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Abstract
Solutions are investigated for 1D linear counter-current spontaneous imbibition (COUSI). 
It is shown theoretically that all COUSI scaled solutions depend only on a normalized coef-
ficient Λ

n

(

S
n

)

 with mean 1 and no other parameters (regardless of wettability, saturation 
functions, viscosities, etc.). 5500 realistic functions Λ

n
 were generated using (mixed-wet 

and strongly water-wet) relative permeabilities, capillary pressure and mobility ratios. The 
variation in Λ

n
 appears limited, and the generated functions span most/all relevant cases. 

The scaled diffusion equation was solved for each case, and recovery vs time RF was ana-
lyzed. RF could be characterized by two (case specific) parameters RFtr and lr (the cor-
relation overlapped the 5500 curves with mean R2 = 0.9989 ): Recovery follows exactly 
RF = T0.5

n
 before water meets the no-flow boundary (early time) but continues (late time) 

with marginal error until RFtr (highest recovery reached as T0.5

n
 ) in an extended early-

time regime. Recovery then approaches 1, with lr quantifying the decline in imbibition 
rate. RFtr was 0.05 to 0.2 higher than recovery when water reached the no-flow boundary 
(critical time). A new scaled time formulation T

n
= t∕�Tch accounts for system length L 

and magnitude D of the unscaled diffusion coefficient via � = L2∕D , and Tch separately 
accounts for shape via Λ

n
 . Parameters describing Λ

n
 and recovery were correlated which 

permitted (1) predicting recovery (without solving the diffusion equation); (2) predicting 
diffusion coefficients explaining experimental recovery data; (3) explaining the challeng-
ing interaction between inputs such as wettability, saturation functions and viscosities with 
time scales, early- and late-time recovery behavior.

Article Highlights

• The solution of all 1D linear counter-current problems only depends on a scaled diffu-
sion coefficient with mean 1

• Accurate recovery correlation characterized by highest root of time recovery and subse-
quent rate decline parameter
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• The behavior of all relevant COUSI systems is investigated for trends, prediction and 
experiment interpretation

Keywords Counter-current spontaneous imbibition · Universal scaling · Early- and late-
time solutions · Interpretation of experimental recovery data

Abbreviations
A  Scaled flux proportionality coefficient
D  Capillary diffusion coefficient,  m2/s
fw  Fractional water flow function
J  Scaled capillary pressure
K  Permeability,  m2

L  System length, m
m  Saturation profile exponent
ni  Corey exponent
pi  Phase pressure, Pa
Pc  Capillary pressure, Pa
r, lr  Late-time recovery tuning parameter (and its logarithm)
RF  Recovery factor
RFcr  Recovery when water reaches X = 1 (end of early time)
RFtr  Recovery when linear trend with square root of time ends (end of extended early 

time)
sw  Water saturation
S  Water saturation normalized over mobile saturation range
Sn  Water saturation normalized over positive capillary pressure range
t  Time, s
T   Normalized time
Tch  Characteristic dimensionless time to collect curves to one line
Tn  Normalized time
u  Darcy velocity, m/s
x  Length from open side, m
X  Scaled length
za,b  Fraction area of diffusion coefficient on upper half of the interval a < Sn < b

Greek
�i  Phase mobility, 1/(Pa s)
Λ  Dimensionless capillary diffusion coefficient
Λn  Normalized capillary diffusion coefficient with mean 1
�  Time scale of recovery, s
�i  Phase viscosity, Pa s
�ow  Interfacial tension, N/m
�  Porosity,



575Early‑ and Late‑Time Prediction of Counter‑Current Spontaneous…

1 3

1 Introduction

Spontaneous imbibition is a process where capillary forces cause uptake of wetting fluid 
(referred to as water) into a porous medium and simultaneous displacement of less or non-
wetting fluid (referred to as oil). In the subsurface it is especially relevant for oil and gas 
recovery in naturally fractured reservoirs (Mason and Morrow 2013) and water uptake dur-
ing hydraulic fracturing in shale (Makhanov et  al. 2014; Li et  al. 2019). In the former, 
injected water displaces oil from disconnected matrix blocks by spontaneous imbibition 
and gravity (Xie and Morrow 2001; Karimaie et al. 2006), while advective flow occurs in 
the permeable fracture network.

There are two main modes of spontaneous imbibition (Morrow and Mason 2013). The 
first is counter-current spontaneous imbibition (COUSI) where water and oil flow in oppo-
site directions. That happens when water surrounds a homogeneous matrix on all open 
sides and capillarity is dominant: e.g., the Amott test (Amott 1959) with imbibition of 
(cylindrical) core plug samples with all faces open (Fig. 1a), or some faces closed (Fig. 1 b, 
c). COUSI is the focus of this work, where 1D linear flow is considered. Such flow can be 
obtained by closing the radial face of a core (yielding symmetrical flow from two sides) or 
by closing the radial face and one flat face (yielding flow from one side toward the closed 
face). The second mode is co-current spontaneous imbibition which occurs where parts of 
the open surface are exposed to water and the rest to oil (Hamon and Vidal 1986; Bourbi-
aux and Kalaydjian 1990), see Fig. 1d. Then both phases flow mainly co-currently toward 
the oil-exposed surfaces (Pooladi-Darvish and Firoozabadi 2000; Andersen 2021b). The 
oil production is predominantly co-current, but less favorable mobility ratio or higher oil-
wetness can reduce this dominance (Andersen and Ahmed 2021).

Spontaneous imbibition is a strong indicator of wettability in the sense that the water 
uptake, and hence oil production, is limited by the degree of water-wetness (Kovscek et al. 
1993; Zhou et al. 2000). If the rock is strongly oil-wet there is no uptake, while stronger 
water-wetness means more uptake (Anderson 1987a). A strongly water-wet (SWW) rock 
will produce as much oil by COUSI as forced imbibition. Capillarity is the driving force, 
which vanishes when zero capillary pressure has been reached. Capillary diffusion can also 
impact estimation of relative permeabilities and residual saturations in core flooding exper-
iments (Rapoport and Leas 1953; Andersen 2021a, 2022) by liquid holdup from capillary 
forces.

Fig. 1  Some common boundary conditions applied on a cylindrical core plug to generate spontaneous imbi-
bition of water (W) displacing oil (O). Flow through open faces is indicated with arrows, the other faces are 
closed. Setups a-c give COUSI, while setup d gives co-current imbibition. In setup d only oil flows through 
(out) the oil-exposed top face while both fluids pass the water-exposed bottom face
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Significant efforts have been made to understand how various properties affect 
COUSI and to upscale lab experiments (see Mason and Morrow (2013) and Abd et al. 
(2019) for reviews on the subject). This has been done particularly considering the 
nonlinear partial differential equation describing COUSI. Permeability, porosity, block 
dimensions and shape and fluid properties such as viscosities and interfacial tension 
have been studied and built into time scales, usually considering a fixed rock type and 
wettability (Mattax and Kyte 1962; Hamon and Vidal 1986; Ma et al. 1997; Standnes 
2006; Mason et al. 2009; Standnes and Andersen 2017). Relative permeability and cap-
illary pressure functions also play an important role coupled with the viscosities. Zhou 
et al. (2002) included characteristic mobility end points in the time scale. Other works 
have included the role of viscosity or viscosity ratio using correction factors relative to 
established time scales (Fischer et  al. 2008; Standnes 2009; Mason et al. 2010; Meng 
et al. 2017). The focus has also here usually been for SWW systems, scaling experiments 
and limited theoretical cases rather than solving the mathematical problem in general. 
At high Bond numbers, fluid densities and block height can also matter (Schechter et al. 
1994; Xie and Morrow 2001; Bourbiaux 2009). Bourbiaux and Kalaydjian (1990) found 
that fluid mobilities during COUSI were necessarily lower than during co-current flow 
to explain experimental observations. Qiao et  al. (2018) simulated their observations 
consistently by accounting for viscous coupling. Gravity and viscous coupling are not 
considered within the scope of this work.

Aronofsky et al. (1958) suggested that experimental imbibition recovery could be mod-
eled as exponential with time. COUSI is usually not 1D and linear (in lab or field), but 
approximated so by introducing a characteristic length (Ma et al. 1997). This can affect the 
functional relation between recovery and time although Mason et al. (2009) indicated that 
the deviation from square root of time trends was not very significant. General solutions 
for 1D linear COUSI by McWhorter and Sunada (1990) accounted for arbitrary satura-
tion functions and showed that the solution depends on a self-similar variable x∕t0.5 , which 
implies that recovery follows a square root of time profile. The solution was only valid until 
the no-flow boundary was reached (called the critical time). Their solution was later used 
by Schmid and Geiger (2013) to scale experimental imbibition data for all wetting condi-
tions. It was extended by Andersen et al. (2020) to account for viscous coupling. It was 
also demonstrated that late-time recovery (defined as after the critical time) generally does 
not scale to one curve. Ruth et al. (2007) estimated a self-similar variable as function of 
saturation and predicted square root of time recovery at early time. Khan et al. (2018) com-
pared the semi-analytical solution with simulations from a commercial simulator.

Imbibition recovery at late time has been a challenge to predict without numerical simu-
lation. Tavassoli et al. (2005) assumed Corey relative permeabilities and a saturation profile 
as polynomial function of distance with time dependent coefficients. They derived recovery 
solutions at early and late time, the former following the square root of time. However, 
they did not get continuous slope in recovery at the transition time (set as the critical time). 
Their solution was also independent of capillary pressure except its derivative at the inlet 
saturation (we will show that to be incorrect). March et al. (2016) approximated the late-
time behavior with an exponential profile. They optimized the transition time by extending 
the square root of time period (which is considered a good approximation) and ensuring 
equal recovery and slope at the transition to exponential behavior. However, the exponen-
tial model did not represent late-time recovery well in many of the cases. Andersen (2021c) 
studied shale gas recovery with mathematically same type equation as COUSI. It was 
shown that the linear trend between recovery and square root time could last until recov-
ery levels were 0.2 to 0.4 higher than the recovery at the critical time (the final recovery 
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was 1 by definition). Velasco-Lozano and Balhoff (2021) modified the method by Tavassoli 
et al. (2005). They assumed the saturation profile maintained its early-time shape as long as 
recovery was linear with square root of time. To account for the boundary, mass conserva-
tion was used to keep water inside the core. They tuned four parameters in a polynomial 
saturation profile to fit the true profile at early time and to obtain continuous slope in recov-
ery at the transition to the finite-acting regime. That allowed predicting late-time saturation 
profiles and recovery with time. Momeni et al. (2022) derived asymptotic late-time solu-
tions for SWW cases.

From the above review we observe a few knowledge gaps: (a) Little has been said about 
possible distinctions between SWW and mixed-wet (MW) media regarding early- and late-
time behavior; (b) existing solutions for all-time recovery are either numerical; use non-
general correlations (e.g., derived under limiting assumptions) with poor and unjustified 
transition to late time; and lack clear descriptions of what controls the late-time behavior 
and its variations; (c) the only truly general solution is semi-analytical in integral form, 
thus lacking intuitive explanatory power and is valid only until the no-flow boundary is 
met; (d) existing late-time correlations suffer from poor transition from early to late time or 
ability to follow the numerical solutions.

In this work we investigate recovery during COUSI accounting for ‘all’ conditions 
(parameters related to wettability/saturation functions, core and fluid parameters, but not 
heterogeneity or dynamic changes in the stated parameters). It is shown that only a normal-
ized capillary diffusion coefficient (CDC) function Λn with mean 1 is needed to determine 
scaled solutions (Sect. 2), while specific case solutions follow from unscaling. Recovery 
behavior is investigated based on solving the diffusion equation with 5500 Λn different 
functions, expected to cover most possible scenarios. A correlation for early- and late-time 
recovery containing two tuning parameters (Sect. 3) is found to represent scaled recovery 
very well for the simulated cases and is used to describe a given recovery profile. We give 
a definition of transition time that matches visual observation and allows few parameters to 
describe the data. Three parameters describing the shape of Λn (Sect. 4) are correlated with 
the two recovery parameters, all of which are intuitive, even allowing visual interpretation. 
That allows estimating recovery directly from a given Λn , and opposite; estimate Λn from 
experimental recovery data, as illustrated on literature data (Sect.  5). Besides the stated 
knowledge gaps, we address: How does a given capillary diffusion coefficient, wettabil-
ity and viscosities affect imbibition recovery; How can we use experimental recovery data 

Fig. 2  Illustration of the 1D linear COUSI system and the boundary conditions. Water and oil flow counter-
currently through the open boundary at x = 0 by spontaneous imbibition while the system is closed at x = L 
(which can be due to symmetrical flow opposite this boundary or that the porous medium is sealed/imper-
meable at that point)
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from COUSI to estimate the CDC; What determines when recovery no longer acts propor-
tional to the square root of time?.

2  Mathematical Description of COUSI

2.1  Geometry and Mass Balance Equations

We consider 1D linear, incompressible, immiscible flow of oil ( o ) and water ( w ), Fig. 2, 
expressed with phase saturations si and phase pressures pi (i = o,w) . The variables are con-
strained by volume conservation and the imbibition capillary pressure function Pc

(

sw
)

:

 
Fluid fluxes ui are described by Darcy’s law. Gravity is ignored, and the system has con-

stant porosity � , absolute permeability K and wettability (represented by saturation functions). 
The system is open to water at x = 0 and closed at x = L . The open side has zero capillary 
pressure Pc corresponding to a fixed saturation seqw  , defined such that Pc

(

s
eq
w

)

= 0 (Hamon and 
Vidal 1986; Bourbiaux and Kalaydjian 1990). The system is saturated with oil and immobile 
water, yielding a positive capillary pressure driving COUSI.

Under the stated assumptions, the COUSI system is described by the well-known nonlinear 
capillary diffusion equation (McWhorter and Sunada 1990; Tavassoli et al. 2005):

fw is the fractional flow function, related to fluid mobilities �i (relative permeability kri 
divided by viscosity �i ) by:

The initial condition is uniform residual water saturation swr . This and the boundary condi-
tions are expressed as:

Capillary diffusion causes the saturations to approach seqw  throughout the system after infi-
nite time.

2.2  Scaled Representation

We introduce scaling of saturation, spatial axis and time:

sor is residual oil saturation, Δsw the range of mobile saturations and � a time scale to be 
defined soon. The imbibition saturation functions are monotonous functions of S . Capillary 
pressure is expressed using the dimensionless J-function (Dullien 1992):

(1)sw + so = 1, po − pw = Pc

(

sw
)

(2)𝜙

𝜕sw

𝜕t
= −K

𝜕

𝜕x

(

𝜆ofw
𝜕Pc

𝜕x

)

, (0 < x < L).

(3)fw =
�w

�w + �o

, �i =
kri

�i

, (i = o,w).

(4)sw(x, t = 0) = swr, sw(x = 0, t) = seq
w
, ui(x = L, t) = 0

(5)S =
sw − swr

Δsw
,Δsw = 1 − sor − swr,X =

x

L
, T =

t

�
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In line with Young–Laplace’ equation, it states that capillary pressure increases with inter-
facial tension �ow and inverse (characteristic) pore radius. From (2) we obtain a scaled trans-
port equation:

where D(S) is a CDC with one part containing known constant parameters (unit  m2/s), and 
a dimensionless saturation dependent part Λ(S).

Λ(S) contains the saturation function terms multiplied by the mean viscosity. The lat-
ter makes Λ(S) dimensionless and independent of �m (but dependent on the viscosity ratio 
�w∕�o ). The scaled initial and boundary conditions become:

Although the saturation functions span 0 < S < 1 , the relevant range for spontaneous 
imbibition is 0 < S < Seq . Seq can be less than 1 for cases that are not SWW and it is con-
venient to rescale the saturation:

Only saturations with positive capillary pressure, 0 < Sn < 1 , affect the solution. We 
update the transport Eq. (7):

Now we select the time scale � to account for the length L and magnitude of D:

Earlier imbibition time scales may be found in Mattax and Kyte (1962), Ma et  al. 
(1997), Zhou et al. (2002). D and Λ denote averaged dimensional and dimensionless CDCs, 

(6)Pc = �ow

√

�∕KJ(S),

(7)
�S

�T
=

�

L2
�

�X

(

D(S)
�S

�X

)

,

(8)D(S) =
�ow

√

K∕�

�mΔsw
Λ(S),�m =

�

�o�w

�0.5

(9)Λ(S) = �
m
�
o
f
w

(

−
dJ

dS

)

=
k
rw
k
ro

(

−
dJ

dS

)

(

�
o
∕�

w

)0.5
k
rw

+
(

�
w
∕�

o

)0.5
k
ro

(10)S(X = 0, T) = Seq =
s
eq
w − swr

Δsw
,
�S

�X
|X=1 = 0, S(X, T = 0) = 0

(11)Sn =
S

Seq
=

sw − swr

s
eq
w − swr

(12)
�Sn

�T
=

�

L2
�

�X

(

D
(

Sn
)�Sn

�X

)

,

(13)� = L2∕D =
�mΔswL

2

�ow

√

K∕�Λ
,

(14)D = ∫
1

Sn=0

D
(

Sn
)

dSn,Λ = ∫
1

Sn=0

Λ
(

Sn
)

dSn
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respectively, over the saturation range with positive capillary pressure. Dividing either of 
the two CDCs by their mean gives the same normalized function Λn

(

Sn
)

 with mean 1.

With the time scale (13), we obtain the final scaled system of equations:

In this system we have normalized the independent variables space 0 < X < 1 and time 
T > 0 and the dependent saturation variable 0 < Sn < 1 . The boundary conditions are 
the same for all cases. The only parameter affecting the scaled solution is the saturation 
dependent and normalized CDC Λn

(

Sn
)

 which is positive, has mean 1, is zero at Sn = 0 
(and Sn = 1 for SWW cases) and is independent of mean viscosity. This represents all 1D 
linear counter-current imbibition problems, for any input and wetting states.

Oil recovery factor RF (the fraction of oil that can be produced by COUSI) is given by:

RF starts at 0 and ends at 1 (regardless of wettability and residual and initial oil 
saturation).

3  Theory Motivated Characterization of COUSI

3.1  Semi‑analytical Solution for Early Time

McWhorter and Sunada (1990) developed a semi-analytical solution to 1D COUSI under 
the limitation that the no-flow boundary had not been reached by imbibing water. Their 
solution was adapted to our normalized Eqs. (16) and (17). For a full derivation, see Supp 
Mat Section A. Mainly, the position X of saturation Sn , and recovery factor, are both pro-
portional to T0.5:

where F�(

Sn
)

= dF∕dSn . The function F
(

Sn
)

 and the parameter A can be calculated when 
Λn is provided but they are defined implicitly in integral form and require numerical 
evaluation:

(15)Λn

(

Sn
)

=
D
(

Sn
)

D
=

Λ
(

Sn
)

Λ
.

(16)
�Sn

�T
=

�

�X

(

Λn

(

Sn
)�Sn

�X

)

,

(17)Sn(X = 0, T) = 1,
�Sn

�X
|X=1 = 0, Sn(X, T = 0) = 0

(18)RF(T) = Sn(T), Sn = �
1

X=0

Sn(X, T)dX, 0 ≤ RF(T) ≤ 1.

(19)X
(

Sn, T
)

= 2AF
�(

Sn
)

T0.5
,RF = 2AT0.5

(20)F
(

Sn
)

= 1 −

[

∫
1

�=Sn

(

� − Sn
)Λn(�)

F(�)
d�

]

⋅

[

∫
1

�=0

�

Λn(�)

F(�)
d�

]−1
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� is an integration variable. The solution (19) to (21) is valid until the critical time Tcr when 
the fastest saturation Sn = 0 meets the no-flow boundary X

(

Sn = 0, Tcr
)

= 1:

We next scale T  with a factor Tch , to yield same recovery when plotted against the result-
ing normalized time Tn:

Tn represents a similar normalized time as Schmid and Geiger (2013) derived from 
McWhorter and Sunada (1990). However, it sorts the scaling contributions into the magni-
tude of the diffusion coefficient and length through � and the contribution of the shape of 
the diffusion coefficient through Tch (which again only depends on viscosity ratio and the 
shape of the saturation functions, but not other parameters due to the definition of Λn ). It 
also does not assume modification of the saturation functions to treat MW cases. RF equals 
T0.5

n
 at early time for all cases. From (22) and (23), recovery at the critical time is:

Equations (23) are valid at early time, but do not explain what happens at later time, or 
give an intuitive link between Λn and the parameters A and  RFcr. We will relate A and RFcr 
quantitatively with Λn and offer extensions from the early-time solution.

3.2  Transition from Early to Late Time

Early-time recovery RF equals T0.5

n
 and obeys dRF

d
√

Tn
= 1 until Tn = Tn,cr . Considering recov-

ery trends after critical time, this linear behavior appears to last significantly longer (March 
et al. 2016; Andersen 2021c). To capture this, we define a transition time Tn,tr > Tn,cr when 
the slope of the full time solution deviates ‘enough’ from 1, here selected as when the slope 
has decreased to 0.9:

The value 0.9 represented well where the numerically calculated recovery curves 
appeared to intersect the extended straight line 

�

RF =
√

Tn

�

 , illustrated in Sect. 5.3, and 
improved the overall match of the investigated dataset compared to values such as 0.95 and 
1 (no transition).

Since recovery until this point is well approximated by the straight line, we formulate it 
mathematically as:

(21)A2 =
1

2∫
1

�=0

�

Λn(�)

F(�)
d�

(22)Tcr =
1

4A2

1
[

F
�
(

Sn = 0
)]2

(23)RF = T0.5

n
, Tn =

T

Tch
=

t

�Tch
, Tch =

1

4A2

(24)RFcr = T0.5

n,cr
=

√

Tcr

Tch
=

1

F
�
(

Sn = 0
)

(25)
dRF

d
√

Tn

�Tn=Tn,tr
= 0.9,
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and we define recovery at the transition point RFtr as:

After Tn,tr recovery deviates from the linear trend. For convenience we from now refer 
this as late time, but remind that late time generally includes the transition after Tn,cr . The 
time before Tn,tr can be considered (extended) early time.

3.3  Late‑Time Recovery

The correlation derived by Tavassoli et al. (2005) for late-time recovery will be assumed 
except in general form below with arbitrary constants c

0
, c

1
, c

2
, r . We determine the con-

stants to our own constraints.

Upon time differentiation, the expression is equivalent to Arp’s harmonic decline curve 
(Arp 1945). We require that RF equals 1 at infinite time; RF is on the square root profile at 
Tn,tr ; and the derivative of recovery wrt. 

√

Tn is 0.9 at Tn,tr:

These constraints applied to (28) eliminate c
0
, c

1
, c

2
 , yielding the following late-time 

expression:

(26)RF = T0.5

n
,
(

0 < Tn < Tn,tr
)

(27)RFtr = T0.5

n,tr

(28)RF
(

Tn
)

= c0 −
c1

(

Tn + c2
)r

(29)RF
�

Tn → ∞
�

= 1,RF
�

Tn,tr
�

= RFtr,
dRF

d
√

Tn

�Tn=Tn,tr
= 0.9

(30)RF
(

Tn
)

= 1 −

[

1 +
0.9

2r

Tn −
[

RFtr

]2

RFtr −
[

RFtr

]2

]−r

(

1 − RFtr
)

,
(

Tn,tr < Tn < ∞
)

Fig. 3  Plot of the recovery cor-
relation against T0.5

n
 for various 

 RFtr and lr. At lr > 1.5 the curve 
converges to an exponential func-
tion (yellow points)
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Given RFtr , r is the only tuning parameter for recovery between Tn,tr and Tn → ∞ . For 
convenience, we will refer to the logarithmic value of r , called lr:

Sensitivity analysis showed that the correlation (30) converges to an exponential profile 
for lr > 1.5 (regardless value of RFtr):

3.4  Summarized Parameterization of Recovery 

Based on the previous discussion, two parameters are used to describe scaled recovery 
RF

(

Tn
)

 : RFtr defines (extended) early-time recovery with (26), and lr is used to describe the 
continued late-time profile using (30). The combined correlation is illustrated in Fig. 3 for 
a low and high  RFtr and three choices of lr each. At higher lr, the late-time recovery more 
quickly reaches 1. The case with lr = 1.5 is indistinguishable from an exponential correlation. 
To get RF against T , we need the factor Tch (equivalently A ). RF against regular time t further 
requires � , see (23). We will also calculate  RFcr (RF when the no-flow boundary is encoun-
tered) mainly for comparing with  RFtr.

3.5  Estimate of Spatial Saturation Profiles Before Critical Time

Before critical time, saturation positions are proportional to T0.5

n
 and a function F′(

Sn
)

 , see 
(19). Sn = 1 has zero speed, while Sn = 0 travels the fastest and reaches X = 1 at critical time, 
see (22). The following expression suggests a function F′(

Sn
)

 (the factor to T0.5

n
 ) with an expo-

nent m determining the shape:

The averaged saturation profile must equal recovery, see (18). In particular, at critical time 
when X(0) = 1 , we obtain RF = RFcr . That allows to determine m from the parameter  RFcr:

Thus, from estimates of RF and RFcr we can estimate a saturation profile with correct 
amount imbibed water and front position.

4  Parameters Characterizing the Scaled Diffusion Coefficient 3
n

By reducing the COUSI problem to (16) and (17) through scaling, the function Λn is the only 
input affecting the solution. For a simple description of a given function Λn

(

Sn
)

 , we introduce 
a few parameters quantifying its shape. Define za,b as the fraction area of Λn on the interval 
a < Sn < b which is on the upper half of that interval:

(31)lr = log
10
r

(31)RF = 1 +
(

RFtr − 1
) exp

(

CTn
)

exp
(

CTn,tr
) ,C =

0.9

2
(

RFtr − 1
)

RFtr

(33)X =
1

2

[

(

1 − Sm
n

)

+
(

1 − Sn
)

1

m

] T0.5
n

RFcr
,
(

0 < Tn < Tn,cr
)

(34)m =
RFcr

1 − RFcr
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A higher za,b means Λn is shifted more toward b than a on the interval. As the fraction only 
indicates shape, we could replace Λn with D in (35) and get the same answer. Three fractions 
z0,1, z0,0.5, z0.5,1 are used to characterize each function Λn in this work, see Fig. 4. Andersen 
(2021c) showed that z0,1 correlated strongly with the solution output for a shale gas problem.

5  Results and Discussion

5.1  Workflow and Implementation

We have proven that RF(T) only depends on Λn

(

Sn
)

 . A set of recovery parameters A, 
 RFtr, lr and RFcr will be shown is a highly accurate description of all relevant curves 
RF(T). Further, we have proposed describing Λn with the three fractions z0,1, z0,0.5, z0.5,1 
(see Fig.  4). Assuming z0,1, z0,0.5, z0.5,1 give a sufficiently detailed representation of Λn 
we can expect them to provide an accurate prediction of early- and late-time recovery 
in terms of A, RFcr, RFtr and lr (as will be demonstrated). We will also show that nor-
malized recovery parameters RFtr and lr allow to estimate A and z0,1, z0,0.5, z0.5,1 , thus 
resulting in prediction of the diffusion coefficient Λn . The analyses are based on creating 
a database of 5500 Λn functions (which can be considered to span all relevant cases), 
the resulting recovery solutions and their characterizing parameters. Accordingly, the 
relations we obtain are general for all COUSI behavior. Unscaling allows connecting to 
standard data formats including experimental data.

Relative permeability and J-functions, combined with mobility ratio in (9) and (15), 
yield realistic Λn (Sect.  5.2). For a given Λn

(

Sn
)

 we calculate RF(T) numerically by 
solving the PDE (16), but also semi-analytically until critical time. Recovery is charac-
terized with RFcr and A from (20), (21) and (24) in the semi-analytical solution; and 
 RFtr (defined by where dRF

d
√

Tn
= 0.9 ) and lr by fitting (30) to RF(Tn) >  RFtr from the 

(35)za,b =

∫ b

Sn=
a+b

2

Λn

(

Sn
)

dSn

∫ b

Sn=a
Λn

(

Sn
)

dSn

,
(

0 < za,b < 1
)

Fig. 4  Illustration of how z0,1, z0,0.5, z0.5,1 are calculated for a function Λn

(

Sn
)

 with values indicated for this 
specific example
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numerical solution (see their role in Fig.  3). The input Λn is characterized by 
z0,1, z0,0.5, z0.5,1 . The ability of correlation (26) and (30) to describe recovery, and the link 
between Λn and recovery are discussed with an example (Sect. 5.3). The database and 
the recovery correlation performance are described (Sect.  5.4). Relations between Λn 
parameters and recovery parameters are demonstrated and quantified (Sect.  5.5 and 
Supp Mat D). Recovery is predicted (without solving the PDE) for two literature data 
cases (Sect.  5.6); and we estimate CDCs explaining experimental recovery data 
(Sect.  5.7). The approaches are validated by comparing estimated recovery with the 
numerical solution.

The numerical solution was implemented fully implicit in-house in MATLAB as 
described in Supp Mat Section B. We used 500 equal grid cells and 50000 time steps 
(equal on a square root axis) until 

√

Tn = 5 (2 orders of magnitude higher than when 
RF = 0.5, and 3.4 orders higher than when RF = 0.1 in the linear regime). See conver-
gence analyses in Supp Mat Section C.

The quality of the correlations in predicting parameters and recovery profiles is eval-
uated using RMSE and R2:

where n indicates the number of (data) points, yp
i
 the prediction and yobs

i
 the observation (or 

true value) of pointi . RMSE has the same unit asy . If there is a constant prediction error 
|

|

|

y
p

i
− yobs

i

|

|

|

> 0 , RMSE will equal that value. R2 indicates how much scatter there is com-
pared to explanative power. R2 = 1 indicates perfect prediction, while R2 = 0 means no 
predictive power.

5.2  Saturation Function Correlations and Normalized Diffusion Coefficients

We use extended Corey function correlations (Brooks and Corey 1966) for relative 
permeability:

The exponents ni vary linearly with S from ni1 to ni2 for flexibility. The J-function is a 
modified Bentsen and Anli (1976) correlation, where we have incorporated J

(

Seq
)

= 0:

The resulting CDC Λ(S) , defined by (9), becomes:

At the end saturations S = 0 and S = 1 , dJ
dS

 goes to negative infinity, but Λ(S) goes to 0 for 
typical Corey exponent values ni

(

Si = 0
)

> 1 . The parameters J
1
, J

2
, k∗

rw
, k∗

ro
,�w,�o affect 

the function shape through the two parameter ratios, J1
J2

 and k
∗
ro

k∗
rw

�w

�o

 , while they only affect the 

(36)RMSE =

�

1

n

�

i

�

y
p

i
− yobs

i

�2
,R2 = 1 −

∑

i

�

y
p

i
− yobs

i

�2

∑

i

�

yobs
i

− yobs
i

�2
, yobs

i
=

1

n

�

i
yobs
i

(37)kri = k∗
ri
S
ni
i
, ni = ni1S + ni2(1 − S), (i = o,w)

(38)J(S) = −J
1
ln

(

S

Seq

)

+ J
2
ln

(

1 − S

1 − Seq

)

(39)Λ(S) =
J
2
k∗
ro

(

�o

�w

)0.5

Snw−1(1 − S)no
(

J1

J2

)

+ Snw (1 − S)no−1

Snw +
(

k∗
ro

k∗
rw

�w

�o

)

(1 − S)no
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magnitude if the ratios are kept constant. The factor J2k
∗
ro

(

�o

�w

)0.5
 cancels during normalization to 

Λn

(

Sn
)

= Λ
(

Sn
)

∕∫ 1

Sn=0
Λ
(

Sn
)

dSn and does not need specification to predict scaled solu-
tions against Tn.

5.3  Imbibition Behavior from Normalized Diffusion Coefficients

Saturation functions from Kleppe and Morse (1974) were adapted to correlations (37) to 
(38), Fig. 5. Function and system parameters are listed in Table 1 (tables are at the end 
of the paper). Assuming five oil viscosities �o (0.01 to 100 cP) gives D

(

Sn
)

 and after 

Fig. 5  Input relative permeabilities (a) and J-function (b) based on Kleppe and Morse (1974) (points), 
adapted to correlations (lines) (37) to (38). Corresponding D

(

Sn
)

 in (c) and normalized versions Λn

(

Sn
)

 in 
(d) for different oil viscosities

Table 1  Input parameters 
characterizing the system and 
saturation functions from Kleppe 
and Morse (1974)

n
w1

6 J
1

0.3 K 290 mD

nw2 2.5 J
2

0.03 L 0.1 m
no1 2 Seq 0.999 � 0.225
no2 0.5 swr 0.30 �w 1 cP
k∗
rw

0.07 sor 0.395 �o 0.01 cP to 100 cP
k∗
ro

0.75 �ow 21 mN/m
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normalization Λn

(

Sn
)

 , Fig.  5. Increasing �o four orders of magnitude reduces D and � 
increases accordingly, by a factor 12 (Table 2). The peak shifts to lower Sn.

Considering Λn (same mean of 1), only the shape is shifted, from having most of the 
coefficient collected around a high saturation peak (the 0.01 cP case) to more even distribu-
tions at high viscosity. The change is quantified by lower z0,1 and z0.5,1 ( z0,0.5 did not change 
much) as Λn shifts to lower saturations (Table 2).

Numerical solutions of RF
(

T0.5
)

 are shown in Fig. 6a based on each Λn

(

Sn
)

 . In all 
cases RF is linear with T0.5 initially and then falls below the extended straight line. For 

Fig. 6  Recovery RF against T0.5 (a) and T0.5

n
 (b) based on Λn with five choices of oil viscosity (0.01 cP to 

100 cP).  RFcr (circles), and  RFtr (triangles) are marked. Dashed lines indicate extended early-time solutions 
(equivalent to RF = T0.5

n
)

Fig. 7  Numerically calculated (full lines) RF against time with corresponding correlations (dashed lines) 
and  RFtr indicated (red triangles). The 10 cP case was also simulated with an independent software (circles)
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Λn

(

Sn
)

 with higher z0,1 (lower oil viscosity) the early-time recovery goes faster (higher 
slope 2A and equivalently lower Tch ) and lasts longer in terms of both  RFcr and  RFtr 
(marked with circles and triangles, respectively), quantified in Table 2.  RFtr is clearly 
higher than  RFcr (by ~ 0.15 units) and visually better represents the deviation from 
straight line behavior. In Fig. 6b we plot RF against T0.5

n
 . All curves fall on the same line 

RF = T0.5

n
 at early time but deviate from the line at different  RFtr.

In Fig. 7, RF is plotted against time (hours) together with the correlation proposed 
to describe recovery. The lowest R2 of the five cases was 0.9999, and the highest RMSE 
was 0.0021. The applied characterization thus appears to describe recovery well. The 
10 cP case in Fig. 7 was also simulated using IORCoreSim (Lohne 2013, Lohne et al. 
2017), for validation of the numerical code.

Numerically calculated saturation profiles are shown in Fig. 8. Estimated profiles based 
on (33) are also provided, at and before critical time. At low oil viscosity 0.01 cP (high z0,1 ) 
saturations are high behind the front (given by a large m = 3.1), while at high oil viscosity 
100 cP (low z0,1 ) the saturations fall quickly near the inlet (reflected by a low m = 0.588 ). 
The estimated profiles follow the numerical solution profiles reasonably and capture that at 

Fig. 8  Profiles Sn(X) at different levels of RF for �o = 0.01 cP (high z0,1 ) (a) and 100 cP (low z0,1 ) (b). Full 
lines are calculated numerically, while dashed lines are shown at or before critical time based on (33)

Table 3  Random selection of input parameters to generate normalized CDCs Λn(S) using uniform distribu-
tions with limits indicated. aHalf the cases were SWW by setting Seq equal to 0.999. b J1

J2
 was correlated with 

Seq such that log
10

(

J
1

J2

)

=
Seq−0.2

0.8
+ rand(−1, 1)

Min Max Min Max

nw1 0.5 6 a Seq 0.2 0.999
nw2 1.5 6 b log

10

(

J
1

J2

)

−1 2

no1 1.5 6 log
10

(

k∗
ro

k∗
rw

�w

�o

)

−3.5 4.5

no2 0.5 6
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higher z0,1 a higher recovery is obtained when the no-flow boundary is reached, or equiva-
lently that at high z0,1 the fastest saturation Sn = 0 is not very fast compared to the remain-
ing profile. Note that our main focus is on recovery (which is well predicted), and not the 
saturation profiles (where better prediction is possible).

5.4  Simulation Database

We generate 5500 functions Λn

(

Sn
)

 from 5500 random combinations of the seven parame-
ters nw1, nw2, no1, no2, Seq, log10

(

J1

J2

)

, log
10

(

k∗
ro

k∗
rw

�w

�o

)

 , see Table 3. Half the cases were SWW 

by setting Seq = 0.999 , while the others had random values down to Seq = 0.2 . log
10

(

J1

J2

)

 
was positively correlated with Seq since the positive J-term should be more dominant in 
more water-wet systems.

Based on each Λn

(

Sn
)

 , we solved the model numerically and semi-analytically to calcu-
late RF at early and late scaled times T  and Tn and quantified z0,1, z0,0.5, z0.5,1 (for the coef-
ficient shape, see Fig. 4) and A, RFcr, RFtr, lr (characterizing recovery, see Fig. 3).

Each curve RF
(

Tn
)

 described by the correlation (26) and (30) with RFtr and lr was com-
pared with the curve (numerical solution) it was approximating. The mean RMSE was 
0.0045 and the mean R2 was 0.9989. The histograms in Fig. 9 indicate that RMSE < 0.01 
for 90% of the cases and R2

> 0.995 for 95% of the cases and good match also on the outli-
ers. We thus find the correlation to be an accurate representation of COUSI recovery.

Fig. 9  Quantitative description of how well the correlation (26) and (30) matches numerically calculated 
recovery profiles for the 5500 simulations
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5.5  Parameter Correlations

Nonlinear regression correlations referred to in the following were obtained using multi-
variable polynomials. Expressions and performance metrics are found in Supp Mat Section 
D.

5.5.1  Estimation of Recovery Curve Parameters 
(

�,��
��
,��

��
, ��

)

 from 3
�

Based on the 5500 simulations, A, RFtr and RFcr were plotted against z0,1 in Fig. 10. They 
all predominantly increase with z0,1 , in line with Sect.  5.3, but also show scatter for a 
fixed z0,1 . The data for A and RFtr could be sorted vertically (at fixed z0,1 ) by z0,0.5 when 
z0,1 < 0.35 , while RFcr was sorted by z0,0.5 for z0,1 < 0.85 . Similarly, A and RFtr were sorted 
by z0.5,1 when z0,1 > 0.35 while RFcr was sorted by z0.5,1 for z0,1 > 0.85.

These trends directly state that higher RF is obtained in the square root regime, whether 
defined by critical time recovery (with RFcr ) or transition time recovery ( RFtr ), when Λn is 
shifted to higher saturations (quantified by increased z0,1 or increase in the second fraction 

Fig. 10  A (a),  RFtr (b) and  RFcr (c) plotted against z0,1 and sorted by their values of z0,0.5 for low z0,1 and 
their values of z0.5,1 for high z0,1 . In (d) a histogram of the differences  RFtr–RFcr
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at a fixed z0,1 ). RFtr was consistently higher than RFcr , by 0.05 to 0.2 units for 90% of the 
cases (Fig. 10d), indicative that the transition period after critical time is significant.

The early-time imbibition rate coefficient A , similarly increases as Λn is shifted to higher 
saturations. A spanned a narrow range from 0.2 to 0.7. Thus, Λn determines A within a fac-
tor 3.5, and Tch = 1∕4A2 within a factor of 12. A only contains the contribution from the 
shape of D on time scale. The remaining contribution is from � = L2∕D.

Correlations were developed for A, RFtr and RFcr as function of 
(

z0,1, z0,0.5
)

 or 
(

z0,1, z0.5,1
)

 
on the stated ranges of z0,1 , with R2 varying from 0.989 to 0.998. See Fig. 12 a–c for cross 
plots of correlation values vs dataset values.

The parameter lr is plotted in Fig.  11a against z0.5,1 and sorted into water-wet cases 
(WW) in blue and mixed-wet (MW) cases in red defined by whether Seq > 0.99 or not, 
respectively. This sorting was selected and found useful since it appears late-time behavior 
is controlled by the diffusion coefficient at the highest saturations, which is described par-
ticularly by z0.5,1 and wetting state. The MW values at a given z0.5,1 are significantly higher 
than the WW values, and for both cases lr increases with z0.5,1.

Fig. 11  The lr data plotted against RFtr sorted into MW and WW (a). Maps of z0,1 and RFtr with specific 
value ranges of lr for MW (b) and WW (c) data. Dashed lines indicate the transition to points with lr > 1.5
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Both these trends relate to fluid mobility at the highest saturations Sn ≈ 1 (giving larger 
values of the coefficient): MW cases have Λn > 0 at Sn = 1 , while WW cases have a zero 
value (since the oil mobility terminates). Higher z0.5,1 indicates how much of Λn at high 
saturations is located at the very highest saturations. Thus, if there is high fluid mobility 
(giving high Λn ) at the highest saturations, lr is high and RF quickly approaches 1 at late 
time. On the other hand, low mobility at the highest saturations gives low lr and RF more 
slowly approaches 1.

Fig. 12  Cross plots showing estimated recovery parameter values against dataset values from the 5500 sim-
ulations for A (a), RFtr (b),  RFcr (c), MW lr (d) and WW lr (e). Based on correlations a to l in Table S1 
using fractions za,b as input. Note that inputs RFtr and q = z0,1 − 2.1RFtr in (d) and (e) are also based on 
estimates of RFtr from fractions za,b , while zr = z0.5,1∕z0,1



594 P. Ø. Andersen 

1 3

For an illustration of this phenomena, consider the CDCs Λn in Fig. 5d. The 100 cP oil 
case is almost flat at high saturations and lr takes the low value of −0.23 (Table 2), while 
as viscosity reduces Λn is shifted to higher saturations, and lr changes accordingly reaching 
1.5 at the lowest viscosity. Figure 7 demonstrates that this difference in lr results in several 
orders of magnitude longer time in the late-time regime for the high oil viscosity case.

In order to build predictive correlations estimating lr , the MW and WW data were 
treated separately and plotted in Fig. 11b and c as RFtr and z0,1 points taking specific 
values of lr . lr varied systematically with z0,1 for a given RFtr . That was used as a 
criterion (dashed lines) for whether lr > 1.5 (blue points in Fig.  11b and c) which 
would result in an exponential recovery profile. Specifically, we could draw a line 
q ∶= z0,1 − 2.1RFtr through the data (dashed black line) such that 98.5% of the MW 
points with q < −0.85 and 89.2% of the WW points with q < −0.98 had lr > 1.5 (the 
blue points). The variable q was also found to be a very good input for predicting 
lr . At high RFtr and q below the stated limit, lr was set to 1.5. Continuous correla-
tions were provided for low RFtr and for high RFtr with high q.lr was well predicted 
at RFtr < 0.6 with RMSE ∼ 0.03 (blue points in Fig.  12d, e), while at high RFtr > 0.6 
the prediction was less accurate with RMSE ∼ 0.2 (small compared to lr varying from 
−1 to 1.5). Accurate lr prediction at low RFtr is however considered more important 
since a greater portion of recovery then is in the late-time regime which is determined 
by lr . The smaller amount of late-time recovery data for high RFtr may explain why 
lr becomes more uncertain. Increased uncertainty in lr at higher lr values (> 0.5) is 

Fig. 13  Plot of A (a), z0,1 (b), z0.5,1 (c) and z0,05 (d) against RFtr , the latter three sorted by lr
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explained by the recovery curve becoming less sensitive to lr , see Fig. 3. Hence, inac-
curacy in lr does not cause inaccuracy in recovery calculations.

5.5.2  Estimation of Diffusion Coefficient Parameters ( z
0,1, z0.5,1, z0,05 ) and A 

from Scaled Recovery Parameters

The parameters A, z0,1, z0.5,1, z0,05 are plotted against RFtr in Fig.  13. Estimated values 
from correlations vs dataset values are shown in Fig. 14.

A did not display significant scatter and could be estimated accurately as a correlation 
of RFtr ( R2 = 0.9996 ). The fractions za,b generally increase with RFtr , predicting a coeffi-
cient shifted to higher saturations. They show scatter for a given RFtr but were relatively 
well sorted by lr . z0,1 and z0.5,1 appeared well defined given RFtr and lr . z0.5,1 depended 
mainly on RFtr at RFtr > 0.8 and mainly on lr at RFtr < 0.6 . For all three parameters, but 
especially z0,05 , the data were better sorted by lr at RFtr < 0.6 than at RFtr > 0.6 . Corre-
lations for the za,b fractions were developed as function of (RFtr, lr on the two intervals. 
Data values of lr > 1.5 were set as 1.5 since the recovery curve becomes the same.

The prediction performance was good for z0,1 and z0.5,1 at low RFtr < 0.6 (red points 
in Fig. 14b,c) with RMSE ∼ 0.01 for both. At high RFtr > 0.6 (blue points) the error of 

Fig. 14  Cross plots showing estimated values against dataset values for the 5500 simulations for A (a), and 
CDC parameters z0,1 (b), z0.5,1 (c), z0,0.5 (d). Based on correlations m to s in Table S1 with scaled recovery 
parameters  RFtr and lr as input



596 P. Ø. Andersen 

1 3

both increased to RMSE ∼ 0.03 . z0,05 was estimated less accurately ( RMSE ∼ 0.06 for 
RFtr < 0.6 and RMSE ∼ 0.07 for RFtr > 0.6 ). Based on recovery parameters RFtr and lr , 
we are thus able to determine A and CDC parameters za,b . That is applied on experimen-
tal data in Sect. 5.7 to obtain full diffusion coefficients.

Fig. 15  Predicted RF(t) using correlations (dashed lines) with A, RFtr, lr based on diffusion coefficient frac-
tions za,b and numerically calculated RF(t) (full lines). Five cases are shown with different oil viscosity and 
input from Kleppe and Morse (1974) (a) and Behbahani and Blunt (2005) (b)

Fig. 16  Saturation functions from Behbahani and Blunt (2005) (a) and resulting Λn

(

Sn
)

 for different oil 
viscosities (b)
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5.6  Estimation of Recovery from the Capillary Diffusion Coefficient

We illustrate estimation of recovery based on diffusion coefficients D . Consider the 
coefficients in Fig. 5c, based on Kleppe and Morse (1974). They were scaled by D to 
obtain Λn . The three fractions za,b for each were used to estimate A, RFtr, lr (correla-
tions in Supp Mat Section D) giving RF

(

Tn
)

 . To calculate RF against time t  we use that 
t = �TchTn where � = L2∕D and Tch = 1∕4A2 . The estimated curves are plotted against 
numerically simulated results in Fig. 15a.

Additionally, we consider MW relative permeabilities and J-function from Behba-
hani and Blunt (2005) (Fig. 16a). They ran pore scale simulation of wetting conditions 
and matched experiments by Zhou et  al. (2000) with upscaled functions. We vary oil 
viscosity (from 0.1 to 1000 cP), obtain Λn (Fig. 16b), calculate za,b , estimate A, RFtr and 
lr (Tables 4 and 5), unscale Tn to get RF(t) and compare with numerical simulations in 
Fig. 15b (the two cases with lowest viscosity are similar).

For both datasets RF(t) is well predicted: RMSE and R2 spanned 0.001–0.009 and 
0.999–1.000 for the WW example and 0.001–0.005 and 0.999–1.000 for the MW exam-
ple, respectively.

5.7  Estimation of Capillary Diffusion Coefficients from (experimental) Recovery 
Data

Assume data RF(t) for an imbibition experiment. The data can be plotted against square 
root of normalized time such that early-time data lay on the straight line RF = T0.5

n
 . Based 

on the plot of RF against T0.5

n
 , we determine RFtr where RF deviates from the straight line. 

Fitting RF > RFtr (late-time data) to (30) provides the value of lr . The factor between 
time t and Tn from scaling equals the product of � and Tch , which are both unknown. Tch 

Table 4  System and saturation 
function input from Behbahani 
and Blunt (2005)

n
w1

5 J
1

0.1 K 3131 mD

nw2 4 J
2

0.02 L 10 cm
no1 2.5 Seq 0.65 � 0.207
no2 1.5 swr 0.15 �w 0.967 cP
k∗
rw

0.05 sor 0.38 �o 0.1 to 1000 cP
k∗
ro

1 �ow 0.0242 N/m

Table 5  Calculated parameters based on MW data from Behbahani and Blunt (2005)

Case Scaling parameters CDC shape parameters Estimated recovery parameters

�
o
[cP] D[m2/s] �[hr] z0,1 z0.5,1 z0,0.5 A RFtr lr

0.1 6.34e-8 43.8 0.947 0.760 0.936 0.667 0.882 1.50
1 6.20e-8 44.8 0.946 0.760 0.936 0.667 0.880 1.50
10 5.24e-8 53.0 0.936 0.718 0.936 0.661 0.863 1.50
100 2.68e-8 103.5 0.880 0.551 0.934 0.634 0.791 0.581
1000 0.805e-8 345.2 0.687 0.347 0.916 0.590 0.683 0.589
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is estimated from the correlation A
(

RFtr

)

 and using Tch = 1∕4A2 . After, � can be cal-
culated. The only unknown parameter in � , Λ , is calculated subsequently. The fractions 
z0,1, z0,0.5, z0.5,1 characterizing Λn are estimated from RFtr and lr . We then have information 
about the shape and magnitude of Λn,Λ and D.

Fig. 17  Experimental data from Fischer et al. (2008) plotted against T0.5

n
 , with varied wetting phase viscos-

ity for oil viscosity of 3.9 cP (a) and 63.3 cP (b)

Fig. 18  Experimental RF (points) from Fischer et al. (2008) with same oil viscosity and different water vis-
cosities plotted against T0.5

n
 and matched to the recovery correlation
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5.7.1  Interpretation of Experimental Data

Fischer et al. (2008) conducted one-end-open COUSI experiments on SWW Berea sand-
stone core plugs. �o was either 3.9 or 63.3 cP and wetting phase viscosity was varied from 
1.0 to 494.6 cP in five tests each. Recovery was scaled by the highest observed value 
(48.7%) and plotted against square root of Tn =

t

�Tch
 in Fig. 17 by selecting values of �Tch 

for each test.
The early data overlapped as RF = T0.5

n
 . For the 3.9 cP oil tests all the data appear linear, 

with abrupt deviations at RF ≥ 0.95 , which could be from variation in residual saturation. 
The high RFtr is consistent with relatively low or similar oil viscosity compared to water 
viscosity. Water-wet systems tend to have much lower krw than kro (Mungan 1972; Kleppe 
and Morse 1974; Anderson 1987b; Bourbiaux and Kalaydjian 1990; Andersen et al. 2022) 
so the oil-to-water mobility ratio is high, shifting Λn to high saturations and RFtr to high 
values. In the 63.3 cP oil tests, the oil-to-water mobility ratios are lower, and the curves 
deviate from the linear trend between RFtr = 0.75 and 0.9. Only a few tests have significant 
amounts of late-time data. For some such tests we estimate CDCs to explain the observed 
recovery.

Three tests with �o = 63.3 cP and �w = 1, 4.1 and 27.8 cP were matched with RFtr and 
lr , see Fig. 18. Straight line behavior, deviation from the straight line and late-time trends 
are well captured. The factor �Tch was found from time normalization. A and thus Tch were 
estimated from RFtr . Knowing the constants in � and Tch we calculate Λ from �Tch . Frac-
tions za,b are calculated from RFtr and lr . See matched and estimated parameters in Table 6.

A function Λn fitting the fractions za,b of an experiment can be determined tuning (39) 
freely (we set Seq = 0.999 ). However, as the three experiments were performed under same 
conditions (apart from �w ) we assume wettability, and hence saturation functions are fixed. 

Table 6  Parameters matched to experimental recovery data from Fischer et  al. (2008) and resulting esti-
mated parameters to determine the CDC and time scales

Matched parameters Estimated parameters
(

�
o
,�

w

)

[cP] RFtr lr �Tch[h] A
(

RFtr

)

Tch(A) �[h] Λ z0,1 z0.5,1 z0,0.5

(63.3, 1) 0.75 0.2 36.93 0.617 0.657 56.2 5.1e-3 0.826 0.449 0.895
(63.3, 4.1) 0.83  − 0.3 119.3 0.648 0.595 201 3.5e-3 0.949 0.688 0.956
(63.3, 27.8) 0.91  − 0.2 564.6 0.677 0.546 1034 2.3e-3 0.967 0.907 0.995

Table 7  Saturation function parameters used to calculate CDCs with correct fractions and correct Λ values. 
Time scales are consistent with calculated saturation functions

Tuned saturation function parameters Matched CDC parameters Time scale param-
eters

n
w1

5.32 k∗
rw

0.0026 s
wr

0.0 Case z0,1 z0.5,1 z0,0.5 Λ �[hr] Tch �Tch

nw2 3.29 k∗
ro

1 sor 0.513 1 cP 0.831 0.462 0.889 4.7e-3 60.5 0.651 39.4
no1 1.54 J

1
2.55 Seq 0.999 4.1 cP 0.893 0.617 0.891 3.7e-3 191.4 0.605 115.8

no2 4.09 J
2

0.106 27.8 cP 0.931 0.745 0.891 2.2e-3 1060 0.566 600.1
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We thus require fixed parameters nw1, nw2, no1, no2,
J1

J2
,
k∗
ro

k∗
rw

, J
2
k∗
ro

 when matching the three 
tests. The last product appears in Λ

(

Sn
)

 and controls Λ . Initial water saturation was zero 
such that k∗

ro
= 1 . We could thus determine J

1
, J

2
, k∗

rw
 separately, Table 7. The mean relative 

error of the matched fractions was 2 to 12% for the three experiments, i.e., the functions 
were well adapted (better match is possible by tuning each experiment freely). The esti-
mated Λn are shown in Fig. 19. Under the constraint of fixed saturation functions, higher �w 
shifts Λn to higher saturations and Λ to lower values.

Fig. 19  Estimated Λn

(

Sn
)

 (a) and comparison of estimated vs experimental mean of coefficients Λ
(

Sn
)

 (b). 
The coefficients are based on estimated fractions za,b and time scaling from Fischer et al. (2008)’s experi-
ments, constrained by assuming same saturation functions

Fig. 20  Comparison of RF from forward simulation of estimated coefficients Λn and RF data from Fischer 
et al. 2008, plotted against log time (a) and against T0.5

n
 (b)
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For validation, RF(T) is calculated solving the PDE with the determined Λn . � uses Λ 
corresponding to the determined saturation functions and viscosities, A follows analytically 
from Λn . RF against t and T0.5

n
 compared with experimental data is shown in Fig. 20. The 

forward simulations overlap the experimental data very well, but late-time estimated RF 
is higher than experimental points for the 4.1 cP test. Higher water viscosity consistently 
leads to higher RFtr when simulated, but the 4.1 cP test did not follow this experimentally 
(like the other two tests), which is attributed to experimental variation (e.g., residual satu-
ration). We should expect monotonous trends when the same input are used except only the 
oil viscosity is varied.

6  Conclusions

The 1D linear COUSI problem was normalized, showing that all systems only depend on 
a normalized diffusion coefficient Λn

(

Sn
)

 with mean 1. By investigating how variations of 
Λn impacts recovery we determine what controls COUSI. Based on theory and running 
5500 cases spanning all expectedly relevant shapes of Λn

(

Sn
)

 and investigating the result-
ing recovery curves, the following findings were made:

(1) Scaled recovery for all cases could be described highly accurate (mean R2 = 0.9989 on 
dataset) with only two parameters RFtr and lr . Before water meets the no-flow boundary 
(early time, until RF = RFcr ) RF =

√

Tn (exactly), and stays a very good approximation 
in an extended early-time regime until RF = RFtr . The time after is described by an 
Arps equation with lr controlling imbibition rate decline. Our definition of extended 
early time explains the good match compared to previous works.

(2) RFtr (when deviation is seen from root of time trend) is significantly higher than RFcr 
(recovery at critical time), mainly between 0.05 and 0.2.

(3) Tn is a universal scaled time for COUSI. It relates to regular time via the mean of the 
diffusion coefficient D divided by squared system length, and a factor Tch depending 
only on the coefficient shape, i.e., t = �TchTn and � = L2∕D . Tch varied between 0.5 
and 6 meaning � alone gives correct time scale for COUSI within approximately one 
order of magnitude.

(4) Since RFtr and lr take many different values, full imbibition profiles do not scale/over-
lap. They do scale the extended early time period (longer than early time).

(5) It was possible to associate the shape of Λn with different early- and late-time behavior 
of the recovery profiles and make accurate qualitative and quantitative predictions 
matching numerically calculated solutions. Diffusion coefficients Λn that are shifted to 
higher saturations (e.g., if oil-to-water mobility ratio increases) have high RFtr (recov-
ery acts proportional to square root of time until this value) and low Tch (faster imbibi-
tion rate due to coefficient shape). Λn shifted toward higher saturations also have more 
rapid late-time recovery (higher lr , giving fewer time orders of magnitude in that 
regime).

a) Lower oil mobility (e.g., higher oil viscosity) increases � and shifts Λn to low saturations. 
That increases the time scale via both � and Tch , reduces the recovery obtained as root of 
time RFtr and also reduces lr making the late-time regime approach more slowly toward 
full recovery.
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b) Lower water mobility (e.g., higher water viscosity) increases � and shifts Λn to high 
saturations. That increases the time scale via � but is compensated by a reduction of Tch . 
Higher recovery is obtained as root of time RFtr and lr is increased making the late-time 
regime approach faster toward full recovery.

c) Mixed-wet cases have coefficients ending at nonzero values Λn

(

Sn = 1
)

> 0 since both 
fluids have mobility at zero capillary pressure. Their coefficients are therefore shifted 
more toward high saturations than water-wet cases, resulting in higher square root of 
time recovery RFtr and less severe decline in late-time imbibition rate (they have higher 
lr ) than water-wet cases. The time scale may, however, be longer due to, e.g., weaker 
capillary pressure.

(6) Experimental recovery data could be fitted with recovery parameters RFtr and lr (which 
quantify early- and late-time regimes). Accurate correlations allowed determining Λn . 
It is indicated that high RFtr means Λn is shifted to higher saturations, while a high lr 
means Λn is shifted toward the highest saturations.
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