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Abstract
A key challenge in reservoir management and other fields of engineering involves optimizing a nonlinear function iteratively.
Due to the lack of available gradients in commercial reservoir simulators the attention over the last decades has been on
gradient free methods or gradient approximations. In particular, the ensemble-based optimization has gained popularity
over the last decade due to its simplicity and efficient implementation when considering an ensemble of reservoir models.
Typically, a regression type gradient approximation is used in a backtracking or line search setting. This paper introduces an
approximation of the Hessian utilizing a Monte Carlo approximation of the natural gradient with respect to the covariance
matrix. This Hessian approximation can further be implemented in a trust region approach in order to improve the efficiency
of the algorithm. The advantages of using such approximations are demonstrated by testing the proposed algorithm on the
Rosenbrock function and on a synthetic reservoir field.
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1 Introduction

We consider the unconstrained optimization problem

min
x∈Rn

J (x), (1)

where J (x) is a differentiable function in R
n. The focus

is on reservoir management where J typically represents
the Net-Present-Value (NPV). However, the methodology
presented here is applicable to any type of optimization
problem of moderate size (number of controls not exceeding
O(102)). Production optimization in petroleum science
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plays a significant role in the return on investment, being of
two constituents of closed-loop reservoir management. This
usually requires a model-based optimization technique since
the workflow involves the prediction of future production
[2, 5, 13]. There are a significant number of papers that
use the gradient obtained through the adjoint technique
[9]. Sarma et al. [13] proposed an approximate feasible-
direction algorithm with the help of the adjoint method to
handle production optimization problems with nonlinear path
inequality constraints. Likewise, Zandvliet et al. [17] used
the adjoint method for well placement optimization. This
method calculates the gradients of the objective function
and the gradients are used subsequently to approximate
directions. Forouzanfar et al. [8] developed a gradient-based
optimization algorithm, where the gradient is computed by
combining the adjoint method and an analytical method for
linear constraints to estimate the optimal well location and
target rates in the reservoirs. Although the adjoint method
has been proven as an efficient way to calculate the gradient,
it is a nearly impractical method since it requires access to
commercial simulator source code.

Over the last decade stochastic gradient approximations
have gained a lot of interest in the petroleum community.
The ensemble based optimization (EnOpt) was introduced
into the petroleum community by Chen et al. [2] and

/ Published online: 16 March 2023

Computational Geosciences (2023) 27:355–364

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-022-10185-z&domain=pdf
http://orcid.org/0000-0002-8665-4675
mailto: yiteng.zhang@shell.com
mailto: asto@norceresearch.no
mailto: rolo@norceresearch.no


Lorentzen et al. [10] as an optimization equivalent to the
ensemble Kalman filter [6], where correlations between
random Gaussian input controls and their output are used
to approximate a gradient. Do and Reynolds [4] applied a
similar technique, the simultaneous perturbation stochastic
approximation (SPSA), to estimate optimal well controls
in production optimization. The efficiency of EnOpt was
improved in [7] by deploying covariance matrix adaption
[11], in which the covariance matrix is allowed to change
according to the best samples from the ensemble of controls.
A theoretical evaluation of EnOpt was presented in [15]
where it was shown that EnOpt is a special case of a natural
evolution strategy [1], an optimization framework where
the standard gradient is replaced by a natural gradient w.r.t.
parameters of a Gaussian search distribution. Furthermore,
it was shown that for robust optimization (e.g. optimizing
the mean NPV over an ensemble of reservoir models) the
strategy of pairing one random control with one reservoir
realization is theoretically sound in the natural evolution
framework. This is a key point for real applications as
the number of simulation runs is reduced to the number
of reservoir models, and not multiple runs per reservoir
model. This makes EnOpt as computationally efficient as
the adjoint method for robust optimization.

In this article the work of Stordal et al. [15] is extended
and a Hessian approximation is derived using second
order natural gradient information. With this second order
information we implement a trust-region strategy for EnOpt
where we use a preconditioned conjugate gradient method
to solve the subproblem of the trust-region algorithm known
as Steihaug’s approach [14]. Steihaug’s approach is based
on the preconditioned conjugate gradient method and may
be regarded as a generalized dogleg technique where the
quasi-Newton step is supplied.

The paper starts with background information about
ensemble-based optimization and shows how EnOpt is a
special case of a natural evolution strategy. Using the natural
evolution strategy, the development of approximate Hessian
is also presented in Section 2. As the Hessian matrix is
needed in the trust-region approach, Section 3 gives a brief
description of the approach. Next the practicalities for the
proposed method are presented in Section 4 along with
applications on the Rosenbrock function and a reservoir
model. Concluding remarks are found in Section 5.

2 Ensemble-based optimization

The EnOpt algorithm starts, as any numerical optimization
algorithm, with a vector μ0 ∈ R

n as the initial values for the
control and a covariance matrix Σ that needs to be specified.

X = [x1, x2, x3, . . . , xn]� (2)

denotes the vector of the optimization variables at each step,
where n is the total number. Initially, an ensemble of control
vectors {Xi

0}Ni=1, are drawn from a multivariate Gaussian
density �(μ0, �) and their objective function values,
{J (Xi

0)}Ni=1, are evaluated. Originally, the EnOpt algorithm
updated the mean control vector μk at each iteration as

μk+1 = μk + βkΣ∇μk
J, k = 1, 2, . . . (3)

where k denotes the iteration number, μk is the current
control, βk is the step size and Σ is the covariance matrix
of the Gaussian distribution where the ensemble is drawn
from. The preconditioned gradient is then approximated as

�∇μk
J ≈ 1

N − 1

N∑

i=1

(Xi
k − Xk)(J (Xi

k) − J (Xi
k)), (4)

where {Xi
k}Ni=1 is an i.i.d. sample from �(μk, �). It was

shown in [15] that asymptotically, as N goes to infinity, the
right hand side of Eq. 4 converges to

ΣE[∇μk
J (X)],

which is the natural gradient [1] of the objective function

L(μ) = E[J (X)].
In general, natural evolution searches for the minimum of

the expected objective function w.r.t. a location parameter
of the search distribution. That is

L(μ) = E[J (X)] =
∫

J (x)f (x; μ) dx, (5)

where f is a probability density that depends on the
parameter μ. Both [1] and [16] pointed out that the ordinary
gradient of Eq. 5 w.r.t μ does not account for gradient
uncertainty and depends on the particular parameterization
of the distribution, leading to unstable updates. The essence
of the natural gradient is to remove this dependence on
the parameterization by multiplying the gradient with the
inverse of the Fisher information matrix, which is Σ in
our case. From the natural evoluation point of view, Stordal
et al. [15] redefined the EnOpt algorithm, whithout Σ as
a pre-conditioner in Eq. 3, and with an additional update
equation for Σ . Given a parametric family of multivariate
Gaussian distributions �(x|μ, �), the objective function in
the natural evolution is defined as

L(μ, �) = E[J (X)] =
∫

J (x)�(x|μ, �) dx,

with corresponding natural gradients

∇̃μL = E[J (x)(x − μ)], (6)

∇̃�L = E

[
J (x)

(
(x − μ)(x − μ)� − �

)]
, (7)

where the natural gradient is defined as the inverse of the
Fisher information matrix multiplied with the traditional
gradient. For details of the derivation the reader is referred
to [1].
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Unfortunately, the expectations in Eqs. 6 and 7 are not
available analytically in general. Instead, an approximation
of the natural search gradients are obtained from Monte
Carlo samples {Xi}Ni=1 as

∇̃μL ≈ 1

N

N∑

i=1

J (Xi)(Xi − μ), (8)

∇̃�L ≈ 1

N

N∑

i=1

J (Xi)
(
(Xi − μ)(Xi − μ)� − �

)
. (9)

The EnOpt in a natural evoluation setting evolves as

μk+1 = μk + β1
k ∇̃μk

L, (10)

�k+1 = �k + β2
k ∇̃�k

L, (11)

where β1
k and β2

k are the step sizes. We also note that often
J (Xi

k) is replaced by J (Xi
k) − J (μk) or J (Xi

k) − J for
stability. Furthermore, it is also quite common to normalize
the gradients in order to avoid tuning the step sizes on a case
by case basis.

The above Monte Carlo estimates of the covariances
suffer from sampling errors due to the limited sample
size computationally available for reservoir simulations
(typically 50-100). Unlike data assimilation methods, where
a type of covariance localization is used to reduce the
impact of sampling error (typically via a tapering function
or domain localization), the NPV objective function used
in the EnOpt algorithm does not have this “local” feature.
This renders standard localization techniques from the data
assimilation literature useless for EnOpt. Fortunately, the
EnOpt gradient consists of a single vector of covariance
estimates (not a matrix) of order O(102) or less for most
reservoir problems so the need for reducing the sampling
error is not nearly as severe as for data assimilation
problems where the covariance matrices can be of order
O(106) and higher. There are, however, a few approaches
that can help reducing the sampling errors in Eqs. 8 and 9.
For the gradient w.r.t. μ, a pre-conditioning matrix can be
used to smooth the gradient estimate and hopefully average
out some of the errors [2]. Another possible approach is to
use truncation, where all estimates below a certain threshold
in absolute value are set to zero. For the gradient w.r.t.
Σ , a classical shrinkage towards the identity matrix is one
approach. The second approach, which is implemented in
the reservoir example presented later, is to only update the
variances (the diagonal of Σ) while keeping the correlation
structure fixed. The latter approach significantly reduces the
number of covariances to be estimated.

We now extend the EnOpt by including a natural Hessian
approximation that can be applied in both backtracking and
trust-region algorithms to show later how the performance
of an optimization can be improved by having second order
gradient information.

2.1 A natural Hessian approximation

In view of the natural evolution theory presented above, a
formulation of a natural Hessian w.r.t. μ is presented.

From Eq. 6

∇̃μ(∇̃μL)�

= �∇μ(∇̃μL)�

= �∇μ(E[J (x)(x − μ)�])
= �∇μ

∫
J (x)�(x|μ, �)(x − μ)�dx

Then using the chain rule and the log trick (∇ log f (x) =
∇f (x)/f (x)) we get

= �

∫
J (x)

(
∇μ log �(x|μ, �)(x−μ)�−I

)
�(x|μ, �)dx

= �

∫
J (x)

(
�−1(x − μ)(x − μ)� − I

)
�(x|μ, �)dx

=
∫

J (x)
(
(x − μ)(x − μ)� − �

)
�(x|μ, �)dx

= E

[
J (X)

(
(X − μ)(X − μ)� − �

)]
.

Note that this is the exact same expression as the natural
gradient w.r.t. Σ in Eq. 7. And so a Monte Carlo
approximation of the natural Hessian matrix is given by
Eq. 9 and is already available in the EnOpt algorithm. No
extra computation is needed. A more detailed description of
EnOpt with backtracking strategy and trust-region strategy
utilizing the natural Hessian approximations are described
later in Algorithms 1 and 2, respectively. The trust-region
approach is described in more details in the next section.

3 Trust-region approach

We formulate the trust-region approach in terms of
minimization, hence we seek to minimize the negative NPV
instead of maximizing the NPV. In trust-region approaches,
the objective function, J , is replaced by a quadratic form
mk at each iteration k using the first two terms of the
Taylor-series expansion of J around μk . Let

mk(p) = Jk + g�
k p + 1

2
p�Bkp, (12)

where p is the trial step, Jk = J (μk), gk is the gradient of J

at the current point and Bk is a real symmetric n × n matrix
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(typically the Hessian). At the current iterate point the trial
step is computed by solving the sub-problem

min
p∈Rn

mk(p) = Jk+g�
k p+1

2
p�Bkp, s.t. ‖p‖ ≤ �k, (13)

where �k > 0 is the trust-region radius. Having determined
the trial step, the objective function is now computed at
μk + p and then compared to the value predicted by
the approximate model at this point. By doing so, this
information is further used to adapt the trust region per
iteration.

Here, the Steihaug approach [14] is used where the
algorithm terminates when it exits the trust-region ‖p‖ > �

or when it encounters a direction of negative curvature in B.
The approximate derivatives are then used in the algorithm
to update the search direction. In particular, after the first
iteration, we have the Cauchy point,

p1 = − g�g

g�Bg
g, (14)

the point lying on the gradient that minimizes the quadratic
model. By iteratively finding the Cauchy point the local
minimum can be found. Having determined the trial step,
pk , the objective function is now computed at

μk+1 = μk + pk . (15)

If the reduction predicted by the approximate model
mk(μk + pk) is realized by the objective function J (μk +
pk), the trial point pk is accepted and the trust-region is
updated.

Up to this point all necessary theories are presented,
we will demonstrate the advantages of using the proposed
method in the next section.

4 Numerical experiments

In this section two examples to show the performance
of the natural Hessian approximation for ensemble-based
optimization are presented. The first example, a two-
dimensional test function, is to demonstrate the improved
convergence rate by comparing three different versions of
EnOpt with a more conventional gradient based method;
while the second example presents a large-scale reservoir
optimization problem.

4.1 Two-dimensional valley-shaped function

The objective function to be minimized is the two-
dimensional Rosenbrock function

J (x, y) = (1 − x)2 + 100
(
y − x2

)2
,

LL

LL

L

Algorithm 1 Basic backtracking strategy with natural Hessian appro-
ximations.

where the global minimum, J (x∗, y∗) = 0 at (x∗, y∗) =
(1, 1), is inside a long, narrow, parabolic shaped almost flat
valley. This valley is trivial to find, however, convergence to
the global minimum is difficult.

Four different optimization scenarios are: (i) trust-region
strategy with true gradient and Hessian of Rosenbrock
function (TR-grad); (ii) trust-region strategy with natural
gradient and Hessian (TR-ens); (iii) backtracking strategy
with natural gradient and Hessian (BTH); (iv) simple
backtracking without Hessian, i.e., steepest descent line
search method without Hessian (BT). Results are in Fig. 1.
Each scenario is simulated 100 times with 100 different
starting points uniformly distributed in the function domain
interval [−5, 10]. The covariance matrix Σ is initially set
as a diagonal matrix with 0.01 on the diagonal. The steps
sizes are set to β0 = 0.001 for the trust-region approach
and β1

0 = 0.1 and β2
0 = 0.001 for the backtracking. The

trust-region parameters are set to γ1 = 0.5, γ2 = 2, η1 =
0.25, η2 = 0.75 and �0 = 3. The algorithms are run
until convergence, that is until ‖μk − (1, 1)�‖ < 10−3. All
ensemble based methods use the same initial ensemble.

Not surprisingly, among these four scenarios, the one
using the analytic gradients has the best result. The least
favorable scenario turns out to be the traditional EnOpt that
only uses simple backtracking. The results are presented
in Figs. 1 and 2. The figures clearly see the advantage of
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Algorithm 2 Basic trust-region strategy with natural Hessian appro-
ximations.

including second order derivative information in EnOpt. In
terms of iterations, the trust-region strategy significantly
outperforms backtracking. Figure 2 shows the summary of
the results in a box plot.

In order to address the sensitivity of the initial choice for
Σ , the EnOpt with trust region and EnOpt with backtracking
including the Hessian were rerun for ten different starting
values. For each value, the starting point for μ was kept
fixed and each method was run one hundred times to avoid
any Monte Carlo effects. The average number of iterations
are reported in Fig. 3 along with the value for the variance.
The results are similar to the discussion in [15], i.e. the
variance should not be set too large initially. However, since

the variance is updated at each iteration, the initial value is
not as sensitive as for the original EnOpt where the variance
is kept fixed.

4.2 Synthetic reservoir model

A synthetic field designed by TNO, Brugge, is used as a
benchmark study to test the combined use of waterflooding
optimization and history matching methods in a closed-loop
workflow [12]. The model is discretized on a 139 × 48 × 9
grid lattice with a total of 60048 cells. The model has a
complex geological structure that contains five facies types
formed in different depositional environments. The field is
equipped with 30 wells, 20 producers and 10 injectors as
shown in Fig. 4.

The objective function is defined as the Net-Present-
Value (NPV), which can be calculated as

J (x) =
Nt∑

j=1

(
vo · qo,j (x) − vwp · qwp,j (x) − vwi · qwi,j (x)

)
�tj

(1 + r)tj
,

(16)

where the oil production, qo,j , water production, qwp,j , and
water injection rates, qwi,j , at time tj change as a function
of the control variable x. The oil price is denoted vo. The
costs of water disposal and water injection are denoted vwp

and vwi , respectively. The discount factor is denoted by r

and �tj is the difference between two timesteps (measured
in days).

In this example, the control variables are the sum of
the entering reservoir volumes of oil, gas, water for each
producer, and the injected water rates. The price of oil is
set to $80/stb. The cost of both water injection and water
disposal is $5/stb. The discount rate is 10% per year. The
time frame for the optimization is 20 years and the control
settings are modified every year, so the number of control
steps is 20. Thus, the total number of control parameters is
600, which is the product of the number of wells and the
number of control steps. As a reference case, the producers
are set to produce at a rate of 2500 stb/day, with a minimum
bottom hole pressure of 725 psia. The injectors have an
upper limit in bottom hole pressure of 2610 psia and are
operated at a rate of 3500 stb/day.

The performance of EnOpt using Hessian approxima-
tions in both trust-region (TR) method and backtracking
(BT) method are compared with the original EnOpt method
in which the steepest decent direction is applied without
using Hessian approximations. In addition, we show two
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Fig. 1 Number of iterations for 100 simulation runs with the two-dimensional Rosenbrock function: (left) all four scenarios; (right) zoomed in
comparison grouped by two optimization strategies

different scenarios for the original EnOpt method by vary-
ing the initial step size. To summarize briefly, we show four
scenarios in this section:

(a) Trust-region method with Hessian approximations;
(b) Backtracking method with Hessian approximations;

N
um

be
r 

of
 I

te
ra

tio
n

Fig. 2 Box plots of four different scenarios

(c) Backtracking method without Hessian approximations
(initial step size = 0.05);

(d) Backtracking method without Hessian approximations
(initial step size = 0.025).

The same initial ensemble is used for all algorithms.
We construct Σ using an autoregressive model of order 1

for each well. The autocorrelation function for each well at
time t is given by:

Corr(Q[t], Q[t + h]) = ρ|h|, (17)

where h is an interger s.t. h ∈ [0, T − t] and T is the
total number of control steps and ρ = 0.5. There is no
correlation between producers and injectors. The variance
is given by σ 2

P = 0.1 and σ 2
I = 0.1 for producers and

injectors, respectively. The correlation structure is kept fixed
during the optimization procedure, so that only the diagonal
of Σ is updated.

One hundred initial ensemble members are generated
from a Gaussian distribution with mean given by the
reference case. The average NPV for the 100 initial
ensemble members is $2.8227 × 109.

Figure 5 shows the change of the NPV with iterations for
the four abovementioned scenarios. For the final simulated
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Fig. 3 Average number of
iterations for 100 runs with
different starting variance
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The value of starting variance

control strategy, the NPVs of (a), (b), (c), and (d) scenarios
are $3.1873 × 109, $3.0836 × 109, $2.8567 × 109, and
$2.9081 × 109, respectively, an increase of 12.92%, 9.24%,
1.2%, and 3.03% compared to the initial NPV.

It is noted that all variables are scaled based on the max-
imum rate of producers qp,max and injectors qi,max , respec-
tively. In all four scenarios, the maximum rate is set to 3000

stb/day for producers and 4000 stb/day for injectors. Mathe-
matically, scaled rates at time j of oil production rate, water
production rate, and water injection rate are expressed as,

Qo,j = qo,j

qp,max

, Qwp,j = qwp,j

qp,max

, Qwi,j = qwi,j

qi,max

.

(18)

Fig. 4 Structure of the Brugge field from the top view showing the depth and the 30 wells
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Fig. 5 The change of the NPV with iterations for four scenarios

Of particular note is the importance of the initial trust-
region radius �k in Eq. 13 and the initial step size β1

0 in
Eq. 3. We followed guidelines of [3] on choosing parameters
for the trust-region method. In this example, �k is set to 0.1.
Two other parameters, γ1 and γ2, as described in Algorithm
2 are set to 0.9 and 2, respectively. Finally, η1 and η2 are set
to 0.001 and 0.1, respectively.

For the backtracking method with Hessian approxima-
tions the initial step size β1

0 is set to 0.05. This scenario was
initially compared with the backtracking method without
Hessian approximations scenario for which the initial step

size was kept the same. However the latter scenario could
not find further improvement after the second iteration as
shown in Fig. 5. One possible explanation could be that the
initial step size was set too large. To address this issue, we
introduced the scenario where we reduced the initial step
size of backtracking from 0.05 to 0.025. For all three cases,
the step size for Σ was set to 0.01.

The results presented in Fig. 5 shows the same trend
as for the Rosenbrock function, that including a Hessian
approximation in EnOpt is beneficial. And again, the trust-
region approach outperforms the backtracking.

Of particular interest are the oil field cumulative production,
water field cumulative production, and water field cumulative
injection as shown in Figs. 6, 7, and 8, respectively. Trust-
region method with Hessian approximations has the highest
cumulative oil production among four scenarios as shown
in Fig. 6. The ideal result would be that the strategy ends
up with more oil production, and less water production
and water injection. However, as shown in Figs. 7 and 8
trust-region method with Hessian approximations results
in the highest water injection and production among the
four scenarios. These unwanted higher water injection and
production values are compensated by more oil production
for a better economic value.

5 Conclusions

In this article we have introduced a natural Hessian
approximation for ensemble-based optimization and its

Fig. 6 Field cumulative oil
production for four scenarios

362 Computational Geosciences (2023) 27:355–364



Fig. 7 Field cumulative water
production for four scenarios

derivation in the context of trust-region methods. In
particular, the case using Steihaug’s approach for solving
the trust-region subproblem. The natural Hessian can be
approximated with a Monte Carlo approach which makes
it suitable for the ensemble-based optimization in reservoir
management, and within the natural evolution in other

fields of engineering. The presented methodology showed
improved convergence rate for the Rosenbrock function
when compared to more standard EnOpt algorithms.
Furthermore, it achieved higher Net-Present-Value than
other EnOpt algorithms in the Brugge reservoir test
case.

Fig. 8 Field cumulative water
injection for four scenarios
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