
ASBJØRN SALHUS, MAGNUS BRANDSEGG
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Fuzz testing a BFT system

Bachelor's Thesis - Computer Science - May 2023

I,Asbjørn Salhus, Magnus Brandsegg, declare that this thesis titled,
“Fuzz testing a BFT system” and the work presented in it are my own. I confirm

that:

■ This work was done wholly or mainly while in candidature for a bachelor’s

degree at the University of Stavanger.

■ Where I have consulted the published work of others, this is always clearly

attributed.

■ Where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work.

■ I have acknowledged all main sources of help.

“There is always one more bug to fix.”

– Ellen Ullman

Abstract

Blockchain technology is becoming more and more prevalent, and it brings with

it new security issues. Due to the structure of these distributed systems, manual

testingmethods are tedious and oftenmiss a lot of edge cases because of the com-

plexity of the systems. The development of automatic testing methods has been

proven to be a more effective way of discovering security flaws, bugs, and crashes

in distributed systems.

In our thesis, we present an automatic testing tool for the Relab/hotstuff sys-

tembuilt with theGoogle/gofuzz fuzzing framework. The tool is built on the auto-

mated unit test generator, Twins. Using the existing scenarios that Twins create,

we replace one of the messages that are being sent through the network with a

randomly created fuzz message. The tool iterates through the messages with new

fuzzed input to trigger a panic and to find out where the program crashes.

With the use of our tool, we have discovered 6 locations in the Relab/hotstuff

system where the system crashes. Our tool presents relevant information as to

where the crash happened, a full stack trace, and the fuzzed message that caused

the crash; making the debugging process easier for the maintainers/bugfixers.

iii

Acknowledgements

We would like to express our deepest appreciation to our supervisor, Leander

Nikolaus Jehl, for his guidance, support, and invaluable feedback throughout the

course of this thesis. His expertise and insight have been instrumental in shaping

the direction and focus of this work, and we are grateful for the time and effort he

has dedicated to our research.

We would also like to extend our sincere thanks to the Department of Com-

puter Science at the University of Stavanger for providing us with the resources

and facilities necessary to conduct this research. The department’s commitment

to excellence in research and education has been an inspiration to us, and we are

proud to have been a part of this community.

We would be remiss in not mentioning our friends and family, who have pro-

vided us with unwavering support and encouragement throughout this journey.

Their love, kindness, and understanding have been a constant source of strength

and motivation, and we are deeply grateful for their presence in our life.

Finally, we would like to thank all the participants who took part in our re-

search, as well as anyone who provided feedback, encouragement, or assistance

along the way. Your contributions have been invaluable to this work, and we are

humbled by your generosity and willingness to help.

Thank you all for your support, encouragement, and dedication to this project.

We are honored and grateful to have had the opportunity to undertake this re-

search.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 2

1.1 Motivation . 2

1.2 Background . 3

1.3 Objectives . 4

1.4 Approach and Contributions . 4

1.5 Outline . 5

2 RelatedWork 6

2.1 Tyr . 6

2.2 LOKI . 7

2.3 Automated Vulnerability Discovery in Distributed Systems 7

3 Approach 9

3.1 Existing Approaches/Baselines . 9

3.2 Testing Hotstuff . 9

3.3 Fuzzing . 10

3.4 Fuzzing Framework . 10

3.5 Error Handling . 11

3.6 Design . 12

3.7 Implementation . 12

4 Results 16

4.1 Output From Run . 16

4.2 Benchmarking . 18

v

4.3 Fixing An Error . 19

4.4 Probability . 21

4.5 Loading From File . 22

5 Discussion 24

5.1 Adaptability and Changes . 24

5.2 Potential Improvements . 25

6 Conclusions 26

A Instructions to Compile and Run System 27

Bibliography 28

Chapter 1

Introduction

Chapter 1 presents a short introduction of our thesis. It covers the background

and motivation of the technologies and programs used, our objectives with this

implementation, a short summary of the approach as well as the outline of the

rest of the thesis.

1.1 Motivation

Blockchain technology has revolutionized the way we perceive and handle digital

transactions. With its decentralized architecture and robust security features, it

has gained widespread adoption in various domains, from finance [13] to health-

care [1] [11]. However, the increasing complexity of blockchain systems, coupled

with the ever-growing number of potential attack vectors, poses significant chal-

lenges to their security and reliability. This might include malware such as ran-

somware and viruses, or new forks and updates that introduce new vulnerabilities

to the system. The increasing complexity also makes the margin for human error

bigger as the systems become harder to maintain.

Fuzz testing, a technique used to identify and eliminate software defects by

generating randomor semi-random inputs, has emerged as a promising approach

to improve the quality and security of blockchain systems [5] [2].

Our thesis seeks to investigate the effectiveness of fuzz testing in identifying

vulnerabilities in blockchain systems. While traditional testing techniques may

be adequate for simple programs, blockchain systems are more complex, making

themdifficult to test exhaustively. By applying fuzz testing to blockchain systems,

2

we can simulate a wide range of potential inputs and edge cases, potentially un-

covering previously unknown vulnerabilities.

The importance of this research lies in theneed for reliable and secure blockchain

systems. As blockchain technology continues to gain adoption, the consequences

of a security breach or software defect could be significant, leading to loss of as-

sets, reputation damage, and legal liability (examples: [4] [10]). By identifying

and addressing vulnerabilities through fuzz testing, we can improve the resilience

of blockchain systems and enhance their trustworthiness.

In this paper, we present a fuzzing tool designed to discoverwhen a blockchain

system panics and causes a crash. Our tool is implemented on the Relab/Hotstuff

blockchain system [12] and uses the automated unit test generator, Twins [3].

Through fuzzing anddeliberate altering ofmessages being sent through the Twins

network, we are able to discover new bugs and flaws.

Overall, this thesis aims to explore the benefits of fuzz testing in improving

the security and reliability of the Relab/Hotstuff blockchain system. By examin-

ing the current state of the art in blockchain testing, identifying potential vulner-

abilities, and evaluating the effectiveness of fuzz testing, we can contribute to the

development of more secure and robust blockchain systems.

1.2 Background

One approach to achieving greater security and resilience in blockchain systems is

through the use of Byzantine fault tolerance (BFT) consensus algorithms. BFT is

a class of algorithms that are designed to enable a distributed system to continue

functioning correctly even when some of the nodes in the system fail or behave

maliciously. BFT algorithms are particularly important for blockchain systems

because they are designed to ensure that the system can continue to operate cor-

rectly even if some of the nodes in the system are compromised. The term ”Byzan-

tine fault” refers to a type of failure mode in a distributed system, where a node in

the system may behave in an arbitrary or malicious manner. This type of failure

can occur due to a variety of factors, including hardware failures, software bugs,

ormost threateningly, deliberate attacks on the system. Theway BTF systems are

built the most potent attack is one from within; one with the correct format that

appears to follow protocol. Finding out where the system misbehaves, should

it be exposed to an inside attack, is, therefore, an important part of improving

the overall security of distributed systems. Finding these vulnerabilities effec-

tively involves emulating malicious behavior. An automated unit test generator

of Byzantine attacks, Twins [3], does exactly that. Twins emulates byzantine at-

tacks within a system by making a copy of a node with the same identity. Twins

then sends both of the nodes through the system. The system can not distinguish

between the two almost identical nodes and a single functioning node and this

makes twins able to generate an emulation of some interesting byzantine attacks.

Among these attacks areEquivocation; where a Byzantine node sends different

messages to different recipients, Amnesia; where after a node has voted for a

proposal, it forgets it has voted and votes again, or by losing internal states,

especially locks. Twins is a central part of our thesis since we run our fuzz testing

through these twins-scenarios.

1.3 Objectives

The goals of our study are:

• To investigate the current state of the relab/hotstuff system and its compo-

nents

• To analyze the existing scenario-test framework for the relab/hotstuff sys-

tem and assess its effectiveness in detecting vulnerabilities.

• Todevelop amethod for recording and fuzzing themessages in the relab/hot-

stuff system’s scenario-tests using an existing fuzz testing framework.

• To apply the developedmethodology to the relab/hotstuff system and iden-

tify potential security vulnerabilities

• To evaluate the effectiveness of the developed methodology in detecting

previously unknown vulnerabilities

1.4 Approach and Contributions

Our approach to solving the problem of finding bugs in the hotstuff system starts

with selecting the proper fuzzing framework for the job. Once we have a fuzzing

framework thatworkswellwith our data, we implement it into the existing scenario-

tests of the Twins system. This consists of taking the old tests run by Twins and

rewriting them so that they deal with the randomly generated values from the

fuzzer. These random values are then converted from protomessages to themes-

sages the system uses. These new, fuzzer-generated messages are swapped with

one of the original messages in a Twins-scenario every time the scenario is run.

The fuzzed messages are designed to invoke and locate panics within the system

and present potential vulnerabilities and bugs.

1.5 Outline

In our thesis, we use our acquired knowledge about BFT systems, The Twins test-

ing system as well as an external fuzz framework to create a fuzzing tool on the

Relab/Hotstuff blockchain.

Chapter 2 reviews relevant work in the field of tools for testing distributed

systems.

In Chapter 3 we go over our approach to solving the main task for this thesis;

namely creating and implementing the tool. The Chapter starts with the design

of the tool and then moves on to how it’s implemented, how errors are handled,

and the fuzzing involved.

The results of our tool are presented in Chapter 4. Using snippets of code,

profiling and benchmarking outputs, and statistics and graphs we present our

findings using the tool on the hotstuff system.

In Chapter 5 we discuss the approach we chose, how adaptable it is to changes

in the hotstuff system as well as potential improvements that could be made.

Our thesis concludes in Chapter 6 with a summary of all our work and results.

Chapter 2

RelatedWork

In this chapter, we review the existing literature related to fuzz testing and con-

sensus algorithms in blockchain systems.

2.1 Tyr

Tyr: Finding Consensus Failure Bugs in Blockchain Systems with Be-

haviour Divergent Model

The Tyr system [5] proposed by Chen et al. (2021) is a novel approach to

testing consensus algorithms in blockchain systems. The system uses a behavior

divergent model to detect consensus failure bugs, which are bugs that can cause

nodes in the network to diverge from the consensus.

Tyr works by simulating different behaviors of the nodes in the network and

comparing their outputs to identify anydivergences. The systemwas evaluated on

six different commercial consensus systems and was shown to be effective in de-

tecting consensus failure bugs that were not uncovered by existing testing meth-

ods. Tyr was also compared to other state-of-the-art testing tools (Peach, Fluffy,

and Twins), and proved to cover more branches and perform better overall.

While our thesis has a lot in common with Tyr in the field of blockchain vul-

nerability discovery, Tyr focuses on finding consensus failure bugs and logical

errors. Our thesis tries to find where the program panics and what caused the

panic to discover potential security flaws.

Overall, the work by Chen et al. (2021) provides a valuable contribution to

the field of consensus algorithm testing in blockchain systems and improving

6

blockchain security.

2.2 LOKI

LOKI:State-AwareFuzzingFramework for the ImplementationofBlockchain

Consensus Protocols

LOKI is a state-aware fuzzing framework designed by Ma et al. (2023) that

uses advanced state-aware fuzzing to discover bugs. Traditional fuzzing tech-

niques use random inputs to test the system, which can miss certain edge cases

that may cause bugs. In contrast, LOKI is state-aware, which means that it uses

a combination of existing blockchain states and random inputs to test the sys-

tem. This allows LOKI to explore a wider range of scenarios and increases the

likelihood of finding bugs or vulnerabilities.

The LOKI framework has been tested on several popular blockchain consen-

sus systems such as GoEthereum, Meta Diem, IBM Fabric, and WeBank FISCO-

BCO. The results showed that LOKI was able to find previously unknown bugs

and vulnerabilities in these protocols.

While our thesis focuses on a fuzz testing tool for theHotStuff system, LOKI is

a general-purpose fuzzing framework for blockchain consensus protocols. LOKI’s

state-aware approachmakes it effective in identifying complex bugs thatmight be

missed by other fuzzing tools. In contrast, our tool is specifically designed for the

HotStuff systemandmaynot be as effective in identifying bugs in other consensus

protocols.

Similarly, as with Tyr, LOKI also focuses on finding logical errors and bugs in

the consensus algorithm instead of panics and crashes.

2.3 AutomatedVulnerabilityDiscovery inDistributed

Systems

Automated Vulnerability Discovery in Distributed Systems[2] is a paper by Ba-

nabic et al. (2011). The paper proposes a vulnerability discovery technique for

distributed systems. The technique generates malicious entities in a distributed

system and sees what impact the entities have on the system’s behavior.

In the author’s own words, ”One can think of this approach as “fuzzing” at the

level of system nodes— akin to input fuzzing, but at a higher level of abstraction.”

[2] The paper also presents the automated vulnerability discovery platform AVD,

which is an implementation of the technique.

The approach of this technique is used to find bottlenecks and bugs in dis-

tributed systems.

Overall, the paper presents a valuable tool in the field of automated testing of

distributed systems. The research presented by Banabic et al. has provided us

with insight into other fuzz-like approaches and has been a valuable resource for

us in our own thesis.

Chapter 3

Approach

Chapter 3 explains the problems, solutions, and decisions made during the de-

velopment period. As well as what the tool does on the surface and in-depth.

3.1 Existing Approaches/Baselines

Hotstuff’s main existing testing tool is the twins testing tool. Twins uses different

scenarios, a scenario consists of a set amount of nodes, a set of partitions, and a

set amount of views. The tool goes through a scenario and chooses one node as

the twin node. The twin nodes appear as a single node but do not communicate

with each other, making the node seem defective as it sends messages twice and

forgets some messages. Hotstuff also has convert functions that convert the pro-

tocol buffer structures to and from hotstuffs internal structures. Fuzz testing is

supported by the go programming language and also has some additional APIs

that make fuzz testing easier to implement.

3.2 Testing Hotstuff

In order to test Hotstuff we need something that takes input. Most of the func-

tions in the Hotstuff implementation take inputs, but many of those functions

aren’t required to handle random inputs because they are only called from other

functions, where the inputs are checked beforehand to be valid. What we need

is a situation where an invalid input may occur in the Hotstuff implementation.

Twins is a testing tool built for testing the Hotstuff implementation and has a sce-

9

nario where multiple network nodes are simulated. We use the Twins scenario to

test Hotstuff, but we need to be able to include input in the testing somehow. The

scenario in use sends a constant amount of messages between nodes and our fuzz

tool will replace one of the messages in that scenario. A message is a set of values

defining an action or event that a node wants to send to another. One example of

what a message is used for is to make a proposal, the proposal message is meant

to be sent to all other nodes. A counter is used to determine which message to

replace, only one of the messages will be swapped, where the counter is a specific

number. The function that receives the random message input will propagate it

to other functions and any invalid input that is not handled correctly will cause a

crash.

3.3 Fuzzing

Another requirement of a fuzz tester is a random value, which will be used as the

input. Golang structs have private and public (exported) fields, and the message

structures of theHotstuff package containmany private fields, since we are not in

the Hotstuff package we cannot access these fields and cannot fuzz them directly.

One solution is to use the public functions in the Hotstuff package, for example,

the block constructor ’NewBlock()’ with random parameters to create a fuzzed

block variable. Another solution is to use other parts of the Hotstuff project that

construct Hotstuff structures to create random messages. The Hotstuffpb pack-

age uses protocol buffers[8] to serialize and deserialize the Hostsuff structures so

they can be sent over the internet using gRPC[9]. We could send the Hotstuffpb a

set of random bytes and ask it to deserialize it into a structure, but that is not nec-

essary because the structures in Hotstuffpb use public (exported) fields and can

be accessed directly. Hotstuffpb has functions that convert aHotstuffpb structure

to a Hotstuff structure, these will be used and also be included in the test since

we are giving it random inputs.

3.4 Fuzzing Framework

Fuzz testing is an already established method of testing, and there are multiple

frameworks and libraries that make creating fuzz tests easier and have a lot of

useful functionality. Each fuzz testing framework has its own strengths andweak-

nesses, some are more flexible, and others have many useful features. We have

considered three different fuzzing frameworks that support golang for our fuzzing

tool. Golang has a built-in fuzzing framework [6], google has a framework called

gofuzz [7] and there is a framework by Dvyukov on GitHub called go-fuzz [14].

The built-in tool lets you fuzz based on an initial state of inputs with a small set of

supported types. The supported types are bool, string, []byte, and int, unit, and

float types of various sizes. When an error or panic is encountered, the framework

creates a file with the fuzz input parameters used when the program crashes. You

can rerun a previously generated fuzz test by giving the test tool a specific seed.

TheGoogle fuzzing framework supports a lotmore types and has a specific chance

to set a pointer to nil which can be configured at runtime. You can set your own

fuzzing rules and constraints using the framework. Dvyukov’s tool is straight-

forward, with a function called Fuzz that takes in a parameter of type []byte you

can just use the parameter as fuzzing values. The framework handles panics and

errors for you.

We have chosen to use the fuzzing framework gofuzz made by Google because

of the nil chance and the better support for structs. Gofuzz gives usmore freedom

in terms of writing log files because the framework doesn’t do it for us.

3.5 Error Handling

When the Hotstuff implementation fails we want to catch the error and collect

meaningful information about the error. If we stopped at the first error then a

different error might show up for each test, which is unintuitive and annoying

if you want to fix a bug and you are looking for a specific error, that is why the

test continues to run even if the tests crash. A lot of the crashes will be from the

same line of code and have the same error message as a previous crash. Having

a way to filter out duplicate errors is important to avoid having to output a ton

of information at once. Grouping together errors by the error message and loca-

tion and only outputting one error from each group of errors ensures that a lot

of duplicate information gets filtered out. The crash with the smallest fuzz value

string is used because it gives the smallest and simplest output. Having a sorted

list of unique errors ensures the error info is as predictable as it can be, the order

the error list is sorted in is not important as long as it is consistent between runs.

A stack trace after the panic occurred will reveal a lot of debug information, and

the stack trace line right below the panic routine part is extra useful because it

describes the exact line that triggered the panic. Conversions and scenarios are

different and are recovered in two different places, where the panic gets recovered

is output alongside all the other information.

3.6 Design

Our tool is an automatic unit test designed to find potential vulnerabilities and

bugs in the Relab/Hotststuff system using fuzz testing. The test can be run at any

time, takes a couple of seconds to complete, and gives useful information about

some of the errors that occurred during testing. The tool is designed to catch and

locate crashes also known as panics, but is not built to find other errors that result

in unexpected incorrect results. Random values are used to test different parts of

theHotstuff implementation. The random values are used in normal tests or pro-

cedures in the program to try to trigger a crash, these will be called fuzz values.

In a real network, the nodes would send what we call messages to each other by

serializing them using protocol buffers. The data structures used by protobuf are

different from the data structures used internally by Hotstuff, and the Hotstuff

implementation has functions that convert them. By creating random protobuf

data as fuzz values we convert them as part of the fuzz test. The output of the

conversion is used in the other part of the test. The Twins framework has a sce-

nario test with a simulated network that runs and tests for incorrect results. A

slightly modified version of the Twins scenario allows us to test the scenario with

the converted fuzz values, and also test for crashes. This routine runs formultiple

iterations, if an error occurs during the conversion or scenario test the program

will recover and skip to the next iteration. The errors encountered are summa-

rized and output with relevant information like the error message, stack trace,

and the fuzz values which caused the crash for each relevant crash.

3.7 Implementation

We start by initializing the error info structure that will be used to collect all

the relevant errors. The error info structure keeps one error for every error that

crashes in different places in the program. The structure also counts the number

of errors that occur, one counter for themessages that crash duringmessage con-

version, and one for the scenarios that crash during the scenario test. The fuzzing

itself runs for multiple iterations and each time a random fuzz message is made

based on Hotstuff’s protocol buffer structures.

The gofuzz frameworkuses a randomnumber generator alongwith theGolang

reflect package to fill entire structureswith randomvalues automatically. It is also

configured to have a 10% chance to set any pointer to nil. Gofuzz does not sup-

port assigning a random type, so it crashes when it encounters an interface, and

it cannot choose a random message type. Gofuzz has support for custom func-

tions based on specific types, so you can create a function for the problematic

interfaces to fix them. There are two custom functions, one is for choosing a ran-

dommessage type, and the other is for choosing a random signature type. There

are four different types of messages, ProposeMsg, VoteMsg, NewViewMsg, and

TimeoutMsg. There are two different signature types which are BLS12Sig and

ECDASigs.

With a fuzz message with random values based on the protocol buffer struc-

tures, we can convert the fuzz message to a Hotstuff message based on the mes-

sage types defined manually in the Hotstuff project. There are already functions

made to convert the proto messages to Hotstuff messages, The conversion func-

tions do not include the NewViewMsg because the protobuffers don’t have that

type, but a NewViewMsg is just a SyncInfo with an ID, and there is a conversion

function for SyncInfo. All of the protocol buffer message types are missing an

id, so a random number is chosen, the random number was created in the fuzz

message creation part, and is assigned to themessage after it has been converted.

Calling functions outside the fuzz tester with random values may result in

crashes, these crashes are potential vulnerabilities to the stability of the program

and it is the job of a testing tool to find these errors. Using Golang’s recover func-
tion we can keep running the program, as well as gather information about the

crash. A stack trace, the error text, and the fuzz message itself is combined into

a structure which is then saved to the error info structure using the hash map.

The crash line and file, as well as the panic message and recovery location, are

combined to create the key. If there already is an error info with the same key,

then both the info’s fuzz message sizes get compared and the error info with the

shortest fuzz message will be kept.

If the fuzz message got converted successfully, then a Twins scenario without

a twin node will be run. The scenario structure has a network structure where the

random Hotstuff message will be included, and the first message that is sent will

be swapped with the randommessage from the network. The rest of the scenario

runsmore or less normally unless the programcrashes. The same type of recovery

and error info collection as last time is used here.

After all the iterations are done, all there is to do is to output useful informa-

tion and save the results. For every unique error, the errormessage, location, and

recover location are displayed alongwith the full stack trace and the fuzzmessage.

The fuzz message gets made into a string that looks similar to how you would de-

clare a structure in golang. The number of times the program crashes, as well

as how many were because of the conversion and how many for the scenario are

also displayed. Protocol buffers have a built-in marshal and unmarshal system

that converts a proto message to and from a byte slice, which allows us to write

it to a file. The byte slices from each fuzz message get converted to base64 with

newlines between and get saved to a single file. When loading the fuzz messages

from a file the base64 gets split by a newline, converted back into a byte slice,

and then into a fuzz message. In addition to saving the fuzz messages themselves

to a file, we also save the random number generator seed used to create the fuzz

message as an alternative.

Figure 3.1 shows roughly how the test runs. It starts in the TestFuzz func-
tion and calls CreateFuzzMessage, FuzzMsgToMsg and TryExecuteScenario gets
calledmultiple times until it endswith the OutputInfo function. CreateFuzzMessage
creates the fuzz message and FuzzMsgToMsg converts it using Hotstuff’s own con-
vert implementation, logging any crash that might occur. TryExecuteScenario
runs the scenario and the scenario sends the fuzz message to the rest of the Hot-

stuff implementation, where any crash goes to recover andgets savedby AddPanic.
When enough iterations have run OutputInfo outputs the saved info.

Figure 3.1: Diagram of the design

ExecuteScenario

FuzzMsgToMsg

CreateFuzzMessage

TestFuzz

TryExecuteScenario

SyncInfoFromProto

ProposalFromProto
Run

SendMessage

fuzz_test.go network.go

Recover

AddPanic

crypto.go

types.go

convert.go

error.go

OutputInfo

TWINS HOTSTUFF

if

bugfixer

panic

Chapter 4

Results

Our fuzz tester gives a lot of info and may be unreliable, and may also take a long

time to complete. Increasing the number of iterations for one test increases relia-

bility, as well as the time taken before it completes. Our experimentation explores

how different configurations affect reliability, performance, and usability.

4.1 Output From Run

Running the fuzzer for a thousand different fuzzmessages reveals six different er-

rors found in different parts of the hotstuff source code. The fuzzing tool outputs

the error message of each different error, as well as a stack trace and the message

structure used when the error occurred, and the line and file where the program

crashes. After outputting info about each individual error, it says it found six dif-

ferent errors, that 388 of the fuzzed values failed to convert to messages, and that

8790 of the 18360 scenarios that ran crashed.

16

Table 4.1: Error list

Error nr Error type Error location

item 1
invalidmemory address or nil

pointer dereference

crypto/crypto.go

line 128

item 2
invalidmemory address or nil

pointer dereference

hotstuffpb/hotstuff.pb.go

line 612

item 3
invalidmemory address or nil

pointer dereference

crypto/cache.go

line 92

item 4
invalidmemory address or nil

pointer dereference

hotstuffpb/hotstuff.pb.go

line 605

item 5
invalidmemory address or nil

pointer dereference

types.go

line 144

item 6
invalidmemory address or nil

pointer dereference

crypto/crypto.go

line 112

Table 4.1 shows a list of all the errors found as well as the location where

the program crashes. All of the errors had the error message ”invalid memory
address or nil pointer dereference”.

4.2 Benchmarking

go test -benchmem -run=^$ -bench ^BenchmarkFuzz$ -benchtime 1000x -count 5

goos: linux
goarch: amd64
pkg: github.com/relab/hotstuff/fuzz
cpu: AMD Ryzen 5 3500U with Radeon Vega Mobile Gfx
1000 3.458626722s 3458644 ns/op 276450 B/op 3979 allocs/op
1000 3.304062133s 3304078 ns/op 260070 B/op 3735 allocs/op
1000 3.767412629s 3767429 ns/op 290373 B/op 4221 allocs/op
1000 3.458368587s 3458384 ns/op 267844 B/op 3849 allocs/op
1000 3.489068640s 3489086 ns/op 275929 B/op 3983 allocs/op

Figure 4.1: benchmark results

Running the fuzz test normally with 1000 iterations takes about three and a half

seconds. Figure 4.1 shows the execution time varies between 3.3 and 3.8 seconds,

with allocations varying from 3735 to 4221 per iteration. The execution time of

each fuzz test varies because of the random nature of the fuzz tester. Iterations

that crash early in the tests will speed up the execution time, the scenario tests

only run after successful conversion attempts, so for every conversion test that

crashes there is one less scenario test and the program takes a little bit less time.

The execution time is expected to increase once most of the bugs have been fixed,

as fewer crashes will occur meaning that more iterations run until the end.

4.3 Fixing An Error

Figure 4.2: function with error

106 // VerifyQuorumCert v e r i f i e s a quorum c e r t i f i c a t e .
107 func (c crypto) VerifyQuorumCert (qc ho t s t u f f . QuorumCert) bool {
108 // genes is QC i s always val id .
109 i f qc . BlockHash () == ho t s t u f f . GetGenesis () . Hash () {
110 return true
111 }
112 > i f qc . Signature () . Pa r t i c i pan t s () . Len () < c . con f igura t ion . QuorumSize () {
113 return f a l s e
114 }
115 block , ok := c . blockChain . Get (qc . BlockHash ())
116 i f ! ok {
117 return f a l s e
118 }
119 return c . Ver i f y (qc . Signature () , block . ToBytes ())
120 }

Figure 4.3: function with fixed error

106 // VerifyQuorumCert v e r i f i e s a quorum c e r t i f i c a t e .

107 func (c crypto) VerifyQuorumCert (qc ho t s t u f f . QuorumCert) bool {

108 // genes is QC i s always val id .

109 i f qc . BlockHash () == ho t s t u f f . GetGenesis () . Hash () {

110 return true

111 }

112 + i f qc . Signature () == n i l {

113 + return f a l s e

114 + }

115 i f qc . Signature () . Pa r t i c i pan t s () . Len () < c . con f igura t ion . QuorumSize () {

116 return f a l s e

117 }

118 block , ok := c . blockChain . Get (qc . BlockHash ())

119 i f ! ok {

120 return f a l s e

121 }

122 return c . Ver i f y (qc . Signature () , block . ToBytes ())

123 }

One of the errors outputtedwas in crypto/crypto.go on line 112which is shown

in the figure 4.2. The error message tells us that a nil pointer dereference oc-
curred, and the line in which the error occurred contains a lot of dereferences. By

breaking up the line into smaller lineswe find out that ’qc.Signature()’ is nil every
time the program crashes. By checking for nil and returning early we avoid the
nil pointer dereference. The function that crashes verifies a quorum certifi-

cate, we decided to return false if the signature was nil, the changes are shown
in figure 4.3. After fixing one of the errors and running the fuzzing test again we

find that it reports five different errors this time. Fixing the other errors eventu-

ally results in new errors showing up in the tests that weren’t there before.

4.4 Probability

76 513 798 904 953 973 994 996 999 999
0

100

200

300

400

500

600

700

800

900

1000

10 20 30 40 50 60 70 80 90 100

Number of itera�ons

Error probability

6 errors 5 errors 4 errors 3 errors 2 errors

Figure 4.4: Bar graph showing the probability of finding all the errors

During the program evaluation, we’re interested in seeing how many iterations

we have to run to find all the errors reliably. Running the program 1000 times,

each with a different number of iterations ranging from 10-100, provides us with

the data shown in Figure 4.4. Looking at Figure 4.4 we can see that running the

program with 10 iterations fails to find all the errors in the majority of the runs

and only finds all the errors 76 out of 1000 times, or 7.6% of the time. The results

quickly improve with more iterations, and the program finds all errors in over

99%of caseswith 70 ormore iterations. Running the programwith 100 iterations

finds all errors in 99.9% of cases and only misses one error about 1-2 times per

1000.

With the information on how often all the errors are found based on the num-

ber of iterations, it’s also interesting to see what errors are foundmore often, and

which ones are usually missed. Looping through the program and mapping the

error info to a hashmap with the location of the panic as the key, gives us infor-

mation about which of the errors show upmore often. We’ve put this information

in a table.

Table 4.2: Error frequency

Error Location Recovery Location Frequency

hotstuff.pb.go:605 convert 1592

hotstuff.pb.go:612 convert 1606

types.go:144 convert 1471

cache.go:92 scenario 962

crypto.go:128 scenario 654

crypto.go:112 scenario 1231

The table 4.2 shows how often the different errors show up when running the

program 10000 times. The errors that get recovered from the convert part of

the program, occur more often. This is because the convert part of the program

happens before the scenario functions.

4.5 Loading From File

After running a normal fuzz test in which many fuzz messages are created, only

one of each unique error gets saved. The fuzz messages get saved in two different

ways, through the seed that was used to create them, and the binary representa-

tion of the fuzz message itself. Running a normal fuzz test results in six different

unique errors, and six corresponding fuzz messages get saved to a file. Loading

the random source values of each fuzz message as an int64 works as expected,

with each fuzzmessage being identical and crashing the exact sameway as before.

Loading the fuzz messages from their binary representation on the other hand

gave different results from the original test. In the replicated test there were only

four unique errors, the two missing errors were from ’hotstuff.pb.go’. Through

experimentation, we concluded that the protocol buffers were the cause of the

changes, each call to proto.Marshal() gave a different binary. This is probably
because of the unpredictability of hash maps and because of how nil pointers
are handled, sometimes a pointer to a structure with only nil will be converted
to a pointer to nil and vice versa. Feeding random input to a function is likely

to produce unexpected results, but we will keep the extra functionality since at

least nothing crashed. Both of themissing errors are from the file ’hotstuff.pb.go’,

which is a file automatically created by the protocol buffers themselves. There is a

chance that none of the protocol buffer functions, including grpc, produce a mes-

sage that triggers these crashes, which may mean that the crashes never would

happen in a real consensus because the messages always get created from grpc

functions. In order to avoid these errors in the standard fuzz test also, the stan-

dard fuzz tester would have to be modified to serialize and deserialize the fuzz

message after it is created.

Chapter 5

Discussion

5.1 Adaptability and Changes

Our fuzzing toolwasmade specifically to test hotstuff, but it was testing its robust-

ness as a bft system. Other systems, protocol implementations, or frameworks

that could benefit from a tester that focuses on crashes caused by random inputs

would benefit from this fuzz tester. The fuzzing tool needs to be changed if big

changes are made to the current hotstuff implementation, or if it would be used

on a different distributed system. There are custom functions given to the gofuzz

framework in order for it to not crash, this is caused by the oneof keyword in pro-
tocol buffers which creates an interface. There is an extra function that randomly

chooses a message type, this function would have to be expanded or changed if

more message types were to be introduced. The part of the program that creates

a readable string from a fuzz message is mademanually and is completely depen-

dent on the structure of the protocol buffer message types and would have to be

changed for almost every change to the protocol buffers. This could be improved

by using the same techniques that gofuzz uses, namely reflection, where a smaller

set of additional context or custom functions are needed. Even though Google’s

gofuzz already uses reflections, it doesn’t uses the specialized protocol buffer re-

flections, which has support for oneof. With protocol buffer’s reflection library

both the fuzzing and the readable string generation could be improved. Using

the string function provided by protocol buffers is also a valid option but is not as

readable as it does not have indentation or line breaks. The saved fuzz messages

should be taken with a grain of salt after changing some of the code as the fuzz

24

messages made from the saved binaries or seeds will be different than the origi-

nal if the structures have changed. Running a normal fuzz test is recommended to

ensure that no new errors have popped up, and to ensure that there aren’t other

messages that still trigger the same error. Old stack traces are invalid once the

code has been changed because lines will be moved around once new lines are

added, and any changes to the file system will not be accounted for.

5.2 Potential Improvements

The output of the fuzzing tool holds back a lot of information because of the num-

ber of errors it encounters, and a lot of them are duplicates. Grouping crashes and

only showing each error group once is necessary but showing only the info from

one panic for each group is not. The fuzzmessages can be compared to each other

to find similarities and differences, and the fuzz tool can find which of the values

needs to be nil or a certain value to crash. Additional probability information can

be given based on how often the crash occurs, and how many of each fuzz mes-

sage type crashed that way. Seeing as the scenario tests are being used for the fuzz

testing, but not being tested itself, an alternative can be used. Sending a message

and running it as an event without the use of a scenario wouldmake the test faster

and there would be no dependencies on the twins test.

Chapter 6

Conclusions

We successfully created a testing tool for the Hotstuff implementation, and the

test found panics in six different parts of the source code. The six different crashes

get shown as a list to the maintainers with all kinds of relevant information about

each crash, with a summary at the end. The maintainer may rerun the previous

test by using the automatic saving functionality that we created. After a bench-

mark, we conclude that the test takes on average 3.5 seconds to complete when

running for 1000 iterations. We also present relevant information as to where all

the panics happen and how reliably our tool finds them on each run. We hope

that our testing tool will help improve the security and robustness of the hotstuff

implementation when it is used in a real-life situation, and not just in a scenario

simulation.

26

Appendix A

Instructions to Compile and

Run System

Write your Appendix content here.

cd twins

go test -v -run TestFuzz

27

Bibliography

[1] Asaph Azaria et al. “MedRec: Using Blockchain for Medical Data Access

and Permission Management”. In: (2016). DOI: 10.1109/OBD.2016.11.

[2] Radu Banabic, George Candea, and Rachid Guerraoui. “Automated Vul-

nerability Discovery inDistributed Systems”. In: (2011), pp. 188–193. DOI:

doi.org/10.1109/DSNW.2011.5958811.

[3] Shehar Bano et al. “Twins: BFT Systems Made Robust”. In: (2022).

[4] Ryan Browne and MacKenzie Sigalos. CNCB: Hackers have stolen 1.4 bil-

lion this year using crypto bridges. URL: https://www.cnbc.com/2022/
08/10/hackers-have-stolen-1point4-billion-this-year-using-
crypto-bridges.html. (accessed: 05.04.2023).

[5] Yuanliang Chen et al. Tyr: Finding Consensus Failure Bugs in Blockchain

SystemwithBehaviourDivergentModel. DOI: https://doi.ieeecomputersociety.
org/10.1109/SP46215.2023.00068. (accessed: 16.02.2023).

[6] Google. Golang built-in fuzz tool. URL: https : / / go . dev / security /
fuzz/. (accessed: 09.02.2023).

[7] Google. Google/gofuzz. URL: https://github.com/google/gofuzz. (ac-
cessed: 09.02.2023).

[8] Google. Google/protocol-buffers. URL: https : / / protobuf . dev/. (ac-
cessed: 12.05.2023).

[9] Google. gRPC. URL: https://grpc.io/. (accessed: 14.05.2023).

[10] Sandali Handagama. Coinbase: Crypto Exchange Coinbase Faces Class

Action Lawsuit Over Alleged Lapses in Security. URL: https : / / www .
coindesk.com/policy/2022/08/23/coinbase-faces-class-action-
lawsuit-over-alleged-lapses-in-security/. (accessed: 05.04.2023).

28

[11] Amit Juneja and Michael Marefat. “Leveraging blockchain for retraining

deep learning architecture in patient-specific arrhythmia classification”.

In: (2018). DOI: 10.1109/BHI.2018.8333451.

[12] HeinMeling andLeander Jehl et al.Relab/Hotstuff. URL: https://github.
com/relab/hotstuff. (accessed: 13.01.2023).

[13] Jayanth Rama Varma. “Blockchain in Finance”. In: (2019). DOI: 10.1177/
0256090919839897.

[14] Dmitry Vyukov. dvyukov/go-fuzz. URL: https://github.com/dvyukov/
go-fuzz. (accessed: 09.02.2023).

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Asbjørn Salhus

© 2023 Asbjørn Salhus, Magnus Brandsegg

