
Faculty of Science and Technology

BACHELOR’S THESIS
Study program/ Specialization:

Control Engineering and Circuit Design -
Bachelor’s Degree Programme

Spring semester, 2023
Open access

Writers:

Nickolas Phan

Børge Olav Haug

Tor Ivar Haughom

…………………………………………

…………………………………………

…………………………………………

(Writer’s signature)

Faculty supervisor: Damiano Rotondo

Thesis title: Sliding Mode Control and Vision-Based Line Tracking for Quadrotors

Credits (ECTS): 20

Key words:
Sliding Mode Control
PID Control
LQR Control
Line Tracking

Pages: 139

+ enclosure: 112

Stavanger, 15. May 2023
Date/year

Front page for bachelor’s thesis
Faculty of Science and Technology

Decision made by the Dean October 30th 2009

Acknowledgements

The three of us would like to thank our supervisor Damiano Rotondo for his enthusiasm and
valuable input on control engineering, as well as presenting an interesting and exciting thesis topic.
We would also like to thank Didrik Efjestad Fjereide for helping us with the Quanser 3 DOF Hover
system.

Jeg vil takke Børge og Tor Ivar for deres innsats rundt denne bacheloren. Jeg ville ikke fått et godt
resultat uten dere. Samtidig vil jeg takke venner for hjelpen i prosjektet.

- Nickolas Phan

Jeg vil rette en stor takk til Tor Ivar og Nickolas for deres iherdige arbeid med denne bacheloroppgaven.
Jeg vil også takke min bedre halvdel Anne Marthe for hennes støtte og oppmuntring gjennom
semesteret.

- Børge Olav Haug

Jeg ønsker å takke Børge og Nickolas for deres gode samarbeid med denne bacheloroppgaven. I
tillegg vil jeg takke familie og venner for deres støtte gjennom prosjektet.

- Tor Ivar Haughom

Abstract

This thesis describes the design of Sliding Mode Control applied to quadrotor UAV flight. This is a
nonlinear control technique in which a discontinuous control signal is applied to drive the so-called
sliding variable to zero, which defines the sliding surface. The sliding variable should be designed in
such a way that approaching the sliding surface is beneficial to tracking the reference signals. The
advantages of Sliding Mode Control are that the need for simplifying the underlying dynamical
model through linearization is avoided, it is robust and adaptive, and works even if the system to be
controlled is highly nonlinear or has model uncertainties. Sliding Mode Control has one major issue
associated with it, namely the chattering phenomena in the control inputs, which is undesirable.
This can be tackled by approximating the discontinuous sign function in the control input with a
approximated continuous function, or by applying techniques such as adaptive fuzzy gain scheduling.
As with other control methods, Sliding Mode Control requires tuning of the control parameters
to obtain an optimal performance. In this work, genetic algorithms were investigated as a way to
tune the controller parameters. The findings of this thesis were combined with the design of a line
tracking algorithm in order to enter the MathWorks Minidrone Competition.

Contents

List of Figures vii

List of Tables xiv

List of Abbreviations 1

1 Introduction 2
1.1 Motivation . 2
1.2 Objective . 2
1.3 MathWorks Minidrone Competition . 3

2 Quadrotor Dynamics 5
2.1 Main Components . 5
2.2 Euler Angles . 6
2.3 Working Principles . 7
2.4 Mathematical Model . 11

2.4.1 Forces . 12
2.4.2 Moments . 13
2.4.3 Actuator Dynamics . 14
2.4.4 Dynamic Model . 14

2.5 Parrot Mambo Minidrone . 15
2.6 3 DOF Hover . 16

3 Control Architecture 22

4 Linear Control Methods 24
4.1 PID Control . 24

4.1.1 PD Controller Design . 24
4.2 LQR Control . 25

4.2.1 State-Space Model of the Quadrotor . 26
4.2.2 LQR Controller Design . 28

4.3 Summary . 29

5 Silding Mode Control 30
5.1 Introduction to Sliding Mode Control . 30
5.2 Lyapunov Stability . 30

iv

5.3 Designing Sliding Mode Control . 32
5.4 Integral Sliding Mode Control Design . 36

5.4.1 Inner Loop ISMC . 36
5.4.2 Outer Loop ISMC . 38

5.5 Chattering Attenuation . 39
5.5.1 Quasi-Sliding Mode . 39
5.5.2 Adaptive Fuzzy Gain Scheduling . 40

6 Tuning Controllers by Genetic Algorithm 45
6.1 Genetic Algorithm . 45
6.2 Performance Indices . 47
6.3 Parameter Tuning by GA . 48

7 Vision-based line tracking algorithm 51
7.1 The Flight Control System . 51
7.2 Takeoff . 54
7.3 Pre-Processing . 54
7.4 Calculating a Direction Vector . 55

7.4.1 A Weighted Approach . 57
7.5 Tunnel Vision . 59
7.6 Handling Sharp Corners . 64
7.7 Landing Phase . 70
7.8 Minidrone Speed . 71

8 Results 73
8.1 Simulation . 73

8.1.1 Chattering Attenuation . 74
8.1.2 ISMC vs. Linear Control Methods . 82
8.1.3 Analysis and Discussion . 103

8.2 3 DOF Hover . 105
8.2.1 Analysis and discussion . 113

8.3 Line Tracking . 114
8.3.1 Test Setup . 114
8.3.2 Results . 117
8.3.3 Analysis and Discussion . 120

9 Conclusions and Future Work 121
9.1 Conclusions . 121
9.2 Future Work . 121

Bibliography 123

A Quadrotor Simulations 125
A.1 MATLAB Code for Quadrotor Simulations . 125

A.2 Simulink Schemes for Quadrotor Simulations . 135
A.2.1 PD Control System . 135
A.2.2 LQR Control System . 140
A.2.3 ISMC Control System . 141
A.2.4 Simulink Scheme of the Quadrotor Model 146
A.2.5 Simulink Schemes of Roll and Pitch Converter 147

B Genetic Algorithm 148
B.1 Desired Trajectory for Genetic Algorithm . 148
B.2 MATLAB Code and Functions for Genetic Algorithm 149

B.2.1 GA for PD . 149
B.2.2 GA for LQR . 150
B.2.3 GA for ISMC . 153

B.3 Genetic Algorithm Simulink Schemes . 155

C 3 DOF Hover 156
C.1 Experimental Results for The 3 DOF Hover . 156
C.2 MATLAB Code for the 3 DOF Hover . 161
C.3 3 DOF Hover Simulink Schemes . 165

D Parrot Minidrone 172
D.1 Experimental Results of Parrot Minidrone Simulations 172

D.1.1 First Track Results . 172
D.1.2 Second Track Results . 191
D.1.3 Third Track Results . 209

D.2 MATLAB Code . 227
D.3 Simulink Schemes . 233

List of Figures

2.1 Parrot Mambo minidrone [1]. 5
2.2 Mobile and fixed reference systems. 6
2.3 Euler Angles [2]. 6
2.4 Plus- and cross-configuration. 8
2.5 Rotor placements and rotations in the cross-configuration. 8
2.6 Force balance while hovering. 9
2.7 Roll in cross-configuration. 9
2.8 Pitch in cross-configuration. 10
2.9 Yaw in cross-configuration. 11
2.10 The Quanser 3 DOF Hover [3]. 16
2.11 Motor placements and rotations for the 3 DOF Hover. 18
2.12 Roll in plus-configuration. 18
2.13 Pitch in plus-configuration. 19
2.14 Yaw in plus-configuration. 20

3.1 Control structure. 23

4.1 Block diagram of LQR controller. 29

5.1 Sign function. 34
5.2 Continuous sign approximation function. 40
5.3 Typical Takagi-Sugeno-Kang fuzzy logic architecture [4]. 41
5.4 FLS membership functions. 42
5.5 FLS inputs membership functions. 43
5.6 FLS surface. 44

6.1 Swapping genetic information after a crossover point [5]. 46
6.2 Flow diagram of the GA. 49

7.1 Flight Control System. 51
7.2 Control System. 53
7.3 RGB-to-BW conversion in Simulink. 54
7.4 6x10 BW image. 56
7.5 Figure illustrating what is meant by left and right side of v. This figure was created

with GeoGebra[6]. 59
7.6 Example where v =

[
−1.5 1.1

]T
and a = 1. This figure was created with GeoGebra[6]. 61

7.7 Regions created and intersected to create tunnel vision to be applied to images. . . 62
7.8 The minidrone is heading towards a turn. 63

vii

7.9 Situation as the drone is heading towards the turn. Pixels in the opposite direction
are neglected. With more pixels in the right region the drone’s direction vector will
start leaning even more to the right. 63

7.10 Situation shortly after heading in the new direction. The minidrone is now heading
northeast. 64

7.11 The minidrone is heading towards a relatively sharp turn. 64
7.12 Situation as the drone is heading towards the turn. There are not enough white

pixels in the right region to give a strong pull towards the right. 65
7.13 Situation as the minidrone is drawn closer to the edge of the corner. There are more

white pixels in the left than in the right region. 65
7.14 Situation as the minidrone is at the edge of the corner. Here the minidrone will

either move further into the corner until there are no more white pixels left, or there
will be just enough pixels to rotate the direction back onto the track. In the first
case the minidrone will hover in place, in the second it sometimes locks onto the
correct new path, sometimes it locks onto the path it came from. 65

7.15 Problems with sharp turns. 66
7.16 Example of where the regions will be placed when the drone is heading northwest.

Colored as follows: far corner sensor in green , close corner sensor in red , front left
sensor in orange , back left sensor in yellow , front right sensor in blue and back
right sensor in purple . 67

7.17 Case where the path is not yet fully stable. The back left sensor reaches deep into
the track segment, but because the front right sensor is weighted more heavily in the
calculations, the drone will head right. 68

7.18 Situation as the drone is heading towards the turn. The BW image with tunnel
vision applied is by its own not enough to get the minidrone to head in the new
direction. 69

7.19 The corner sensors detect that the minidrone has reached the edge of the turn. There
are now more white pixels under the right side sensors than under those on the left
side, so the entire region to the right of the current direction will be used when
calculating the next direction. 69

7.20 The minidrone successfully turns and continues using the narrow, forward-facing
tunnel vision as before. 69

7.21 The minidrone is at the end of the track. It knows this because the far corner sensor
has white pixels inside it while the close corner sensor has none. 70

8.1 QR code for videos showcasing the 3 DOF Hover and Line Tracking experiments. . 73
8.2 Attitude angles. 75
8.3 Attitude errors. 75
8.4 ISMC control inputs. 76
8.5 AFGS control inputs. 76
8.6 Quasi control inputs. 77
8.7 AFGS control gains. 77
8.8 Attitude of quadrotor with uncertainties and disturbances. 79
8.9 The attitude errors with uncertainties and disturbances. 79
8.10 ISMC control inputs with uncertainties and disturbances. 80
8.11 AFGS control inputs with uncertainties and disturbances. 80
8.12 Quasi control inputs with uncertainties and disturbances. 81
8.13 AFGS control gains with uncertainties and disturbances. 81

8.14 Quadrotor altitude and attitude under Scenario 1. 85
8.15 Quadrotor altitude and attitude tracking under Scenario 2. 86
8.16 Quadrotor altitude and attitude tracking under Scenario 1. 88
8.17 Quadrotor altitude and attitude tracking under Scenario 2. 89
8.18 3D view of the square trajectory responses under Scenario 1. 92
8.19 Position tracking of the square trajectory under Scenario 1. 92
8.20 3D view of the square trajectory responses under Scenario 2. 94
8.21 Position tracking of the square trajectory under Scenario 2. 94
8.22 3D view of the ascent helix trajectory responses under Scenario 1. 96
8.23 Position tracking of the ascent helix trajectory under Scenario 1. 96
8.24 3D view of the ascent helix trajectory responses under Scenario 2. 98
8.25 Position tracking of the ascent helix trajectory under Scenario 2. 98
8.26 Complex ascent helix. 99
8.27 3D view of the complex ascent helix trajectory responses under Scenario 1. 100
8.28 Position tracking of the complex ascent helix trajectory under Scenario 1. 101
8.29 3D view of the complex ascent helix trajectory responses under Scenario 2. 102
8.30 Position tracking of the complex ascent helix trajectory under Scenario 2. 103
8.31 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude

of 16◦. 107
8.32 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude

of 28◦. 109
8.33 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦. 110
8.34 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 28◦. 112
8.35 The first test track. 115
8.36 The second test track. 115
8.37 The third test track. 116

A.1 PD Control System. 135
A.2 PD control for altitude. 136
A.3 PD control for roll. 136
A.4 PD control for pitch. 137
A.5 PD control for yaw. 137
A.6 PD for x-position. 138
A.7 PD for y-position. 139
A.8 LQR Control System. 140
A.9 ISMC Control System. 141
A.10 ISMC for altitude. 142
A.11 ISMC for roll. 142
A.12 ISMC for pitch. 143
A.13 ISMC for yaw. 143
A.14 ISMC for x-position. 144
A.15 ISMC for y-position. 145
A.16 Quadrotor model. 146
A.17 Roll converter. 147
A.18 Pitch converter. 147

B.1 The desired trajectory used for GA. 148

B.2 Divergence flag for GA. 155

C.1 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude
of 16◦ with the PD controller. 156

C.2 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude
of 16◦ with the LQR controller. 157

C.3 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude
of 16◦ with the ISMC. 157

C.4 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude
of 28◦ with the PD controller. 158

C.5 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude
of 28◦ with the LQR controller. 158

C.6 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude
of 28◦ with the ISMC. 159

C.7 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦

with the PD controller. 159
C.8 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦

with the LQR controller. 160
C.9 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦

with the ISMC. 160
C.10 Quanser 3 DOF Hover system simulink scheme. 165
C.11 Converter from control inputs to voltages for the 3 DOF Hover. 166
C.12 3 DOF Hover subsystem. 167
C.13 3 DOF Hover scopes. 168
C.14 3 DOF ISMC controller. 169
C.15 3 DOF LQR controller. 170
C.16 3 DOF PD controller. 171

D.1 Position w/ PID control during the first test with max speed set to 0.0007 m/sample.172
D.2 Position w/ PID control during the first test with max speed set to 0.0008 m/sample.173
D.3 Position w/ PID control during the first test with max speed set to 0.0009 m/sample.173
D.4 Position w/ PID control during the first test with max speed set to 0.0010 m/sample.174
D.5 Position w/ PID control during the first test with max speed set to 0.0011 m/sample.174
D.6 Position w/ ISMC control during the first test with max speed set to 0.0007 m/sample.175
D.7 Position w/ ISMC control during the first test with max speed set to 0.0008 m/sample.175
D.8 Position w/ ISMC control during the first test with max speed set to 0.0009 m/sample.176
D.9 Position w/ ISMC control during the first test with max speed set to 0.0010 m/sample.176
D.10 Position w/ ISMC control during the first test with max speed set to 0.0011 m/sample.177
D.11 Attitude w/ PID control during the first test with max speed set to 0.0007 m/sample.177
D.12 Attitude w/ PID control during the first test with max speed set to 0.0008 m/sample.178
D.13 Attitude w/ PID control during the first test with max speed set to 0.0009 m/sample.178
D.14 Attitude w/ PID control during the first test with max speed set to 0.0010 m/sample.179
D.15 Attitude w/ PID control during the first test with max speed set to 0.0011 m/sample.179
D.16 Attitude w/ ISMC control during the first test with max speed set to 0.0007 m/sample.180
D.17 Attitude w/ ISMC control during the first test with max speed set to 0.0008 m/sample.180
D.18 Attitude w/ ISMC control during the first test with max speed set to 0.0009 m/sample.181
D.19 Attitude w/ ISMC control during the first test with max speed set to 0.0010 m/sample.181
D.20 Attitude w/ ISMC control during the first test with max speed set to 0.0011 m/sample.182

D.21 Center displacement w/ PID control during the first test with max speed set to
0.0007 m/sample. 182

D.22 Center displacement w/ PID control during the first test with max speed set to
0.0008 m/sample. 183

D.23 Center displacement w/ PID control during the first test with max speed set to
0.0009 m/sample. 183

D.24 Center displacement w/ PID control during the first test with max speed set to
0.0010 m/sample. 184

D.25 Center displacement w/ PID control during the first test with max speed set to
0.0011 m/sample. 184

D.26 Center displacement w/ ISMC control during the first test with max speed set to
0.0007 m/sample. 185

D.27 Center displacement w/ ISMC control during the first test with max speed set to
0.0008 m/sample. 185

D.28 Center displacement w/ ISMC control during the first test with max speed set to
0.0009 m/sample. 186

D.29 Center displacement w/ ISMC control during the first test with max speed set to
0.0010 m/sample. 186

D.30 Center displacement w/ ISMC control during the first test with max speed set to
0.0011 m/sample. 187

D.31 Position w/ PID control during the second test with max speed set to 0.0007 m/sample.191
D.32 Position w/ PID control during the second test with max speed set to 0.0008 m/sample.191
D.33 Position w/ PID control during the second test with max speed set to 0.0009 m/sample.192
D.34 Position w/ PID control during the second test with max speed set to 0.0010 m/sample.192
D.35 Position w/ PID control during the second test with max speed set to 0.0011 m/sample.193
D.36 Position w/ ISMC control during the second test with max speed set to 0.0007

m/sample. 193
D.37 Position w/ ISMC control during the second test with max speed set to 0.0008

m/sample. 194
D.38 Position w/ ISMC control during the second test with max speed set to 0.0009

m/sample. 194
D.39 Position w/ ISMC control during the second test with max speed set to 0.0010

m/sample. 195
D.40 Position w/ ISMC control during the second test with max speed set to 0.0011

m/sample. 195
D.41 Attitude w/ PID control during the second test with max speed set to 0.0007 m/sample.196
D.42 Attitude w/ PID control during the second test with max speed set to 0.0008 m/sample.196
D.43 Attitude w/ PID control during the second test with max speed set to 0.0009 m/sample.197
D.44 Attitude w/ PID control during the second test with max speed set to 0.0010 m/sample.197
D.45 Attitude w/ PID control during the second test with max speed set to 0.0011 m/sample.198
D.46 Attitude w/ ISMC control during the second test with max speed set to 0.0007

m/sample. 198
D.47 Attitude w/ ISMC control during the second test with max speed set to 0.0008

m/sample. 199
D.48 Attitude w/ ISMC control during the second test with max speed set to 0.0009

m/sample. 199
D.49 Attitude w/ ISMC control during the second test with max speed set to 0.0010

m/sample. 200

D.50 Attitude w/ ISMC control during the second test with max speed set to 0.0011
m/sample. 200

D.51 Center displacement w/ PID control during the second test with max speed set to
0.0007 m/sample. 201

D.52 Center displacement w/ PID control during the second test with max speed set to
0.0008 m/sample. 201

D.53 Center displacement w/ PID control during the second test with max speed set to
0.0009 m/sample. 202

D.54 Center displacement w/ PID control during the second test with max speed set to
0.0010 m/sample. 202

D.55 Center displacement w/ PID control during the second test with max speed set to
0.0011 m/sample. 203

D.56 Center displacement w/ ISMC control during the second test with max speed set to
0.0007 m/sample. 203

D.57 Center displacement w/ ISMC control during the second test with max speed set to
0.0008 m/sample. 204

D.58 Center displacement w/ ISMC control during the second test with max speed set to
0.0009 m/sample. 204

D.59 Center displacement w/ ISMC control during the second test with max speed set to
0.0010 m/sample. 205

D.60 Center displacement w/ ISMC control during the second test with max speed set to
0.0011 m/sample. 205

D.61 Position w/ PID control during the third test with max speed set to 0.0007 m/sample.209
D.62 Position w/ PID control during the third test with max speed set to 0.0008 m/sample.209
D.63 Position w/ PID control during the third test with max speed set to 0.0009 m/sample.210
D.64 Position w/ PID control during the third test with max speed set to 0.0010 m/sample.210
D.65 Position w/ PID control during the third test with max speed set to 0.0011 m/sample.211
D.66 Position w/ ISMC control during the third test with max speed set to 0.0007 m/sample.211
D.67 Position w/ ISMC control during the third test with max speed set to 0.0008 m/sample.212
D.68 Position w/ ISMC control during the third test with max speed set to 0.0009 m/sample.212
D.69 Position w/ ISMC control during the third test with max speed set to 0.0010 m/sample.213
D.70 Position w/ ISMC control during the third test with max speed set to 0.0011 m/sample.213
D.71 Attitude w/ PID control during the third test with max speed set to 0.0007 m/sample.214
D.72 Attitude w/ PID control during the third test with max speed set to 0.0008 m/sample.214
D.73 Attitude w/ PID control during the third test with max speed set to 0.0009 m/sample.215
D.74 Attitude w/ PID control during the third test with max speed set to 0.0010 m/sample.215
D.75 Attitude w/ PID control during the third test with max speed set to 0.0011 m/sample.216
D.76 Attitude w/ ISMC control during the third test with max speed set to 0.0007 m/sample.216
D.77 Attitude w/ ISMC control during the third test with max speed set to 0.0008 m/sample.217
D.78 Attitude w/ ISMC control during the third test with max speed set to 0.0009 m/sample.217
D.79 Attitude w/ ISMC control during the third test with max speed set to 0.0010 m/sample.218
D.80 Attitude w/ ISMC control during the third test with max speed set to 0.0011 m/sample.218
D.81 Center displacement w/ PID control during the third test with max speed set to

0.0007 m/sample. 219
D.82 Center displacement w/ PID control during the third test with max speed set to

0.0008 m/sample. 219
D.83 Center displacement w/ PID control during the third test with max speed set to

0.0009 m/sample. 220

D.84 Center displacement w/ PID control during the third test with max speed set to
0.0010 m/sample. 220

D.85 Center displacement w/ PID control during the third test with max speed set to
0.0011 m/sample. 221

D.86 Center displacement w/ ISMC control during the third test with max speed set to
0.0007 m/sample. 221

D.87 Center displacement w/ ISMC control during the third test with max speed set to
0.0008 m/sample. 222

D.88 Center displacement w/ ISMC control during the third test with max speed set to
0.0009 m/sample. 222

D.89 Center displacement w/ ISMC control during the third test with max speed set to
0.0010 m/sample. 223

D.90 Center displacement w/ ISMC control during the third test with max speed set to
0.0011 m/sample. 223

D.91 Image Processing System. 233
D.92 Image Processing System Stateflow Chart. 234
D.93 Path Planning. 235
D.94 Path Planning Stateflow Chart. 236

List of Tables

2.1 Parameters of the Parrot Mambo minidrone. 15
2.2 Parameters of the 3 DOF Hover. 17

5.1 Fuzzy rules. 44

8.1 ISMC parameters. 74
8.2 Performance indices without any uncertainties and disturbances. 78
8.3 Performance indices with uncertainties and disturbances added. 82
8.4 PD controller parameters. 83
8.5 LQR weighting matrices. 83
8.6 ISMC parameters. 83
8.7 Performance indices under Scenario 1. 86
8.8 Performance indices under Scenario 2. 87
8.9 Performance indices under Scenario 1. 88
8.10 Performance indices under Scenario 2. 89
8.11 Performance indices for the square trajectory under Scenario 1. 93
8.12 Performance indices for the square trajectory under Scenario 2. 95
8.13 Performance indices for the ascent helix trajectory under Scenario 1. 97
8.14 Performance indices for the ascent helix trajectory under Scenario 2. 99
8.15 Performance indices for the complex ascent helix trajectory under Scenario 1. . . . 101
8.16 Performance indices for the complex ascent helix trajectory under Scenario 2. . . . 103
8.17 PD parameters. 105
8.18 LQR weighting matrices. 105
8.19 ISMC parameters. 105
8.20 Average performance indices for a step-to-sinusoidal reference with an amplitude of 16◦.108
8.21 Average performance indices for a step-to-sinusoidal reference with an amplitude of 28◦.109
8.22 Average performance indices for a linear chirp reference with an amplitude of 16◦. . 111
8.23 Performance indices for a linear chirp reference with an amplitude of 28◦ for the first

20 seconds. 112
8.24 Performance indices for a linear chirp reference with an amplitude of 28◦. 113
8.25 ISMC parameters for the minidrone competition. 114
8.26 Maximum speeds used for testing. 116
8.27 Performance, track 1. 118
8.28 Performance, track 2. 118
8.29 Performance, track 3. 119
8.30 IAE- and ISE-results for track 2 w/ maximum speed set to 0.0011 m/sample. . . . 119
8.31 IAE- and ISE-results for track 2 w/ maximum speed set to 0.0008 m/sample. . . . 120

xiv

D.1 Performance, track 1. 188
D.2 IAE and ISE results, track 1. 190
D.3 Performance, track 2. 206
D.4 IAE and ISE results, track 2. 208
D.5 Performance, track 3. 224
D.6 IAE and ISE results, track 3. 226

1

List of Abbreviations

Symbol Description
UAV Unmanned Aerial Vehicle
LQR Linear Quadratic Regulator
PD Porportional Derivative
PID Porportional Integral Derivative
SMC Sliding Mode Controller
ISMC Integral Sliding Mode Controller
AFGS Adaptive Fuzzy Gain Scheduling
FLS Fuzzy Logic System
NL Negative Large
NS Negative Small
ZE ZEro
PS Positive Small
PL Positive Large
VL Very Low
L Low
M Medium
H High
VH Very High
ISE Integral Squared Error
IAE Intergral Absolute Error
ITSE Integral Time Squared Error
ITAE Integral Time Absolute Error
GA Genetic Algorithm
DOF Degrees Of Freedom
BW Black and White
RGB Red Green Blue
IFAC International Federation of Automatic Control
LTI Linear Time-Invariant

Chapter 1

Introduction

1.1 Motivation

Unmanned Aerial Vehicles (UAVs), or drones, are becoming increasingly popular and have many
applications: military and security purposes, search and rescue, agriculture, forest restoration,
building inspection and road traffic monitoring, just to name a few [7].

UAVs face many challenges as they are maneuvering through the air: adapting to disturbances such
as wind and other weather effects, rapidly changing directions and following complex paths. The
quadrotor is considered a highly nonlinear system, with complex aerodynamics. Obtaining a good
mathematical model for a drone flight can be a challenging task, where the obtained model can
suffer from system uncertainties, as no mathematical model is able to fully capture every aspect of
the concept that is being modeled. Linearization is often required for linear control methods to be
applied, which can lead to further model inaccuracies. This thesis investigates a control method
called Sliding Mode Control (SMC) that shows promise in dealing with the difficulties mentioned.
Some of the main strengths of this method are removal of the need for linearization, adaptability,
good disturbance rejection, precision and fast response [8].

The Parrot Minidrone Competition was seen as a good opportunity for applying the SMC controller
to a practical problem and served as extra motivation for the project.

1.2 Objective

The main objectives of this thesis have been to:

• Perform a literature study of various controller designs for UAVs.

2

Chapter 1 Introduction 3

• Derive a nonlinear mathematical model for quadrotor UAVs.

• Develop a Sliding Mode Controller (SMC) for quadrotor UAVs.

• Develop PID- and LQR-controllers for quadrotor UAVs for use as benchmarks to compare
SMC against.

• Tune controller parameters by Genetic Algorithms.

• Compare the performance of the nonlinear SMC against that of the linear PID- and LQR-
controllers.

• Design and develop a line tracking algorithm for the MathWorks Minidrone Competition.

• Compare line tracking performance using SMC against the PID-controller developed by
MathWorks.

These goals will be achieved through development and simulation in MATLAB and Simulink.
Simulations done in relation to the MathWorks Minidrone Competition are carried out using the
Simulink Support Package for Parrot Minidrones MATLAB add-on. The designed controllers are
also tested by using the Quanser 3 DOF Hover system available in the laboratory room E-457 at
the University of Stavanger.

1.3 MathWorks Minidrone Competition

One of the goals of this thesis’ project was to apply the sliding mode controller to a practical
problem. The MathWorks Minidrone Competition was seen as a good opportunity for this.

The MathWorks Minidrone Competition is a competition where the participating teams have
to develop an autonomous minidrone line follower. It is hosted by MathWorks, the creators of
MATLAB, and hence all of the development, simulations, etc. is done using MATLAB and Simulink
[9].

The competition usually consists of two rounds:

Round 1 | Simulation: A qualifying round where the line follower’s performance is judged only
through simulation in Simulink.

Round 2 | Deployment: A final round where the teams that qualified during the first round
meet in person and deploy their algorithms on a Parrot Mambo minidrone.

In both cases, the line follower is judged by its ability to follow a track that consists of one to
ten line segments that are 10 cm wide. At the end of the track there is a circular marker with a

4 Chapter 1 Introduction

diameter of 20 cm that the minidrone must land on. The accuracy of the path taken, the completion
time and the number of completed tracks is of importance [10].

A Simulink project with a Quadcopter Flight Simulation Model for Parrot Minidrones is provided
by MathWorks. This project includes everything needed to setup and run the simulation and
visualization of the drone flight, allowing the teams to focus only on the drone’s control system.
The model comes with a PID-based controller. In the case of this project, this controller will be
replaced by the sliding mode controller, the main focus of the thesis. Additionally, a line tracking
algorithm will be developed.

At the time of the writing of this thesis, the closest upcoming competition is the IFAC 2023
Competition. The final round of this competition is held during the IFAC World Congress in
Yokohoma, Japan. This is an event hosted by the International Federation of Automatic Control to
promote scientific activities and technological developments in the field of automatic control [11].
The submission deadline for the first round is 19th of April 2023. The qualifying teams then get to
participate in the second round which is held from 10th to 11th of July 2023 [9].

Chapter 2

Quadrotor Dynamics

2.1 Main Components

A quadrotor is an underactuated aircraft with six degrees of freedom (6 DOF), which means that it
can move longitudinally (forward and backward), vertically (upward and downward), and laterally
(right and left), as well as rotationally around each axis to produce roll, pitch, and yaw movements.
It is made up of four engines, with four rotors as shown in Figure 2.1. Since the four rotors have
fixed angles, the quadrotor has four input forces, which are the thrusts provided by each propeller.
Each propeller creates a thrust that is perpendicular to their rotation plane. They also produce a
torque on the quadrotor frame, which is in the opposite direction of the propellers rotation. To
cancel out this torque, there are two sets of propellers. One pair creates an upward thrust when
spinning anti-clockwise, while the second pair creates an upward thrust when spinning clockwise.
The torque from each propeller on the quadrotor frame can then be canceled out.

Figure 2.1: Parrot Mambo minidrone [1].

5

6 Chapter 2 Quadrotor Dynamics

2.2 Euler Angles

Before describing the mathematical model, it is important to introduce the reference coordinates.
We can define two reference systems, in which the first is a fixed coordinate system called the
inertial frame. This is an earth fixed coordinate system, with the x-axis, y-axis and z-axis directed
North, East and down respectively. The positive x-axis will represent the forward direction, while
the positive y-axis will represent the right direction.
The second is a mobile coordinate system called the body fixed frame, which has it origin at the
center of mass of the quadrotor. Figure 2.2 illustrates the two coordinate systems.

Figure 2.2: Mobile and fixed reference systems.

To describe the orientation of the quadrotor body, the ZYX Euler angles [12]: roll, pitch and yaw,
are introduced, which are denoted as ϕ, θ and ψ respectively. Roll is rotation around the x-axis,
pitch is rotation around the y-axis, and yaw is rotation around the z-axis, all in the inertial frame
as depicted in Figure 2.3.

Figure 2.3: Euler Angles [2].

Chapter 2 Quadrotor Dynamics 7

The Euler angles can be used to describe the orientation of a frame of reference relative to another,
and they can transform the coordinates of a point in a reference frame to the coordinates of the
same point in another reference frame. The Euler angles can then be used to describe the rotation
from the body fixed frame to the inertial frame. The rotation matrices for each axis x, y and z is
described as

Rx(ϕ) =


1 0 0
0 c(ϕ) −s(ϕ)
0 s(ϕ) c(ϕ)

 (2.1)

Ry(θ) =


c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)

 (2.2)

Rz(ψ) =


c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1

 (2.3)

where c() = cos() and s() = sin(). A rotation matrix is a square matrix that is used to perform a
rotation in a certain number of dimensions. By multiplying these matrices in the desired sequence,
one can obtain a combined rotation matrix that represents the orientation of an object in 3D space.
The position in the inertial frame and in the body fixed frame are related by the rotation matrix
Rzyx(ϕ, θ, ψ):

Rzyx(ϕ, θ, ψ) = Rz(ψ) ·Ry(θ) ·Rx(ϕ)

=


c(θ)c(ψ) s(ϕ)s(θ)c(ψ) − c(ϕ)s(ψ) c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(θ)s(ψ) s(ϕ)s(θ)s(ψ) + c(ϕ)c(ψ) c(ϕ)s(θ)s(ψ) − s(ϕ)c(ψ)

−s(θ) s(ϕ)c(θ) c(ϕ)c(θ)

 (2.4)

which is used to describe the rotation from the body fixed frame to the inertial frame.

2.3 Working Principles

In terms of the orientation of the rotors relative to the body fixed frame, there are two basic types of
configurations: the plus- and cross-configuration which are shown in Figure 2.4. The 3 DOF Hover
utilizes the plus-configuration, whereas the cross-configuration is employed in the Parrot Mambo
minidrone competition. In this section, we will delve into the details of the cross-configuration, while
the plus-configuration and the 3 DOF Hover will be discussed later on. With the cross-configuration,
rotor 1 is located parallel to the xy-plane, −45◦ from the x-axis viewed from above. Rotor 2, 3, and

8 Chapter 2 Quadrotor Dynamics

4 also lay in the xy-plane with 90◦ between each rotor in the clockwise direction viewed from above.
Rotor 1 and 3 rotate positively with respect to the z-axis, and rotor 2 and 4 rotate negatively with
respect to the z-axis. This is summed up in Figure 2.5.

Figure 2.4: Plus- and cross-configuration.

Figure 2.5: Rotor placements and rotations in the cross-configuration.

The attitude and position of the quadrotor can be controlled via the four rotor speeds, which can
introduce the following four forces and torques on the quadrotor: total thrust, roll moment, pitch
moment and yaw moment.

Collectively increasing all the rotor speeds will increase the total thrust of the quadrotor, making it
move up and down according to if the total thrust is bigger or smaller than the weight caused by
gravity.

Chapter 2 Quadrotor Dynamics 9

Figure 2.6: Force balance while hovering.

Roll moment is achieved by creating an unbalance in the left and right side forces. Increasing the
speed of rotor 3 and 4, and decreasing the speed of rotor 1 and 2 will create a positive roll angle.
A positive roll angle will make the quadrotor accelerate in the right direction, and a negative roll
angle will make it accelerate in the left direction.

Figure 2.7: Roll in cross-configuration.

Similarly, pitch moment is achieved by creating an unbalance in the front and back forces. Thus,
increasing the speed of rotor 1 and 4, and decreasing the speed of rotor 2 and 3 will result in a
positive pitch angle. A positive pitch angle will make the quadrotor accelerate in the backwards
direction, while a negative pitch angle will make it accelerate in the forward direction.

10 Chapter 2 Quadrotor Dynamics

Figure 2.8: Pitch in cross-configuration.

To create a yawing moment, the pairwise anti-clockwise and clockwise rotating rotors are adjusted to
cause an unbalance in the torques acting on the quadrotor frame. Increasing the speed of positively
rotating rotors 1 and 3, and decreasing the speed of negatively rotating rotors 2 and 4 will decrease
the yaw angle. Similarly, increasing the speed of negatively rotating rotors 2 and 4, and decreasing
the speed of positively rotating rotors 1 and 3 will increase the yaw angle.

Chapter 2 Quadrotor Dynamics 11

Figure 2.9: Yaw in cross-configuration.

2.4 Mathematical Model

When obtaining the mathematical model of the quadrotor, the following assumptions are made:

1. The quadrotor’s structure is rigid and symmetrical.

2. The quadrotor’s propellers are rigid.

3. The thrust and drag forces are proportional to the square of the rotors’ rotational speed.

A mathematical model exploiting Newton and Euler equations for the 3D motion of a rigid body
will now be provided. Consider the linear position

[
x y z

]
and the angular position

[
ϕ θ ψ

]
of the quadrotor in the inertial frame, as well as the linear velocities

[
u v w

]
and the angular

velocities
[
p q r

]
of the quadrotor in the body fixed frame. The two reference frames are related

by

ξ̇ = R · vB ,

η̇ = T · ωB
(2.5)

12 Chapter 2 Quadrotor Dynamics

where ξ =
[
x y z

]T
, vB =

[
u v w

]T
, η =

[
ϕ θ ψ

]T
, ωB =

[
p q r

]T
, R is the rotation

matrix from Equation (2.2), and T is a matrix of angular transformation given by

T =


1 s(ϕ)t(θ) c(ϕ)t(θ)
0 c(ϕ) −s(ϕ)
0 s(ϕ)

c(θ)
c(ϕ)
c(θ)

 (2.6)

where t() = tan().

2.4.1 Forces

From Newton’s law we have
mξ̈ = R · FB = Fg − Ft (2.7)

where m is the total mass of the quadrotor and FB is all the forces acting on the body. Fg is the
gravity force and is expressed as

Fg =


0
0
mg

 (2.8)

Ft denotes the thrust generated by the four propellers, and is expressed as

Ft = ftR · e3 = ft


c(ϕ)s(θ)c(ψ) + s(ϕ)s(ψ)
c(ϕ)s(θ)s(ψ) − s(ϕ)c(ψ)

c(ϕ)c(θ)

 (2.9)

where e3 is the unit vector in the body fixed frames z-axis, and ft is the total thrust force given by
the sum of all the propeller thrusts

ft =
4∑
i=1

fi (2.10)

where fi = bΩ2
i , b is the thrust factor and Ωi is the rotational speed of each rotor. From Equation

(2.7) the following is obtained

ẍ = −ft
m

(sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) sin(θ))

ÿ = −ft
m

(cos(ϕ) sin(ψ) sin(θ) − cos(ψ)sin(ϕ))

z̈ = g − ft
m

(cos(ϕ) cos(θ))

(2.11)

Chapter 2 Quadrotor Dynamics 13

2.4.2 Moments

Euler’s equation gives the total torque applied to the quadrotor

Jω̇B + ωB ∧ JωB = Γf − Γg (2.12)

where ∧ is the cross product, J is the diagonal inertia matrix given by

J =


Ix 0 0
0 Iy 0
0 0 Iz

 (2.13)

Γf denotes the moment developed by the propellers in the body fixed frame

Γf =


τx

τy

τz

 (2.14)

Γg is the result of the torques due to gyroscopic effects

Γg =
4∑
i=1

ωB ∧ Jr


0
0

(−1)i+1Ωi

 (2.15)

where Jr represents the rotor inertia, and Ωi represents the rotational speed of the ith rotor.
The simplification

[
ϕ̇ θ̇ ψ̇

]T
=
[
p q r

]T
can be made with the assumption of small angles of

movement. From equation (2.12) we then get

ϕ̈ = Iy − Iz
Ix

θ̇ψ̇ − Jr
Ix
θ̇Ω + τx

Ix

θ̈ = Iz − Ix
Iy

ϕ̇ψ̇ + Jr
Iy
ϕ̇Ω + τy

Iy

ψ̈ = Ix − Iy
Iz

ϕ̇θ̇ + τz
Iz

(2.16)

where Ω = −Ω1 + Ω2 − Ω3 + Ω4 represents the overall residual rotor angular velocity.

14 Chapter 2 Quadrotor Dynamics

2.4.3 Actuator Dynamics

The forces that can be applied to the quadrotor in order to control the behavior are the following
forces and torques

ft = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

τx = bL(−Ω2
1 − Ω2

2 + Ω2
3 + Ω2

4)

τy = bL(Ω2
1 − Ω2

2 − Ω2
3 + Ω2

4)

τz = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(2.17)

where b is the thrust factor, d is the drag factor, L is the distance between any rotor and the center
of the quadrotor, ft is the vertical thrust, and τx, τy, τz are the torques for each of the angular
motions.

The control inputs will be defined as follows

u1 = ft = b(Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4)

u2 = τx = bL(−Ω2
1 − Ω2

2 + Ω2
3 + Ω2

4)

u3 = τy = bL(Ω2
1 − Ω2

2 − Ω2
3 + Ω2

4)

u4 = τz = d(−Ω2
1 + Ω2

2 − Ω2
3 + Ω2

4)

(2.18)

2.4.4 Dynamic Model

From Newton’s law, Euler’s fomula, the definitions and assumptions made, the dynamic model
of the quadrotor in the inertial frame can be obtained from Equation (2.11), (2.16) and (2.18) as
follows 

ẍ = −u1
m

(sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) sin(θ))

ÿ = −u1
m

(cos(ϕ) sin(ψ) sin(θ) − cos(ψ)sin(ϕ))

z̈ = g − u1
m

(cos(ϕ) cos(θ))

ϕ̈ = Iy − Iz
Ix

θ̇ψ̇ − Jr
Ix
θ̇Ω + u2

Ix

θ̈ = Iz − Ix
Iy

ϕ̇ψ̇ + Jr
Iy
ϕ̇Ω + u3

Iy

ψ̈ = Ix − Iy
Iz

ϕ̇θ̇ + u4
Iz

(2.19)

Chapter 2 Quadrotor Dynamics 15

2.5 Parrot Mambo Minidrone

For the simulations made in this work, the Parrot Mambo minidrone used in the MathWorks
Minidrone Competition will be used. The Parrot Mambo is equipped with an ultrasonic sensor,
accelerometer, gyroscope and pressure sensor. The sensors measure acceleration, angular velocity,
altitude and displacement in the horizontal plane. It is also equipped with a downward facing
camera with a resolution of 120x60 pixels and a refresh rate of 60 frames per second. The physical
parameters of the Parrot Mambo are listed in Table 2.1.

Specification Parameter Value Unit
Quadrotor mass m 0.063 kg
Lateral moment arm L 0.0624 m
Rotor moment of inertia Jr 1.021 × 10−7 kgm2

Rolling moment of inertia Ix 5.82857 × 10−5 kgm2

Pitching moment of inertia Iy 7.16914 × 10−5 kgm2

Yawing moment of inertia Iz 1 × 10−4 kgm2

Thrust coefficient b 0.0107 Ns2

Drag coefficient d 7.8264 × 10−4 Nms2

Maximum total thrust umax
1 1.2 N

Maximum roll/pitch moment umax
2,3 1 × 10−3 Nm

Maximum yaw moment umax
4 1 × 10−4 Nm

Table 2.1: Parameters of the Parrot Mambo minidrone.

To take into account that the forces and moments the quadrotor can produce are limited by the
physical rotational speed of the rotors, saturated control inputs usi will be implemented, where
i = {1, 2, 3, 4}. The saturated control inputs can be written as follows

usi = sat(ui) =


umax
i IF ui ≥ umax

i

ui IF − umax
i < ui < umax

i

−umax
i IF ui ≤ −umax

i

(2.20)

where umax
i is the maximum control input value listed in Table 2.1.

16 Chapter 2 Quadrotor Dynamics

2.6 3 DOF Hover

The Quanser 3 DOF Hover system [3], shown in Figure 2.10, was used in this work to test how
well the developed control algorithms worked in practice. It consists of a planar round frame with
four propellers. The frame is mounted on a three degrees of freedom pivot joint, which allows the
body to rotate about the roll, pitch and yaw axes. The roll, pitch and yaw angles are measured
using high-resolution encoders. Each encoder has a resolution of 8192 counts per revolution, thus
the precision of the measured angles is accurate down to 0.0439 degrees. To obtain the rotational
velocities, a derivative block and a second-order filter was used. The encoder and motor signals are
transmitted through a slip ring mechanism, which allows the yaw axis to rotate continuously about
360◦. The minimum and maximum pitch and roll angles are read as ±37.5◦.

Figure 2.10: The Quanser 3 DOF Hover [3].

The physical parameters of the 3 DOF Hover are listed in Table 2.2.

Chapter 2 Quadrotor Dynamics 17

Specification Parameter Value Unit
Quadrotor mass m 2.85 kg
Lateral moment arm L 0.197 m
Rotor moment of inertia Jr 1.91 × 10−6 kgm2

Rolling moment of inertia Ix 0.0552 kgm2

Pitching moment of inertia Iy 0.0552 kgm2

Yawing moment of inertia Iz 0.110 kgm2

Torque thrust constant of motor/propeller Kt 0.0036 Nm/V
Force-thrust constant of motor/propeller Kf 0.1188 N/V
Transformation constant Kv 54.945 rad s/V
Bias voltage Vbias 4 V

Table 2.2: Parameters of the 3 DOF Hover.

The 3 DOF Hover system uses a slightly different coordinate system than what was described
earlier, where the z-axis is defined upwards instead of downwards. A positive yaw angle is then
defined in the other direction as to what was described earlier. The 3 DOF Hover also uses a
plus-configuration, where the different motors are denoted as front, back, right and left. The torques
created by the rotors are given by Quanser as a combination of the motor voltages, where we have

• Vf - front motor voltage

• Vb - back motor voltage

• Vl - left motor voltage

• Vr - right motor voltage

Figure 2.11 illustrates the motor placements, propeller rotations, and the positive direction for the
yaw angle.

18 Chapter 2 Quadrotor Dynamics

Figure 2.11: Motor placements and rotations for the 3 DOF Hover.

Roll moment is achieved by creating an unbalance in the left and right side forces. Increasing the
voltage for the right motor, and decreasing the voltage for the left motor will create a positive roll
angle.

Figure 2.12: Roll in plus-configuration.

Chapter 2 Quadrotor Dynamics 19

Pitch moment is achieved by creating an unbalance in the front and back forces. Thus, increasing
the voltage for the front motor, and decreasing the voltage for the back motor will result in a
positive pitch angle.

Figure 2.13: Pitch in plus-configuration.

To create a yawing moment, the pairwise anti-clockwise and clockwise rotating rotors are adjusted
to cause an unbalance in the torques acting on the body frame. Increasing the voltage for the
negatively rotating right and left motors, and decreasing the voltage for the positively rotating front
and back motors will decrease the yaw angle. Similarly, increasing the voltage of the negatively
rotating front and back motors, and decreasing the voltage of positively rotating right and left
motors will increase the yaw angle.

20 Chapter 2 Quadrotor Dynamics

Figure 2.14: Yaw in plus-configuration.

The total thrust and torques are defined by Quanser as

ft = u1 = Kf (Vf + Vb + Vr + Vl)

τx = u2 = LKf (Vr − Vl)

τy = u3 = LKf (Vf − Vb)

τz = u4 = Kt(Vr + Vl − Vf − Vb)

(2.21)

The overall residual rotor angular velocity Ω from the dynamic equations is defined as

Ω = Kv(Vr + Vl − Vf − Vb) (2.22)

Equation (2.21) can be solved for the different motor voltages, so that the control inputs can be
transformed into voltages for the different motors as shown below

Vf = 1
4Kf

u1 + 1
2LKf

u3 − 1
4Kt

u4

Vb = 1
4Kf

u1 − 1
2LKf

u3 − 1
4Kt

u4

Vr = 1
4Kf

u1 + 1
2LKf

u2 + 1
4Kt

u4

Vl = 1
4Kf

u1 − 1
2LKf

u2 + 1
4Kt

u4

(2.23)

Chapter 2 Quadrotor Dynamics 21

A bias voltage, Vbias, is added to prevent each propeller from going below zero and being cutoff.
This will keep the rotors in motion, which can also help make the system more responsive.

Chapter 3

Control Architecture

The purpose of the control algorithm is for the quadrotor to follow the desired trajectories: xd(t),
yd(t), zd(t), ϕd(t), θd(t), and ψd(t). Because the quadrotor is underactuated, meaning that the
number of degrees of freedom is larger than the number of control inputs, a nested loop control
structure is appropriate. From Equation (2.19), it can be seen that the rotational motion is
independent from the translational motion, while the opposite is not true. Therefore an inner loop
control can be designed to ensure the desired attitude and altitude, while an outer loop control can
be designed to ensure the desired position, by generating a reference signal fed to the inner loop
control.

The dynamic model equations for ẍ and ÿ from Equation (2.19), can be rewritten as follows

ẍ = −u1
m
ux

ÿ = −u1
m
uy

(3.1)

where two virtual inputs ux and uy are defined to obtain the desired x- and y-position, defined as

ux = −m

u1
ẍ = sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) sin(θ)

uy = −m

u1
ÿ = cos(ϕ) sin(ψ) sin(θ) − cos(ψ) sin(ϕ)

(3.2)

Using the small angle assumption around the hover position, we have cos(θ) ≈ cos(ϕ) ≈ 1, sin(θ) ≈ θ

and sin(ϕ) ≈ ϕ. Equation (3.2) then becomes

ux = ϕ sin(ψ) + cos(ψ)θ

uy = sin(ψ)θ − cos(ψ)ϕ
(3.3)

22

Chapter 3 Control Architecture 23

The desired pitch and roll angles with their derivatives are then calculated as

ϕd = sin(ψd)ux − cos(ψd)uy
ϕ̇d = sin(ψd)u̇x − cos(ψd)u̇y + cos(ψd)uxψ̇d + sin(ψd)uyψ̇d
θd = cos(ψd)ux + sin(ψd)uy
θ̇d = cos(ψd)u̇x + sin(ψd)u̇y − sin(ψd)uxψ̇d + cos(ψd)uyψ̇d

(3.4)

The overall control structure is depicted in Figure 3.1.

Figure 3.1: Control structure.

All the different controllers proposed in this work will use the same control architecture to ensure
that the quadrotor follows the desired trajectories. By employing a consistent control architecture,
the proposed controllers exhibit comparable performance characteristics while emphasizing different
control strategies. This allows for a fair comparison and evaluation of their effectiveness in achieving
desired trajectory tracking for the quadrotor.

Chapter 4

Linear Control Methods

Precise control and advanced regulation techniques are essential in various industries, including
production control, robotics, medical technology, and flight control. These applications often
demand accurate control of complex systems, particularly in the case of drones, where stability and
precise path tracking are crucial.

Among control approaches, linear control systems offer advantages due to their relative simplicity and
ease of design compared to nonlinear controllers. In this study, two linear control techniques, namely
Proportional Integral Derivative (PID) and Linear Quadratic Regulator (LQR), are specifically
designed for the quadrotor UAV.

4.1 PID Control

Throughout the history of regulatory systems in the engineering world, PID control has been applied
by many scientists and engineers to industrial applications such as regulating speed, pressure,
temperature, and more. The PID controller provides a classic feedback control strategy that adjusts
the control inputs based on the error between the desired and actual states [13]. It is widely used in
various applications due to its simplicity and effectiveness in achieving stable and accurate control.

4.1.1 PD Controller Design

In this work, a PD controller is used in both the inner and outer loop control. The choice of a
PD controller is motivated by the fact that to make a quadrotor hover in the air, two of the Euler
angles, roll and pitch, must remain zero. There is therefore no need to eliminate any static errors.
The integral part has several drawbacks, including increased settling time, which is undesirable
because of the need of a fast response for quadrotor control. The integral term, with it’s tendency to

24

Chapter 4 Linear Control Methods 25

accumulate errors over time, can potentially introduce overshoot and instability if not appropriately
tuned, making it less suitable for these rapid and dynamic maneuvers.

Inner Loop

The purpose of the inner loop controller is to track and stabilize the quadrotor’s altitude and
attitude. The desired altitude is given by zd, while the desired attitude is given by ϕd, θd, and ψd.
The inner loop control inputs are given by

u1 = − (Kpz(zd − z) +Kdz(żd − ż)) +mg

u2 = Kpϕ(ϕd − ϕ) +Kdϕ(ϕ̇d − ϕ̇)

u3 = Kpθ(θd − θ) +Kdθ(θ̇d − θ̇)

u4 = Kpψ(ψd − ψ) +Kdψ(ψ̇d − ψ̇)

(4.1)

where Kpz, Kpϕ, Kpθ and Kpψ are the proportional gains, and Kdz, Kdϕ, Kdθ and Kdψ are the
derivative gains. The negative sign in the control input u1 is introduced to account for the fact
that the z-axis is defined downwards in this work. A feedforward term, mg, equal to the weight
caused by gravity is added to u1. The feedforward term provides a baseline force that counteracts
the effect of gravity. By incorporating the feedforward term, the controller can compensate for the
gravitational force without relying solely on the feedback control actions.

Outer Loop

The purpose of the outer loop control is to ensure the desired position given by xd and yd, by
feeding reference signals to the inner loop control. The outer loop control inputs are given by

ux = − (kpx(xd − x) + kdx(ẋd − ẋ))

uy = − (kpy(yd − y) + kdy(ẏd − ẏ))
(4.2)

where Kpx, Kpy are the proportional gains, and Kdx, Kdy are the derivative gains. The negative
signs in the control inputs comes from how the virtual inputs ux and uy are defined in chapter 3.

4.2 LQR Control

The Linear Quadratic Regulator technique has been widely implemented on the industrial applica-
tions, such as the wheeled inverted pendulum vehicle, the voltage-source inverter and seated balance
[14]. Compared to PID, an LQR system is considered better for stability and robustness. This
means that LQR can handle disturbances and uncertainties in the system better than PID (such as

26 Chapter 4 Linear Control Methods

noise and modeling uncertainties). In the LQR, the system dynamics are typically represented in
state-space form, which is a mathematical model that describes the behavior of a system using a set
of first-order differential equations. There is done relatively little research on the implementation of
the LQR technique on the tracking problem of the quadrotor. The realization of the LQR technique
on the quadrotor comes with some difficulties, such as [14]: 1) There exist high nonlinearities in the
quadrotor dynamics, and the aerodynamic effects. 2) The system dynamics of the quadrotor are
subject to several uncertainties, such as the model inaccuracy due to the linearity approximation
and parameter perturbations.

4.2.1 State-Space Model of the Quadrotor

The LQR control is designed by using state-space analysis of the quadrotor to achieve stability
and trajectory tracking. This is done by defining state variables, input variables, and the system
matrices. The state-space representation of a Linear Time-Invariant (LTI) system can be defined as
follows

ẋ = Ax+Bu

y = Cx+Du
(4.3)

where A, B, C, and D represent the state matrix, input matrix, output matrix, and feedthrough
matrix, respectively. The state vector is denoted by x, the input/control vector is denoted by u,
and y is defined as the output vector.

Based to the quadrotor dynamic model from Equation (2.19) and the rewritten form of the x- and
y-dynamics including the virtual inputs from Equation (3.1), the decoupled quadrotor dynamics
can be represented as the state-space models as shown below

ẋx = Axxx +Bxux
ẋy = Ayxy +Byuy
ẋz = Azxz +Bzu1

ẋϕ = Aϕxϕ +Bϕu2

ẋθ = Aθxθ +Bθu3

ẋψ = Aψxψ +Bψu4

(4.4)

Chapter 4 Linear Control Methods 27

where

xx =

x
ẋ

 , ẋx =

 ẋ

−u1
m ux


xy =

y
ẏ

 , ẋy =

 ẏ

−u1
m uy


xz =

z
ż

 , ẋz =

 ż

g − u1
m (cosϕ cos θ)


xϕ =

ϕ
ϕ̇

 , ẋϕ =

 ϕ̇
Iy−Iz

Ix
θ̇ψ̇ − Jr

Ix
θ̇Ω + u2

Ix


xθ =

θ
θ̇

 , ẋθ =

 θ̇
Iz−Ix
Iy

ϕ̇ψ̇ + Jr
Iy
ϕ̇Ω + u3

Iy


xψ =

ψ
ψ̇

 , ẋψ =

 ψ̇
Ix−Iy

Iz
ϕ̇θ̇ + u4

Iz



(4.5)

Based on the nonlinear equations from Equation (4.5), the state and input matrices can be obtained.
These matrices can be linearized considering the equilibrium point when hovering x̄ = 0, where
xx = xy = xz = xϕ = xθ = xψ = 0, u1 = mg and ux = uy = u2 = u3 = u4 = 0. The Jacobian
matrices can be obtained by following the general procedure

A =

 ∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


x = x̄
u = ū

, B =

∂f1
∂u
∂f2
∂u


x = x̄
u = ū

(4.6)

The state and input matrices can be obtained as

Ax =

0 1
0 0

 , Bx =

 0
−g


Ay =

0 1
0 0

 , By =

 0
−g


Az =

0 1
0 0

 , Bz =

 0
− 1
m


Aϕ =

0 1
0 0

 , Bϕ =

 0
1
Ix


Aθ =

0 1
0 0

 , Bθ =

 0
1
Iy


Aψ =

0 1
0 0

 , Bψ =

 0
1
Iz



(4.7)

28 Chapter 4 Linear Control Methods

The A and B matrices will be used in designing the LQR controllers.

4.2.2 LQR Controller Design

When implementing the LQR control given the Linear Time-Invariant (LTI) systems obtained in
the previous Subsection 4.2.1, the LQR approach allows obtaining an optimal control gain K [14]

u(t) = −Kx(t) (4.8)

which minimizes the cost function

J =
∞∫

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (4.9)

where Q ∈ Rn×n and R ∈ Rm×m, where n is the number of state variables and m is the number
of input variables. Q and R are symmetric positive definite weighting matrices for the states and
inputs, respectively. A common method of choosing Q and R is to set them as diagonal matrices.
The weighting matrices Q and R represent the relative importance or cost associated with the state
variables and input variables respectively, where in the case of diagonal matrices, the i-th element
along the diagonal represents the weight of the i-th state or input. These matrices are fundamental
in defining the cost function that the LQR controller seeks to minimize.
Higher values in the diagonal elements of Q indicate that the corresponding state variables are
more critical or have higher penalties in the cost function. By adjusting the values of Q, the control
engineer can prioritize certain state variables over others in terms of their control performance or
stability requirements.
Higher values in the diagonal elements of R indicate that the corresponding input variables have
larger penalties or are more expensive to use in the control action. By adjusting the values of R,
the control engineer can control the aggressiveness or effort exerted by each input variable in the
control action.
The choice of the R matrix and the Q matrix comes with the trade-off between quick performance
and expended energy.

The gain matrix K is computed as
K = R−1BTP (4.10)

The value of P ∈ Rn×n is initially unknown and can be obtained by solving the algebraic Riccati
function as shown below

PA+ATP − PBR−1BTP +Q = 0 (4.11)

Once P is determined, the feedback gain matrix K can be computed using (4.10).

Chapter 4 Linear Control Methods 29

MATLAB offers a straightforward approach to determine the feedback gain by utilizing a specific
command shown in (4.12). This process involves obtaining the state matrix A, input matrix B and
the Q and R matrices.

K = lqr(A,B,Q,R) (4.12)

The design of the LQR controller is illustrated in Figure 4.1.

Figure 4.1: Block diagram of LQR controller.

4.3 Summary

In this chapter, we introduced two benchmark controllers for quadrotor control: the Proportional-
Derivative (PD) controller and the Linear Quadratic Regulator (LQR). We discussed their design
principles, implementation, and performance characteristics. These controllers provide a solid
foundation for evaluating the performance of alternative control methods. In the next chapter, we
will explore a sliding mode control approach. By leveraging the insights gained from the benchmark
controllers, we anticipate that the sliding mode control will offer enhanced robustness, disturbance
rejection, and tracking performance for the quadrotor.

Chapter 5

Silding Mode Control

5.1 Introduction to Sliding Mode Control

Sliding mode control (SMC) is a nonlinear control technique that was first developed in the 1950s
and later popularized by the Russian mathematician V. Utkin. It was developed as a robust and
adaptive control strategy that could work even if the system to be controlled was highly nonlinear
or had model uncertainties.
The basic idea of SMC is based on defining a function named the sliding variable. When a properly
designed sliding variable becomes equal to zero, it defines the sliding surface. The idea is to steer
the state variables of the system to a properly chosen sliding surface, and then keep it there by
means of a high frequency switching control signal.
SMC is robust with respect to internal and external disturbances. However, the chattering produced
by the high frequency switching of the control can cause problems. Chattering is an undesirable
phenomenon of oscillations with finite frequency. Chattering can be harmful because it leads to low
control accuracy, high heat loss in electrical power circuits, and high wear of moving mechanical
parts. Thus it is one of the main problems when implementing SMC. We will later present some
methods that will reduce the chattering phenomena.

5.2 Lyapunov Stability

In order to achieve asymptotic convergence of the sliding variable to zero by means of the control
input, Lyapunov function techniques can be applied to the sliding variable dynamics [15]. Lyapunov
stability is a type of stability analysis used in dynamical systems theory, which involves searching
for a function V (x) of the system states called a Lyapunov function. It is named after the Russian
mathematician, Aleksandr Lyapunov, who developed the concept in the late 19th century.

30

Chapter 5 Silding Mode Control 31

Let’s first consider the definition of stability [15], where we consider the autonomous system

ẋ = f(x), f : D ⊂ Rn → Rn (5.1)

An equilibrium point in the state space is given by vectors xe satisfying

f(xe) = 0, ∀ t > 0 (5.2)

For convenience, we state that all the definitions and theorems for the case when the equilibrium
point is at the origin x = 0. This can be done without the loss of generality because any equilibrium
point xe can be shifted to the origin with the change of variables y = x− xe.

Definition 1 The equilibrium point x = 0 of (5.1) is stable if, for each ϵ > 0 there exists a δ > 0
such that if ||x(0)|| < δ then ||x(t)|| < ϵ for all t > 0. It is unstable if it is not stable.

Less formally, Definition 1 states that by starting close enough to the equilibrium point, the solution
will always remain arbitrarily close to it.

Definition 2 The equilibrium point x = 0 of (5.1) is said to be asymptotically stable if it is stable
and δ can be chosen such that ||x(0)|| < δ ⇒ lim

t→∞
x(t) = 0.

Less formally, Definition 2 states that by starting close enough to the equilibrium point, the
solution will always remain arbitrarily close to it, in addition, the trajectory will also diverge to the
equilibrium point.

Let’s now consider the second method of Lyapunov [16], also referred to as the Lyapunov stability
criterion or the Direct Method. The method makes use of a Lyapunov function V (x), which is a
scalar function and a function of the system states. It is positive and has a negative time-derivative.
Conversely, the existence of such a function for a given system implies asymptotic stability.

Theorem 1 Let’s consider xe = 0 as an equilibrium point for the autonomous system in (5.1),
and D ⊂ Rn be a domain containing x = 0. If there exists a function V (x) such that

1. V (x) > 0, for x ̸= xe

2. V̇ (x) < 0, for x ̸= xe

3. V (x) = 0, for x = xe

4. V (x) → ∞, for ||x|| → ∞

32 Chapter 5 Silding Mode Control

then xe is a asymptotically stable equilibrium point. The requirements in Theorem 1 states that
the Lyapunov function is required to be a decreasing function, with a minimum point at the origin
of the state space. Conceptually, this function can be likened to an energy function in mechanical
systems, signifying that the system consistently progresses towards regions of lower energy. As a
result, the system can be considered stable.

5.3 Designing Sliding Mode Control

We will first define a sliding variable s in such a way that s = 0 gives rise to a differential equation
whose solution tends to zero eventually. The sliding surface is described by s = 0, which is a
particular surface in the state space. After the initial reaching phase, the system states “slides”
along the line s = 0 by the sliding mode control. The advantage of this is that the dynamic behavior
of the system may be tailored by the particular choice of the sliding variable.
The most typical structure for the sliding variable is a linear combination of the form [17]:

s = e(k) +
k−1∑
i=0

λie
(i) (5.3)

where e is the the error signal to be converged to zero, and the k coefficient should be k = r − 1,
where r is the equal to relative degree of the system, which is the highest derivative of the output
variable that appears in the system’s dynamic equations.
For a system with a relative degree of r = 2, the sliding variable could then be chosen as

s = ė+ λe (5.4)

When the sliding variable in Equation (5.4) reaches a value of zero, it gives rise to a differential
equation with the solution and its derivative

e = e(0) exp (−λt)

ė = −λe(0) exp (−λt)
(5.5)

which with the choice of λ > 0 converge to zero asymptotically. In order to achieve asymptotic
convergence of the error signal e as in Equation (5.5), the sliding variable s has to be driven to
zero in finite time by means of a control input u. Asymptotic stability can be achived by applying
Lyapunov function techniques to the sliding variable dynamics, which from Equation (5.4) becomes

ṡ = ë+ λė (5.6)

Chapter 5 Silding Mode Control 33

A Lyapunov function candidate for the sliding variable dynamics can be chosen as [15]

V = 1
2s

2 (5.7)

In order to provide asymptotic stability of Equation (5.6) about the equilibrium point s = 0, the
following conditions must be satisfied

(a) V̇ = sṡ < 0 for s ̸= 0

(b) lim
|s|→∞

V = ∞
(5.8)

With the Lyapunov function in Equation (5.7), condition (b) will be satisfied. In order to achieve
finite time convergence of the sliding variable to zero, condition (a) is not enough. This is because
condition (a) only ensures asymptotic convergence, which slows down when close to zero. The
so-called reaching law can be implemented to ensure finite time convergence [18]. The reaching
law is a differential equation that describes the dynamics of the sliding variable s. It can have the
general structure

ṡ = −ρ sign(s) − ζf(s)

ρ, ζ ≥ 0

sf(s) > 0, ∀s ̸= 0

(5.9)

where f(s) is a function of s and the function sign(s) is defined as

sign(s) =

 1 s > 0

−1 s < 0
(5.10)

and
sign(0) ∈ [−1 , 1] (5.11)

as depicted in Figure 5.1.

34 Chapter 5 Silding Mode Control

Figure 5.1: Sign function.

A special case of Equation (5.9) is given by the constant reaching law

ṡ = −ρ sign(s) (5.12)

This law forces the the sliding variable to reach the sliding surface, i.e. s = 0, at a constant rate
where the reaching time is given by Tr = |s(t0)|

ρ , where s(t0) is the initial value of s [19]. A greater
value of ρ leads a faster convergence, but as we will discuss later, also leads to higher chattering
intensity.
Another example which we will use in this work, is the constant plus proportional reaching law [18]
given by

ṡ = −ρ sign(s) − ζs (5.13)

Adding the proportional rate term −ζs forces the sliding variable to reach the sliding surface at
a faster rate when s is large. If the initial state of the sliding variable satisfies s(t0) > 0, then
Equation (5.13) can be represented as

ṡ = −ρ− ζs (5.14)

which has the solution [20]
s =

(
s(t0) + ρ

ζ

)
e−ζ(t−t0) − ζ

ρ
(5.15)

When the time
t = t0 − 1

ζ
ln ρ

ζs(t0) + ρ
(5.16)

Chapter 5 Silding Mode Control 35

is satisfied, the sliding variable will have reached the sliding surface. Similarly, if the initial state of
the sliding variable satisfies s(t0) < 0, when the time

t = t0 − 1
ζ

ln ρ

ρ− ζs(t0) (5.17)

is satisfied, the sliding variable will have reached the sliding surface.
Thus, if the following inequality is satisfied

t ≥ t0 − 1
ζ

ln ρ

ζ|s(t0)| + ρ
(5.18)

the sliding variable will have reached the sliding surface at any initial state. Thus the reaching law
ensures that the sliding variable reaches the sliding surface in finite time.

By using the constant plus proportional reaching law, condition (a) from Equation (5.8) is satisfied
as shown below

V̇ = sṡ = s(−ρ sign(s) − ζs) = −ρ|s| − ζs2 < 0 (5.19)

and guarantees Lyapunov stability.

Example: Consider the nonlinear single input system

ẍ = f(x, t) + g(x, t)u (5.20)

where the control aim is to make the state x track a desired profile xd. Thus we would want to
drive the error e = x− xd to some small vicinity of zero. The relative degree of the system is r = 2,
because it is the highest derivative of the system’s dynamic equations. The sliding variable can
then be chosen according to Equation (5.3) as

s = ė+ λe (5.21)

In order to drive the sliding variable s to zero, and keep it thereafter, the constant plus proportional
reaching law can be used. The derivative of the sliding variable is given by

ṡ = ë+ λė = ẍ− ẍd + λ(ẋ− ẋd)

= f(x, t) + g(x, t)u− ẍd + λ(ẋ− ẋd)
(5.22)

The control law can then be chosen as

u = 1
g(x, t) (−f(x, t) + ẍd − λ(ẋ− ẋd) − ρ sign(s) − ζs) (5.23)

36 Chapter 5 Silding Mode Control

Substituting the control law in Equation (5.23) into Equation (5.6) leads to

ṡ = −ρ− ζs (5.24)

and the reaching law is satisfied, which with the choice of ρ > 0 and ζ > 0, and using the Lyapunov
function candidate

V = 1
2s

2 (5.25)

will satisfy condition (a) from Equation (5.8) as shown in Equation (5.19). Consequently a control
law u that drives the sliding variable s to zero in finite time is given by

u = 1
g(x, t) (−f(x, t) + ẍd − λ(ẋ− ẋd) − ρ sign(s) − ζs) (5.26)

From the example it is clear that ṡ must be a function of the control input u in order to successfully
design a control law that satisfies the reaching law and guarantees Lyapunov stability. This must
be taken into account when designing the sliding variable.

5.4 Integral Sliding Mode Control Design

In this work both the inner and outer loop will consist of the robust Integral Sliding Mode Control
(ISMC). The advantage of ISMC control over the conventional SMC control is the steady-state error
against disturbances. In ISMC an integral action is added to the sliding variable. For a system
with a relative degree of 2, the sliding variable could be designed as

s = ė+ λe+ k

t∫
0

e dτ (5.27)

where e is the tracking error and λ, k > 0 are constants.

5.4.1 Inner Loop ISMC

The purpose of the inner loop controller is to track and stabilize the quadrotor’s altitude and
attitude. The desired altitude is given by zd, while the desired attitude is given by ϕd, θd and ψd.
The tracking errors is then defined as

ez = z − zd

eϕ = ϕ− ϕd

eθ = θ − θd

eψ = ψ − ψd

(5.28)

Chapter 5 Silding Mode Control 37

where z is the actual altitude and ϕ, θ and ψ is the actual attitude. The quadrotor dynamics is a
set of second-order differential equations, thus the sliding variables can be designed as

sz = ėz + λzez + kz

t∫
0

ez dτ

sϕ = ėϕ + λϕeϕ + kϕ

t∫
0

eϕ dτ

sθ = ėθ + λθeθ + kθ

t∫
0

eθ dτ

sψ = ėψ + λψeψ + kψ

t∫
0

eψ dτ

(5.29)

where λz, λϕ, λθ, λψ > 0 and kz, kϕ, kθ, kψ > 0 are constants and part of the ISMC controller
gains. In order to drive the sliding variables to zero, and keep it thereafter, the constant plus
proportional reaching law is used, which is given by

ṡ = −ρ sign(s) − ζs

ρ, ζ > 0
(5.30)

which means

ṡz = −ρzsign(sz) − ζzsz

ṡϕ = −ρϕsign(sϕ) − ζϕsϕ

ṡθ = −ρθsign(sθ) − ζθsθ

ṡψ = −ρψsign(sψ) − ζψsψ

(5.31)

where ρz, ρϕ, ρθ, ρψ > 0 and ζz, ζϕ, ζθ, ζψ > 0 are constants and part of the ISMC controller gains.
The derivatives of the defined sliding variables are given by

ṡz = ëz + λz ėz + kzez

= z̈ − z̈d + λz(ż − żd) + kz(z − zd)

ṡϕ = ëϕ + λϕėϕ + kϕeϕ

= ϕ̈− ϕ̈d + λϕ(ϕ̇− ϕ̇d) + kϕ(ϕ− ϕd)

ṡθ = ëθ + λθėθ + kθeθ

= θ̈ − θ̈d + λθ(θ̇ − θ̇d) + kθ(θ − θd)

ṡψ = ëψ + λψ ėψ + kψeψ

= ψ̈ − ψ̈d + λψ(ψ̇ − ψ̇d) + kψ(ψ − ψd)

(5.32)

38 Chapter 5 Silding Mode Control

Then using the dynamic model equations from Equation (2.19) for z̈, ϕ̈, θ̈ and ψ̈, the control inputs
for the inner loop which satisfies the reaching laws from Equation (5.31) become

u1 = m

cos(ϕ) cos(θ) (λz(ż − żd) + g − z̈d + kz(z − zd) + ρzsign(sz) + ζzsz)

u2 = Ix

(
−λϕ(ϕ̇− ϕ̇d) − Iy − Iz

Ix
θ̇ψ̇ + Jr

Ix
θ̇Ω + ϕ̈d − kϕ(ϕ− ϕd) − ρϕsign(sϕ) − ζϕsϕ

)

u3 = Iy

(
−λθ(θ̇ + θ̇d) − Iz − Ix

Iy
ϕ̇ψ̇ − Jr

Iy
ϕ̇Ω + θ̈d − kθ(θ − θd) − ρθsign(sθ) − ζθsθ

)

u4 = Iz

(
−λψ(ψ̇ + ψ̇d) − Ix − Iy

Iz
ϕ̇θ̇ + ψ̈d − kψ(ψ − ψd) − ρψsign(sψ) − ζψsψ

)
(5.33)

5.4.2 Outer Loop ISMC

The purpose of the outer loop control is to ensure the desired position given by xd and yd, by
feeding reference signals to the inner loop control. The tracking errors for the position are defined
as follows

ex = x− xd

ey = y − yd

(5.34)

where x and y represent the actual position of the quadrotor. Then, following the exact same
procedure as with the inner loop ISMC, but now using the virtual inputs ux and uy and the following
relationship with the virtual control inputs defined in Chapter 3

ẍ = −u1
m
ux

ÿ = −u1
m
uy

(5.35)

the virtual control inputs become

ux = m

u1
(λx(ẋ+ ẋd) − ẍd + kx(x− xd) + ρxsign(sx) + ζxsx)

uy = m

u1
(λy(ẏ + ẏd) − ÿd + ky(y − yd) + ρysign(sy) + ζysy)

(5.36)

where λx, λy > 0, kx, ky > 0, ρx, ρy > 0 and ζx, ζy > 0 are constants and part of the ISMC
controller gains. The sliding variables sx and sy have the same structure as Equation (5.27), and

Chapter 5 Silding Mode Control 39

are given by

sx = ėx + λxex + kx

t∫
0

ex dτ

sy = ėy + λyey + ky

t∫
0

ey dτ

(5.37)

5.5 Chattering Attenuation

The goal of the controller is to ensure that the system remains on the sliding surface by applying a
discontinuous control input that switches the system from one side of the sliding surface to the
other. In practice the switching is not perfect, for instance the switching is not instantaneous and
the model uncertainties and disturbances means that the sliding surface is only known with a finite
precision. The switching imperfection leads to chattering, which is an undesirable phenomena
in practice because it leads to high control activity. We will present some methods to reduce
chattering.

5.5.1 Quasi-Sliding Mode

One way of reducing chattering is to make the control input continuous, where the discontinuous
function in the controller inputs, which is the function sign(s), is approximated with a continuous
function. There are several ways to approximate the sign function, but we will look at the following
continuous approximation

sign(s) ≈ s

|s| + ϵ
(5.38)

where ϵ is a small scalar constant. The function is shown in Figure 5.2 for different values of ϵ.
When ϵ approaches a value of zero the approximation becomes more accurate, and we have

lim
ϵ→0

s

|s| + ϵ
= sign(s) (5.39)

The value of ϵ should be chosen according to the trade off of the requirement of an ideal performance
to that of ensuring a smooth control input. The smooth control input cannot ensure a finite time
convergence of the sliding variable to zero, but a vicinity around zero. Thus obtaining a smoother
control input comes at the price of a loss of robustness and a loss of accuracy.

40 Chapter 5 Silding Mode Control

Figure 5.2: Continuous sign approximation function.

In sliding mode control, the sliding variable is driven to zero in finite time. When the approximation
of the sign function is implemented, the sliding variable is only driven to a vicinity around zero,
thus the smooth control is then called a quasi-sliding mode control.

5.5.2 Adaptive Fuzzy Gain Scheduling

Another way to improve chattering is to implement Adaptive Fuzzy Gain Scheduling (AFGS). When
the system state has reached the sliding surface, the repeated switching of the controller induces
chattering where the gain of the sign function ρ determines the chattering intensity. A fuzzy logic
system can be implemented to construct AFGS where the control gain ρ is scheduled adaptively
with the sliding variable to reduce the chattering intensity.

Fuzzy Logic System

A Fuzzy Logic System (FLS) is a way of handling numerical data with linguistic knowledge. It is
a nonlinear mapping of an input vector into a scalar output, and it allows for a degree of truth
instead of the binary true/false used in classical logic. For example, instead of describing the
input value with the values High(1) or Low(0), the input variable could be described using more
categories, as for example very low, low, medium, high and very high. Figure 5.3 shows a typical
Takagi-Sugeno-Kang fuzzy logic architecture, which is used in this work. There are two inputs

Chapter 5 Silding Mode Control 41

x and y, as well as two output values w and z. Another common fuzzy logic architecture is the
Mamdani system.

Figure 5.3: Typical Takagi-Sugeno-Kang fuzzy logic architecture [4].

The Takagi-Sugeno-Kang fuzzy architecture consists of:

Fuzzification: It is used to convert crisp inputs into fuzzy sets. Crisp inputs are the numerical
values, while fuzzy sets are a vector consisting of the degree the input values are a member of
each membership function. A membership function is a graph that defines how each point in the
input is mapped to a membership value between 0 and 1. The membership functions are often
of the types singleton, Gaussian or triangular. For example, Figure 5.4 shows unified Gaussian
membership functions. The value of the input are on the x-axis while the degrees of membership
are on the y-axis. The membership functions are usually given names that allow for interpretation
in a linguistic manner. The fuzzy set in Figure 5.4 is defined in the following way: {NL, NS, ZE,
PS, PL}, where "NL" indicates negative large, "NS" indicates negative small, "ZE" indicates zero,
"PS" indicates positive small, and "PL" indicates positive large.

42 Chapter 5 Silding Mode Control

Figure 5.4: FLS membership functions.

Rules structure and defuzzification process: It contains the set of rules which is usually in the
form of IF-THEN statements, which is often provided by experts. Each rule generates two values,
the output level z and the firing strength w. A typical rule in a Takagi-Sugeno-Kang fuzzy system
with two input variables has the form

IF x = F1(x) AND y = F2(y) THEN z = ax+ by + c (5.40)

where x and y are the two input values, F1(x) and F2(x) are membership functions for each of
the input values and z is the output level. For a zero order Takagi-Sugeno-Kang fuzzy system the
output level z is a constant, which means a = b = 0 and z = c.

The output level zi of each rule is weighted by the firing strength w of the rule. The firing strength
can be derived as

wi = min(F1(x), F2(y)) (5.41)

Chapter 5 Silding Mode Control 43

where F1(...) and F2(...) are the membership functions for each input x and y respectively. The
final output of the fuzzy logic system is the weighted average of all rule outputs, computed as

output =

N∑
i=1

wizi

N∑
i=1

wi

(5.42)

where N is the number of rules.

Design of AFGS for Chattering Attenuation

A Fuzzy Logic System (FLS) will be designed to adaptively change the control gain ρ with the
sliding varible. The sliding variable s and its derivative ṡ will be the two inputs to the FLS, while
the output will be the control parameter ρ. Unified Gaussian membership functions will be used
to represent the FLS input membership functions, while the output is represented by a constant
membership function. The input sets are defined as {NL, NS, ZE, PS, PL}, which indicates negative
large, negative small, zero, positive small and positive large respectively. The output sets are defined
as {VL, L, M, H, VH}, which indicates very low, low, medium, high and very high respectively. The
input membership functions are shown in Figure 5.5, while the FLS surface is shown in Figure 5.6.

Figure 5.5: FLS inputs membership functions.

44 Chapter 5 Silding Mode Control

Figure 5.6: FLS surface.

The rules are designed such that when the state trajectory deviates from the sliding surface, the
control gain is larger. When the state trajectory approaches the sliding surface the control gain is
reduced to reduce chattering. Table 5.1 shows the fuzzy rules [21].

k ṡ
NL NS ZE PS PL

s

PL H L VL VL VL
PS H M L L VL
ZE H H M L L
NS VH H H M L
NL VH VH VH H M

Table 5.1: Fuzzy rules.

The fuzzy logic system is implemented using the Fuzzy Logic Toolbox in MATLAB, and the Fuzzy
Logic Designer app which lets you design, test, and tune a fuzzy inference system.

Chapter 6

Tuning Controllers by Genetic Algorithm

Finding good control parameters is essential in the designing of a control that can effectively regulate
a system’s behavior. The controllers parameters determine how the controller responds to changes
in the system’s behavior, and if they are not appropriately chosen, the controller may either fail to
regulate the system or cause instability. An optimization algorithm called genetic algorithm is used
in this work to find optimal control parameters.

6.1 Genetic Algorithm

Genetic algorithm (GA) is an optimization algorithm based on the Darwinian principle of survival of
the fittest in nature. The algorithm repeatedly modifies a population of individual solutions called
chromosomes, which consist of genes which represent each parameter. Chromosomes are considered
as points in the solution space. For each step called a generation, GA selects chromosomes from
the current population to be parents and uses them to produce the children for the next generation.
The parents are chosen based on their fitness value, described by a fitness function which is the
defined function you want to optimize. The new generation of candidate solutions is then used in
the next iteration. The next paragraphs will go through the steps in genetic algorithm.

Initial population: The algorithm starts with creating a random initial population, where the
objective is to spread the solutions around the search space as uniformly as possible. This will
increase the chance of finding the global optima. If information is available in advance about the
approximate location of the optima point, upper and lower bounds can be set for the parameters to
reduce the search space.

Selection: For each step, the algorithm uses the current populations to create the children for the
next generation. The fittest individuals in the population contributes more in the production of the

45

46 Chapter 6 Tuning Controllers by Genetic Algorithm

next generation. The convergence rate of GA depends upon the selection pressure, which refers
to the degree to which individuals with more desirable traits are favored in the selection process.
It determines how much influence the fitter individuals have in the evolution of the population.
The most well-known selection techniques are roulette wheel, rank, tournament, boltzmann, and
stochastic universal sampling [5]. In this work the tournament selection technique was used. The
individuals are selected according to their fitness values from a stochastic roulette wheel in pairs.
After the selection, the individuals with higher fitness value are added to the next generation.

Crossover: After the individuals have been chosen from the selection operator, they are employed
to create a new generation. In crossover two or more individuals are chosen as parents and are
combined to create a new individual for the next generation. There are different techniques for
the crossover operator where the most well-known operators are single-point, two-point, k-point,
uniform, partially matched, order, precedence preserving crossover, shuffle, reduced surrogate and
cycle [5]. In this work, crossing of a single-point was used. In a single point crossover, a random
crossover point is selected. The chromosomes of two parents solutions are swapped before and after
the single point. Figure 6.1 shows the genetic information after swapping, where the line represents
the single point. It replaced the tail array bits of both the parents to get the new offspring.

Figure 6.1: Swapping genetic information after a crossover point [5].

Mutation: In the mutation operator individuals genes are altered with, to create new individuals
for the the next generation. The altering is randomly chosen such that it maintains the diversity
of the population by introducing another level of randomness. The mutation operator prevents
solutions from becoming similar and increases the probability of avoiding local solutions to the
genetic algorithm. The mutation rate is usually set low to not let the algorithm be a primitive
random search. Some of the popular mutation techniques are power mutation, uniform, non-uniform,
Gaussian, shrink, supervised mutation, uniqueness mutation and Varying probability of mutation
[22].

Chapter 6 Tuning Controllers by Genetic Algorithm 47

Termination: The algorithm is usually chosen to terminate when it has ran for a certain number
of generations, a solution has achieved a satisfactory fitness level, or if the population has converged
to a local optimum point.

6.2 Performance Indices

The fitness function is the driving force, which plays an important role in selecting the fittest
individual in every iteration of the algorithm. The fitness function is similar to the inverse of a
cost-function in optimization. One or a combination of the four commonly used performance indices,
Integral Squared Error (ISE), Integral Absolute Error (IAE), Integral Time Squared Error (ITSE)
and Integral Time Absolute Error (ITAE), can be an effective approach in the case of minimizing
the errors. They are given by

ISE =
t∫

0

e(t)2 dt

IAE =
t∫

0

|e(t)| dt

ITSE =
t∫

0

te(t)2 dt

ITAE =
t∫

0

t|e(t)| dt

(6.1)

where e(t) is the error signal and t is time.

Integral Squared Error (ISE): ISE integrates the square of the error over time, and will penalise
large errors more than small errors. This is because the square of a large error will be much bigger.
Control systems that are specified to minimize ISE will tend to tolerate small errors over a longer
period of time, while tending to eliminate bigger errors more quickly. This typically leads to a fast
response but where you could experience some small amplitude oscillations.

Integral Absolute Error (IAE): IAE integrates the absolute error over time, as taking the absolute
value makes sure that the positive and negative errors do not cancel out. It doesn’t add weight to
any of the errors as with ISE. Control systems that are specified to minimize IAE tend to produce
a slower response than with ISE, but typically with less oscillations.

48 Chapter 6 Tuning Controllers by Genetic Algorithm

Integral Time Squared Error (ITSE): ITSE integrates the square of the error multiplied with
the time over time. It penalises larger errors more than smaller errors, and it also penalises errors
which exist after a longer period of time much more than those at the start of the response. Control
systems that are specified to minimize ITSE will typically lead to a poor initial response as compared
to ISE and IAE, but prioritizes responses with a quick settling time and smaller steady-state errors.

Integral Time Absolute Error (ITAE): ITAE integrates the absolute error multiplied with time
over time. It doesn’t add more weight to largers errors compared to small errors, but similar to
ITSE, it penalises errors which exist after a longer period of time much more than those at the
start of the response. Control systems that are specified to minimize ITSE will typically, as with
ITSE, lead to a poor initial response as compared to ISE and IAE, but prioritizes response with a
quick settling time and smaller steady-state errors.

6.3 Parameter Tuning by GA

The objective of the GA is to find optimal control parameters for the PD, LQR and ISMC. The
values of the parameters define each individual in the GA. Each parameter can have a value according
to its upper and lower bounds. The upper and lower bounds established for each parameter were
determined after having previously tuned the parameters by trial and error. The other variables of
the GA include the size of the population, the number of generations, the percentage of crossing
between 0 and 1, the selection method, the method of crossover, and percentage of mutation. The
size of the population depends on the complexity of the problem to be solved, where it is important
to establish an adequate population size according to the problem.

To find good solutions, a fitness function is needed to evaluate and differentiate the good and bad
results. In this work, a cost function is defined, which can be viewed as the inverse of a typical
fitness function. A good solution is therefore one that minimizes the defined cost function. The
integral absolute error (IAE) was chosen as an appropriate performance indicator, and the cost
function was defined as the sum of all the integral absolute errors for the linear and angular positions
as shown below

Cost function =
∑
i

t∫
0

|ei(t)| dt (6.2)

where the ei are the error signals and i = {x, y, z, ϕ, θ, ψ}.

The GA tuning approach was done with the use of MATLAB M-files and functions to set the
control parameters, and running a Simulink file containing a mathematical model of a quadrotor
from Equation (2.19) and the proposed controllers. The Simulink file was run for each solution to

Chapter 6 Tuning Controllers by Genetic Algorithm 49

check the parameters’ resulting performance, and obatin the cost function to search for an optimal
solution. In Figure 6.2 the classical steps of the GA are shown.

Figure 6.2: Flow diagram of the GA.

The desired trajectories used in the simulations were chosen in order to try and find an optimal
solution for a variation of different 3D trajectories. The desired trajectories used in the simulations
were chosen as a combination of a step signal and a ramp signal for the altitude, and a combination
of a sine function and a step function for the x- and y-position. The reference signals can be
seen in Appendix B. Initially, the desired yaw angle was set to zero, and the yaw controllers were
manually tuned through a trial and error process to establish a satisfactory performance. The GA
optimization process was then carried out to tune the outer and inner loop controllers, excluding
the yaw controller. Once the GA optimization was completed, a separate GA was conducted to
find the optimal control parameters specifically for the yaw controller. This optimization process

50 Chapter 6 Tuning Controllers by Genetic Algorithm

took advantage of the already optimized control parameters obtained for the other controllers. A
ramp reference was set as the desired trajectory for the yaw angle, while the other references were
set to zero.
The idea of tuning the yaw controller separately was to account for coupling effects. When the
quadrotor rotates in the roll or pitch axes, it can induce undesired yaw motion and disturbances.
By tuning the yaw controller independently, it allows for optimizing its parameters when coupling
effects are minimal, ensuring better overall control performance.

In this work the tuning was done with 20 generations, crossover rate of 0.8, mutation rate of 0.01,
selection per tournament, and crossing of a single point, and otherwise the default options for the
genetic algorithm function in MATLAB. The population size was chosen as 10 times the number of
control parameters to be tuned, where the outer loop controllers for x and y used the same control
parameters. These values were established after conducting a series of tests in terms of population
size and number of generations.

Chapter 7

Vision-based line tracking algorithm

7.1 The Flight Control System

The only Simulink block that needs to be changed in the competition is the Flight Control System
block. As shown in Figure 7.1, this block contains two main blocks. The Image Processing System
block is tasked with doing calculations based on image data coming from the down-facing camera
mounted underneath the drone and then sending the results to the Control System block. This
block then uses sensor data and the image processing results to calculate actuator inputs.

Copyright	2018-2020	The	MathWorks,	Inc.

Flight	Control	System

1
Actuators

1
AC	cmd

2
Sensors

ReferenceValueServerCmds

Sensors

Vision-based	Data

motorCmds

Flag

Control	System

2
FlagImage	Data Vision-based	Data

Image	Processing	System

3
Image	Data

Rate	Transition

motors

cmd

flag

sensors

Y1UY2V

Figure 7.1: Flight Control System.

Figure 7.2 shows the inside of the Control System block. The sensor data to be used in the Controller
block is sent through a block named State Estimator. Here all the necessary state variables are

51

52 Chapter 7 Vision-based line tracking algorithm

calculated (linear positions x, y and z, angular positions ϕ, θ and ψ, linear velocities u, v and w and
angular velocities p, q and r.) This block is fully implemented by MathWorks beforehand so that all
effort in the competition can be put into the Image Processing System and Path Planning blocks.
In addition to changing these, the PID-controller implemented by MathWorks in the Controller
block will be replaced by the Integral Sliding Mode controller.

Chapter 7 Vision-based line tracking algorithm 53

U
se
	th
is
	s
ub
sy
st
em
	to
	c
ha
ng
e	
th
e

pa
th
	o
f	t
he
	M
in
id
ro
ne
	d
ep
en
di
ng

on
	th
e	
in
pu
t	V
is
io
n-
ba
se
d	
D
at
a

Po
si
tio
n	
or
	

O
rie
nt
at
io
n	
C
on
tro

l

D
er
iv
ed
	fr
om

	th
e	
w
or
k	
by
	S
er
ta
c	

Ka
ra
m
an
	a
nd
	F
ab
ia
n	
R
ie
th
er

1
m
ot
or
C
m
ds

1
R
ef
er
en
ce
Va

lu
eS

er
ve
rC
m
ds

2
Fl
ag

2
Se

ns
or
s

3
Vi
si
on
-b
as
ed
	D
at
a

R
ef
er
en
ce
Va

lu
eS

er
ve
rC
m
ds

Es
tim

at
ed
Va

l

Vi
si
on
-b
as
ed
	D
at
aU
pd
at
ed
R
ef
er
en
ce
C
m
ds

Pa
th
	P
la
nn
in
g

co
nt
ro
lM
od
eP

os
Vs

O
rie
nt

Bu
s
Bu

s
:=
	c
on
tro

lM
od
eP

os
VS

O
rie
nt

C
on
tro

l	M
od
e	
U
pd
at
e

To
	W

or
ks
pa
ce

st
at
es
_e
st
im

Al
t_
pr
s

Se
ns
or
s

Fl
ag

C
ra
sh
	P
re
di
ct
or
	F
la
gs

R
ef
er
en
ce
Va

lu
eS

er
ve
rB
us

st
at
es
_e
st
im

m
ot
or
s_
re
fo
ut

C
on
tro

lle
r

co
nt
ro
lM
od
eP

os
VS

O
rie
nt
_f
la
gi
n

se
ns
or
_d
at
a_
in

op
tic
al
Fl
ow

_d
at
in

se
ns
or
C
al
ib
ra
tio
n_
da
tin

st
at
es
_e
st
im

Al
t_
pr
s

St
at
e	
Es

tim
at
or

<V
is
io
nS

en
so
rs
>

<o
pt
ic
al
Fl
ow

_d
at
a>

<S
en
so
rC
al
ib
ra
tio
n>

Figure 7.2: Control System.

54 Chapter 7 Vision-based line tracking algorithm

7.2 Takeoff

During takeoff several variables will be initialized. Both the x- and y-reference will be set to 0 and
the z-reference will be initialized to −1.1 so that the minidrone hovers 1.1 m above ground. The
minidrone spends 3 seconds reaching this height and becoming stable before moving on to the next
phases.

7.3 Pre-Processing

The image data from the camera is given in a 120x160 RGB format (after being transformed from a
Y1UY2V format). The track the drone has to follow is red and therefore only the red pixels are of
interest to the line tracking algorithm. Black & white (BW) images are easier to create algorithms
for, so a useful first step is to convert the RGB image into a BW image where ’1’s/white pixels
represent red pixels and ’0’s/black pixels represent everything that is not red.

In the simulation part of the competition the color of the track is red with hex code 0xFF0000,
i.e. full red with no contributions from green and blue. The RGB image can therefore easily be
converted into BW by extracting only the red value of the image and checking whether it is equal
to 255 (0xFF). Figure 7.3 shows how this can be done in Simulink.

Obtain	the	RGB	image	from	camera

1
Image	Data

1
Vision-based	Data

PARROT	R

G

B

PARROT	Image	Conversion

Video
Viewer

R

G

B

RGB	Image

==	255

Compare
To	Constant

Video
ViewerImage

BW	Image

BW

BW2

S1

S2

u

corner_found

end_of_track_reached

enough_for_circle

sum_center

Chart

Video
ViewerImage

Close	Corner	Detector

Video
ViewerImage

Far	Corner	Detector

Video
ViewerImage

Altered	BW	Image

Bus
Creator

Scope

Figure 7.3: RGB-to-BW conversion in Simulink.

While this solution is good enough for the simulation round, it will not work in the in-person,
deployment part of the competition. Here, shadows and variations in room lighting will produce

Chapter 7 Vision-based line tracking algorithm 55

different shades of red on the track, all of which need to be converted into white pixels in the BW
image.

7.4 Calculating a Direction Vector

If a human was tasked with following the red line, they would probably align with the first line
segment, walk forward until a corner is reached, turn around to align with the next line segment,
walk forward, and so on until the red circle is reached. It certainly is possible to develop an algorithm
where the minidrone follows the line in a similar manner by adjusting yaw and always moving
forward. This, however, creates the need for a lot of stopping and rotating which unnecessarily
slows down the drone. The algorithm developed here eliminates this need for adjusting yaw. This
is done by using the white pixels in the BW image to calculate the direction the minidrone needs
to travel towards.

The starting position of the red track is not always the same, and when placed at the start of the
track, the mouth of the minidrone does not always face the same direction. Luckily, the minidrone
is configured so that when the software starts running, the global reference frame coincides with
the local frame, meaning that the drone considers its global starting position to be

[
0 0 0

]
and

its global starting direction to be north. The coordinate system used is a right-hand coordinate
system where the z-direction is facing downwards. The drone is configured so that its starting
north coincides with the positive x-direction and east with the positive y-direction.

Calculating the direction is then done by “splitting” the image into two parts for both the x- and
y-direction and computing sums. The number of white pixels in the north/upper 60 rows of the
image gives a positive contribution to the x-direction while the opposite is true for the south/bottom
60 rows. The west/left 80 columns contribute negatively while the 80 east/right columns contribute
positively to the y-direction.

This can also be done by applying a mask (in this case through elementwise multiplication) to the
image and then summing all elements in the image. For the x-direction this would be a matrix
with ’1’s in the upper half and ’-1’s in the lower half and for the y-direction a matrix with ’1’s in
the right half and ’-1’s in the left half.

To illustrate with a simplified example, consider the following 6x10 BW image:

56 Chapter 7 Vision-based line tracking algorithm

Figure 7.4: 6x10 BW image.

In matrix form:

BW =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(7.1)

This represents a mostly straight road that has a small “dent”.

To calculate the sum for the x-direction one would apply the following mask before calculating the
sum:

Mx =



1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1


(7.2)

Chapter 7 Vision-based line tracking algorithm 57

For the y-direction, this mask is used:

My =



−1 −1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 −1 1 1 1 1 1


(7.3)

Applying those masks results in the following altered images:

BWx =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 −1 −1 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(7.4)

BWy =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 1 1 1 1 1
0 0 0 0 −1 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(7.5)

Summing all elements of BWx for the x-direction and BWy for the y-direction gives the following
direction vector:

v =
[
2 8

]T
(7.6)

To make things simpler, this result will be normalized so that the direction vector always has a
length of 1.

vn = v
|v|

≈
[
0.2425 0.9701

]T
(7.7)

7.4.1 A Weighted Approach

Having each pixel contribute equally to the sums can cause some instability. A more stable solution
is to weight pixels far away from the center more heavily than those that are close. Using (7.1) as
example, one would expect the “dent” in the road to not have such a large effect on the direction
vector.

58 Chapter 7 Vision-based line tracking algorithm

Instead of using using the masks in (7.2) and (7.3), the following masks can be used:

Mx =



3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1

−1 −1 −1 −1 −1 −1 −1 −1 −1 −1
−2 −2 −2 −2 −2 −2 −2 −2 −2 −2
−3 −3 −3 −3 −3 −3 −3 −3 −3 −3


(7.8)

My =



−5 −4 −3 −2 −1 1 2 3 4 5
−5 −4 −3 −2 −1 1 2 3 4 5
−5 −4 −3 −2 −1 1 2 3 4 5
−5 −4 −3 −2 −1 1 2 3 4 5
−5 −4 −3 −2 −1 1 2 3 4 5
−5 −4 −3 −2 −1 1 2 3 4 5


(7.9)

Applying those masks results in the following altered images:

BWx =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 1 1 1 1 1 1
0 0 0 0 −1 −1 0 −1 −1 −1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(7.10)

BWy =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 −1 1 2 3 4 5
0 0 0 0 −1 1 0 3 4 5
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


(7.11)

Summing now gives the following direction vector:

v =
[
3 28

]T
(7.12)

Normalized:
vn = v

|v|
≈
[
0.1065 0.9943

]T
(7.13)

Compared to (7.7), the x-direction has now been weakened and the y-direction has been strengthened.

Chapter 7 Vision-based line tracking algorithm 59

As the drone moves forward, many such “dents” will be introduced into the images captured by the
camera. This weighted approach will reduce the effect of these.

7.5 Tunnel Vision

Calculating a direction vector directly from the freshly captured image is not enough. The tracking
algorithm has to forget the white pixels in the direction it came from, otherwise the drone would
just hover in place. This problem is tackled by applying tunnel vision in the direction the drone is
heading in.

During the first pass of the algorithm the whole image is used to calculate the first direction vector,
but from there on out tunnel vision must be applied to the image.

To create said tunnel vision some linear algebra will be applied.

Given a direction vector v =
(
xd yd

)T, a normal vector to v on its left side is given by nL =(
− yd xd

)T, and one on its right side is given by nR =
(
yd − xd

)T. nL will be used from here
on out and simply be referred to as n.

-4-4 -3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

00

ll

vv
nnLL

nnRR

y

x

Figure 7.5: Figure illustrating what is meant by left and right side of v. This figure was created
with GeoGebra[6].

Let ℓ be a line that goes through the fixed point p =
[
x0 y0

]T
(p can be selected as any point on

the line) in the direction of v. Let x =
[
x y

]T
. For x to be on the line the following equation

must be satisfied:
n · (x − p) = 0 (7.14)

60 Chapter 7 Vision-based line tracking algorithm

For lines that go through the origin (i.e. if p =
(
0 0

)T) (7.14) reduces to:

n · x = 0 (7.15)

Similarly, the equation of a line ℓn that goes through p and is perpendicular to v is given by:

v · (x − p) = 0 (7.16)

Now let p be given by:
p = a · n

||n||
(7.17)

Equation (7.17) creates a point that lies a units away from the origin in the direction of n. This
allows for parallel translation of the line ℓ by a units. a > 0 gives translation to the left of ℓ while
a < 0 gives translation to the right of ℓ.

Inserting (7.17) into (7.14) yields:

n ·
(
x − a · n

||n||

)
= 0

=⇒
[
−yd xd

)T] ·
([
x y

]T
− a ·

[
−yd xd

]T√
x2
d + y2

d

)
= 0

=⇒ xd · y = yd · x+ a · x2
d + y2

d√
x2
d + y2

d

= yd · x+ a ·
√
x2
d + y2

d (7.18)

If v is already of unit length, then n is too and (7.18) can be simplified into:

xd · y = yd · x+ a (7.19)

Replacing the equality in (7.18) or (7.19) with inequalities (<, ≤, > or ≥) will give entire regions
in the plane and intersecting such regions will create the required forward-facing tunnel vision, and
other regions as needed.

Using the normal line ℓn and direction line ℓ shifted to the left and right by a units, tunnel vision
can be created using the following intersection of regions:

yd · y ≥ −xd · x ∧ xd · y ≥ yd · x− a ·
√
x2
d + y2

d ∧ xd · y ≤ yd · x+ a ·
√
x2
d + y2

d (7.20)

Chapter 7 Vision-based line tracking algorithm 61

Simplified version (when v is of unit length):

yd · y ≥ −xd · x ∧ xd · y ≥ yd · x− a ∧ xd · y ≤ yd · x+ a (7.21)

-3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5 55 5.55.5 66 6.56.5

-3-3

-2.5-2.5

-2-2

-1.5-1.5

-1-1

-0.5-0.5

0.50.5

11

1.51.5

22

2.52.5

33

00

gg

ffff

ff

ff

vv

nn

y

x

Figure 7.6: Example where v =
[
−1.5 1.1

]T and a = 1. This figure was created with GeoGebra[6].

In the examples shown in Figure 7.5 and 7.6 north has been the y-direction, east the x-direction
and the not shown z-direction is pointing out of the image. For the drone camera the coordinate
system is flipped in such a way that z is pointing into the image, x is north and y is east. Both are
right-hand coordinate systems so the mathematics behind it all stays the same. It does, however,
change how one interprets left and right.

The images captured by the camera are of size 120x160 and hence of discrete nature. The coordinates
used will therefore be discrete with x ranging from −60 to +60 and y ranging from −80 to +80
with a step of 1 between each value. Because of an even number of pixels along each dimension, the
origin

[
0 0

]T
and all other coordinates where either x and y are equal to zero are excluded from

the image’s coordinate system. Listing 7.1 shows an example of what using Equation (7.21) looks
like in Matlab-code. The result is displayed in Figure 7.7.

1 x = nonzeros (60: -1: -60);
2 y = nonzeros (-80:80) ';

62 Chapter 7 Vision-based line tracking algorithm

3 [X,Y] = meshgrid (x,y);
4 X = X';
5 Y = Y';
6
7 a = 10;
8 v = [5 , -7];
9 v = v/norm(v);

10 n = [v(2) ,-v(1)];
11
12 RegionLeft = v(1)*Y <= v(2)*X + a*(v(1) ^2+v(2) ^2);
13 RegionRight = v(1)*Y >= v(2)*X - a*(v(1) ^2+v(2) ^2);
14 RegionUp = v(2)*Y >= -v(1)*X;
15 RegionCombined = RegionLeft & RegionRight & RegionUp ;

Listing 7.1: Matlab-code for creating tunnel vision.

Figure 7.7: Regions created and intersected to create tunnel vision to be applied to images.

How the tunnel vision works will now be illustrated via an example. The minidrone will be flying
at a height of 1.1 meters at which the track segments will be approximately 20 pixels wide when
captured by the camera. In this example the tunnel vision width will be set to 40 pixels. Figure
7.8, 7.9 and 7.10 show the process.

Chapter 7 Vision-based line tracking algorithm 63

Figure 7.8: The minidrone is heading towards a turn.

(a) BW image captured by the cam-
era.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied. BW image after tunnel
vision has been applied. Image axes

have been added in.

Figure 7.9: Situation as the drone is heading towards the turn. Pixels in the opposite direction are
neglected. With more pixels in the right region the drone’s direction vector will start leaning even

more to the right.

64 Chapter 7 Vision-based line tracking algorithm

(a) BW image captured by the cam-
era.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied.

Figure 7.10: Situation shortly after heading in the new direction. The minidrone is now heading
northeast.

7.6 Handling Sharp Corners

The tunnel vision approach described so far works well for many turns, especially those between
90◦ and 270◦ (where angles are measured from one track segment to the next in an anti-clockwise
manner). It also works for sharper turns, but only up to a certain point, after which it starts failing.
The problem that occurs is illustrated in Figure 7.11, 7.12, 7.13 and 7.14.

Figure 7.11: The minidrone is heading towards a relatively sharp turn.

Chapter 7 Vision-based line tracking algorithm 65

(a) BW image captured by the cam-
era.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied. Image axes have been

added in.

Figure 7.12: Situation as the drone is heading towards the turn. There are not enough white pixels
in the right region to give a strong pull towards the right.

(a) BW image captured by the cam-
era.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied. Image axes have been

added in.

Figure 7.13: Situation as the minidrone is drawn closer to the edge of the corner. There are more
white pixels in the left than in the right region.

(a) BW image captured by the cam-
era.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied. Image axes have been

added in.

Figure 7.14: Situation as the minidrone is at the edge of the corner. Here the minidrone will either
move further into the corner until there are no more white pixels left, or there will be just enough
pixels to rotate the direction back onto the track. In the first case the minidrone will hover in place,
in the second it sometimes locks onto the correct new path, sometimes it locks onto the path it

came from.

Some of the issues of sharp turns are illustrated in Figure 7.15.

66 Chapter 7 Vision-based line tracking algorithm

(a) A large amount of pixels (yellow) do not come into play
because they lie behind the tunnel vision (green rectangle).

(b) Even if the minidrone would turn somewhat correctly
it then runs into the next track segment in such a way
that the pixels inside the tunnel vision cannot be used to

determine if the drone should go left or right.

Figure 7.15: Problems with sharp turns.

This problem is tackled by paying special attention to certain regions of the image. The solution
designed here draws inspiration from the first two line tracking algorithms in [23]. In those algorithms
the images are divided into regions and decisions are made based on the number of white pixels
in said regions. [23] uses a yaw-adjusting approach and the regions’ placements in the image are
therefore static. Here the placement of these regions will depend on the direction vector, just like
how the tunnel vision moves around. The regions will be created using the same principles as
discussed in Section 7.5, i.e. by intersecting regions above and below lines.

The following regions will be used:

• Far corner sensor: a thin region placed in front of the center in the direction the minidrone is
heading. Placed further out than the close corner sensor. Used to detect if the end of a track
segment has entered the image.

• Close corner sensor: a thin region placed in front of the center in the direction the minidrone
is heading. Used to detect if the minidrone now is at the end of a track segment.

• Left sensor: A thin, but long region placed to the left of the direction the minidrone is heading.
Used to decide if the minidrone should take a left turn when at a sharp corner.

• Right sensor: A thin, but long region placed to the right of the direction the minidrone is
heading. Used to decide if the minidrone should take a right turn when at a sharp corner.

The so-called “sensors” will have a width of approximately 2 pixels.

Chapter 7 Vision-based line tracking algorithm 67

Figure 7.16: Example of where the regions will be placed when the drone is heading northwest.
Colored as follows: far corner sensor in green , close corner sensor in red , front left sensor in
orange , back left sensor in yellow , front right sensor in blue and back right sensor in purple .

The left and right sensors need to reach far back in order to detect left/right turns also for very
sharp turns (down to 10◦/up to 350◦ [10]). But with such long regions chances are they will overlap
with the path underneath and behind the drone if the current direction has not yet been fully
stabilized, potentially causing problems for detection of left/right turns. The left and right sensors
have therefore been further divided into front and back sensors. The front regions will be weighted
more heavily when determining whether to go in a left or right direction.

68 Chapter 7 Vision-based line tracking algorithm

Figure 7.17: Case where the path is not yet fully stable. The back left sensor reaches deep into the
track segment, but because the front right sensor is weighted more heavily in the calculations, the

drone will head right.

The solution works as follows: at every step the number of white pixels in the original BW image
that fall within the sensors are counted. When the number of pixels in the two corner sensors fall
below a certain threshold (10 is used in the implementation), the minidrone knows that it is at the
end of a sharp turn (for slack turns the amount of pixels will be high enough to not warrant leaving
the tunnel vision approach). It then uses the amount of pixels in the left and right sensors to
determine where to head next. For a brief moment (0.8 seconds is used in the implementation) the
tunnel vision will be swapped out with the region to the left or right of the current direction. The
region is pushed a few pixels (at least half the width of a track segment, 10 pixels when flying at
1.1 m) to the left/right of the direction so that the track segment behind the drone is not included
in the altered BW image. A new direction will be calculated and after the short period has passed
the tunnel vision is applied as before. This will be illustrated via the same example as in Figure 7.11.

Chapter 7 Vision-based line tracking algorithm 69

(a) BW image captured by the camera.
Sensor regions have been added in.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied. Image axes have been

added in.

Figure 7.18: Situation as the drone is heading towards the turn. The BW image with tunnel vision
applied is by its own not enough to get the minidrone to head in the new direction.

(a) BW image captured by the camera.
Sensor regions have been added in.

(b) Right-side vision to be applied to
the BW image.

(c) BW image after right-side vision
has been applied. Image axes have

been added in.

Figure 7.19: The corner sensors detect that the minidrone has reached the edge of the turn. There
are now more white pixels under the right side sensors than under those on the left side, so the
entire region to the right of the current direction will be used when calculating the next direction.

(a) BW image captured by the camera.
Sensor regions have been added in.

(b) Tunnel vision to be applied to the
BW image.

(c) BW image after tunnel vision has
been applied. Image axes have been

added in.

Figure 7.20: The minidrone successfully turns and continues using the narrow, forward-facing
tunnel vision as before.

70 Chapter 7 Vision-based line tracking algorithm

7.7 Landing Phase

What remains is for the minidrone to detect that its near the end of the last track segment and to
detect and land on the circle. The circle always has a diameter of 20 cm and the distance from the
end of the track to the center of the circle will always be 25 cm [10]. This means the distance from
the end of the track to the edge of the circle will always be 10 cm. When flying 1.1 m above the
ground this roughly equates to 28 pixels. With the correct amount of space between the corner
sensors explained in Section 7.6, the minidrone will know that it is near the end of the track when
there are white pixels inside the far corner sensor, but not in the close corner sensor, see Figure
7.21.

(a) The minidrone is close to the end of the track. (b) BW image captured by the camera. Sensor regions
have been added in.

Figure 7.21: The minidrone is at the end of the track. It knows this because the far corner sensor
has white pixels inside it while the close corner sensor has none.

The minidrone will then enter an “end of track” phase where it travels forward at a slower speed
and where the amount of pixels directly underneath will be counted in order to detect the circle.
It continues calculating the direction vector as before. As mentioned, the circle has a diameter of
20 cm, which at 1.1 m height roughly translates to 36 pixels in the BW image. The counting will
therefore be done within a 40x40 square region in the middle of the BW image. The circle consists
of the following approximate amount of white pixels:

A = πr2 = π ·
(36

2
)2

≈ 1017.36 (7.22)

If the amount of white pixels inside the center exceed 1000 pixels the minidrone will enter the
landing phase where it stops updating the x- and y-directions and gradually increases the z-direction
for a smooth landing (recall that the positive z-axis is pointing downwards).

Chapter 7 Vision-based line tracking algorithm 71

7.8 Minidrone Speed

To ensure a flight that is both quick and stable, the speed of the minidrone should depend on
the amount of white pixels it uses to calculate the direction. Since there are less pixels in the
x-direction than in the y-direction (120 vs. 160), the speed will be limited by the maximal amount
of white pixels possible inside a tunnel vision region pointing strictly in the x-direction. The tunnel
vision will be set to the same pixel width as the track segments. This gives a total of 60 × 20 = 120
pixels. The minimum amount of pixels inside the tunnel vision is 0. For improved stability the
drone should move slower when there are pixels inside the left/right sensors (Section 7.6). The
(weighted) sum of pixels within these will be subtracted from the amount of pixels inside the tunnel
vision. Note that this results in a negative minimum amount of pixels.

During simulation, the path planning block runs with a sampling period of 0.005 s. If one sets
the drone speed to e.g. 0.0005 m per sample, this equates to 0.0005 m/0.005 s = 0.1 m/s. This
will be the minimum speed the drone will be allowed to travel at (excluding during takeoff and
landing). Similarly, the drone will have a maximum speed of 0.0011 m per sample, i.e. 0.22 m/s.
These values were decided through experimentation. Allowing the minidrone to fly faster can result
in the camera and image processing system not being able to keep up (the image processing system
block is set to run with a sampling period 40 times larger than the rest of the system).

The amount of pixels inside the tunnel vision must then be mapped to the desired minidrone speed.
Consider a standard linear equation where the input is shifted and amplified:

y = a(x− b) (7.23)

Let ymin be minimum speed, ymax be maximum speed, xmin minimum pixel amount and xmax

maximum pixel amount.

The following two equations should hold:

ymin = a(xmin − b) (7.24)

ymax = a(xmax − b) (7.25)

Subtracting (7.24) from (7.25) and solving for a yields:

a = (ymax − ymin)/(xmax − xmin); (7.26)

Solving (7.24) for b yields:
b = xmin − ymin

a
(7.27)

72 Chapter 7 Vision-based line tracking algorithm

Using Equation (7.23) with these values for a and b will then give the desired mapping.

Chapter 8

Results

To evaluate the performance of the developed algorithms several experiments of various types were
conducted. To test how well the control algorithms track its given references, a series of numerical
simulations were run, as well as physical experiments on the Quanser 3 DOF Hover system. To test
how the line tracking algorithm performs with different control systems, visualized simulations were
run using the Parrot Minidrone Competition Project.

Figure 8.1: QR code for videos showcasing the 3 DOF Hover and Line Tracking experiments.

8.1 Simulation

To validate the performances of the proposed controllers, numerical simulations will be presented
in this section. The quadrotor mathematical model from Equation (2.19) was simulated using
MATLAB/Simulink environment. The parameters of the quadrotor were set according to the Parrot
Mambo minidrone values from Table 2.1. The initial attitude and position of the quadrotor was
chosen as

[
0 0 0

]
rad and

[
0 0 0

]
m for all the simulations. IAE, ISE, ITAE and ITSE has

been selected as the performance indicators to evaluate and compare the different controllers, where
minimizing the different indices indicates a better performance. Simulations considering both the
absence and presence of model uncertainties and external disturbances were conducted.

73

74 Chapter 8 Results

8.1.1 Chattering Attenuation

In this subsection, the objective was to compare the performance of the ISMC with the sign function,
approximated continuous sign function (quasi) and with adaptive fuzzy gain scheduling (AFGS).
The small scalar constant in the approximated continuous sign function was chosen as ϵ = 0.2.
The performance with the use of the sign function is denoted as ISMC in this subsection. The
performance with the use of the approximated sign function is denoted Quasi, and the performance
with the use of adaptive fuzzy gain scheduling is denoted AFGS. The comparison will be made
in terms of chattering attenuation and tracking performance of the desired attitude. The desired
attitude was chosen as ϕd = θd = sin(t), ψd = 0.5 sin(t). The control parameters used in the
simulations are shown in Table 8.1.

i λi ρi ζi ki

ϕ 10 0.5 2 0.001
θ 10 0.5 2 0.001
ψ 5 0.5 1 0.001

Table 8.1: ISMC parameters.

The simulation results without any uncertainties or disturbances are shown in Figure 8.2-8.7. Figure
8.2 shows the desired attitude and the actual attitudes. The attitude errors are shown in Figure
8.3, and the different control inputs are shown in Figure 8.4-8.6. The Adaptive gains for the AFGS
are shown in Figure 8.7, where they change their amplitude according to the deviation of the
trajectories from the sliding surface.

Chapter 8 Results 75

Figure 8.2: Attitude angles.

Figure 8.3: Attitude errors.

76 Chapter 8 Results

Figure 8.4: ISMC control inputs.

Figure 8.5: AFGS control inputs.

Chapter 8 Results 77

Figure 8.6: Quasi control inputs.

Figure 8.7: AFGS control gains.

78 Chapter 8 Results

Table 8.2 shows the performance indices comparison between the three control methods.

ISMC AFGS Quasi

ϕ

IAE 0.0442 0.1876 0.1950
ISE 0.0012 0.0037 0.0031
ITAE 0.0848 1.6030 1.6769
ITSE 0.00062832 0.0221 0.0178

θ

IAE 0.0442 0.1876 0.1950
ISE 0.0012 0.0037 0.0031
ITAE 0.0848 1.6030 1.6769
ITSE 0.00062832 0.0221 0.0178

ψ

IAE 0.0829 0.1042 0.2616
ISE 0.0068 0.0072 0.0092
ITAE 0.0999 0.2903 2.0301
ITSE 0.0032 0.0041 0.0281

Table 8.2: Performance indices without any uncertainties and disturbances.

Uncertainty (20% added) in rotary inertia and external disturbances were then implemented. In this
case, we considered model uncertainty 20% added in all three moments of inertia. The disturbances
were implemented as

[
dϕ dθ dψ

]
=
[
1 1 0.25

]
at t = 10 s, and represent the unknown constant

disturbances changing slowly along time, such as static wind and unmodeled dynamic errors. They
were added to the quadrotor dynamic model as follows

ϕ̈ = Iy − Iz
Ix

θ̇ψ̇ − Jr
Ix
θ̇Ω + u2

Ix
− dϕ

θ̈ = Iz − Ix
Iy

ϕ̇ψ̇ + Jr
Iy
ϕ̇Ω + u3

Iy
− dθ

ψ̈ = Ix − Iy
Iz

ϕ̇θ̇ + u4
Iz

− dψ

(8.1)

The simulation results with uncertainties and disturbances are shown in Figure 8.8-8.13. Figure 8.8
shows the desired attitude and the actual attitudes. The attitude errors are shown in Figure 8.9,
and the different control inputs are shown in Figure 8.10-8.12. The Adaptive gains for the AFGS
are shown in Figure 8.13.

Chapter 8 Results 79

Figure 8.8: Attitude of quadrotor with uncertainties and disturbances.

Figure 8.9: The attitude errors with uncertainties and disturbances.

80 Chapter 8 Results

Figure 8.10: ISMC control inputs with uncertainties and disturbances.

Figure 8.11: AFGS control inputs with uncertainties and disturbances.

Chapter 8 Results 81

Figure 8.12: Quasi control inputs with uncertainties and disturbances.

Figure 8.13: AFGS control gains with uncertainties and disturbances.

82 Chapter 8 Results

Table 8.3 shows the performance indices comparison between the three control methods with
uncertainties and disturbances.

ISMC AFGS Quasi

ϕ

IAE 0.3860 0.4993 0.5509
ISE 0.0157 0.0198 0.0230
ITAE 5.0706 6.0748 6.7852
ITSE 0.2125 0.2530 0.3072

θ

IAE 0.3860 0.4993 0.5509
ISE 0.0157 0.0198 0.0230
ITAE 5.0706 6.0748 6.7852
ITSE 0.2125 0.2530 0.3072

ψ

IAE 0.1399 0.2408 0.4525
ISE 0.0111 0.0132 0.0213
ITAE 0.3914 1.7487 4.3832
ITSE 0.0080 0.0367 0.1510

Table 8.3: Performance indices with uncertainties and disturbances added.

The results show that ISMC with the use of the sign function shows better performance in terms of
trajectory tracking, but the proposed AFGS and quasi controllers have an acceptable performance.
The ISMC and AFGS does show better results in terms of robustness against model uncertainties
and disturbance rejection than the quasi, but the quasi also shows acceptable robustness and
disturbance rejection.
However, in terms of chattering reduction in the control inputs, the AFGS and quasi showed a
significant reduction of chattering compared to the ISMC, where it is completely eliminated with
the quasi controller.
By considering both trajectory tracking and chattering reduction, the AFGS and quasi controllers is
considered to the better than the ISMC. In the subsequent sections of this chapter, the sign function
in the ISMC control inputs was replaced with the approximated continuous function because of it’s
simplicity and effectiveness in reducing the chattering phenomena.

8.1.2 ISMC vs. Linear Control Methods

Several types of controllers has been introduced in this work, which includes PD, LQR and ISMC.
A comparative study of the controllers will now be proposed where, as mentioned, the continuous
approximation of the sign function was used in the ISMC control inputs. All the controllers were
tuned by genetic algorithm as proposed in Chapter 6. Table 8.4, 8.5 and 8.6 shows the controller
parameters obatained by genetic algorithm for PD, LQR and ISMC respectively.

Chapter 8 Results 83

i kpi kdi

x 1.2404 0.4001
y 1.2404 0.4001
z 78.5735 12.1851
ϕ 98.8054 57.6252
θ 70.4077 43.8701
ψ 46.5495 14.5408

Table 8.4: PD controller parameters.

Controller Q matrices R matrices

x

11.7 0
0 0.6

 [
9.9
]

y

11.7 0
0 0.6

 [
9.9
]

z

1760.3 0
0 1393.5

 [
0.2
]

ϕ

1062.7 0
0 305.2

 [
4.9
]

θ

1791.8 0
0 462.5

 [
4.1
]

ψ

785.9770 0
0 68.8622

 [
2.6613

]

Table 8.5: LQR weighting matrices.

i λi ρi ζi ki

x 2.9998 3.1285 0.6052 0.0034
y 2.9998 3.1285 0.6052 0.0034
z 5.0351 6.6602 2.7307 0.0011
ϕ 17.5038 38.5424 4.9774 0.0037
θ 16.2555 38.9482 4.2975 0.0032
ψ 39.0089 8.3646 2.3001 0.0016

Table 8.6: ISMC parameters.

84 Chapter 8 Results

To study the stabilization, attitude tracking, and position tracking ability of the controllers, a series
of simulations were conducted. An altitude and attitude stabilization and tracking simulation was
carried out to test the inner loop controllers’ ability to stabilize and track the quadrotors altitude
and attitude. To test the position tracking, a series of 3D trajectories were conducted.

Altitude and Attitude Tracking Simulations

In these simulations the quadrotor was first set to hover at a fixed altitude and attitude to test the
inner loop controllers’ ability to stabilize the quadrotor. Then the inner loop controllers’ ability to
track a sinusoidal reference was tested. The performance of the inner loop controllers was tested by
considering two scenarios:
Scenario 1: In this scenario neither model uncertainty nor disturbance is considered.
Scenario 2: Uncertainty (25% subtracted) in rotary inertia and external disturbances is added.
In this case, we consider model uncertainty 25% subtracted in all three moments of inertia. The
external disturbances dϕ, dθ, dψ are added to the quadrotor dynamic model as follows

ϕ̈ = Iy − Iz
Ix

θ̇ψ̇ − Jr
Ix
θ̇Ω + u2

Ix
+ dϕ

θ̈ = Iz − Ix
Iy

ϕ̇ψ̇ + Jr
Iy
ϕ̇Ω + u3

Iy
+ dθ

ψ̈ = Ix − Iy
Iz

ϕ̇θ̇ + u4
Iz

+ dψ

(8.2)

and are defined as normal Gaussian noise

dϕ = Nϕ(0, 0.5)

dθ = Nθ(0, 0.5)

dψ = Nψ(0, 0.5)

(8.3)

with a sample time of 0.1. The disturbances represent the fast varying and unknown stochastic
disturbances, such as stochastic wind and uncertain measurement noise.

For the first test the desired altitude and attitude was chosen as zd = −1, ϕd = θd = ψd = 0.5.
Figure 8.14 shows the desired altitude and attitude, and the actual altitude and attitude under
Scenario 1. Table 8.7 shows the performance indices comparison between the three control methods
under Scenario 1. Figure 8.15 and Table 8.8 shows the results under Scenario 2. All the controllers
successfully stabilize the altitude and attitude of the quadrotors, although with varying performance
levels. The PD controller, incorporating a feedforward term, effectively and rapidly stabilizes the
altitude. The ISMC is also able to stabilize the altitude in a quick manner, while the LQR has
the slowest response with considerably worse performance indices for the altitude. In terms of
attitude stabilization, the ISMC controller outshines the others with its faster response time and

Chapter 8 Results 85

significantly better performance indices. The response time of the yaw angle is noticeably affected
by control input saturation, resulting in slower response times and overshoot for all controllers.
The controllers are able to handle the uncertainties in the rotary inertias and the external distur-
bances under Scenario 2 with minor changes in the performance indices. Under Scenario 2, the
performance indices for the attitude overall shows a slight reduction. This could be attributed to
the fact that reducing the inertia makes the quadrotor less resistant to rotational changes, enabling
it to respond more quickly to control inputs.

Figure 8.14: Quadrotor altitude and attitude under Scenario 1.

86 Chapter 8 Results

PD LQR ISMC

z

IAE 0.3492 1.0234 0.4131
ISE 0.2528 0.5095 0.2838
ITAE 0.1779 1.2632 0.1177
ITSE 0.0383 0.2389 0.0518

ϕ

IAE 0.3038 0.2811 0.0867
ISE 0.0789 0.0735 0.0330
ITAE 0.1774 0.1509 0.0097
ITSE 0.0231 0.0198 0.0026

θ

IAE 0.3255 0.2709 0.0973
ISE 0.0848 0.0719 0.0363
ITAE 0.2032 0.1381 0.0125
ITSE 0.0266 0.0184 0.0031

ψ

IAE 0.3812 0.3835 0.4010
ISE 0.1386 0.1393 0.1562
ITAE 0.1908 0.1935 0.1873
ITSE 0.0462 0.0467 0.0570

Table 8.7: Performance indices under Scenario 1.

Figure 8.15: Quadrotor altitude and attitude tracking under Scenario 2.

Chapter 8 Results 87

PD LQR ISMC

z

IAE 0.3494 1.0235 0.4137
ISE 0.2530 0.5095 0.2843
ITAE 0.1779 1.2634 0.1181
ITSE 0.0383 0.2389 0.0520

ϕ

IAE 0.3005 0.2776 0.0794
ISE 0.0773 0.0718 0.0287
ITAE 0.1754 0.1489 0.0120
ITSE 0.0226 0.0193 0.0020

θ

IAE 0.3216 0.2663 0.0844
ISE 0.0829 0.0696 0.0312
ITAE 0.2006 0.1356 0.0130
ITSE 0.0259 0.0178 0.0023

ψ

IAE 0.3502 0.3636 0.3215
ISE 0.1084 0.1111 0.1135
ITAE 0.2179 0.2376 0.1518
ITSE 0.0341 0.0375 0.0321

Table 8.8: Performance indices under Scenario 2.

For the second test the desired altitude and attitude was chosen as zd = − sin(t) − 1, ϕd = θd =
0.5 sin(4t), ψd = 0.5 sin(t). Figure 8.16 shows the desired altitude and attitude, and the actual
altitude and attitude under Scenario 1. Table 8.9 shows the performance indices comparison between
the three control methods under Scenario 1. Figure 8.17 and Table 8.10 shows the results under
Scenario 2. Similar to the first test, all the controllers successfully track the desired trajectories,
with varying performance levels. The PD controller still shows the best performance with the
tracking of the altitude, where ISCM has slightly worse performance indices, and LQR performs the
worst. In terms of attitude stabilization, the ISMC controller still outperforms the PD and LQR.
All the controllers are able to handle the uncertainties in the rotary inertia’s and the external
disturbances under Scenario 2 with minor changes in the performance indices.

88 Chapter 8 Results

Figure 8.16: Quadrotor altitude and attitude tracking under Scenario 1.

PD LQR ISMC

z

IAE 0.4995 1.1831 0.5715
ISE 0.4212 0.6872 0.4522
ITAE 0.1774 1.3766 0.1925
ITSE 0.0897 0.3341 0.1077

ϕ

IAE 0.0740 0.0689 0.0186
ISE 0.0042 0.0039 0.0014
ITAE 0.0596 0.0532 0.0068
ITSE 0.0015 0.0013 0.00015671

θ

IAE 0.0947 0.0800 0.0262
ISE 0.0065 0.0056 0.0023
ITAE 0.0766 0.0581 0.0089
ITSE 0.0025 0.0018 0.00030173

ψ

IAE 0.1148 0.1131 0.1261
ISE 0.0113 0.0113 0.0143
ITAE 0.0786 0.0729 0.0818
ITSE 0.0063 0.0063 0.0084

Table 8.9: Performance indices under Scenario 1.

Chapter 8 Results 89

Figure 8.17: Quadrotor altitude and attitude tracking under Scenario 2.

PD LQR ISMC

z

IAE 0.5065 1.1853 0.5778
ISE 0.4272 0.6895 0.4581
ITAE 0.1810 1.3791 0.1963
ITSE 0.0924 0.3356 0.1103

ϕ

IAE 0.0542 0.0505 0.0156
ISE 0.0022 0.0021 0.00062307
ITAE 0.0469 0.0425 0.0241
ITSE 0.00074884 0.00064999 0.000068148

θ

IAE 0.0693 0.0584 0.0199
ISE 0.0035 0.0029 0.0010
ITAE 0.0590 0.0457 0.0262
ITSE 0.0013 0.00089846 0.00012054

ψ

IAE 0.0585 0.0561 0.0485
ISE 0.0021 0.0021 0.0023
ITAE 0.1207 0.1086 0.0689
ITSE 0.0015 0.0013 0.0012

Table 8.10: Performance indices under Scenario 2.

90 Chapter 8 Results

Trajectory Tracking Simulations

In order to test the proposed controllers’ ability to track a 3D trajectory, three different trajectories
were simulated: a square trajectory, ascent helix and a more complex ascent helix. The ascent
helix and the complex ascent helix are examples of relatively hard trajectories for quadrotors in the
literature, and they are considered as a benchmark for demonstrating the complete control systems
capability of executing complex trajectories. The trajectories are given by

Square trajectory


xd = [0, 0, 2, 2, 0, 0, 0], for t = [0, 2, 4, 6, 8, 10, 12]
yd = [0, 2, 2, 0, 0, 0, 0], for t = [0, 2, 4, 6, 8, 10, 12]
zd = −2

Ascent helix


xd = cos(t)
yd = sin(t)
zd = −t

Complex ascent helix


xd = cos(t) + cos2(t)
yd = sin(t) − cos2(t)
zd = −t

(8.4)

The desired yaw angle was set to ψd = 0 for all the trajectories.

The performance of the controllers was tested considering two scenarios:
Scenario 1: In this scenario neither model uncertainty nor disturbance is considered.
Scenario 2: Uncertainty (25% subtracted) in rotary inertia and external disturbances is added. In
this case, we consider model uncertainty 25% subtracted in all three moments of inertia.
The external disturbances dx, dy, dz, dϕ, dθ, dψ were added to the quadrotor dynamic model as
follows

ẍ = −u1
m

(sin(ϕ) sin(ψ) + cos(ϕ) cos(ψ) sin(θ)) + dx

ÿ = −u1
m

(cos(ϕ) sin(ψ) sin(θ) − cos(ψ)sin(ϕ)) + dy

z̈ = g − u1
m

(cos(ϕ) cos(θ)) + dz

ϕ̈ = Iy − Iz
Ix

θ̇ψ̇ − Jr
Ix
θ̇Ω + u2

Ix
+ dϕ

θ̈ = Iz − Ix
Iy

ϕ̇ψ̇ + Jr
Iy
ϕ̇Ω + u3

Iy
+ dθ

ψ̈ = Ix − Iy
Iz

ϕ̇θ̇ + u4
Iz

+ dψ

(8.5)

Chapter 8 Results 91

and were defined as normal Gaussian noise

dx = Nx(0, 0.1)

dy = Ny(0, 0.1)

dz = Nz(0, 0.1)

dϕ = Nϕ(0, 0.5)

dθ = Nθ(0, 0.5)

dψ = Nψ(0, 0.5)

(8.6)

with a sample time of 0.1. They represent the fast varying and unknown stochastic disturbances,
such as stochastic wind and uncertain measurement noise.

Square Trajectory

The flight of the quadrotor in the 3D space for the case of the square trajectory under Scenario 1 is
visually depicted in Figure 8.18, while the response for the position is shown in Figure 8.19, and
the performance indices are listed in Table 8.11. All the proposed controllers enable the quadrotor
to follow the square trajectory without major errors. While considering the performance indices,
the PD controller demonstrates the best performance. However, despite its stronger performance
indices, an overshoot in altitude is observed when utilizing the PD controller, which is not observed
in the case of the LQR and ISMC controllers. Nevertheless, Figure 8.19 reveals that the ISMC
controller achieves the desired values in closer proximity in a faster time than with the PD and
LQR.

92 Chapter 8 Results

Figure 8.18: 3D view of the square trajectory responses under Scenario 1.

Figure 8.19: Position tracking of the square trajectory under Scenario 1.

Chapter 8 Results 93

PD LQR ISMC

x

IAE 4.1393 4.2700 4.5047
ISE 5.9847 6.2006 6.6999
ITAE 27.6089 28.4878 30.1161
ITSE 38.5303 40.0612 43.5622

y

IAE 3.9861 4.4363 4.4877
ISE 5.8086 6.3713 6.6527
ITAE 18.4964 20.8789 21.0221
ITSE 25.7023 28.5161 29.9369

z

IAE 1.0888 2.0769 1.0617
ISE 1.4712 2.2313 1.5147
ITAE 0.4428 2.2740 0.3717
ITSE 0.3558 1.0395 0.3574

Table 8.11: Performance indices for the square trajectory under Scenario 1.

Figure 8.20 illustrates the quadrotors flight in 3D space, for the square trajectory under Scenario
2, which incorporates disturbances and uncertainties. Figure 8.21 displays the response of the
quadrotors position. Additionally, Table 8.12 provides a list of the performance indices pertaining
to the quadrotors flight in this scenario. In this scenario, the PD controller is significantly impacted
by uncertainties and disturbances, whereas the ISMC and LQR controllers demonstrate robustness
by effectively handling them with minimal changes in performance from Scenario 1.

94 Chapter 8 Results

Figure 8.20: 3D view of the square trajectory responses under Scenario 2.

Figure 8.21: Position tracking of the square trajectory under Scenario 2.

Chapter 8 Results 95

PD LQR ISMC

x

IAE 5.2153 4.3545 4.5431
ISE 6.5024 6.2488 6.7403
ITAE 38.0983 28.8542 30.1102
ITSE 45.3382 40.2182 43.4095

y

IAE 4.7400 4.4368 4.5174
ISE 6.1803 6.3035 6.6790
ITAE 26.2653 20.8315 20.9960
ITSE 28.6075 28.0272 29.6081

z

IAE 1.0881 2.0843 1.0761
ISE 1.4762 2.2458 1.5334
ITAE 0.5540 2.2820 0.4022
ITSE 0.3502 1.0479 0.3656

Table 8.12: Performance indices for the square trajectory under Scenario 2.

Ascent Helix

The flight of the quadrotor in the 3D space for the case of the ascent helix trajectory under Scenario
1 is depicted in Figure 8.22, while the response for the position is shown in Figure 8.23, and the
performance indices are listed in Table 8.13. The results shows that the ISMC controller exhibits
significantly better tracking performance, closely following the desired trajectory with minimal
errors. In contrast, both the PD and LQR control strategies reveal overshoots in the x- and
y-positions for the sinusoidal-based reference signal. These findings demonstrate that the PD and
LQR controllers are less effective in controlling the quadrotor during more complex maneuvers
compared to the ISMC. The PD and LQR controllers demonstrate comparable performance in the
x- and y-positions, with the PD controller showing slightly better performance indices. However,
the PD controller excels in precisely following the desired altitude.

96 Chapter 8 Results

Figure 8.22: 3D view of the ascent helix trajectory responses under Scenario 1.

Figure 8.23: Position tracking of the ascent helix trajectory under Scenario 1.

Chapter 8 Results 97

PD LQR ISMC

x

IAE 1.8845 1.9910 0.8118
ISE 0.6848 0.7258 0.5720
ITAE 11.5337 12.3651 0.5745
ITSE 0.9822 1.1227 0.2009

y

IAE 1.2199 1.3205 0.1380
ISE 0.1232 0.1461 0.0245
ITAE 10.4090 11.2001 0.0907
ITSE 0.6967 0.8134 0.0095

z

IAE 0.0141 0.1783 0.0186
ISE 0.00044502 0.0026 0.00067075
ITAE 0.0123 1.3683 0.0057
ITSE 0.000064507 0.0099 0.00012379

Table 8.13: Performance indices for the ascent helix trajectory under Scenario 1.

Under Scenario 2, the flight of the quadrotor in 3D space for the case of the ascent helix trajectory is
depicted in Figure 8.24. The response for the position is shown in Figure 8.25, and the performance
indices are listed in Table 8.14. Notably, in the presence of uncertainties and disturbances, the
PD controller’s ineffectiveness becomes apparent. It struggles to adequately handle these external
factors, leading to deviations from the desired trajectory. In contrast, both the ISMC and LQR
controllers exhibit robustness by effectively managing the uncertainties and disturbances, ensuring
minimal impact on their overall performance compared to Scenario 1.
The results reinforce the superiority of the ISMC controller, where it showcases its ability to mitigate
the influence of uncertainties and disturbances, maintaining precise trajectory tracking with minimal
errors.

98 Chapter 8 Results

Figure 8.24: 3D view of the ascent helix trajectory responses under Scenario 2.

Figure 8.25: Position tracking of the ascent helix trajectory under Scenario 2.

Chapter 8 Results 99

PD LQR ISMC

x

IAE 3.7837 1.9577 0.8627
ISE 1.3563 0.7017 0.5650
ITAE 32.7994 12.1865 1.2335
ITSE 8.7994 1.0913 0.2061

y

IAE 1.0579 1.3044 0.1870
ISE 0.1120 0.1362 0.0212
ITAE 9.4875 11.3497 0.5699
ITSE 0.7783 0.8383 0.0107

z

IAE 0.0181 0.1808 0.0306
ISE 0.00049565 0.0028 0.00075739
ITAE 0.0489 1.3728 0.1169
ITSE 0.000093477 0.0100 0.00024285

Table 8.14: Performance indices for the ascent helix trajectory under Scenario 2.

Complex Ascent Helix

The complex ascent helix is showcased in Figure 8.26, which was set as the desired trajectory for
the quadrotor to follow.

Figure 8.26: Complex ascent helix.

100 Chapter 8 Results

The flight of the quadrotor in 3D space for the case of the complex ascent helix trajectory under
Scenario 1 is depicted in Figure 8.27, while the response for the position is shown in Figure 8.28,
and the performance indices are listed in Table 8.15. From the results it can be seen that the ISMC
is still able to follow the desired trajectory very closely with minimal error. The PD and LQR
does struggle with more complex trajectories and has considerably worse performance than the
ISMC. This shows that the proposed ISMC is able to effectively control the quadrotor during more
complex maneuvers than the PD and LQR controllers.

Figure 8.27: 3D view of the complex ascent helix trajectory responses under Scenario 1.

Chapter 8 Results 101

Figure 8.28: Position tracking of the complex ascent helix trajectory under Scenario 1.

PD LQR ISMC

x

IAE 3.9736 3.9374 1.9631
ISE 2.8083 2.9038 2.7028
ITAE 25.0974 23.9386 1.6263
ITSE 4.8703 4.6747 1.1795

y

IAE 2.6802 2.5912 0.5231
ISE 0.6464 0.6302 0.3064
ITAE 21.6706 20.5567 0.3121
ITSE 3.2196 2.9659 0.0747

z

IAE 0.0188 0.1816 0.0186
ISE 0.00044661 0.0027 0.00067024
ITAE 0.0617 1.4048 0.0057
ITSE 0.000090018 0.0104 0.00012374

Table 8.15: Performance indices for the complex ascent helix trajectory under Scenario 1.

For Scenario 2, the flight of the quadrotor in 3D space for the case of the complex ascent helix
trajectory under Scenario 1 is depicted in Figure 8.29, the response for the position is shown in
Figure 8.30, and the performance indices are listed in Table 8.16. Under the presence of model
uncertainties and disturbances, the PD controller fails to accurately track the desired trajectory,

102 Chapter 8 Results

resulting in divergence starting at approximately t = 13 s. The ISMC and LQR is still relatively
unaffected by the added uncertainties and disturbances, and has a minimal overall changes in
performance compared to Scenario 1.

Figure 8.29: 3D view of the complex ascent helix trajectory responses under Scenario 2.

Chapter 8 Results 103

Figure 8.30: Position tracking of the complex ascent helix trajectory under Scenario 2.

PD LQR ISMC

x

IAE 110.9979 3.8987 1.9716
ISE 3893.3 2.8441 2.6563
ITAE 2017.1 23.7450 2.0579
ITSE 74210 4.5762 1.1482

y

IAE 85.1106 2.6316 0.5665
ISE 1211.5 0.6507 0.3161
ITAE 1455.8 20.7458 0.6489
ITSE 21844 3.0328 0.0811

z

IAE 523.7911 0.1841 0.0306
ISE 77844 0.0028 0.00075814
ITAE 9649.1 1.4093 0.1170
ITSE 1472100 0.0105 0.00024308

Table 8.16: Performance indices for the complex ascent helix trajectory under Scenario 2.

8.1.3 Analysis and Discussion

The simulations aimed to evaluate the effectiveness of the proposed control system architectures for
altitude, attitude and 3D trajectory tracking of a quadrotor, both in the presence and absence of

104 Chapter 8 Results

uncertainties and disturbances. The results clearly establish the ISMC controller as the superior
choice, demonstrating it’s capability to accurately track all the proposed 3D trajectories with
minimal errors without exceeding the input saturation limits. Comparatively, the PD controller
exhibits similar performance to the LQR controller when uncertainties and disturbances are absent.
However, the PD controller’s lack of robustness becomes evident when subjected to uncertainties
and disturbances, resulting in a significantly impacted response.

Chapter 8 Results 105

8.2 3 DOF Hover

To evaluate the effectiveness of the proposed controllers in real-world scenarios, a laboratory
experiment utilizing the 3 DOF Hover system was conducted. In this section, for the experimental
testing and analysis of the physical 3 DOF Hover system, degrees are utilized to represent the
results instead of radians. All the controllers were tuned by trial and error for a fast response with
minimal overshoot and oscillations. Table 8.17, 8.18 and 8.19 show the controller parameters used
for PD, LQR and ISMC respectively.

i kpi kdi

ϕ 30 10
θ 30 10
ψ 25 5

Table 8.17: PD parameters.

Controller Q matrices R matrices

ϕ

950 0
0 150

 [
0.1
]

θ

950 0
0 150

 [
0.1
]

ψ

1000 0
0 100

 [
0.1
]

Table 8.18: LQR weighting matrices.

i λi ρi ζi ki

ϕ 3 40 35 0.001
θ 3 40 35 0.001
ψ 10 5 2 0.001

Table 8.19: ISMC parameters.

The small scalar constant in the sign approximation function in the ISMC control inputs was chosen
as ϵ = 0.05.
A total of four experiments were conducted to evaluate the performance of the PD, LQR, and
ISMC controllers for the 3 DOF Hover system. These experiments consisted of a range of different

106 Chapter 8 Results

reference signals to test the controllers under different conditions. In these experiments cases
closer to the linearization region of the LQR controller are tested, as well as further away from the
linearization region due to reference signals with larger amplitudes. Initially, for roll and pitch, a
reference signal consisting of a step signal followed by a sinusoidal signal, sin(t), was tested. The
step signal had a step time at t = 2 s, where it transitioned to a sinusoidal signal at t = 5

2π ≈ 7.85
s. Simultaneously, a ramp reference was set for the yaw angle from t = 15 s. The amplitude for the
roll and pitch angle was first set as 16◦. Then a second test was done with an amplitude of 28◦. The
slope of the ramp signal for the yaw angle was first set as 8◦, followed by 14◦ for the second test.

To assess the response during more aggressive maneuvers with varying frequencies, a linear chirp
signal with an amplitude of 16◦ was used as the reference for roll and pitch, followed by a test with
an amplitude of 28◦. The linear chirp signal is a sinusoidal signal with a frequency that varies
linearly with time. The linear chirp signal is defined as shown under

C(t) = sin
(
β0 + 2π

(
c

2 t
2 + f0t

))
(8.7)

where β0 is the the initial phase, f0 is the starting frequency, and c is the chirp rate given by

c = f1 − f0
T

(8.8)

where f1 is the final frequency and T is the time it takes to go from f0 to f1. For the experimental
tests the chirp signal was set as

C(t) = A sin(0.05t2 + t)

where A is the amplitude. A ramp reference was set for the yaw angle, with a slope of 16◦ when
the amplitude of the chirp signal was set to 16◦, and a slope of 28◦ was set when the amplitude of
the chirp signal was set to 28◦.

Each experiment was performed and repeated five times with each controller to account for potential
variations, except for the chirp signal with an amplitude of 28◦, which was carried out once
to mitigate any potential harm to the 3 DOF Hover system. The performance indicators IAE,
ISE, ITAE, and ITSE were selected to evaluate and compare the performance of the different
controllers. The average values were calculated when multiple tests were conducted to ensure
accurate assessment. All the experimental results, including the variations observed in each test,
are presented in Appendix C, offering insights into the performance and variations encountered
throughout the experiments. The figures in this section depict the results of the middle test (no. 3)
out of the five total tests conducted for each controller.

Chapter 8 Results 107

Step-to-Sinusoidal Reference

Figure 8.31 shows the attitude response of the 3 DOF Hover with the proposed controllers, with
a step-to-sinusoidal with an amplitude of 16◦ as a reference for the pitch and roll angles. Table
8.20 shows the corresponding average performance indices. All the controllers effectively stabilize
the attitude of the system with minor errors. However, it should be noted that the PD and LQR
controllers exhibit some more oscillations in the roll and pitch angles than ISMC. The performance
indices show that ISMC performs the best with considering roll and pitch, while there are minor
changes in performance for the yaw angle.

Figure 8.31: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
16◦.

108 Chapter 8 Results

PD LQR ISMC

ϕ

IAE 10.8459 13.4355 8.9474
ISE 67.7305 73.5433 66.4632
ITAE 73.3021 109.4957 48.6243
ITSE 161.0616 189.7740 152.8323

θ

IAE 16.0131 20.0373 10.7909
ISE 69.2576 74.0389 61.2498
ITAE 162.5766 225.4345 84.4049
ITSE 208.4243 276.1837 149.8759

ψ

IAE 1.4070 1.3138 1.4467
ISE 0.2645 0.1549 0.4537
ITAE 16.2772 15.9770 14.2226
ITSE 1.4244 1.1738 1.7563

Table 8.20: Average performance indices for a step-to-sinusoidal reference with an amplitude of
16◦.

Figure 8.32 shows the attitude response of the 3 DOF Hover, with an amplitude of 28◦. Table
8.21 shows the corresponding average performance indices. Notably, the ISMC controller continues
to exhibit better performance in terms of the roll and pitch angles. However, it shows a slightly
inferior performance in the yaw angle. This could be attributed to the observed coupling effect
at approximately t = 3 s, which also was observed in the first experiment. This could explain the
larger ISE for the two experiments, compared to the PD and LQR. The larger coupling affect could
be attributed to the fact that the rotational velocities incorporated in the control inputs for the
ISMC are not measured directly, but estimated with a derivative block and a second order filter.

Chapter 8 Results 109

Figure 8.32: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
28◦.

PD LQR ISMC

ϕ

IAE 23.0869 24.6633 18.4331
ISE 262.9998 271.2178 256.0416
ITAE 148.0226 169.5198 98.1211
ITSE 641.3642 671.5906 597.4875

θ

IAE 26.8358 30.6957 22.3255
ISE 266.6785 262.6389 254.1412
ITAE 231.8864 298.9329 173.1427
ITSE 709.0085 783.6478 638.7743

ψ

IAE 3.9302 3.2149 4.4978
ISE 2.6912 0.9186 6.6754
ITAE 37.4714 37.8273 36.2429
ITSE 11.5212 6.9293 22.8500

Table 8.21: Average performance indices for a step-to-sinusoidal reference with an amplitude of
28◦.

110 Chapter 8 Results

Linear Chirp Reference

Figure 8.33 depicts the attitude response of the 3 DOF Hover using the proposed controllers, with
a linear chirp signal of 16◦ amplitude serving as the reference for the pitch and roll angles. Table
8.22 shows the corresponding average performance indices. The performance superiority of the
ISMC controller becomes evident as it outperforms the PD and LQR controllers across all Euler
angles. Notably, the PD and LQR controllers struggle to track the increasing frequency starting
from approximately t = 27 s, resulting in big overshoots. The ISMC controller exhibits superior
capability in following the higher frequencies.

Figure 8.33: 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦.

Chapter 8 Results 111

PD LQR ISMC

ϕ

IAE 50.3605 75.5110 14.4941
ISE 961.7991 1697.7 59.0408
ITAE 1325.1 1976.9 333.5234
ITSE 27847 48143 1619.8

θ

IAE 39.5178 63.0323 8.6760
ISE 760.9422 1331 15.9845
ITAE 977.8385 1585.9 105.7166
ITSE 21895 37639 141.2120

ψ

IAE 16.5686 18.2073 7.4964
ISE 143.8428 116.5188 15.2036
ITAE 425.7416 462.6718 135.5470
ITSE 4152.9 3296.7 265.4976

Table 8.22: Average performance indices for a linear chirp reference with an amplitude of 16◦.

Figure 8.34 depicts the attitude response of the 3 DOF Hover using the proposed controllers, with
a linear chirp signal of 28◦ amplitude serving as the reference for the pitch and roll angles. This
experiment was conducted only once, and the performance indices are presented in two separate
tables. Table 8.23 displays the corresponding performance indices for the first 20 seconds, while Table
8.24 provides the performance indices for the entire 30 second duration. The decision to split the
performance indices into two separate tables was motivated by the observed behavior of the system.
After approximately 20 seconds, the angles of the 3 DOF Hover started to exhibit overshooting and
approached the physical boundaries of the system. Therefore, this allows evaluating and analyzing
the performance of the controllers separately for the initial 20 second period and the entire 30
second duration.
Again, the ISMC shows superiority in handling the higher frequencies and larger angles showing
considerably better performance indices across all the Euler angles for both the 30 and 20 second
duration, except for the yaw angle for the 30 second duration where the LQR performed the best.
The PD and LQR show similar performance in terms of the performance indices.

112 Chapter 8 Results

Figure 8.34: 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 28◦.

PD LQR ISMC

ϕ

IAE 43.9914 43.0608 12.9492
ISE 505.3881 409.3270 61.4372
ITAE 636.1244 597.5513 120.2271
ITSE 8107.7 6252.7 599.2716

θ

IAE 28.6646 32.8136 14.0225
ISE 202.7386 305.2860 82.4638
ITAE 295.8572 343.9586 53.8028
ITSE 1821.2 3412 69.2422

ψ

IAE 17.7076 15.2074 10.2952
ISE 112.8878 84.6662 40.7732
ITAE 241.2167 195.1691 71.4903
ITSE 1789.9 1328.5 89.2532

Table 8.23: Performance indices for a linear chirp reference with an amplitude of 28◦ for the first
20 seconds.

Chapter 8 Results 113

PD LQR ISMC

ϕ

IAE 296.2097 309.6168 239.4952
ISE 9072.9 9496.3 7330.8
ITAE 7104.5 7296.4 6015.4
ITSE 233540 237030 195260

θ

IAE 233.5727 229.5657 128.3496
ISE 7034.8 5526.1 2482.9
ITAE 5695.7 5389.7 3116.8
ITSE 189210 140740 66989

ψ

IAE 99.3213 73.6205 84.0729
ISE 1080 615.0246 926.4874
ITAE 2334.6 1672.5 1996.1
ITSE 27033 14745 23873

Table 8.24: Performance indices for a linear chirp reference with an amplitude of 28◦.

8.2.1 Analysis and discussion

In these experiments, our focus was on assessing the controllers ability to accurately control the
attitude of the 3 DOF Hover system. The results clearly demonstrate that the ISMC controller
outperforms both the PD and LQR controllers, particularly when dealing with larger angles and
more aggressive maneuvers. It is important to note that the tuning process for the ISMC controller
was significantly more time-consuming compared to the PD and LQR controllers. The tuning of
the ISMC controller proved to be a more complex process compared to the other controllers.

114 Chapter 8 Results

8.3 Line Tracking

8.3.1 Test Setup

The line tracking algorithm was tested with both the ISMC designed in this thesis and the PID-based
controller developed by MathWorks that comes with the Parrot Minidrone Competition Project.

The parameters for the ISMC were obtained using GA, where the control parameters were optimized
for tracking a fixed altitude and ramp references for the x- and y-position. The yaw angle is not
actively utilized in the line tracking algorithm and has been tuned by trial and error to maintain and
stabilize a fixed value of zero radians, which resulted in an acceptable performance. The obtained
control parameters are shown in Table 8.25.

i λi ρi ζi ki ϵi

x 0.6766 0.2145 1.8376 0.01 0.3430
y 0.6766 0.2145 1.8376 0.01 0.3430
z 5.6479 5.3435 3.1581 0.01 1.4904
ϕ 0.8100 26.3578 23.7246 10.1140 1.5242
θ 1.1739 2.3434 22.2347 13.7415 1.3286
ψ 10 5 2 0.01 0.5

Table 8.25: ISMC parameters for the minidrone competition.

Here ϵx, ϵy, ϵz, ϵϕ, ϵθ and ϵψ denote the scalar constants in the continuous sign approximation
function in the different controller inputs.

The algorithms were tested on three different tracks of increasing complexity. The tracks were built
using the Track Builder that comes with the Parrot Minidrone Competition Project. The tracks
are shown in Figure 8.35, 8.36 and 8.37.

Chapter 8 Results 115

Figure 8.35: The first test track.

Figure 8.36: The second test track.

116 Chapter 8 Results

Figure 8.37: The third test track.

Preliminary tests showed that the PID-based controller did not work very well when the drone was
allowed to run at high speeds. The decision was then made to test the line tracking algorithm and
controllers with several different maximum speeds, shown in Table 8.26.

Max speed (m/sample) Max speed (m/s)
0.0007 0.14
0.0008 0.16
0.0009 0.18
0.0010 0.20
0.0011 0.22

Table 8.26: Maximum speeds used for testing.

The two simplest metrics used to analyze the algorithms were the track completion time, or “run
time” for short, and whether the track was completed or not. Following the track until the end and
landing on the circle was considered a success. If the minidrone at any point crashed or started
heading away from the track or in the direction it came from, or if other similar events occurred,
the simulation was stopped and the attempt was considered a failure.

Chapter 8 Results 117

The performance metrics IAE and ISE were used to analyze the ability of the controllers to follow
the reference signals. The reference signals were in this case compared to the values coming from
the State Estimator block of the control system (see Figure 7.2). The simulations were carried out
with added sensor noise which explains the noise that can be seen in the resulting figures. The IAE-
and ISE-values have also been divided by the track completion times in order to give a more fair
comparison. IAE and ISE have been computed for the linear positions x, y and z and the angular
positions ϕ, θ and ψ.

The distance from the center of the image to the nearest white pixel has been used as a measure
of the accuracy of the line tracking algorithm. As explained in Chapter 7.5, because of an even
number of pixels in both the x- and y-direction, the distance must be calculated from an “artificially”
inserted origin. The distance has been approximately converted from number of pixels to metres.
IAE and ISE have also been computed for this distance. Naturally, these values are usually nonzero,
either because of the gap between the last track segment and the circle or because of the case where
the algorithm fails to complete the track.

As mentioned in Chapter 7.6 (see Figure 7.17), the back sensors regularly overlap with the track
segment pixels when the path forward has not yet become stable. The amount of time these regions
overlap with at least one pixel, dubbed “sensor time”, has therefore been used as a measure of
instability. This value has also been divided by the track completion times for better comparison.
There will always be some overlap with the track because of the turns, so these values are usually
nonzero.

8.3.2 Results

All of the test results can be found in Appendix D.1, but some of the results are repeated here for
convenience.

Table 8.27, 8.28 and 8.29 show the first performance index comparisons of the simulations done for
track 1, track 2 and track 3 respectively. Table 8.30 and 8.31 show the IAE- and ISE-comparisons
for the simulation done on track 1 with max speed set to 0.0011 m/s and track 2 with max speed
set to 0.0008 m/sample, respectively.

Using the ISMC-controller, the line tracking algorithm was able to complete the track in every case
but one, namely track 3 with the max speed set to 0.0011 m/sample. The PID-controller fared
much worse, completing track 1 for each max speed, but failing track 2 for the three highest max
speeds tested, and failing track 3 in every case. In each case where they both completed the track,
the track was completed quicker when using ISMC. In most of the cases where they both completed
the track the minidrone flew more stably with the ISMC.

118 Chapter 8 Results

Because of the interconnectedness between the controller outputs, the minidrone movements, the
line tracking and the camera vision, the two controllers are fed with different reference signals,
which should be kept in mind when comparing the IAE- and ISE-values for the ISMC and PID.
Regardless, ISMC is better than PID at tracking the linear position references it is given throughout
the simulation. The yaw reference is held constant at 0 by the line tracker and ISMC is better than
PID at keeping yaw stable at this value. When it comes to roll and pitch there is more variation
in the results. This could be due to the ISMC-outer loop being more aggressive when it comes to
translating the x- and y-references into the required roll and pitch references, resulting in larger
reference angles fed by the outer loop control.

Max speed Controller Track completed? Sensor time (s) Run Time (s) Sensor time
Run time (%)

0.0007
PID Yes 6.800 31.265 21.7

ISMC Yes 6.800 28.530 23.8

0.0008
PID Yes 8.200 29.080 28.2

ISMC Yes 7.600 26.345 28.8

0.0009
PID Yes 8.200 27.060 30.3

ISMC Yes 6.400 24.540 26.1

0.0010
PID Yes 8.000 25.270 31.7

ISMC Yes 6.400 22.940 27.9

0.0011
PID Yes 9.600 24.670 38.9

ISMC Yes 6.200 21.950 28.2

Table 8.27: Performance, track 1.

Max speed Controller Track completed? Sensor time (s) Run Time (s) Sensor time
Run time (%)

0.0007
PID Yes 57.200 96.060 59.5

ISMC Yes 42.800 80.735 53.0

0.0008
PID Yes 60.400 88.860 68.0

ISMC Yes 39.800 72.730 54.7

0.0009
PID No 37.200 52.920 70.3

ISMC Yes 37.200 65.950 56.4

0.0010
PID No 14.400 24.180 59.6

ISMC Yes 36.400 60.945 59.7

0.0011
PID No 13.200 22.400 58.9

ISMC Yes 35.800 57.535 62.2

Table 8.28: Performance, track 2.

Chapter 8 Results 119

Max speed Controller Track completed? Sensor time (s) Run Time (s) Sensor time
Run time (%)

0.0007
PID No 49.800 94.080 52.9

ISMC Yes 50.200 98.330 51.1

0.0008
PID No 21.400 45.120 47.4

ISMC Yes 45.400 87.950 51.6

0.0009
PID No 17.800 41.340 43.1

ISMC Yes 42.800 79.740 53.7

0.0010
PID No 5.600 19.080 29.4

ISMC Yes 40.400 73.945 54.6

0.0011
PID No 4.800 17.520 27.4

ISMC No 17.600 34.080 51.6

Table 8.29: Performance, track 3.

Divided by Run Time
Max speed Param. Index PID ISMC PID ISMC

0.0011

x
IAE 2.8156 0.41212 0.11413 0.018775
ISE 0.70452 0.026214 0.028558 0.0011943

y
IAE 2.3062 0.18653 0.09348 0.0084982
ISE 0.4772 0.0048261 0.019343 0.00021987

z
IAE 1.3891 0.9286 0.056308 0.042305
ISE 0.68886 0.4595 0.027923 0.020934

ϕ
IAE 0.024493 0.020677 0.00099281 0.000942
ISE 5.7951e-05 0.00016156 2.3491e-06 7.3605e-06

θ
IAE 0.027321 0.012163 0.0011075 0.00055413
ISE 7.6381e-05 4.9065e-05 3.0961e-06 2.2353e-06

ψ
IAE 0.00045028 0.00032897 1.8252e-05 1.4987e-05
ISE 1.3039e-08 7.7258e-09 5.2855e-10 3.5197e-10

d
IAE 0.27656 0.066338 0.01121 0.0030222
ISE 0.033517 0.0031909 0.0013586 0.00014537

Table 8.30: IAE- and ISE-results for track 2 w/ maximum speed set to 0.0011 m/sample.

120 Chapter 8 Results

Divided by Run Time
Max speed Param. Index PID ISMC PID ISMC

0.0008

x
IAE 13.8897 1.8009 0.15631 0.024762
ISE 2.4463 0.1268 0.027529 0.0017434

y
IAE 6.0704 0.34267 0.068314 0.0047115
ISE 0.56271 0.0038305 0.0063326 5.2667e-05

z
IAE 1.6106 1.0433 0.018125 0.014344
ISE 0.69387 0.45875 0.0078086 0.0063075

ϕ
IAE 0.05806 0.057257 0.00065339 0.00078725
ISE 5.9963e-05 0.0001862 6.748e-07 2.5601e-06

θ
IAE 0.087471 0.041939 0.00098437 0.00057664
ISE 0.00025015 0.00022777 2.8151e-06 3.1318e-06

ψ
IAE 0.0017554 0.0011424 1.9755e-05 1.5707e-05
ISE 5.4592e-08 2.8238e-08 6.1436e-10 3.8826e-10

d
IAE 0.23048 0.10147 0.0025938 0.0013952
ISE 0.020913 0.018695 0.00023535 0.00025705

Table 8.31: IAE- and ISE-results for track 2 w/ maximum speed set to 0.0008 m/sample.

8.3.3 Analysis and Discussion

The simulations that were carried out showed that the line tracking algorithm works much better
with ISMC than PID. During turns the line tracker quickly changes the position references to a
new direction. The ISMC handles these changes well and does so while the drone is flying at higher
speeds. The PID controller generally reacts quite slowly to the turns. In the best case this results in
worse track completion times than when ISMC is used. In the worst case it results in the minidrone
failing to complete the track.

Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis a nonlinear model of a quadrotor was derived. The main goal of the thesis was to
design controllers for the quadrotor UAV, with a main focus on SMC (ISMC), but also designing PID
(PD) and LQR for comparison purposes. Simulations were carried out to evaluate the effectiveness
of the proposed control system architectures for altitude, attitude and 3D trajectory tracking of a
quadrotor, both in the presence and absence of uncertainties and disturbances. ISMC outperformed
the other two, accurately tracking all the proposed 3D trajectories with minimal errors without
exceeding the input saturation limits. The PD and LQR controllers performed well in the absence
of uncertainties and disturbances. However, the ISMC, and to a certain extent the LQR, proved
to be more robust than the PD when these uncertainties and disturbances were introduced. Also,
the controllers’ ability to accurately control attitude were tested on the 3 DOF Hover system.
The results clearly demonstrated that the ISMC controller outperforms both the PD and LQR
controllers, particularly when dealing with larger angles and more aggressive maneuvers.

A vision-based line tracking algorithm was developed and tested with the Parrot Minidrone project.
The algorithm fares reasonably well, especially when pared with ISMC, letting the minidrone handle
many turns at a variety of tested speeds. The ISMC showed itself superior when matched against
PID, completing more tracks, completing them quicker and tracking the references with less error.

9.2 Future Work

The work presented in this thesis could be further improved by looking into the following aspects:

• Further improving the dynamical model of the quadrotor, including effects such as aerodynamic
friction torque and air drag force which resists the quadrotor motion.

121

122 Chapter 9 Conclusions and Future Work

• In this work some simplification were made under the assumptions of small angles of movement,
in both the quadrotor model and in the control architecture. To further enhance the controllers
ability to perform more aggressive maneuvering, additional refinements can be explored.

• Higher-order sliding mode control can be explored, which yields improved performance with
respect to chattering effects as well as higher accuracy.

• Measurements uncertainties/perturbations is unavoidable in practice, and a disturbance
observer for the estimation of disturbances can be implemented to the sliding mode control to
compensate for these uncertainties/perturbations and improve robustness.

• Integrated fault detection and isolation mechanisms, as well as fault-tolerant control strategies
can be implemented to enhance the quadrotor’s resilience against actuator failures or sensor
faults. Redundancy-based approaches or adaptive control techniques can be employed to
maintain stability and control performance in the presence of faults.

• Improving the line tracking algorithm. One of its main flaws is the fact that track segments
that are not a part of the current turn can come into the camera vision and affect the next
direction. Flying closer to the ground could fix this, but the line tracker then reduces its
ability to detect turns/corners early. Another suggestion is flying at the same or a higher
height, but using a subregion of the image for direction calculations. The algorithm also
struggles with sharp ∼ 10◦ turns. If improvements are made to the algorithm, one could try
flying at even higher speeds.

Bibliography

[1] MathWorks. Parrot drone support from matlab, 2023. URL https://se.mathworks.com/har
dware-support/parrot-drone-matlab.html. Accessed: 2023-04-11.

[2] MathWorks. Introduction to minidrone competition - ifac 2023, 2023. URL https://se.m
athworks.com/videos/introduction-to-minidrone-competition-ifac-2023-167904514
3904.html. Accessed: 2023-04-11.

[3] 3dof quanser documentation, 2023. URL https://www.quanser.com/products/3-dof-hov
er/#overview. Accessed: 2023-02-24.

[4] MathWorks. Mamdani and sugeno fuzzy inference systems, 2023. URL https://se.mathwor
ks.com/help/fuzzy/types-of-fuzzy-inference-systems.html. Accessed: 2023-03-29.

[5] Sourabh Katoch, Sumit Singh Chauhan, and Vijay Kumar. A review on genetic algorithm:
past, present, and future. Multimedia Tools and Applications, 80:8091–8126, 2021.

[6] GeoGebra Team. Geogebra - 2d graphing, 2023. URL https://www.geogebra.org/m/Adc44
ZZq. Accessed: 2023-05-01.

[7] Syed Agha Hassnain Mohsan, Muhammad Asghar Khan, Fazal Noor, Insaf Ullah, and
Mohammed H. Alsharif. Applications of unmanned aerial vehicles, 2022. URL https:
//encyclopedia.pub/entry/25512. Accessed: 2023-05-08.

[8] Andrew Zulu and Samuel John. A review of control algorithms for autonomous quadrotors.
arXiv preprint arXiv:1602.02622, 2016.

[9] MathWorks. Mathworks minidrone competition, 2023. URL https://se.mathworks.com/a
cademia/student-competitions/minidrones/ifac.html. Accessed: 2023-02-24.

[10] MathWorks. Mathworks minidrone competition rules and guidelines, 2021. URL https://se
.mathworks.com/content/dam/mathworks/mathworks-dot-com/academia/student-compe
titions/minidrone-competition/mathworks-minidrone-competition-guidelines.pdf.
Accessed: 2023-05-07.

[11] International Federation of Automatic Control. About, 2023. URL https://www.ifac2023.o
rg/about/#section-2. Accessed: 2023-02-24.

123

https://se.mathworks.com/hardware-support/parrot-drone-matlab.html
https://se.mathworks.com/hardware-support/parrot-drone-matlab.html
https://se.mathworks.com/videos/introduction-to-minidrone-competition-ifac-2023-1679045143904.html
https://se.mathworks.com/videos/introduction-to-minidrone-competition-ifac-2023-1679045143904.html
https://se.mathworks.com/videos/introduction-to-minidrone-competition-ifac-2023-1679045143904.html
https://www.quanser.com/products/3-dof-hover/#overview
https://www.quanser.com/products/3-dof-hover/#overview
https://se.mathworks.com/help/fuzzy/types-of-fuzzy-inference-systems.html
https://se.mathworks.com/help/fuzzy/types-of-fuzzy-inference-systems.html
https://www.geogebra.org/m/Adc44ZZq
https://www.geogebra.org/m/Adc44ZZq
https://encyclopedia.pub/entry/25512
https://encyclopedia.pub/entry/25512
https://se.mathworks.com/academia/student-competitions/minidrones/ifac.html
https://se.mathworks.com/academia/student-competitions/minidrones/ifac.html
https://se.mathworks.com/content/dam/mathworks/mathworks-dot-com/academia/student-competitions/minidrone-competition/mathworks-minidrone-competition-guidelines.pdf
https://se.mathworks.com/content/dam/mathworks/mathworks-dot-com/academia/student-competitions/minidrone-competition/mathworks-minidrone-competition-guidelines.pdf
https://se.mathworks.com/content/dam/mathworks/mathworks-dot-com/academia/student-competitions/minidrone-competition/mathworks-minidrone-competition-guidelines.pdf
https://www.ifac2023.org/about/#section-2
https://www.ifac2023.org/about/#section-2

Bibliography BIBLIOGRAPHY

[12] Francesco Sabatino. Quadrotor control: modeling, nonlinearcontrol design, and simulation,
2015.

[13] Michael A Johnson and Mohammad H Moradi. PID control. Springer, 2005.

[14] Kunwu Zhang, Jicheng Chen, Yufang Chang, and Yang Shi. Ekf-based lqr tracking control of
a quadrotor helicopter subject to uncertainties. In IECON 2016-42nd Annual Conference of
the IEEE Industrial Electronics Society, pages 5426–5431. IEEE, 2016.

[15] Yuri Shtessel, Christopher Edwards, Leonid Fridman, Arie Levant, et al. Sliding mode control
and observation, volume 10. Springer, 2014.

[16] WJ Cunningham. An introduction to lyapunov’s second method. Transactions of the American
Institute of Electrical Engineers, Part II: Applications and Industry, 80(6):325–332, 1962.

[17] R DeCarlo and S Zak. A quick introduction to sliding mode control and its applications. elet-
tronica, Università degli Studi di Cagliari (Department of Electrical and Electronic Engineering-
DIEE, University of Cagliari, Cagliari CA, Italy), 2008.

[18] Weibing Gao and James C Hung. Variable structure control of nonlinear systems: A new
approach. IEEE transactions on Industrial Electronics, 40(1):45–55, 1993.

[19] Brahim Brahmi, Mohamed Hamza Laraki, Abdelkrim Brahmi, Maarouf Saad, and Moham-
mad H Rahman. Improvement of sliding mode controller by using a new adaptive reaching
law: Theory and experiment. ISA transactions, 97:261–268, 2020.

[20] BiTao Zhang, YouGuo Pi, and Ying Luo. Fractional order sliding-mode control based on
parameters auto-tuning for velocity control of permanent magnet synchronous motor. ISA
transactions, 51(5):649–656, 2012.

[21] Ahmed Eltayeb, Mohd Fuaad Rahmat, MA Mohammed Eltoum, and Mohd Ariffanan Mohd
Basri. Adaptive fuzzy gain scheduling sliding mode control for quadrotor uav systems. In 2019
8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO),
pages 1–5. IEEE, 2019.

[22] Seyedali Mirjalili. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory
and Applications, pages 43–55, 2019.

[23] Pol Majó Casero. A vision-based line following method for micro air vehicles. B.S. thesis,
Universitat Politècnica de Catalunya, 2021.

Appendix A

Quadrotor Simulations

A.1 MATLAB Code for Quadrotor Simulations

1 clear all
2 clc
3 %% Vehicle Nonlinear Variables (from competiotion files)
4 % This file was derived from the work by Peter Corke and Fabian

Reither .
5 % Copyright (C) 1993 -2015 , by Peter I. Corke
6 %
7 % This file is part of The Robotics Toolbox for MATLAB (RTB).
8 %
9 % http :// www. petercorke .com

10
11 % Copyright 2013 -2017 The MathWorks , Inc.
12 model = 'Mambo ';
13 rho = 1.1840;
14 % Physical properties
15 % Airframe
16 switch (model)
17 case 'Mambo '
18 Vehicle . Airframe .mass = 0.063;
19 Vehicle . Airframe . inertia = diag ([0.0000582857 0.0000716914

0.0001]) ;
20 case 'RollingSpider '
21 Vehicle . Airframe .mass = 0.068;

125

Bibliography Appendix A Quadrotor Simulations

22 Vehicle . Airframe . inertia = diag ([0.0686e-3 0.092e-3 0.1366e
-3]);

23 end
24 Vehicle . Airframe .d = 0.0624;
25 Vehicle . Airframe .xy = Vehicle . Airframe .d*sqrt (2) /2; % For diamond

rotor set -up
26 Vehicle . Airframe .h = -0.015876;
27 Vehicle . Airframe .Cdx = 0;
28 Vehicle . Airframe .Cdy = 0;
29 Vehicle . Airframe . diameter = .01; % For drag calculation purposes
30 % Rotor
31 Vehicle .Rotor. blades = 2;
32 Vehicle .Rotor. radius = 0.033;
33 Vehicle .Rotor.chord = .008;
34 Vehicle .Rotor. flappingOffset = 0;
35 Vehicle .Rotor. bladeMass = 3.75e -04;
36 Vehicle .Rotor. bladeInertia = Vehicle .Rotor. bladeMass * Vehicle .Rotor.

radius ^2/4;
37 Vehicle .Rotor. hubMass = 0;
38 Vehicle .Rotor. hubInertia = 0;
39 Vehicle .Rotor. inertia = Vehicle .Rotor. hubInertia + Vehicle .Rotor.

bladeInertia ;
40 Vehicle .Rotor.Ct = .0107;
41 Vehicle .Rotor.Cq = Vehicle .Rotor.Ct*sqrt(Vehicle .Rotor.Ct /2);
42 Vehicle .Rotor. solidity = Vehicle .Rotor.chord* Vehicle .Rotor. blades /(

pi* Vehicle .Rotor. radius);
43 Vehicle .Rotor. theta0 = 14.6*(pi /180);
44 Vehicle .Rotor. thetaTip = 6.8*(pi /180);
45 Vehicle .Rotor. theta1 = Vehicle .Rotor.thetaTip - Vehicle .Rotor. theta0 ;
46 Vehicle .Rotor. theta34 = Vehicle .Rotor. theta0 +0.75* Vehicle .Rotor.

theta1 ;
47 Vehicle .Rotor.a = 5.5; % Lift slope
48 Vehicle .Rotor.area = pi* Vehicle .Rotor. radius ^2;
49 Vehicle .Rotor.lock = rho* Vehicle .Rotor.a* Vehicle .Rotor.chord*

Vehicle .Rotor. radius ^4/...
50 (Vehicle .Rotor. hubInertia + Vehicle .Rotor. bladeInertia);
51 Vehicle .Rotor.b = Vehicle .Rotor.Ct*rho* Vehicle .Rotor.area* Vehicle .

Rotor. radius ^2;

Bibliography 127

52 Vehicle .Rotor.k = Vehicle .Rotor.Cq*rho* Vehicle .Rotor.area* Vehicle .
Rotor. radius ^3;

53 Vehicle .Rotor. w2ToThrustGain = Vehicle .Rotor.Ct*rho* Vehicle .Rotor.
area* Vehicle .Rotor. radius ^2;

54 % Motors
55 Vehicle .Motor. maxLimit = 500;
56 Vehicle .Motor. minLimit = 10;
57 Vehicle .Motor. commandToW2Gain = 13840.8; %motor command for Rolling

Spider (0 -500) to motorspeed ^2
58 Vehicle .Motor. thrustToMotorCommand = 1/(Vehicle .Rotor.

w2ToThrustGain * Vehicle .Motor. commandToW2Gain);
59 % Flight Controller Vars
60
61 % This file is derived from the work by Fabian Riether .
62
63 % Copyright 2013 -2018 The MathWorks , Inc.
64
65 % Control Mixer
66 %Ts2Q transforms thrust [Nm] for motors 1 trhough 4 to u_mechanical

=[totalThrust ; Torqueyaw ;pitch;roll]
67 Controller .Ts2Q = ...
68 [1 1 1 1;
69 Vehicle .Rotor.Cq/ Vehicle .Rotor.Ct* Vehicle .Rotor. radius
70 -Vehicle .Rotor.Cq/ Vehicle .Rotor.Ct* Vehicle .Rotor. radius ...
71 Vehicle .Rotor.Cq/ Vehicle .Rotor.Ct* Vehicle .Rotor. radius ...
72 -Vehicle .Rotor.Cq/ Vehicle .Rotor.Ct* Vehicle .Rotor. radius ;
73 -Vehicle . Airframe .d*sqrt (2) /2 ...
74 -Vehicle . Airframe .d*sqrt (2) /2 ...
75 Vehicle . Airframe .d*sqrt (2) /2 Vehicle . Airframe .d*sqrt (2) /2;
76 -Vehicle . Airframe .d*sqrt (2) /2 ...
77 Vehicle . Airframe .d*sqrt (2) /2 ...
78 Vehicle . Airframe .d*sqrt (2) /2 -Vehicle . Airframe .d*sqrt (2)

/2];
79
80 %Q2Ts transform requested Q to thrust per motor
81 Controller .Q2Ts = inv(Controller .Ts2Q);
82
83 % Controllers (generic helpers)
84 switch model

Bibliography Appendix A Quadrotor Simulations

85 case 'RollingSpider '
86 Controller . takeoffGain = 0.2; %drone takes off with constant

thrust x% above hover thrust
87 case 'Mambo '
88 Controller . takeoffGain = 0.45; %drone takes off with constant

thrust x% above hover thrust
89 end
90 Controller . totalThrustMaxRelative = 0.92; % relative maximum total

thrust that can be used for gaining altitude ; rest is buffer
for orientation control

91 Controller . motorsThrustPerMotorMax = Vehicle .Motor. maxLimit * Vehicle
.Motor. commandToW2Gain *...

92 Vehicle .Rotor.Ct*rho* Vehicle .Rotor.area* Vehicle .Rotor. radius ^2;
93
94 %% Quadrotor parameters
95 x_0 = [0 0 0 0 0 0 0 0 0 0 0 0];
96
97 m = 0.0630; % [kg]
98 m_un = m; % [kg]
99 L = 0.0624; % [m]

100 b = 0.0107; % [Ns ^2]
101 d = 0.7826400e -3; % [Nms ^2]
102 g = 9.81; % [m/s^2]
103 I_x = 0.0582857e -3; % |kgm ^2]
104 I_y = 0.0716914e -3; % |kgm ^2]
105 I_z = 0.1000000e -3; % |kgm ^2]
106 J_r = 0.1021e -6; % [kgm ^2]
107
108 % Uncertain quadrotor parameters and disturbances (remove comments

for
109 % uncertainties and disturbances)
110 I_x_un = I_x% *0.75; % |kgm ^2]
111 I_y_un = I_y% *0.75; % |kgm ^2]
112 I_z_un = I_z% *0.75; % |kgm ^2]
113 disturbance_var = 0%0.1;
114 disturbance_var_attitude = 0%0.5;
115
116 % Sencond order filters
117 zeta = 1/ sqrt (2);

Bibliography 129

118 w_n = 1e3%1.5 e2;
119
120 %% PD control parameters
121 % x- position
122 kp_x = 1.2404;
123 kd_x = 0.4001;
124
125 % y- position
126 kp_y = 1.2404;
127 kd_y = 0.4001;
128
129 % Altitude
130 kp_z = 78.5735;
131 kd_z = 12.1851;
132
133 % Roll
134 kp_phi = 98.8054;
135 kd_phi = 57.6252;
136
137 % Pitch
138 kp_theta = 70.4077;
139 kd_theta = 43.8701;
140
141 % Yaw
142 kp_psi = 46.5495;
143 kd_psi = 14.5408;
144
145 %% LQR controller
146 % x- position
147 A_x = [0 1; 0 0];
148 B_x = [0; -g];
149 C_x = [1 0];
150 D_x = [0];
151
152 Q_x = [11.7000 0; 0 0.6000];
153 R_x = [9.9000];
154 K_x = lqr(A_x ,B_x ,Q_x ,R_x);
155
156 % y- position

Bibliography Appendix A Quadrotor Simulations

157 A_y = [0 1; 0 0];
158 B_y = [0; -g];
159 C_y = [1 0];
160 D_y = [0];
161
162 Q_y = [11.7000 0; 0 0.6000];
163 R_y = [9.9000];
164 K_y = lqr(A_y ,B_y ,Q_y ,R_y);
165
166 % Altitude
167 A_z = [0 1; 0 0];
168 B_z = [0; -1/m];
169 C_z = [1 0];
170 D_z = [0];
171
172 Q_z = [1760.3 0;0 1393.5];
173 R_z = [0.2000];
174 K_z = lqr(A_z ,B_z ,Q_z ,R_z);
175
176 % Roll
177 A_roll = [0 1; 0 0];
178 B_roll = [0; 1/ I_x];
179 C_roll = [1 0];
180 D_roll = [0];
181
182 Q_roll = [1062.7 0;0 305.2];
183 R_roll = [4.9000];
184 K_phi= lqr(A_roll ,B_roll ,Q_roll , R_roll);
185
186 % Pitch
187 A_pitch = [0 1; 0 0];
188 B_pitch = [0; 1/ I_y];
189 C_pitch = [1 0];
190 D_pitch = [0];
191
192 Q_pitch = [1791.8 0;0 462.5];
193 R_pitch = [4.1000];
194 K_theta = lqr(A_pitch ,B_pitch ,Q_pitch , R_pitch);
195

Bibliography 131

196 % Yaw
197 A_yaw = [0 1; 0 0];
198 B_yaw = [0; 1/ I_z];
199 C_yaw = [1 0];
200 D_yaw = [0];
201
202 Q_yaw = [785.9770 0;0 68.8622];
203 R_yaw = [2.6613];
204 K_psi = lqr(A_yaw ,B_yaw ,Q_yaw ,R_yaw);
205
206 %% ISMC parameters
207 % x- position
208 lambda_x = 2.9998;
209 rho_x = 3.1285;
210 epsilon_x = 0.2;
211 k_x = 0.0034;
212 zeta_x = 0.6052;
213
214 % y- position
215 lambda_y = 2.9998;
216 rho_y = 3.1285;
217 epsilon_y = 0.2;
218 k_y = 0.0034;
219 zeta_y = 0.6052;
220
221 % Altitude
222 lambda_z = 5.0351;
223 rho_z = 6.6602;
224 epsilon_z = 0.2;
225 k_z = 0.0011;
226 zeta_z = 2.7307;
227
228 % Roll
229 lambda_phi = 17.5038;
230 rho_phi = 38.5424;
231 epsilon_phi = 0.2;
232 k_phi = 0.0037;
233 zeta_phi = 4.9774;
234

Bibliography Appendix A Quadrotor Simulations

235 % Pitch
236 lambda_theta = 16.2555;
237 rho_theta = 38.9482;
238 epsilon_theta = 0.2;
239 k_theta = 0.0032;
240 zeta_theta = 4.2975;
241
242 % Yaw
243 lambda_psi = 39.0089;
244 rho_psi = 8.3646;
245 epsilon_psi = 0.2;
246 k_psi = 0.0016;
247 zeta_psi = 2.3001;

Listing A.1: MATLAB code for initializing variables/constants used by the quadrotor control
system.

1 [System]
2 Name='Fuzzy_gain_scheduling_attitude '
3 Type='sugeno '
4 Version =2.0
5 NumInputs =2
6 NumOutputs =1
7 NumRules =25
8 AndMethod ='prod '
9 OrMethod ='probor '

10 ImpMethod ='prod '
11 AggMethod ='sum '
12 DefuzzMethod ='wtaver '
13
14 [Input1]
15 Name='s'
16 Range =[-0.2 0.2]
17 NumMFs =5
18 MF1='NL ':'gaussmf ' ,[0.0424661 -0.2]
19 MF2='NS ':'gaussmf ' ,[0.0424661 -0.0833333]
20 MF3='ZE ':'gaussmf ' ,[0.0424661 0]
21 MF4='PS ':'gaussmf ' ,[0.0424661 0.0833333]
22 MF5='PL ':'gaussmf ' ,[0.0424661 0.2]
23

Bibliography 133

24 [Input2]
25 Name='s_dot '
26 Range =[-0.2 0.2]
27 NumMFs =5
28 MF1='NL ':'gaussmf ' ,[0.0424661 -0.2]
29 MF2='NS ':'gaussmf ' ,[0.0424661 -0.0833333]
30 MF3='ZE ':'gaussmf ' ,[0.0424661 0]
31 MF4='PS ':'gaussmf ' ,[0.0424661 0.0833333]
32 MF5='PL ':'gaussmf ' ,[0.0424661 0.2]
33
34 [Output1]
35 Name='rho '
36 Range =[0 0.5]
37 NumMFs =5
38 MF1='VL ':'constant ' ,[0]
39 MF2='L':'constant ' ,[0.125]
40 MF3='M':'constant ' ,[0.25]
41 MF4='H':'constant ' ,[0.375]
42 MF5='VH ':'constant ' ,[0.5]
43
44 [Rules]
45 5 1, 3 (1) : 1
46 5 2, 2 (1) : 1
47 5 3, 1 (1) : 1
48 5 4, 1 (1) : 1
49 5 5, 1 (1) : 1
50 4 1, 4 (1) : 1
51 4 2, 3 (1) : 1
52 4 3, 2 (1) : 1
53 4 4, 2 (1) : 1
54 4 5, 1 (1) : 1
55 3 1, 4 (1) : 1
56 3 2, 4 (1) : 1
57 3 3, 3 (1) : 1
58 3 4, 2 (1) : 1
59 3 5, 2 (1) : 1
60 2 1, 5 (1) : 1
61 2 2, 4 (1) : 1
62 2 3, 4 (1) : 1

Bibliography Appendix A Quadrotor Simulations

63 2 4, 3 (1) : 1
64 2 5, 2 (1) : 1
65 1 1, 5 (1) : 1
66 1 2, 5 (1) : 1
67 1 3, 5 (1) : 1
68 1 4, 4 (1) : 1
69 1 5, 3 (1) : 1

Listing A.2: Adaptive Fuzzy Gain Scheduling.

Bibliography 135

A.2 Simulink Schemes for Quadrotor Simulations

A.2.1 PD Control System

Figure A.1: PD Control System.

Bibliography Appendix A Quadrotor Simulations

Figure A.2: PD control for altitude.

Figure A.3: PD control for roll.

Bibliography 137

Figure A.4: PD control for pitch.

Figure A.5: PD control for yaw.

Bibliography Appendix A Quadrotor Simulations

Figure A.6: PD for x-position.

Bibliography 139

Figure A.7: PD for y-position.

Bibliography Appendix A Quadrotor Simulations

A.2.2 LQR Control System

Figure A.8: LQR Control System.

Bibliography 141

A.2.3 ISMC Control System

Figure A.9: ISMC Control System.

Bibliography Appendix A Quadrotor Simulations

Figure A.10: ISMC for altitude.

Figure A.11: ISMC for roll.

Bibliography 143

Figure A.12: ISMC for pitch.

Figure A.13: ISMC for yaw.

Bibliography Appendix A Quadrotor Simulations

Figure A.14: ISMC for x-position.

Bibliography 145

Figure A.15: ISMC for y-position.

Bibliography Appendix A Quadrotor Simulations

A.2.4 Simulink Scheme of the Quadrotor Model

Figure A.16: Quadrotor model.

Bibliography 147

A.2.5 Simulink Schemes of Roll and Pitch Converter

Figure A.17: Roll converter.

Figure A.18: Pitch converter.

Appendix B

Genetic Algorithm

B.1 Desired Trajectory for Genetic Algorithm

Figure B.1: The desired trajectory used for GA.

148

Bibliography 149

B.2 MATLAB Code and Functions for Genetic Algorithm

B.2.1 GA for PD

1 %% Genetic algorithm
2 no_var = 8;
3 % no_var = 2; for tuning yaw controller
4
5 lower_bound = [0 0 0 0 0 0 0 0] + 1e -2;
6 upper_bound = [5 5 100 100 100 100 100 100];
7 % lower_bound = [0 0] + 1e -2; for tuning yaw controller
8 % upper_bound = [100 100]; for tuning yaw controller
9

10 ga_opt = gaoptimset ('Display ','off ','Generations ' ,20,'
populationsize ' ,80,'PlotFcns ',@gaplotbestf);

11 obj_fn = @(K) cost_function_PD (K);
12 % ga_opt = gaoptimset ('Display ','off ',' Generations ',15,'

populationsize ',20,' PlotFcns ', @gaplotbestf);
13 % obj_fn = @(K) cost_function_PD (K); for tuning yaw controller
14
15
16 [K,best] = ga((obj_fn),no_var ,[] ,[] ,[] ,[] , lower_bound , upper_bound

,[], ga_opt)

Listing B.1: MATLAB code for the genetic algorithm for PD.

1 function cost = cost_function_PD (K)
2 % x- position
3 assignin ('base ','kp_x ',K(1));
4 assignin ('base ','kd_x ',K(2));
5
6 % y- position
7 assignin ('base ','kp_y ',K(1));
8 assignin ('base ','kd_y ',K(2));
9

10 % Altitude
11 assignin ('base ','kp_z ',K(3));
12 assignin ('base ','kd_z ',K(4));
13
14 % Roll

Bibliography Appendix B Genetic Algorithm

15 assignin ('base ','kp_phi ',K(5));
16 assignin ('base ','kd_phi ',K(6));
17
18 % Pitch
19 assignin ('base ','kp_theta ',K(7));
20 assignin ('base ','kd_theta ',K(8));
21
22 % Yaw (for tuning yaw controller)
23 % assignin ('base ','kp_psi ',K(1));
24 % assignin ('base ','kd_psi ',K(2));
25
26 try
27 simulering = sim('Quadrotor_PID_GA .slx ');
28 if simulering .flag(end ,1) > 0 || simulering .flag(end ,2) >0

% flag for divergence
29 cost = 100;
30 else
31 cost = simulering .IAE_x.data(end) + simulering .IAE_y.

data(end) + simulering .IAE_z.data(end) + simulering . IAE_phi .data
(end) + simulering . IAE_theta .data(end) + simulering . IAE_psi .data
(end);

32 end
33 catch
34 cost = 100;
35 end
36 end

Listing B.2: MATLAB code for the cost function for PD.

B.2.2 GA for LQR

1 %% Genetic algorithm
2 no_var = 12;
3 % no_var = 3; % for tuning yaw controller
4 lower_bound = [0 0 0 0 0 0 0 0 0 0 0 0] + 1e -2;
5 upper_bound = [100 100 10 2000 2000 10 2000 2000 10 2000 2000 10];
6 % lower_bound = [0 0 0] + 1e -2; for tuning yaw controller
7 % upper_bound = [1000 1000 10]; for tuning yaw controller
8

Bibliography 151

9 ga_opt = gaoptimset ('Display ','off ','Generations ' ,20,'
populationsize ' ,120,'PlotFcns ',@gaplotbestf);

10 obj_fn = @(K) cost_function_LQR (K);
11 % ga_opt = gaoptimset ('Display ','off ',' Generations ',15,'

populationsize ',30,' PlotFcns ', @gaplotbestf);
12 % obj_fn = @(K) cost_function_LQR (K); for tuning yaw controller
13
14
15 [K,best] = ga((obj_fn),no_var ,[] ,[] ,[] ,[] , lower_bound , upper_bound

,[], ga_opt)

Listing B.3: MATLAB code for the genetic algorithm for LQR.

1 function cost = cost_function_LQR (K)
2 %% LQR controllers
3 % Quadrotor parameters
4 m = 0.0630; % [kg]
5 L = 0.0624; % [m]
6 b = 0.0107; % [Ns ^2]
7 d = 0.7826400e -3; % [Nms ^2]
8 g = 9.81; % [m/s^2]
9 I_x = 0.0582857e -3; % |kgm ^2]

10 I_y = 0.0716914e -3; % |kgm ^2]
11 I_z = 0.1000000e -3; % |kgm ^2]
12 J_r = 0.1021e -6; % [kgm ^2]
13
14 % x- position
15 A_x = [0 1; 0 0];
16 B_x = [0; -g];
17
18 Q_x = diag ([K(1) K(2)]);
19 R_x = [K(3)];
20 K_x = lqr(A_x ,B_x ,Q_x ,R_x);
21 assignin ('base ','K_x ',K_x);
22
23 % y- position
24 A_y = [0 1; 0 0];
25 B_y = [0; -g];
26
27 Q_y = diag ([K(1) K(2)]);

Bibliography Appendix B Genetic Algorithm

28 R_y = [K(3)];
29 K_y = lqr(A_y ,B_y ,Q_y ,R_y);
30 assignin ('base ','K_y ',K_y);
31
32 % Altitude
33 A_z = [0 1; 0 0];
34 B_z = [0; -1/m];
35
36 Q_z = diag ([K(4) K(5)]);
37 R_z = [K(6)];
38 K_z = lqr(A_z ,B_z ,Q_z ,R_z);
39 assignin ('base ','K_z ',K_z);
40
41 % Roll
42 A_phi = [0 1; 0 0];
43 B_phi = [0; 1/ I_x];
44
45 Q_phi = diag ([K(7) K(8)]);
46 R_phi = [K(9)];
47 K_phi = lqr(A_phi ,B_phi ,Q_phi ,R_phi);
48 assignin ('base ','K_phi ',K_phi);
49
50 % Pitch
51 A_theta = [0 1; 0 0];
52 B_theta = [0; 1/ I_y];
53
54 Q_theta = diag ([K(10) K(11)]);
55 R_theta = [K(12)];
56 K_theta = lqr(A_theta ,B_theta ,Q_theta , R_theta);
57 assignin ('base ','K_theta ',K_theta);
58
59 % Yaw (for tuning yaw controller)
60 % A_psi = [0 1; 0 0];
61 % B_psi = [0; 1/ I_z];
62 %
63 % Q_psi = diag ([K(1) K(2)]);
64 % R_psi = [K(3)];
65 % K_psi = lqr(A_psi ,B_psi ,Q_psi ,R_psi);
66 % assignin ('base ','K_psi ',K_psi);

Bibliography 153

67
68 try
69 simulering = sim('Quadrotor_LQR_GA .slx ');
70 if simulering .flag(end ,1) > 0 || simulering .flag(end ,2) >0

% flag for divergence
71 cost = 100;
72 else
73 cost = simulering .IAE_x(end) + simulering .IAE_y(end) +

simulering .IAE_z(end) + simulering . IAE_phi (end) + simulering .
IAE_theta (end) + simulering . IAE_psi (end);

74 end
75 catch
76 cost = 100;
77 end
78 end

Listing B.4: MATLAB code for the cost function for LQR.

B.2.3 GA for ISMC

1 %% Genetic algorithm
2 no_var = 16;
3 % no_var = 4; % for tuning yaw controller
4
5 lower_bound = [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] + 1e -3;
6 upper_bound = [5 5 0.005 5 10 10 0.005 3 40 40 0.005 5 40 40 0.005

5];
7 % lower_bound = [0 0 0 0] + 1e -3; for tuning yaw controller
8 % upper_bound = [40 40 0.005 5]; for tuning yaw controller
9

10 ga_opt = gaoptimset ('Display ','off ','Generations ' ,20,'
populationsize ' ,160,'PlotFcns ',@gaplotbestf);

11 obj_fn = @(K) cost_function_ISMC (K);
12 % ga_opt = gaoptimset ('Display ','off ',' Generations ',15,'

populationsize ',40,' PlotFcns ', @gaplotbestf);
13 % obj_fn = @(K) cost_function_ISMC (K); % for tuning yaw controller
14
15 [K,best] = ga((obj_fn),no_var ,[] ,[] ,[] ,[] , lower_bound , upper_bound

,[], ga_opt)

Bibliography Appendix B Genetic Algorithm

Listing B.5: MATLAB code for the genetic algorithm for ISMC.

1 function cost = cost_function_ISMC (K)
2 % x- position
3 assignin ('base ','lambda_x ',K(1));
4 assignin ('base ','rho_x ',K(2));
5 assignin ('base ','k_x ',K(3));
6 assignin ('base ','zeta_x ',K(4));
7 % y- position
8 assignin ('base ','lambda_y ',K(1));
9 assignin ('base ','rho_y ',K(2));

10 assignin ('base ','k_y ',K(3));
11 assignin ('base ','zeta_y ',K(4));
12 % z- position
13 assignin ('base ','lambda_z ',K(5));
14 assignin ('base ','rho_z ',K(6));
15 assignin ('base ','k_z ',K(7));
16 assignin ('base ','zeta_z ',K(8));
17 % phi
18 assignin ('base ','lambda_phi ',K(9));
19 assignin ('base ','rho_phi ',K(10));
20 assignin ('base ','k_phi ',K(11));
21 assignin ('base ','zeta_phi ',K(12));
22 % theta
23 assignin ('base ','lambda_theta ',K(13));
24 assignin ('base ','rho_theta ',K(14));
25 assignin ('base ','k_theta ',K(15));
26 assignin ('base ','zeta_theta ',K(16));
27 % psi (for tuning yaw controller)
28 % assignin ('base ','lambda_psi ',K(1));
29 % assignin ('base ','rho_psi ',K(2));
30 % assignin ('base ','k_psi ',K(3));
31 % assignin ('base ','zeta_psi ',K(4));
32 try
33 simulering = sim('Quadrotor_ISMC_vs .slx ');

Bibliography 155

34 cost = simulering .IAE_x.data(end) + simulering .IAE_y.data(
end) + simulering .IAE_z.data(end) + simulering . IAE_phi .data(end)

+ simulering . IAE_theta .data(end) + simulering . IAE_psi .data(end)
;

35 catch
36 cost = 100;
37 end
38 end

Listing B.6: MATLAB code for the cost function for ISMC.

B.3 Genetic Algorithm Simulink Schemes

Figure B.2: Divergence flag for GA.

Appendix C

3 DOF Hover

C.1 Experimental Results for The 3 DOF Hover

Figure C.1: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
16◦ with the PD controller.

156

Bibliography 157

Figure C.2: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
16◦ with the LQR controller.

Figure C.3: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
16◦ with the ISMC.

Bibliography Appendix C 3 DOF Hover

Figure C.4: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
28◦ with the PD controller.

Figure C.5: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
28◦ with the LQR controller.

Bibliography 159

Figure C.6: 3 DOF Hover attitude response for a step-to-sinusoidal reference with an amplitude of
28◦ with the ISMC.

Figure C.7: 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦

with the PD controller.

Bibliography Appendix C 3 DOF Hover

Figure C.8: 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦

with the LQR controller.

Figure C.9: 3 DOF Hover attitude response for a linear chirp reference with an amplitude of 16◦

with the ISMC.

Bibliography 161

C.2 MATLAB Code for the 3 DOF Hover

1 % 3 DOF HOVER Control Lab:
2 %
3 % SETUP_LAB_HOVER sets the model parameters .
4 %
5 % Copyright (C) 2010 Quanser Consulting Inc.
6 % Quanser Consulting Inc.
7 %
8
9 %% Amplifier Configuration

10 % Amplifier gain used for yaw and pitch axes.
11 K_AMP = 3;
12 % Amplifier Maximum Output Voltage (V)
13 VMAX_AMP = 24;
14 % Digital -to - Analog Maximum Voltage (V): set to 10 for Q4/Q8 cards
15 VMAX_DAC = 10;
16 %
17 % Filter and Rate Limiter Settings
18 % Specifications of a second -order low -pass filter
19 wcf = 2 * pi * 20; % filter cutting frequency
20 zetaf = 0.6; % filter damping ratio
21 %
22 % Maximum Rate of Desired Position (rad/s)
23 CMD_RATE_LIMIT = 60 * pi /180; % 60 deg/s converted to rad/s
24
25 % Set the model parameters of the 3DOF HOVER.
26 % These parameters are used for model representation and controller

design .
27 % Gravitational Constant (m/s^2)
28 g = 9.81;
29 % Motor Armature Resistance (Ohm)
30 Rm = 0.83;
31 % Motor Current - Torque Constant (N.m/A)
32 Kt_m = 0.0182;
33 % Motor Rotor Moment of Inertia (kg.m^2)
34 Jm = 1.91e -6;
35 J_r = Jm;
36 % Moving Mass of the Hover system (kg)

Bibliography Appendix C 3 DOF Hover

37 m_hover = 2.85;
38 % Mass of each Propeller Section = motor + shield + propeller +

body (kg)
39 m_prop = m_hover / 4;
40 % Distance between Pivot to each Motor (m)
41 L = 7.75*0.0254;
42 % Propeller Force - Thrust Constant found Experimentally (N/V)
43 Kf = 0.1188;
44 cf = 7.32e -5;
45 % Propeller Torque - Thrust Constant found Experimentally (N-m/V)
46 Kt = 0.0036;
47 ct = 3.46e -6;
48 % note: front/back motor are counter - clockwise (negative torque)

and
49 % left/right motor are clockwise (positive torque).
50 %
51 % Equivalent Moment of Inertia of each Propeller Section (kg.m^2)
52 Jeq_prop = Jm + m_prop *L^2;
53 % Equivalent Moment of Inertia about each Axis (kg.m^2)
54 Jp = 2* Jeq_prop ;
55 Jy = 4* Jeq_prop ;
56 Jr = 2* Jeq_prop ;
57 I_x = Jr;
58 I_y = Jp;
59 I_z = Jy;
60 %
61 Kv = 54.945;
62 % Pitch and Yaw Axis Encoder Resolution (rad/count)
63 K_EC_Y = -2 * pi / (8 * 1024);
64 K_EC_P = 2 * pi / (8 * 1024);
65 K_EC_R = 2 * pi / (8 * 1024);
66 % Bias voltage applied to motors (V)
67 V_bias = 4.0;
68
69
70 %% ISMC parameters
71 % Roll
72 lambda_phi = 3;
73 rho_phi = 40;

Bibliography 163

74 epsilon_phi = 0.05;
75 k_phi = 0.001;
76 zeta_phi = 35;
77
78 % Pitch
79 lambda_theta = 3;
80 rho_theta = 40;
81 epsilon_theta = 0.05;
82 k_theta = 0.001;
83 zeta_theta = 35;
84
85 % Yaw
86 lambda_psi = 10;
87 rho_psi = 5;
88 epsilon_psi = 0.05;
89 k_psi = 0.001;
90 zeta_psi = 2;
91
92 %% PID parameters
93 % Roll
94 kp_phi = 30;
95 kd_phi = 10;
96
97 % Pitch
98 kp_theta = 30;
99 kd_theta = 10;

100
101 % Yaw
102 kp_psi = 25;
103 kd_psi = 5;
104
105 %% LQR controllers
106 % Roll
107 A_roll = [0 1; 0 0];
108 B_roll = [0; 1/ I_x];
109 C_roll = [1 0];
110 D_roll = [0];
111
112 Q_roll = [950 0;0 150];

Bibliography Appendix C 3 DOF Hover

113 R_roll = [0.1];
114 k_phi= lqr(A_roll ,B_roll ,Q_roll , R_roll);
115
116 % Pitch
117 A_pitch = [0 1; 0 0];
118 B_pitch = [0; 1/ I_y];
119 C_pitch = [1 0];
120 D_pitch = [0];
121
122 Q_pitch = [950 0;0 150];
123 R_pitch = [0.1];
124 k_theta = lqr(A_pitch ,B_pitch ,Q_pitch , R_pitch);
125
126 % Yaw
127 A_yaw = [0 1; 0 0];
128 B_yaw = [0; 1/ I_z];
129 C_yaw = [1 0];
130 D_yaw = [0];
131
132 Q_yaw = [1000 0;0 100];
133 R_yaw = [0.1];
134 k_psi = lqr(A_yaw ,B_yaw ,Q_yaw ,R_yaw);

Listing C.1: MATLAB code for initializing variables/constants used by the 3 DOF Hover.

Bibliography 165

C.3 3 DOF Hover Simulink Schemes

Figure C.10: Quanser 3 DOF Hover system simulink scheme.

Bibliography Appendix C 3 DOF Hover

Figure C.11: Converter from control inputs to voltages for the 3 DOF Hover.

Bibliography 167

Figure C.12: 3 DOF Hover subsystem.

Bibliography Appendix C 3 DOF Hover

Figure C.13: 3 DOF Hover scopes.

Bibliography 169

Figure C.14: 3 DOF ISMC controller.

Bibliography Appendix C 3 DOF Hover

Figure C.15: 3 DOF LQR controller.

Bibliography 171

Figure C.16: 3 DOF PD controller.

Appendix D

Parrot Minidrone

D.1 Experimental Results of Parrot Minidrone Simulations

D.1.1 First Track Results

Figures

Figure D.1: Position w/ PID control during the first test with max speed set to 0.0007 m/sample.

172

Bibliography 173

Figure D.2: Position w/ PID control during the first test with max speed set to 0.0008 m/sample.

Figure D.3: Position w/ PID control during the first test with max speed set to 0.0009 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.4: Position w/ PID control during the first test with max speed set to 0.0010 m/sample.

Figure D.5: Position w/ PID control during the first test with max speed set to 0.0011 m/sample.

Bibliography 175

Figure D.6: Position w/ ISMC control during the first test with max speed set to 0.0007 m/sample.

Figure D.7: Position w/ ISMC control during the first test with max speed set to 0.0008 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.8: Position w/ ISMC control during the first test with max speed set to 0.0009 m/sample.

Figure D.9: Position w/ ISMC control during the first test with max speed set to 0.0010 m/sample.

Bibliography 177

Figure D.10: Position w/ ISMC control during the first test with max speed set to 0.0011 m/sample.

Figure D.11: Attitude w/ PID control during the first test with max speed set to 0.0007 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.12: Attitude w/ PID control during the first test with max speed set to 0.0008 m/sample.

Figure D.13: Attitude w/ PID control during the first test with max speed set to 0.0009 m/sample.

Bibliography 179

Figure D.14: Attitude w/ PID control during the first test with max speed set to 0.0010 m/sample.

Figure D.15: Attitude w/ PID control during the first test with max speed set to 0.0011 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.16: Attitude w/ ISMC control during the first test with max speed set to 0.0007 m/sample.

Figure D.17: Attitude w/ ISMC control during the first test with max speed set to 0.0008 m/sample.

Bibliography 181

Figure D.18: Attitude w/ ISMC control during the first test with max speed set to 0.0009 m/sample.

Figure D.19: Attitude w/ ISMC control during the first test with max speed set to 0.0010 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.20: Attitude w/ ISMC control during the first test with max speed set to 0.0011 m/sample.

Figure D.21: Center displacement w/ PID control during the first test with max speed set to 0.0007
m/sample.

Bibliography 183

Figure D.22: Center displacement w/ PID control during the first test with max speed set to 0.0008
m/sample.

Figure D.23: Center displacement w/ PID control during the first test with max speed set to 0.0009
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.24: Center displacement w/ PID control during the first test with max speed set to 0.0010
m/sample.

Figure D.25: Center displacement w/ PID control during the first test with max speed set to 0.0011
m/sample.

Bibliography 185

Figure D.26: Center displacement w/ ISMC control during the first test with max speed set to
0.0007 m/sample.

Figure D.27: Center displacement w/ ISMC control during the first test with max speed set to
0.0008 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.28: Center displacement w/ ISMC control during the first test with max speed set to
0.0009 m/sample.

Figure D.29: Center displacement w/ ISMC control during the first test with max speed set to
0.0010 m/sample.

Bibliography 187

Figure D.30: Center displacement w/ ISMC control during the first test with max speed set to
0.0011 m/sample.

Bibliography Appendix D Parrot Minidrone

Tables

Max speed Controller Track completed? Sensor time (s) Run Time (s) Sensor time
Run time (%)

0.0007
PID Yes 6.800 31.265 21.7

ISMC Yes 6.800 28.530 23.8

0.0008
PID Yes 8.200 29.080 28.2

ISMC Yes 7.600 26.345 28.8

0.0009
PID Yes 8.200 27.060 30.3

ISMC Yes 6.400 24.540 26.1

0.0010
PID Yes 8.000 25.270 31.7

ISMC Yes 6.400 22.940 27.9

0.0011
PID Yes 9.600 24.670 38.9

ISMC Yes 6.200 21.950 28.2

Table D.1: Performance, track 1.

Divided by Run Time
Max speed Param. Index PID ISMC PID ISMC

0.0007

x
IAE 2.5726 0.30322 0.082285 0.010628
ISE 0.45041 0.010212 0.014406 0.00035792

y
IAE 2.2578 0.1328 0.072214 0.0046548
ISE 0.37001 0.0019878 0.011834 6.9673e-05

z
IAE 1.4141 0.93432 0.045231 0.032749
ISE 0.68717 0.45484 0.021979 0.015942

ϕ
IAE 0.018836 0.021263 0.00060248 0.0007453
ISE 2.7546e-05 9.3838e-05 8.8106e-07 3.2891e-06

θ
IAE 0.019669 0.011233 0.00062912 0.00039372
ISE 2.988e-05 2.1936e-05 9.5572e-07 7.6887e-07

ψ
IAE 0.00058471 0.00043015 1.8702e-05 1.5077e-05
ISE 1.7353e-08 1.0072e-08 5.5502e-10 3.5303e-10

d
IAE 0.11752 0.060753 0.0037589 0.0021294
ISE 0.019192 0.0027804 0.00061384 9.7456e-05

Continued on next page

Bibliography 189

Table D.2 – continued from previous page
Divided by Run Time

Max speed Param. Index PID ISMC PID ISMC

0.0008

x
IAE 2.6691 0.35527 0.091786 0.013485
ISE 0.51896 0.014068 0.017846 0.00053399

y
IAE 2.258 0.14227 0.077649 0.0054002
ISE 0.39716 0.0024301 0.013657 9.2243e-05

z
IAE 1.3878 0.94131 0.047725 0.03573
ISE 0.67989 0.46029 0.02338 0.017472

ϕ
IAE 0.019856 0.01996 0.00068281 0.00075763
ISE 3.2722e-05 8.0033e-05 1.1252e-06 3.0379e-06

θ
IAE 0.020213 0.013059 0.00069508 0.00049569
ISE 3.7821e-05 4.2246e-05 1.3006e-06 1.6035e-06

ψ
IAE 0.00054564 0.00039382 1.8763e-05 1.4948e-05
ISE 1.6285e-08 9.1929e-09 5.6e-10 3.4894e-10

d
IAE 0.1735 0.063375 0.0059663 0.0024056
ISE 0.021786 0.0030219 0.00074918 0.0001147

0.0009

x
IAE 2.6531 0.37697 0.098045 0.015361
ISE 0.57536 0.018446 0.021263 0.00075166

y
IAE 2.2772 0.15593 0.084154 0.0063543
ISE 0.43399 0.0031468 0.016038 0.00012823

z
IAE 1.394 0.93724 0.051516 0.038192
ISE 0.69029 0.45988 0.02551 0.01874

ϕ
IAE 0.021244 0.020279 0.00078506 0.00082635
ISE 3.9159e-05 0.00011663 1.4471e-06 4.7526e-06

θ
IAE 0.021467 0.011558 0.00079333 0.000471
ISE 4.6285e-05 3.6252e-05 1.7105e-06 1.4772e-06

ψ
IAE 0.00049949 0.00036505 1.8459e-05 1.4876e-05
ISE 1.4656e-08 8.7241e-09 5.416e-10 3.5551e-10

d
IAE 0.18011 0.065836 0.0066558 0.0026828
ISE 0.022559 0.0030545 0.00083368 0.00012447

Continued on next page

Bibliography Appendix D Parrot Minidrone

Table D.2 – continued from previous page
Divided by Run Time

Max speed Param. Index PID ISMC PID ISMC

0.0010

x
IAE 2.6626 0.38407 0.10537 0.016743
ISE 0.63293 0.021201 0.025047 0.00092419

y
IAE 2.2713 0.17322 0.089881 0.007551
ISE 0.4641 0.0040432 0.018366 0.00017625

z
IAE 1.3897 0.93397 0.054995 0.040713
ISE 0.68803 0.46112 0.027227 0.020101

ϕ
IAE 0.022066 0.019905 0.00087322 0.0008677
ISE 4.4356e-05 0.00013327 1.7553e-06 5.8094e-06

θ
IAE 0.022946 0.011773 0.00090805 0.00051323
ISE 5.818e-05 3.9844e-05 2.3023e-06 1.7369e-06

ψ
IAE 0.00046444 0.00034316 1.8379e-05 1.4959e-05
ISE 1.357e-08 8.0368e-09 5.3701e-10 3.5034e-10

d
IAE 0.18965 0.10334 0.007505 0.0045049
ISE 0.023882 0.018902 0.00094507 0.00082398

0.0011

x
IAE 2.8156 0.41212 0.11413 0.018775
ISE 0.70452 0.026214 0.028558 0.0011943

y
IAE 2.3062 0.18653 0.09348 0.0084982
ISE 0.4772 0.0048261 0.019343 0.00021987

z
IAE 1.3891 0.9286 0.056308 0.042305
ISE 0.68886 0.4595 0.027923 0.020934

ϕ
IAE 0.024493 0.020677 0.00099281 0.000942
ISE 5.7951e-05 0.00016156 2.3491e-06 7.3605e-06

θ
IAE 0.027321 0.012163 0.0011075 0.00055413
ISE 7.6381e-05 4.9065e-05 3.0961e-06 2.2353e-06

ψ
IAE 0.00045028 0.00032897 1.8252e-05 1.4987e-05
ISE 1.3039e-08 7.7258e-09 5.2855e-10 3.5197e-10

d
IAE 0.27656 0.066338 0.01121 0.0030222
ISE 0.033517 0.0031909 0.0013586 0.00014537

Table D.2: IAE and ISE results, track 1.

Bibliography 191

D.1.2 Second Track Results

Figures

Figure D.31: Position w/ PID control during the second test with max speed set to 0.0007 m/sample.

Figure D.32: Position w/ PID control during the second test with max speed set to 0.0008
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.33: Position w/ PID control during the second test with max speed set to 0.0009
m/sample.

Figure D.34: Position w/ PID control during the second test with max speed set to 0.0010
m/sample.

Bibliography 193

Figure D.35: Position w/ PID control during the second test with max speed set to 0.0011 m/sample.

Figure D.36: Position w/ ISMC control during the second test with max speed set to 0.0007
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.37: Position w/ ISMC control during the second test with max speed set to 0.0008
m/sample.

Figure D.38: Position w/ ISMC control during the second test with max speed set to 0.0009
m/sample.

Bibliography 195

Figure D.39: Position w/ ISMC control during the second test with max speed set to 0.0010
m/sample.

Figure D.40: Position w/ ISMC control during the second test with max speed set to 0.0011
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.41: Attitude w/ PID control during the second test with max speed set to 0.0007
m/sample.

Figure D.42: Attitude w/ PID control during the second test with max speed set to 0.0008
m/sample.

Bibliography 197

Figure D.43: Attitude w/ PID control during the second test with max speed set to 0.0009
m/sample.

Figure D.44: Attitude w/ PID control during the second test with max speed set to 0.0010
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.45: Attitude w/ PID control during the second test with max speed set to 0.0011
m/sample.

Figure D.46: Attitude w/ ISMC control during the second test with max speed set to 0.0007
m/sample.

Bibliography 199

Figure D.47: Attitude w/ ISMC control during the second test with max speed set to 0.0008
m/sample.

Figure D.48: Attitude w/ ISMC control during the second test with max speed set to 0.0009
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.49: Attitude w/ ISMC control during the second test with max speed set to 0.0010
m/sample.

Figure D.50: Attitude w/ ISMC control during the second test with max speed set to 0.0011
m/sample.

Bibliography 201

Figure D.51: Center displacement w/ PID control during the second test with max speed set to
0.0007 m/sample.

Figure D.52: Center displacement w/ PID control during the second test with max speed set to
0.0008 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.53: Center displacement w/ PID control during the second test with max speed set to
0.0009 m/sample.

Figure D.54: Center displacement w/ PID control during the second test with max speed set to
0.0010 m/sample.

Bibliography 203

Figure D.55: Center displacement w/ PID control during the second test with max speed set to
0.0011 m/sample.

Figure D.56: Center displacement w/ ISMC control during the second test with max speed set to
0.0007 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.57: Center displacement w/ ISMC control during the second test with max speed set to
0.0008 m/sample.

Figure D.58: Center displacement w/ ISMC control during the second test with max speed set to
0.0009 m/sample.

Bibliography 205

Figure D.59: Center displacement w/ ISMC control during the second test with max speed set to
0.0010 m/sample.

Figure D.60: Center displacement w/ ISMC control during the second test with max speed set to
0.0011 m/sample.

Bibliography Appendix D Parrot Minidrone

Tables

Max speed Controller Track completed? Sensor time (s) Run Time (s) Sensor time
Run time (%)

0.0007
PID Yes 57.200 96.060 59.5

ISMC Yes 42.800 80.735 53.0

0.0008
PID Yes 60.400 88.860 68.0

ISMC Yes 39.800 72.730 54.7

0.0009
PID No 37.200 52.920 70.3

ISMC Yes 37.200 65.950 56.4

0.0010
PID No 14.400 24.180 59.6

ISMC Yes 36.400 60.945 59.7

0.0011
PID No 13.200 22.400 58.9

ISMC Yes 35.800 57.535 62.2

Table D.3: Performance, track 2.

Divided by Run Time
Max speed Param. Index PID ISMC PID ISMC

0.0007

x
IAE 13.8003 1.5647 0.14366 0.01938
ISE 2.219 0.090617 0.0231 0.0011224

y
IAE 5.9976 0.30488 0.062436 0.0037763
ISE 0.49141 0.0025771 0.0051156 3.192e-05

z
IAE 1.6272 1.0585 0.01694 0.013111
ISE 0.68329 0.459 0.0071132 0.0056852

ϕ
IAE 0.052752 0.054411 0.00054915 0.00067395
ISE 4.6845e-05 9.8385e-05 4.8766e-07 1.2186e-06

θ
IAE 0.081642 0.041 0.00084991 0.00050783
ISE 0.00020867 0.00018864 2.1723e-06 2.3366e-06

ψ
IAE 0.001902 0.0012615 1.98e-05 1.5626e-05
ISE 5.9327e-08 3.0969e-08 6.1761e-10 3.8358e-10

d
IAE 0.13869 0.06187 0.0014438 0.00076633
ISE 0.019232 0.0027625 0.00020021 3.4217e-05

Continued on next page

Bibliography 207

Table D.4 – continued from previous page
Divided by Run Time

Max speed Param. Index PID ISMC PID ISMC

0.0008

x
IAE 13.8897 1.8009 0.15631 0.024762
ISE 2.4463 0.1268 0.027529 0.0017434

y
IAE 6.0704 0.34267 0.068314 0.0047115
ISE 0.56271 0.0038305 0.0063326 5.2667e-05

z
IAE 1.6106 1.0433 0.018125 0.014344
ISE 0.69387 0.45875 0.0078086 0.0063075

ϕ
IAE 0.05806 0.057257 0.00065339 0.00078725
ISE 5.9963e-05 0.0001862 6.748e-07 2.5601e-06

θ
IAE 0.087471 0.041939 0.00098437 0.00057664
ISE 0.00025015 0.00022777 2.8151e-06 3.1318e-06

ψ
IAE 0.0017554 0.0011424 1.9755e-05 1.5707e-05
ISE 5.4592e-08 2.8238e-08 6.1436e-10 3.8826e-10

d
IAE 0.23048 0.10147 0.0025938 0.0013952
ISE 0.020913 0.018695 0.00023535 0.00025705

0.0009

x
IAE 8.4943 1.9768 0.16051 0.029975
ISE 1.582 0.15879 0.029895 0.0024078

y
IAE 3.8582 0.35367 0.072907 0.0053627
ISE 0.38644 0.0043284 0.0073023 6.5631e-05

z
IAE 0.91388 1.0357 0.017269 0.015705
ISE 0.47439 0.45939 0.0089644 0.0069657

ϕ
IAE 0.046653 0.053498 0.00088158 0.00081119
ISE 6.8801e-05 0.00013365 1.3001e-06 2.0266e-06

θ
IAE 0.069016 0.041104 0.0013042 0.00062326
ISE 0.00022838 0.00026985 4.3155e-06 4.0917e-06

ψ
IAE 0.0010554 0.0010431 1.9944e-05 1.5816e-05
ISE 3.329e-08 2.5837e-08 6.2906e-10 3.9177e-10

d
IAE 0.15181 0.066272 0.0028687 0.0010049
ISE 0.0035765 0.0030314 6.7584e-05 4.5965e-05

Continued on next page

Bibliography Appendix D Parrot Minidrone

Table D.4 – continued from previous page
Divided by Run Time

Max speed Param. Index PID ISMC PID ISMC

0.0010

x
IAE 3.9847 2.1285 0.16479 0.034925
ISE 0.81117 0.19156 0.033547 0.0031431

y
IAE 1.9565 0.41357 0.080916 0.006786
ISE 0.24312 0.0061505 0.010054 0.00010092

z
IAE 0.79317 1.0292 0.032803 0.016887
ISE 0.47357 0.45933 0.019585 0.0075368

ϕ
IAE 0.024848 0.057665 0.0010276 0.00094618
ISE 4.3788e-05 0.00024141 1.8109e-06 3.961e-06

θ
IAE 0.026834 0.041924 0.0011098 0.0006879
ISE 7.5766e-05 0.0003034 3.1334e-06 4.9783e-06

ψ
IAE 0.00044117 0.0009696 1.8245e-05 1.5909e-05
ISE 1.2794e-08 2.4501e-08 5.2909e-10 4.0202e-10

d
IAE 0.1238 0.069812 0.0051198 0.0011455
ISE 0.0040346 0.0033064 0.00016686 5.4251e-05

0.0011

x
IAE 3.8364 2.3751 0.17127 0.041281
ISE 0.82075 0.24649 0.036641 0.0042842

y
IAE 1.9741 0.47024 0.088128 0.0081732
ISE 0.2712 0.0080135 0.012107 0.00013928

z
IAE 0.78906 1.0225 0.035226 0.017772
ISE 0.47355 0.45957 0.021141 0.0079877

ϕ
IAE 0.025443 0.059811 0.0011358 0.0010396
ISE 4.9068e-05 0.00022264 2.1905e-06 3.8696e-06

θ
IAE 0.023446 0.043972 0.0010467 0.00076426
ISE 6.1675e-05 0.00036487 2.7534e-06 6.3417e-06

ψ
IAE 0.00041372 0.00091521 1.847e-05 1.5907e-05
ISE 1.2114e-08 2.3036e-08 5.4082e-10 4.0038e-10

d
IAE 0.19409 0.069579 0.0086649 0.0012093
ISE 0.0086576 0.003278 0.0003865 5.6974e-05

Table D.4: IAE and ISE results, track 2.

Bibliography 209

D.1.3 Third Track Results

Figures

Figure D.61: Position w/ PID control during the third test with max speed set to 0.0007 m/sample.

Figure D.62: Position w/ PID control during the third test with max speed set to 0.0008 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.63: Position w/ PID control during the third test with max speed set to 0.0009 m/sample.

Figure D.64: Position w/ PID control during the third test with max speed set to 0.0010 m/sample.

Bibliography 211

Figure D.65: Position w/ PID control during the third test with max speed set to 0.0011 m/sample.

Figure D.66: Position w/ ISMC control during the third test with max speed set to 0.0007
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.67: Position w/ ISMC control during the third test with max speed set to 0.0008
m/sample.

Figure D.68: Position w/ ISMC control during the third test with max speed set to 0.0009
m/sample.

Bibliography 213

Figure D.69: Position w/ ISMC control during the third test with max speed set to 0.0010
m/sample.

Figure D.70: Position w/ ISMC control during the third test with max speed set to 0.0011
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.71: Attitude w/ PID control during the third test with max speed set to 0.0007 m/sample.

Figure D.72: Attitude w/ PID control during the third test with max speed set to 0.0008 m/sample.

Bibliography 215

Figure D.73: Attitude w/ PID control during the third test with max speed set to 0.0009 m/sample.

Figure D.74: Attitude w/ PID control during the third test with max speed set to 0.0010 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.75: Attitude w/ PID control during the third test with max speed set to 0.0011 m/sample.

Figure D.76: Attitude w/ ISMC control during the third test with max speed set to 0.0007
m/sample.

Bibliography 217

Figure D.77: Attitude w/ ISMC control during the third test with max speed set to 0.0008
m/sample.

Figure D.78: Attitude w/ ISMC control during the third test with max speed set to 0.0009
m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.79: Attitude w/ ISMC control during the third test with max speed set to 0.0010
m/sample.

Figure D.80: Attitude w/ ISMC control during the third test with max speed set to 0.0011
m/sample.

Bibliography 219

Figure D.81: Center displacement w/ PID control during the third test with max speed set to
0.0007 m/sample.

Figure D.82: Center displacement w/ PID control during the third test with max speed set to
0.0008 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.83: Center displacement w/ PID control during the third test with max speed set to
0.0009 m/sample.

Figure D.84: Center displacement w/ PID control during the third test with max speed set to
0.0010 m/sample.

Bibliography 221

Figure D.85: Center displacement w/ PID control during the third test with max speed set to
0.0011 m/sample.

Figure D.86: Center displacement w/ ISMC control during the third test with max speed set to
0.0007 m/sample.

Bibliography Appendix D Parrot Minidrone

Figure D.87: Center displacement w/ ISMC control during the third test with max speed set to
0.0008 m/sample.

Figure D.88: Center displacement w/ ISMC control during the third test with max speed set to
0.0009 m/sample.

Bibliography 223

Figure D.89: Center displacement w/ ISMC control during the third test with max speed set to
0.0010 m/sample.

Figure D.90: Center displacement w/ ISMC control during the third test with max speed set to
0.0011 m/sample.

Bibliography Appendix D Parrot Minidrone

Tables

Max speed Controller Track completed? Sensor time (s) Run Time (s) Sensor time
Run time (%)

0.0007
PID No 49.800 94.080 52.9

ISMC Yes 50.200 98.330 51.1

0.0008
PID No 21.400 45.120 47.4

ISMC Yes 45.400 87.950 51.6

0.0009
PID No 17.800 41.340 43.1

ISMC Yes 42.800 79.740 53.7

0.0010
PID No 5.600 19.080 29.4

ISMC Yes 40.400 73.945 54.6

0.0011
PID No 4.800 17.520 27.4

ISMC No 17.600 34.080 51.6

Table D.5: Performance, track 3.

Divided by Run Time
Max speed Param. Index PID ISMC PID ISMC

0.0007

x
IAE 8.892 1.4831 0.094515 0.015083
ISE 1.2004 0.056281 0.01276 0.00057237

y
IAE 10.5247 0.60356 0.11187 0.0061381
ISE 1.5277 0.011838 0.016238 0.00012039

z
IAE 1.0378 1.0955 0.011031 0.011142
ISE 0.47501 0.45761 0.005049 0.0046538

ϕ
IAE 0.070889 0.07813 0.0007535 0.00079457
ISE 0.00012907 0.00038614 1.3719e-06 3.927e-06

θ
IAE 0.065982 0.043039 0.00070134 0.0004377
ISE 0.00014276 0.00014183 1.5175e-06 1.4424e-06

ψ
IAE 0.001877 0.0015329 1.9952e-05 1.559e-05
ISE 5.878e-08 3.7466e-08 6.2479e-10 3.8102e-10

d
IAE 0.1955 0.061237 0.002078 0.00062277
ISE 0.0060376 0.002847 6.4175e-05 2.8953e-05

Continued on next page

Bibliography 225

Table D.6 – continued from previous page
Divided by Run Time

Max speed Param. Index PID ISMC PID ISMC

0.0008

x
IAE 2.9587 1.5158 0.065574 0.017235
ISE 0.37198 0.076493 0.0082442 0.00086973

y
IAE 6.3238 0.66016 0.14016 0.0075061
ISE 1.2036 0.01531 0.026675 0.00017407

z
IAE 0.88522 1.0802 0.019619 0.012282
ISE 0.47416 0.46368 0.010509 0.0052721

ϕ
IAE 0.043633 0.077852 0.00096704 0.00088519
ISE 0.00010565 0.00049208 2.3416e-06 5.595e-06

θ
IAE 0.02485 0.042291 0.00055075 0.00048085
ISE 3.8681e-05 0.00015515 8.573e-07 1.7641e-06

ψ
IAE 0.0008845 0.0013791 1.9603e-05 1.5681e-05
ISE 2.7608e-08 3.4183e-08 6.1188e-10 3.8866e-10

d
IAE 0.1331 0.063281 0.0029499 0.00071951
ISE 0.0061888 0.0029225 0.00013716 3.3229e-05

0.0009

x
IAE 2.9434 1.643 0.071199 0.020604
ISE 0.40173 0.10006 0.0097176 0.0012548

y
IAE 6.3773 0.7528 0.15426 0.0094407
ISE 1.3457 0.020868 0.032552 0.0002617

z
IAE 0.86882 1.0574 0.021016 0.01326
ISE 0.47406 0.45879 0.011467 0.0057535

ϕ
IAE 0.046698 0.078139 0.0011296 0.00097992
ISE 0.00013702 0.00059814 3.3146e-06 7.5011e-06

θ
IAE 0.023463 0.0435 0.00056756 0.00054552
ISE 2.943e-05 0.00019669 7.119e-07 2.4666e-06

ψ
IAE 0.00081197 0.0012631 1.9641e-05 1.584e-05
ISE 2.5347e-08 3.1678e-08 6.1314e-10 3.9727e-10

d
IAE 0.20117 0.07435 0.0048661 0.00093241
ISE 0.011033 0.0030643 0.00026687 3.8428e-05

Continued on next page

Bibliography Appendix D Parrot Minidrone

Table D.6 – continued from previous page
Divided by Run Time

Max speed Param. Index PID ISMC PID ISMC

x
IAE 0.74985 1.7772 0.0393 0.024034
ISE 0.039864 0.11726 0.0020893 0.0015858

y
IAE 3.2938 0.84048 0.17263 0.011366
ISE 0.75661 0.027619 0.039655 0.0003735

z
IAE 0.7738 1.0493 0.040555 0.014191
ISE 0.47345 0.45967 0.024814 0.0062164

ϕ
IAE 0.026706 0.083497 0.0013997 0.0011292
ISE 0.00010546 0.00078213 5.527e-06 1.0577e-05

θ
IAE 0.0068511 0.044671 0.00035907 0.00060412
ISE 3.9226e-06 0.0002316 2.0559e-07 3.132e-06

ψ
IAE 0.00034871 0.0011901 1.8276e-05 1.6094e-05
ISE 1.0232e-08 3.053e-08 5.3627e-10 4.1287e-10

d
IAE 0.018876 0.073863 0.00098929 0.00099889
ISE 0.00028653 0.0030377 1.5017e-05 4.1081e-05

0.0011

x
IAE 0.71348 0.62637 0.040723 0.01838
ISE 0.039756 0.03756 0.0022692 0.0011021

y
IAE 3.2087 0.49648 0.18314 0.014568
ISE 0.80394 0.019058 0.045887 0.00055921

z
IAE 0.76869 0.54892 0.043875 0.016107
ISE 0.47342 0.35126 0.027022 0.010307

ϕ
IAE 0.027603 0.044592 0.0015755 0.0013084
ISE 0.00011653 0.00063927 6.6515e-06 1.8758e-05

θ
IAE 0.006804 0.018443 0.00038836 0.00054116
ISE 4.2322e-06 8.2389e-05 2.4156e-07 2.4175e-06

ψ
IAE 0.00030983 0.00052974 1.7685e-05 1.5544e-05
ISE 8.8758e-09 1.3862e-08 5.0661e-10 4.0675e-10

d
IAE 0.032998 0.012755 0.0018835 0.00037428
ISE 0.00099667 0.00010481 5.6887e-05 3.0753e-06

Table D.6: IAE and ISE results, track 3.

Bibliography 227

D.2 MATLAB Code

1 %% startVars .m - Initialize variables
2 % This script initializes variables and buses required for the

model to
3 % work.
4
5 % Copyright 2013 -2019 The MathWorks , Inc.
6
7 % Register variables in the workspace before the project is loaded
8 initVars = who;
9

10 % Variants Conditions
11 asbVariantDefinition ;
12 VSS_COMMAND = 0; % 0: Signal builder , 1: Joystick , 2: Pre -

saved data , 3: Pre -saved data in a Spreadsheet
13 VSS_SENSORS = 1; % 0: Feedthrough , 1: Dynamics
14 VSS_ENVIRONMENT = 0; % 0: Constant , 1: Variable
15 VSS_VISUALIZATION = 3; % 0: Scopes , 1: Send values to workspace , 2:

FlightGear , 3: Simulink 3D.
16 VSS_VEHICLE = 1; % 0: Linear Airframe , 1: Nonlinear Airframe .
17
18 % Bus definitions
19 asbBusDefinitionCommand ;
20 asbBusDefinitionSensors ;
21 asbBusDefinitionEnvironment ;
22 asbBusDefinitionStates ;
23
24 % Enum definitions
25 asbEnumDefinition ;
26
27 % Sampling rate
28 Ts= 0.005;
29
30 % Simulation time
31 TFinal = 1000;
32
33 % Geometric properties
34 thrustArm = 0.10795;

Bibliography Appendix D Parrot Minidrone

35
36 % Initial conditions
37 % If they already exist in the workspace , save them to a .mat -file
38 if exist('init ','var ')
39 save('init.mat ','init ');
40 % If they don 't, but exist in a .mat -file , load that into the

workspace
41 elseif exist('init.mat ','file ')
42 load('init.mat ');
43 % Otherwise , use standard values
44 else
45 init.date = [2017 1 1 0 0 0];
46 init. posLLA = [42.299886 -71.350447 71.3232];
47 init. posNED = [3.3548 0.6575 -0.046];
48 init.vb = [0 0 0];
49 init.euler = [0 0 0];
50 init. angRates = [0 0 0];
51 end
52
53 % init.date = [2017 1 1 0 0 0];
54 % init. posLLA = [42.299886 -71.350447 71.3232];
55 % init. posNED = [3.3548 0.6575 -0.046];
56 % init.vb = [0 0 0];
57 % init.euler = [0 0 0];
58 % init. angRates = [0 0 0];
59
60 % Initialize States :
61 States = Simulink .Bus. createMATLABStruct ('StatesBus ');
62 States . V_body = init.vb ';
63 States . Omega_body = init.angRates ';
64 States .Euler = init.euler ';
65 States .X_ned = init.posNED ';
66 States .LLA = init. posLLA ;
67 States . DCM_be = angle2dcm (init.euler (3) ,init.euler (2) ,init.euler (1)

);
68
69 % Environment
70 rho = 1.184;
71 g = 9.81;

Bibliography 229

72
73 % Variables
74 % Load MAT file with model for persistence
75 load('modelParrot ');
76 % Obtain vehicle variables
77 vehicleVars ;
78 % Obtain sensor variables
79 sensorsVars ;
80 % Obtain controller variables
81 controllerVars ;
82 % Obtain command variables
83 commandVars ;
84 % Obtain estimator variables
85 estimatorVars ;
86 % Obtain visualization variables
87 visualizationFlightGearVars ;
88
89 % Simulation Settings
90 takeOffDuration = 1;
91
92 %% Custom Variables
93 % Add your variables here:
94 % myvariable = 0;
95
96 %% For circle detection
97 % pixel threshold for circle
98 t_circle = 1000;
99

100 %% Corner sensor variables
101 % width/ thickness of corner sensors
102 w_corner = 2;
103 % length corner sensors
104 l_corner = 36;
105 % distance from center of close corner sensor
106 d_close = 30;
107 % distance from center of far corner sensor
108 d_far = 59;
109 % threshold for corner detection
110 t_far = 10;

Bibliography Appendix D Parrot Minidrone

111 t_close = 10;
112
113 %% Side sensor variables
114 % width/ thickness of side sensors
115 w_sides = 2;
116 % length of front side sensors
117 l_front = 32;
118 % length of back side sensors
119 l_back = 59;
120 % distance from center of side sensors
121 d_sides = 16;
122 % weighting of front sensors and back sensors
123 m_front = 10;
124 m_back = 1;
125
126 %% Vision mask variables
127 % tunnel vision width/ thickness
128 w_tunnel = 20; % default : 20
129 % distance from center to tunnel vision
130 d_tunnel = 0;
131 % distance from center of left/right region
132 d_region = 10;
133
134 %% X- and Y- matrices
135 % Used for direction vector calculations and creation of image

regions
136 [X,Y] = meshgrid (nonzeros (60: -1: -60) ,nonzeros (-80:80));
137 X = X';
138 Y = Y';
139
140 % Some other variants
141 % [X2 ,Y2] = meshgrid (nonzeros (2*60: -2: -2*60) ,nonzeros (-2*80:2:2*80)

);
142 % X2 = X2 ';
143 % Y2 = Y2 ';
144 %
145 % Xequal = ones (120 ,160);
146 % Xequal (61: end ,:) = -1;
147 %

Bibliography 231

148 % Yequal = ones (120 ,160);
149 % Yequal (: ,1:80) = -1;
150 %
151 % [Xpw2 ,Ypw2] = meshgrid ([2.^(59: -1:0) , -2.^(0:59)] ,[-2.^(79: -1:0)

,2.^(0:79)]);
152 % Xpw2 = Xpw2 ';
153 % Ypw2 = Ypw2 ';
154 % Xreversed = ones (120 ,160);
155 % Xreversed (1:60 ,:) = X(60: -1:1 ,:);
156 % Xreversed (61: end ,:) = -1*X(1:60 ,:);
157 %
158 % Yreversed = ones (120 ,160);
159 % Yreversed (: ,1:80) = Y(: ,80: -1:1);
160 % Yreversed (: ,81: end) = -1*Y(: ,1:80);
161
162 %% Drone speed variables
163 % Minimum speed
164 min_speed = 0.0005;
165 % Maximum speed
166 max_speed = 0.0011;
167 % Gain and offset for mapping between pixels and drone speed
168 max_pixels = min(w_tunnel ,20) *(60 - d_tunnel);
169 min_pixels = -2* w_sides *(m_front * l_front + m_back * l_back);
170 a = (max_speed - min_speed)/(max_pixels - min_pixels);
171 b = min_pixels - min_speed /a;
172
173 %% Control parameters for Sliding Mode Control
174 %% x- position
175 lambda_x = 0.6766;
176 rho_x = 0.2145;
177 zeta_x = 1.8376;
178 k_x = 0.01;
179 epsilon_x = 0.3430;
180
181 %% y- position
182 lambda_y = 0.6766;
183 rho_y = 0.2145;
184 zeta_y = 1.8376;
185 k_y = 0.01;

Bibliography Appendix D Parrot Minidrone

186 epsilon_y = 0.3430;
187
188 %% Altitude
189 lambda_z = 5.6479;
190 rho_z = 5.3435;
191 zeta_z = 3.1581;
192 k_z = 0.01;
193 epsilon_z = 1.4904;
194
195 %% Roll
196 lambda_phi = 0.8100;
197 rho_phi = 26.3578;
198 zeta_phi = 23.7246;
199 k_phi = 10.1140;
200 epsilon_phi = 1.5242;
201
202 %% Pitch
203 lambda_theta = 1.1739;
204 rho_theta = 2.3434;
205 zeta_theta = 22.2347;
206 k_theta = 13.7415;
207 epsilon_theta = 1.3286;
208
209 %% Yaw
210 lambda_psi = 10;
211 rho_psi = 5;
212 zeta_psi = 2;
213 k_psi = 0.01;
214 epsilon_psi = 0.5;
215
216 %%
217 % Vision Ts
218 VTs= 40* Ts;
219
220 % Register variables after the project is loaded and store the

variables in
221 % initVars so they can be cleared later on the project shutdown .
222 endVars = who;
223 initVars = setdiff (endVars , initVars);

Bibliography 233

224 clear endVars ;
225
226 % LocalWords : myvariable

Listing D.1: Matlab-code for initializing variables/constants used by the Flight Control System.

D.3 Simulink Schemes

Figure D.91: Image Processing System.

Bibliography Appendix D Parrot Minidrone

Figure D.92: Image Processing System Stateflow Chart.

Bibliography 235

Figure D.93: Path Planning.

Bibliography Appendix D Parrot Minidrone

Figure D.94: Path Planning Stateflow Chart.

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 MathWorks Minidrone Competition

	2 Quadrotor Dynamics
	2.1 Main Components
	2.2 Euler Angles
	2.3 Working Principles
	2.4 Mathematical Model
	2.4.1 Forces
	2.4.2 Moments
	2.4.3 Actuator Dynamics
	2.4.4 Dynamic Model

	2.5 Parrot Mambo Minidrone
	2.6 3 DOF Hover

	3 Control Architecture
	4 Linear Control Methods
	4.1 PID Control
	4.1.1 PD Controller Design

	4.2 LQR Control
	4.2.1 State-Space Model of the Quadrotor
	4.2.2 LQR Controller Design

	4.3 Summary

	5 Silding Mode Control
	5.1 Introduction to Sliding Mode Control
	5.2 Lyapunov Stability
	5.3 Designing Sliding Mode Control
	5.4 Integral Sliding Mode Control Design
	5.4.1 Inner Loop ISMC
	5.4.2 Outer Loop ISMC

	5.5 Chattering Attenuation
	5.5.1 Quasi-Sliding Mode
	5.5.2 Adaptive Fuzzy Gain Scheduling

	6 Tuning Controllers by Genetic Algorithm
	6.1 Genetic Algorithm
	6.2 Performance Indices
	6.3 Parameter Tuning by GA

	7 Vision-based line tracking algorithm
	7.1 The Flight Control System
	7.2 Takeoff
	7.3 Pre-Processing
	7.4 Calculating a Direction Vector
	7.4.1 A Weighted Approach

	7.5 Tunnel Vision
	7.6 Handling Sharp Corners
	7.7 Landing Phase
	7.8 Minidrone Speed

	8 Results
	8.1 Simulation
	8.1.1 Chattering Attenuation
	8.1.2 ISMC vs. Linear Control Methods
	8.1.3 Analysis and Discussion

	8.2 3 DOF Hover
	8.2.1 Analysis and discussion

	8.3 Line Tracking
	8.3.1 Test Setup
	8.3.2 Results
	8.3.3 Analysis and Discussion

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Future Work

	Bibliography
	A Quadrotor Simulations
	A.1 MATLAB Code for Quadrotor Simulations
	A.2 Simulink Schemes for Quadrotor Simulations
	A.2.1 PD Control System
	A.2.2 LQR Control System
	A.2.3 ISMC Control System
	A.2.4 Simulink Scheme of the Quadrotor Model
	A.2.5 Simulink Schemes of Roll and Pitch Converter

	B Genetic Algorithm
	B.1 Desired Trajectory for Genetic Algorithm
	B.2 MATLAB Code and Functions for Genetic Algorithm
	B.2.1 GA for PD
	B.2.2 GA for LQR
	B.2.3 GA for ISMC

	B.3 Genetic Algorithm Simulink Schemes

	C 3 DOF Hover
	C.1 Experimental Results for The 3 DOF Hover
	C.2 MATLAB Code for the 3 DOF Hover
	C.3 3 DOF Hover Simulink Schemes

	D Parrot Minidrone
	D.1 Experimental Results of Parrot Minidrone Simulations
	D.1.1 First Track Results
	D.1.2 Second Track Results
	D.1.3 Third Track Results

	D.2 MATLAB Code
	D.3 Simulink Schemes

