDM
particles on their way to direct detection facilities — unlike for non-relativistic DM, where
only elastic scattering is relevant. We also investigated the extent to which a possible energy
or momentum-transfer dependence of the cross section could weaken our general conclusions.
For this purpose, we considered i) a class of simplified models where the scattering with
nuclei is mediated by a light scalar (section 5.2) or vector (section 5.3) particle, as well as ii)
situations where DM particles cannot be described as being point-like (section 5.4). In all
these cases, the additional momentum-transfer dependence indeed weakens the limits from
direct detection — which however is compensated for by a corresponding strengthening of
complementary limits, in particular from cosmology. In combination, these limits stringently
constrain the possibility of cross sections larger than a few times 10−31 cm2, over a wide
range of DM masses. Interestingly, this is largely independent of underlying modelling
assumptions such as the mass of new mediator particles or the DM particles’ radius.

Finally, an exotic QCD bound state that is produced well before BBN, has repeatedly
been put forward as a potential DM candidate. While it is theoretically unclear whether
such states could actually exist, adding to significant experimental constraints, it is certainly
an intriguing idea to have a ‘baryonic’ DM candidate that would in fact evade the strong
evidence from BBN and CMB against this possibility. However, cosmic-ray upscattering of
such particles leads to stringent new constraints that have not previously been pointed out in
this context. For the concrete case of stable sexaquark DM, as discussed in section 6, we find
that the parameter space giving the correct cosmological abundance is strongly pressured.
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&neutrino_induced &input &nl_dSigmadElepton
process_ID 3 eventtype 5 enu Tχ
flavor_ID 2 numEnsembles 100 elepton 0.005Tχ
nuXsectionMode 2 numTimeSteps 0 delta_elepton ∆E`
nuExp 0 num_Energies 50 &target
includeQE T/F num_runs_sameEnergy 1 Target_A A

includeDELTA T/F delta_T 0.2 Target_Z Z

includeRES T/F localEnsemble T &initDensity
path_To_Input /path/to/buuinput include1pi F densitySwitch 2
includeDIS T/F &neutrinoAnalysis &initPauli
2p2hQE F XSection_analysis T pauliSwitch 2
include2p2hDelta F detailed_diff_output F
include2pi F

Table 1. Settings choices for running GiBUU to study neutral current neutrino scattering. We also
enforced a logarithmic binning in the outgoing lepton energy, by changing the variable assignment
of dElepton from E` → E` + ∆E` to E` → (1 + ∆E`)E`.

For the analysis performed in this work we used the numerical tool DarkSUSY [64]
to compute CRDM fluxes and limits. In doing so we significantly expanded the general
numerical routines provided therein, adding in particular inelastic scattering, the contribu-
tion from CRs beyond p and He, and an updated treatment of nuclear form factors in the
context of CRDM attenuation. These updates will be included in the next public release of
the code.
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