
DET TEKNISK-NATURVITENSKAPELIGE FAKULTET

BACHELOROPPGAVE

Studieprogram/spesialisering: Vår 2023

Bachelor i ingeniørfag / Åpen / Konfidensiell

Datateknologi

Forfatter(e): Martin Dimmen, Kim Jørgensen, Dominykas Petniunas

Fagansvarlig: Erlend Tøssebro

Veileder(e): Erlend Tøssebro

Tittel på bacheloroppgaven: Operatørgrensesnitt, topside kommunikasjon
for fjernstyrt undervannsfartøy og styring av ROV og Manipulator.

Engelsk tittel: Graphical user interface, topside communication for re-
motely operated underwater vehicle, and control of ROV and Manipula-
tor.

Studiepoeng: 3 x 20

Emneord: Sidetall: 111

Graphical User Interface, GUI, + vedlegg/annet: 1

UiS Subsea, ROV, Python, Communication Stavanger 15. mai 2023

Summary

This bachelor thesis consisted of creating a topside system for a remotely
operated vehicle (ROV) that was created by interdisciplinary groups in the
student organization UiS Subsea. The ROV was created to satisfy the
conditions for the MATE competition, which takes place in Colorado, USA,
in early summer.

The topside system required three main implementations to fulfill its pur-
pose, the first being an established connection between the topside and
subside using UDP and TCP, the second was adding maneuverability to
the ROV and Manipulator with the use of controllers, and the third being
the graphical user interface (GUI) to present all the relevant information
from the ROV.

The system was modular, which meant it was easy to change and implement
functionalities. It was based on last year’s topside system but has been
changed significantly because of other needs and requirements. It had a
good structure, with well-functioning classes.

The project was broken down into sub-tasks to simplify the implementation
process and increase efficiency. This approach resulted in the total final
product - the topside system. The ROV was controllable, the GUI displayed
the necessary information, and the data flow worked well.

The system will be further improved toward the MATE competition, which
will not be included in the bachelor as the changes will be made after the
bachelor thesis deadline.

i

Link to the topside system on GitHub:

https://github.com/UiS-Subsea/Bachelor_GUI

ii

https://github.com/UiS-Subsea/Bachelor_GUI

Preface

This thesis concludes the final part of the Computer Technology bachelor’s
degree at the University of Stavanger. We would like to take this opportu-
nity to express our sincere gratitude to all the members at UiS Subsea for
their valuable collaboration and support throughout the semester.

We would also like to extend our gratitude to the sponsors of UiS Subsea,
the University of Stavanger for their support in facilitating student organi-
zations

We would also like to give a special thanks to our supervisor Erlend Tøssebro
for meetings and advice.

Thanks to Stian Myklebust Eiksund for creating our alarm sound.

iii

Abbreviations & Expressions

List of abbreviations or expressions and their accompanying explanations.

Abbreviation - The entire word - Explanation

• ROV - Remotely Operated Underwater Vehicle - An unmanned robot
able to perform desired tasks

• GUI - Graphical User Interface

• TCP - Transmission Control Protocol - Communication protocol that
ensures stable data transportation. [2.1.2]

• UDP - User Datagram Protocol - Communication protocol that en-
sures fast but unreliable data transportation. [2.1.3]

• XML - Extensible Markup Language

• UI - User Interface File, XML file created in QT Designer

• UIC - User Interface Compiler, module used to convert UI files into
Python code

• Jetson - Nvidia Jetson - AI computing platform for edge devices with
compact hardware modules and real-time AI capabilities. [2.2.3]

• AI - Artificial Intelligence

Expression - Explanation

iv

• Bitarray - Data structure array that store bits

• Bytearray - Data structure array that store bytes

• Manipulator - Controllable arm connected to the ROV

• Topside - The part of the system above water; also known as the
computer

• Subside - The part of the system below water; also referred to as the
ROV

• Qwidget - The QWidget class is the base class of all user interface
objects

• Demultiplexes - Separating a combined audio or video stream into
separate streams for each component.

v

Contents

Summary i

Preface ii

Abbreviations & Expressions iv

1 Introduction 1

1.1 Introduction . 1

1.1.1 About UiS SubSea 1

1.1.2 Mechanical . 3

1.1.3 Electronics . 4

1.1.4 Computer Science 6

1.1.5 MATE - Marine Advanced Technology Education . . 7

1.1.6 About ROV Project 19

1.2 GUI - A closer look . 25

vi

CONTENTS

1.2.1 Overview of what needs to be done 26

2 Background and Theory 27

2.1 Technologies and Protocols 27

2.1.1 Communication . 27

2.1.2 Transmission Control Protocol 29

2.1.3 User Datagram Protocol 30

2.1.4 TCP versus UDP . 30

2.1.5 Communication Medium 31

2.2 Camera . 32

2.2.1 Camera Positioning 33

2.2.2 Camera Lights . 33

2.2.3 Remote Connection 34

2.2.4 GStreamer . 35

2.3 Development and Working Method 36

2.3.1 Git . 36

2.3.2 Github project table 37

2.3.3 Development strategy 37

2.3.4 Meetings . 38

2.4 Programming Language . 38

vii

CONTENTS

2.4.1 Earlier languages . 39

2.4.2 Python . 39

2.4.3 C# . 40

2.4.4 Choosing a language 40

2.5 Frameworks . 41

2.5.1 Qt . 41

2.5.2 PyQt . 41

2.5.3 Pygame . 46

2.6 Steering . 47

2.6.1 Choice of Controller 47

2.6.2 Testing . 48

2.6.3 ROV . 49

2.6.4 Manipulator . 50

2.7 Operating System . 50

2.7.1 Microsoft Windows 11 51

2.7.2 Ubuntu . 51

2.7.3 Choosing an operating system 52

2.8 Processing and Threading 52

2.8.1 Process . 52

2.8.2 Thread . 53

viii

CONTENTS

3 Implementation 54

3.1 Process flow . 54

3.2 Data transfer between topside and Nvidia Jetson 59

3.2.1 Control System Circuit Board 61

3.2.2 Sensor Circuit Board 62

3.2.3 Power Circuit Board 63

3.2.4 Communication Circuit Board 64

3.3 Controllers . 66

3.3.1 Accessing the controller data 66

3.3.2 Steering data . 68

3.3.3 Sending the steering data 71

3.4 Threads and Processes with Threadwatcher 72

3.5 GUI . 73

3.5.1 Layout . 73

3.5.2 GStreamer . 78

3.5.3 Sending data to the GUI 79

3.5.4 Updating the GUI 81

3.5.5 Sending data from GUI 81

4 Testing 82

ix

CONTENTS

4.1 Local testing . 82

4.2 ROV testing . 84

4.3 Communication testing . 85

5 Results 86

5.1 Water Test . 86

5.2 Topside . 87

5.2.1 GUI . 88

5.2.2 Controllers . 88

5.2.3 Data Logging . 89

6 Discussion 90

6.1 Bottleneck . 90

6.2 Communication Challenges & Solutions 90

6.3 Controller Challenges & Solutions 91

6.3.1 Mac and Windows to Ubuntu 91

6.3.2 Initializing Controllers 93

6.3.3 Future improvements for steering data 94

6.4 GUI Challenges & Solutions 95

6.4.1 Iterations of the GUI 95

6.4.2 ROV data to GUI 96

x

CONTENTS

6.4.3 Updating Alarms . 97

6.5 General Challenges and Solutions 98

6.5.1 Earlier testing/implementation 98

6.5.2 Subside PC to do image processing 98

6.5.3 Time usage . 98

6.6 Continuation of the Subsea project 99

6.7 Summarized Future Improvements 99

7 Financial overview & Environmental report 101

7.1 Environmental Report . 102

7.1.1 Environmental impact 102

8 Conclusion 104

Attachments 111

A 112

xi

Chapter 1

Introduction

1.1 Introduction

This thesis is part of a larger project of designing and developing a function-
ing ROV and scientific float for the student organization UiS Subsea and
competing in the TAC and MATE challenge in June 2023. This chapter
presents the premise of the UiS Subsea organization and the different tasks
of every team involved in the project. It also aims to provide sufficient
information about the thesis objective, scope, and limitations. Next, the
MATE competition and its specific tasks, challenges, and scoring system.
It is also an introduction to the background information about the ROV
and floats, as well as information about the main task of the thesis.

The introduction chapter is written by the technical leaders of UiS Subsea
and is a common chapter for all of the groups.

1.1.1 About UiS SubSea

UiS Subsea is a student organization at the University of Stavanger, en-
gaging students in underwater technology since 2013. The primary goal of
this organization is to provide students with the experience of working in a

1

1.1 Introduction

team consisting of different engineering disciplines.

This year, at UiS Subsea, nine bachelor groups are working together to de-
sign and build a complete underwater ROV (remotely operated underwater
vehicle). This year’s ambitions are to build upon and improve from last
year’s ROV project. The goal is to create a new ROV that is easier to
maintain, has more efficient cooling, and can upgrade the software to an
AUV (autonomous underwater vehicle). Though it will not be completely
autonomous, it should be able to compete in the autonomous challenges
from MATE.

There are two groups of mechanical engineering bachelor students on the
team. Their responsibility is to design, craft, and construct the chassis,
manipulator, and electronic enclosure for the ROV.

Additionally, five groups of electrical engineering students are responsible
for various tasks. Their responsibilities include working on sensors, regula-
tion systems, communication, power, and circuits. They are also in charge
of establishing communication between the ROV and the topside system.

On the topside, there are two groups of computer engineering students.
Their primary responsibilities include sending and receiving commands and
data. They also work on displaying the ROV in a graphical user interface
(GUI), handling controls, and performing image processing tasks.

Figure 1.1: UiS Subsea
logo

Through several years, Subsea has built ROVs and
partaken in international competitions, this year:
the MATE ROV competition. This provides a ba-
sis for more advanced problem-solving and team-
work to create a positive and healthy environ-
ment for learning and developing technical skills.
UiS Subsea opens up the opportunity for students
to collaborate with industrial companies. Several
companies are interested in these projects, provid-
ing components and other resources through spon-
sorship deals. To further improve the relations be-
tween the organization and the industry, Subsea annually holds an event
called ’Subsea dagen’, where companies from the sector can participate with
their stand and promote themselves. UiS Subsea and the companies gener-

2

1.1 Introduction

ate a lot of exposure from such an event.

In previous years the organization has suffered from a lack of continuity due
to the participants writing their bachelor’s, and a handover between current
and new bachelor students has been non-existent. This year, the previous
leader and second leader of Subsea decided to stay one more year to help
guide the students and the overall course of the project. This reduces the
learning curve for the new students while also implementing a stream of
previous knowledge and experiences to the future project.

This year’s board consists of the following roles and leaders:

• Project manager: Joar Rodrigues de Miranda

• Second Project manager: Thomas Matre

• Technical leader Electro: Jesper A. Flatheim

• Technical leader Computer: Filip Sølvberg Herrera

• Technical leader Mechanical: Haakon Aleksander Schei

1.1.2 Mechanical

Design of ROV frame, electronic enclosure, and Float

Following the product development process, this thesis aims to design and
build the frame of the ROV, the electronic housing, and the shell of the
float. The primary focus of the design is to mesh together all the individual
parts into one functioning ROV while also ensuring the ROV can perform
the tasks in the MATE- and TAC ROV competitions.

3

1.1 Introduction

In light of the present environmental challenges, a secondary focus will be
sustainability, and recyclable materials, to minimize the environmental im-
pact of this process. Effective use of DFE can also help reduce cost and
production time while increasing product quality. Material choice, struc-
tural, flow, FEM, and buoyancy analysis are tasks to be solved here.

Manipulator

The main task is to develop and design a functional manipulator for tasks
the ROV completes. The goal is for the mechanical arm to be useful for
MATE requirements while being uncomplicated enough for production and
maintenance. Creativity and problem-oriented solutions are necessary to
complete this task. Deciding degrees of freedom, which mechanical princi-
ples to implement, and material choice are some problems that need to be
solved.

In addition, cooperation with electrical engineers is essential regarding ma-
nipulator compatibility with the rest of the electrical system. Stress, bend-
ing, and shear analysis are fundamental for the success of this task.

1.1.3 Electronics

Power module

The power module’s primary function is to regulate and distribute the input
voltage provided by the topside system. Its role also includes protecting the
components from overload and preventing short circuits. Given that the
input voltage is 48V, the system must lower the voltage to ensure that each
element receives the appropriate amount of power.

Communication ROV

The communication group’s main task is to create a standard system so that
electrical circuit boards are connected and can communicate with the rest

4

1.1 Introduction

of the system. By utilizing CAN-bus in addition to C-code, the system can
efficiently convey signals and commands between each other. In addition,
communication between ROV and the topside system has to be solved. Here
control signals from topside to ROV, process data, and video feed from ROV
to topside need to be processed efficiently with minimal delay.

In addition, the internal design of the electronic enclosure is this group’s
responsibility.

Regulation system (Control systems)

The primary objective is to design a navigation and regulation system for
the ROV. The system’s core components include selecting the appropri-
ate thruster configuration and manipulator motor and developing a circuit
board in collaboration with the mechanical groups. These components en-
sure the ROV’s physical limitations and characteristics align with its inter-
actions within the environment.

The circuit board will serve as an interface between the motor controller
and other circuit boards. The choice of thrusters and motors must com-
ply with competition standards. Additionally, a significant responsibility of
this group is to develop a control system. This system will interpret com-
mands and sensor measurements from the topside and other circuit boards,
enabling the ROV to operate and maneuver effectively. Ensuring stability,
maintaining orientation, and achieving a desired depth position are vital
tasks that need to be addressed by the regulation aspect of the system.

Mathematical models and functions will be required to digitally replicate
its behavior to accurately simulate the various degrees of freedom of the
ROV.

Sensor system:

The main task of the sensor system is to maintain and disperse information
from the different sensors and act upon the vital data. These are orienta-
tion(IMU), leak, and pressure sensor. IMU retrieves angle data and axis

5

1.1 Introduction

relation and generates data the regulation system uses to control and drive
the thrusters. The Leak sensors consist of 3-4 leak probes placed along the
inside of the electronics enclosure to detect eventual leaks and aptly react
to the information to minimize damage to critical electrical components.
The temperature sensor is divided into three identical sensors along the en-
closure at critical points. This is to monitor internal temperature and the
dispersion of it. The pressure sensor is the only one externally mounted,
retrieving changes in water pressure due to depth changes.

FLOAT:

The float is the only component not attached to the main ROV. It is essen-
tially its own AUV, with a pre-programmed flight path and power supply.
It gathers vital information about ocean health and the underwater envi-
ronment.

The competition requires that the float completes two vertical profiles: Sink
to the bottom and return to the surface. Afterward, it has to relay the com-
pletion time with a ping to the topside system, temperature, and pressure.
This will be displayed for the operator to view.

It operates with a buoyancy engine to complete this path.

1.1.4 Computer Science

Image Processing:

The main task of the Image processing group is to complete a subtask for
the MATE ROV competition, which is based on processing image data to
solve several tasks. These require camera vision with depth perception and
autonomous programming. The tasks are the following:

• Autonomous Docking

• 3D Modelling of sick coral

6

1.1 Introduction

• Count frogs along a transect line

• Monitor/analyze of seaweed growth

GUI:

The primary objective is to develop a monitoring and control system for the
ROV (Remotely Operated Vehicle). To achieve this, we need to implement
a system that enables the transmission of commands and control data from
the topside to the ROV. This task requires close collaboration with the
communication group.

Furthermore, we aim to present all relevant information and video feeds to
the user in real-time through a custom graphical user interface (GUI). It
is crucial to create a user-friendly GUI that includes control commands, as
these aspects significantly contribute to the overall quality and usability of
the product.

1.1.5 MATE - Marine Advanced Technology Education

The primary goal of UiS Subsea for this project is to develop competitive
products that can participate in and succeed during the MATE competition
in June 2023. To achieve this objective, it is crucial to understand the
nature and requirements of the MATE challenge thoroughly. This involves
identifying the various challenges involved and comprehending the scoring
system so that we can optimize our products to score as many points as
possible. We will gather the necessary information from the competition’s
website and manual to ensure the design of satisfactory products. The
following information has been obtained from the organizations’ websites.
[1] [2]

The ROV created by UiS subsea this year follows the specification deter-
mined by the international competition, MATE ROV COMPETITION.
This competition is hosted by organization MATE.The Marine Advanced
Technology Education (MATE) Center is a partnership av a multitude
of American organizations, established in 1997. These partners mainly

7

1.1 Introduction

comprise schools, research institutes, governments, and Marine institutes.
This cooperation’s primary goal is to improve marine technical education,
strengthening the future American workforce for maritime operations.

Figure 1.2: MATE
logo

Figure 1.3: MATE II
logo

In 2021, MATE transferred the responsibility for
student activity over to Marine Advanced Tech-
nology Education for Inspiration and Innovation’s,
otherwise known as MATE II. Their main objective
is to motivate students’ interest in maritime knowl-
edge, mainly by hosting MATE competition every
year. They challenge students to implement engineering principles and ex-
pertise to solve subsea tasks. UiS Subsea is competing in the EXPLORER
class, reserved for students with Higher technical educational backgrounds.

MATE ROV Competition

The information about the competition is retrieved from the competition
manual [3].

Figure 1.4: MATE
Competition logo

This year’s competition themes are no different
from the previous two, highlighting the importance
of the United Nations Decade of Ocean Science for
Sustainable Development (2021-2030). Their inno-
vation is to increase ocean knowledge and ensure
that society implements this knowledge, thus con-
tributing to the UN’s Sustainability goals. This
year’s task is to create an ROV and a scientific
float. This year’s themes are the facilitation and production of clean en-
ergy, surveillance, and tracking of the ocean’s biological diversity.

8

1.1 Introduction

Points
Table [1.1] demonstrates the available points’ segmentation. Product demon-
stration is the first part, where UiS Subsea will solve three practical tasks
within 15 minutes. If this is achieved, additional points are given, 1 per
minute and 0.01 per second. Extra points are given for ROVs below 25
kg and good teamwork under the competition. These practical tasks are
meant to test the operational characteristics of the ROV. The secondary
segment points are designated for the technical documentation and how the
organization portrays itself. The final points are given based on the safety
of the ROV and how the relevant dangers have been adequately analyzed
and addressed.

Table 1.1: Points structure

Product demonstrations
Tasks 300 points
Time bonus 10 points
Weight restrictions 10 points
Organization efficiency 10 points
Engineering and communication
Technical documentation 100 points
Product presentation 100 points
Marketing 50 points
Company specification sheet 20 points
Company responsibility 20 points
Safety
Review of safety documentation 20 points
Safety inspection 30 points
Safety job analysis 10 points
Total 680 points

Task 1: (Maritime, renewable energy)

UNs Sustainability goals:
7 Clean energy for all
12 Responsible consumption and production
The first task is designed to simulate an offshore installation of floating
solar panels in an established floating wind farm, removal of biofouling, and

9

1.1 Introduction

piloting the ROV either Autonomously or manually into an underwater
docking station

1.1: Installation of a collection of floating solar panels

• Maneuver the solar panels between 3 existing wind turbines: 10 points.

• Moor 3 moorings to the solar panels: 15 points.

• Remove the lid from power port entry: 5 points

• Connect plug from solar panels: 10 points.

(a) Seabed anchor for installation (b) Floating solar panel
(c) Hook for
mooring

1.2: Remove biofouling from the floating wind turbines
biofouling is simulated either with red PVC pipes connected with Velcro or
chenille pipe cleaners twisted together.

• Remove 1-2 units av biofouling: 5 points

• Remove 3-5 units av biofouling: 10 points

• Remove 6 units av biofouling: 15 points

10

1.1 Introduction

(a) Biological material on
structure (b) Biological material on rope

1.3: Maneuver the ROV into docking station
To be allowed to compete in the competition, the ROV has to fit inside the
docking station, with extra points given for the automation of the docking.

• Maneuver autonomously into docking station: 15 points

• Maneuver manually into docking station: 10 points

Figure 1.7: ROV Docking station
.

11

1.1 Introduction

Task 2A: Coral reef and blue carbon

UNs Sustainability goals:
13 Stop climate change
14 Ocean life
The second task is divided into two parts: 2A and 2B. Part A represents
scientific tasks: scanning a coral reef, identifying organisms by utilizing
eDNA, exposure to UV light on sick coral reefs, inspection, and installing
an environmental mooring system to protect seaweed on the seabed.

2A.1: Measure, model, and identification of disease on coral reef

• Measure diameter on a coral reef: 5 points

• Measure height on a coral reef: 5 points

• Measure area of infection: 5 points

• Make a 3D autonomously: 15 points

• Make a 3D model in CAD manually: 5 points

All measurements must be done within 2cm and can be completed au-
tonomously or manually with reference objects.

Figure 1.8: Main coral with white spots
.

12

1.1 Introduction

2A.2: Identify coral reef organisms with eDNA

• Extract water sample from the bottle: 10 points

• Identify fish species based upon three samples provided by hosts: 5
points

(a) Water bag connection
(b) Connection for sam-
ple extraction

2A.3: Administrate Rx to infected coral

• Position UV-light above infected area: 5 points

• Activate light and cure: 5 points

• Place tent above coral reef: 10 points

• Place syringe in tent opening: 5 points

• Remove syringe contents inside the tent: 5 points

13

1.1 Introduction

(a) Photo resistor (b) Tent

(c) Syringe connection

2A.4: Seaweed habitat protection and surveillance

• Identify if seaweed habitat has been rehabilitated, remained unchanged,
or worsened, based upon images: 5 points

• Install Eco-Mooring system on the seabed, inside a base, and rotate
mooring 720°in the base: 10 points

(a) Seaweed (b) Eco-Mooring base (c) Mooring

14

1.1 Introduction

Task 2B: Lakes and rivers

UNs Sustainability goals:
13 Stop climate change
14 Ocean life
Task 2B primarily focuses on working with freshwater bodies. The objec-
tives of this task are to locate fish, assess whether they are invasive species,
and release fry in safe areas. Additionally, there is a requirement to inspect
ropes, remove larger objects, follow a designated transect line, count frogs,
and install an underwater camera.

2B.1: Re-introduce endangered species of Northern Redbelly Dace
fry

• Survey 2 areas, and identify which is safe to place to release the fry:
10 points

• Acclimatize fry to a safe area: 5 points

• Release fry in the safe area: 10 points

(a) Habitat area

(b) Fry (c) Current fish species

15

1.1 Introduction

2B.2: Ensure the health and safety of the Dillion reserve

• Inspect rope for a buoy and display the ten letters attached: 10 points

• Display the documentation of the ROVs lifting capacity: 5 points

• Lift object a maximum of 120 Newton above water: 10 points

• Return object to land: 5 points

(a) Rope with letters
(b) Heavy object which is to be re-
moved

2B.3: Surveillance of endangered Lake Titicaca frogs

• Fly a transect line and maintain the image within the area: 10 points

• Count the number of frogs within an area: 5 points

• Install a camera on a designated area: 5 points

16

1.1 Introduction

(a) The transect line area that the ROV will
fly over

(b) The camera which is to
be installed

Task 3: (MATE Floats!)

UNs Sustainability goals:
13 Stop climate change
This task represents the construction of a functioning scientific float, which
will transmit data when it reaches the ocean surface.[4]

3.1: MATE Floats! 2023

• Design and construct a functioning vertical profile float: 5 points

• Float communicates with land before submersion: 10 points

• Float transmits to land the time of completion after first vertical pro-
file: 10 points

• Vertical profile 2, the float sinks and rises after impact with seabed:
10 points

• Float transmits to land the time of completion after second vertical
profile: 10 points

• Vertical profile 1, the float sinks and rises after impact with seabed:
10 points

17

1.1 Introduction

Restrictions and demands

The competition has certain physical restrictions with size, weight, the op-
erational environment, and electrical limitations. The only vehicle to be
utilized is an ROV.

Environment:
The ROV shall be able to operate in fresh, salt, or chloride water in a
temperature span of 15 to 30 °Celsius.

Materials:
The ROV shall be able to operate at a minimum four meters depth while
being under a maximum of 35 kg.

Tether length:
The tether has to be long enough to operate within an area 10 meters from
the edge and 4 meters deep. The topside control system can be up to 3
meters from the pool’s edge.

Thrusters:
The thrusters shall be adequately protected and meet IP-20 standards. The
thrusters shall be designed to operate underwater.

Electrical:
The organizer provides a power supply of 30A and 48 VDC for ROV. Con-
version to lower voltages has to happen inside the ROV. Overload protection
on 150% of nominal power usage on the ROV shall also be implemented.

Float:
Batteries utilized shall be of type: AAA, AA, A, A23, C, D, or 9V alkaline
batteries. The float shall be protected with a 7.5A fuse. There must be a
pressure relief valve with a minimum diameter of 2.5cm.

18

1.1 Introduction

1.1.6 About ROV Project

ROV history

The creation of the first ROV can be credited to Dimitry Rebikoff, with
his invention shown below. [5] The aptly named Poodle was made in 1953,
complete with a tethered connection and operated with a topside control
panel.

Figure 1.15: The world’s first ROV

The subsea sector has come a long way since then, and modern ROVs are
quite different. In the 1960s, the U.S. NAVY utilized ROVs as recovery
drones for underwater equipment. Within 20 years, there were over 500
ROVs worldwide, mostly in the commercial market, each designed with a
specific task and purpose. There are a couple of common components of
standard ROVs, being: [5]

19

1.1 Introduction

1. Thrusters

2. Tether

3. Camera

4. Lights

5. Frame

6. Pilot controls

7. Buoyancy element

Figure 1.16: Diagram of common
components

Newer ROVs are designed based on the given task; some can be: obser-
vation, high-speed survey, inspection, trenching, burial, intervention, and
construction. Some ROVs can be used for many tasks, while others are
limited in design. There are seven main classes of ROVs, from I to VII [6]:

20

1.1 Introduction

1. Pure observation [7]

2. Observation with payload op-
tion [8]

3. Work class vehicles [9]

4. Seabed-Working vehicles [10]

5. Prototype or development vehi-
cles

6. Autonomous underwater vehi-
cles (AUV) [11]

7. High-Speed survey vehicles[12]

Figure 1.17: The different ROV
classes

There are several benefits and limitations to each class. Class I: Pure obser-
vation vehicles are physically limited to video observation however highly
maneuverable. Generally, they are small vehicles fitted with video cam-
eras, lights, and thrusters. They cannot undertake any other task without
considerable modification.

Class II – Observation with payload option has the same capabilities as a
pure observation ROV, but usually with additional functionality, such as
manipulator, color cameras, other cameras, sonar, and cathodic protection
measurement system.

Class III: Work class vehicles are large enough to carry additional sensors
and manipulators. They have semi-autonomous capabilities, also known as
multiplexing capability, which allows heavier equipment to run without be-
ing hardwired through an umbilical system. Furthermore, they have enough
stability and buoyancy to carry additional detachable equipment without

21

1.1 Introduction

losing functionality. This class is larger than the previously mentioned, with
three sub-classes based on power rating:

1. Class III A – Work class vehicles < 100 Hp

2. Class III B – Work class vehicles 100 Hp to 150 Hp

3. Class III C – Work class vehicles >150 Hp

Class IV: Seabed working vehicles are utilized, as the name suggests. They
maneuver on the seabed by a wheel or belt traction system, thruster pro-
pellers, water jet power, or a combination. These vehicles are usually even
larger than Class III, with their main purpose being subsea work: dredg-
ing, mining, cable and pipeline trenching, excavation, and other subsea
construction work.

Class V: Prototype or development vehicles are classified as under develop-
ment or have not been sufficiently tested. Most special-purpose vehicles or
one-off prototypes end up here since any of the previous classes cannot cat-
egorize them. Class VI and VII are in this class according to the Norwegian
standard of ROVs since they are still under development and only a select
few companies produce these vehicles.

YME

This year, the ROV developed and produced a class 2 vehicle with 6 degrees
of freedom and a compact design. The goal is to create a vehicle based upon
well thought existing solutions while following UN Sustainability goals.

22

1.1 Introduction

Figure 1.18: 3D model of ROV

YME is controlled by a customized GUI, which communicates via an um-
bilical cord to the ROV. The project’s primary goal is to compete at the
MATE ROV competition; thus, the vehicle is designed for this purpose.
Additionally, the project participants have set a personal goal to be able
to operate at 100m depth. The design is modular, something that makes
parts easily replaceable and further developed, both as an ROV and AUV
(Autonomous Underwater Vehicle)

Float

Scientific floats have been utilized for a long time, ever since Henry Melson
Stommel came up with the idea back in 1955.[13] The main goal of a float
was to track and monitor deep drift currents, and the first was manufactured
of aluminum with a depth rating of 4500m. Using a buoyancy engine, it
changes its depth to pre-programmed heights. A biochemical float uses an
array of optical and chemical sensors to gather valuable data at otherwise
difficult locations.[14]

23

1.1 Introduction

Figure 1.19: Diagram of a float cycle [15]

Figure [1.19] Shows a normal float cycle. Firstly, they descend to a depth
of 1000m, drifting for 5-10 days while acquiring valuable data. This is
repeated at 2000m and finally ascends to the surface for data transmission.
An average float will have a life cycle of about five years once the battery
is depleted.

24

1.2 GUI - A closer look

1.2 GUI - A closer look

As stated in Chapter 1.1.4, the main task is to develop a system that moni-
tors and controls the ROV. This involves several sub-tasks to be completed
for the main objective to be accomplished. Here is a list of what sub-tasks
that need to be done to fulfill the requirements of the main task:

• Establish communication between topside and subside

• Gather steering data from controllers and send this data to subside

• Create a graphical user interface to view sensor data, video feed, and
display desired buttons with accompanying functionality

The first sub-task concerns figuring out how to send and receive packets
and decide how these packets should look. This requires cooperation with
the Communication group.

After establishing how the data should be sent and received, steering data
can be gathered and built into packets. What functionality the ROV and the
Manipulator should have depends on the input from the Control Systems
group, or rather what UiS Subsea together decides the functionalities should
be.

The final part of the main task is to make the GUI itself. This will be
used while steering the ROV and is very important to show the necessary
information for the pilots operating the ROV and the Manipulator.

The topside system is based on last year’s topside implementation but has
had several major changes and implementations because of different needs,
requirements, preferences, and specifications.

25

1.2 GUI - A closer look

1.2.1 Overview of what needs to be done

Here is a list of planned features to be added to our system:

• Communication

– Send data from subside to the topside

– Send data from topside to the ROV

– Send steering data to the ROV

– Add logger that oversees every packet sent

• Controllers

– Gather steering data from controllers

– Implement steering for the ROV and the Manipulator

– Make steering effective, user-friendly, and intuitive

– Drive manually or automatically

• GUI

– Show important information such as:

∗ Temperature of the ROV
∗ Temperature of the surroundings
∗ Error messages and alarms
∗ Thruster throttling values
∗ Current and voltage values

– Turn on/off lights

– Display camerafeed

– Turn cameras

26

Chapter 2

Background and Theory

2.1 Technologies and Protocols

The communication between the topside and the ROV is critical in under-
water operations. Underwater operations such as offshore drilling, marine
exploration, and research require effective communication between the top-
side and the ROV. The technologies and protocols used to facilitate this
communication are designed to ensure reliable, fast, and secure transmis-
sion of data. In this section, we will look at what kinds of assessments were
done when choosing the software, the programming language, the joystick,
the protocols, and the way communication between the topside and the
ROV takes place.

2.1.1 Communication

As part of the bachelor project, establishing a reliable communication chan-
nel between the topside and the ROV required an understanding of the
necessary steps and protocols

The Open Systems Interconnection (OSI) model is a conceptual model
which describes the logical construction of a communication network. The

27

2.1 Technologies and Protocols

model is divided into seven layers, where each had its own function. The
layers are Layer 1-Physical, Layer 2-Data Link, Layer 3-Network, Layer 4-
Transport, Layer 5-Session, Layer 6-Presentation, and Layer 7-Application.
A more detailed description of each layer and corresponding protocol can
be seen in Figure [2.1] beneath. [16]

Figure 2.1: OSI layers and corresponding protocols. [16]

As seen in Figure [2.1], Layer 4-Transport, is responsible for end-to-end

28

2.1 Technologies and Protocols

connections and reliability, meaning that it’s one of the layers that will
have the biggest impact. [16]

2.1.2 Transmission Control Protocol

TCP is one of the most used protocols in the transport layer. Its main task is
to ensure reliable data transmission between end-to-end connections. TCP
breaks segments from layer 5, session, into packets and sends them over the
network. TCP follows the client-server model to establish the connection.
[17]

For reference, the client-server model is a commonly used architecture in
computer networks. The client requests a resource from a server, which
provides those asked resources. [18]

Figure 2.2: Client-server model representation. [18]

TCP has various methods to ensure reliable data transmission. Firstly, it
uses a 3-way handshake process where it sends SYN and ACK packets to
establish the connection. Secondly, it uses a flow control mechanism to
prevent vast amounts of data from overflowing the receiver. Lastly, it uses
error detection and correction through the use of checksums. [19]

We used TCP to ensure that the packets that were being sent, were received
in the correct sequence and that none of them were missing. There were
also discussed other possibilities to use other protocols instead of TCP, that
ensured reliable transmission. [19]

29

2.1 Technologies and Protocols

2.1.3 User Datagram Protocol

UDP is another transport protocol. Even though it is in the same layer as
TCP, it behaves in a completely different way. As stated, TCP is used to
ensure the reliable transmission of data, where each packet is being checked,
while UDP uses a best-effort mechanism. [20]

The mechanism refers to the protocol’s approach of transmitting data with-
out guaranteeing complete delivery of packets, or verification that packets
arrive in order or error-free. [20] It is mainly used when speed is of more
importance than reliability. Because it does not have to establish a con-
nection using a three-way handshake there is less overhead associated with
sending data using UDP.

UDP is often used on applications like streaming media, online video games,
and video meetings, where slow speed can lead to poor user experience, and
where the loss of packets is of exceptionally small importance. [20]

2.1.4 TCP versus UDP

Unlike last year, this year’s communication included both TCP and UDP
protocols. TCP protocol uses connections, meaning that it sends TCP
flags to acknowledge the connection between the topside and ROV. This
was used where data is being transported to ensure no loss of important
data.

This year’s solution implemented as well UDP protocol, which is connec-
tionless, to transfer the camera feed from the ROV to the topside. This
will not only speed up the process but also drastically decrease the CPU
and process capacity needed for data transfer. Figure [2.3] shows how the
speed difference between protocols is achieved. [20]

30

2.1 Technologies and Protocols

Figure 2.3: Representation of UDP and TCP data transport methods [21]

2.1.5 Communication Medium

In addition to transport protocols, it is important to be aware of the phys-
ical layer which covers physical networking media, such as a cable docking
connector. The reason for that is that it can affect ROV performance dras-
tically. For example, for the GUI, it was important that the cable had a
high enough data transfer rate to be able to see the video live.

When choosing cable, additional calculations are needed, such as electri-
cal properties, functional-, and process characteristics, and characteristic
parameters including voltage, data transfer rate, maximum transmission
distance, and physical connection media.

There were two options for cable types. The first one was to use fiber cable
and the second was to use an Ethernet cable, either CAT5 or CAT6.

To avoid damage to the cable, which can cause loss of connection between
the ROV and topside, an Ethernet cable was used, not only because it is
more sturdy but because it was cheaper as well. According to "Library

31

2.2 Camera

Systems" the fiber price can be approximately 52 percent higher than a
CAT 5 cable, and additionally, 70 percent higher to install it since skilled
installers are required. [22]

One of the disadvantages of an Ethernet cable is that its range is limited,
meaning it can typically only transmit data up to 100 meters without re-
quiring additional equipment, but since we were mainly focusing on the
MATE competition, and it takes place in a pool, it was of no importance.
Additionally, we will participate in the TAC challenge in Tau which takes
place in the ocean, but since the depth will not be exceeding 100 meters,
we won’t be needing any additional equipment. [22]

2.2 Camera

The ROV camera was chosen with regard to what other groups needed. A
stereo camera with HD resolution was necessary for the Machine Vision
group to perform fish counting, autonomous docking, distance measuring,
and 3D modeling. The camera was equipped with tilt capabilities, making
ROV steering easier.

The challenging, and one of the most important parts, was to design the
camera in a way that it had the ability to withstand harsh underwater
conditions like turbidity, high pressure, corrosive saltwater, and currents.

Figure [2.4] beneath shows one of the two cameras that were mounted to
the ROV.

32

2.2 Camera

Figure 2.4: One of the ROV cameras [23]

2.2.1 Camera Positioning

The ROV used stereo cameras to have a visual angle around the whole
ROV. The cameras were mounted at the front and at the bottom of the
ROV. They were inside acrylic domes to make them waterproof.

2.2.2 Camera Lights

To be able to capture high-quality images and video footage deeper in the
water, the lights play a crucial role. Therefore, there were LED lights
mounted around the cameras. These helped enhance the contrast and clar-
ity of the video feed, allowing the operator to better distinguish objects and
have an easier orientation in the water.

33

2.2 Camera

2.2.3 Remote Connection

The Nvidia Jetson, see Figure [2.5], is normally used in AI for running
multiple neural networks in parallel. However, in our project, it was used
as a mini computer that would receive and send commands to the topside
and the ROV. [24]

Figure 2.5: Nvidia Jetson Nano b01 4GB. [24]

Figure 2.6: SSH Protocol

To get a connection we used SSH. SSH is a software package that enables
secure system administration and file transfers over insecure networks. The

34

2.2 Camera

SSH protocol uses encryption to secure the connection between a client and
a server. [25]

2.2.4 GStreamer

Figure 2.7: Gstreamer Logo [26]

To get the camera data from the Nvidia Jetson to the topside, GStreamer
was used. GStreamer is a cross-platform, open-source pipeline-based frame-
work for multimedia. GStreamer has plugins that can be linked and ar-
ranged in a pipeline which will then define how the data flows. [27] [28]

Code 2.1: Example on launching camera with GStreamer Pipeline
1 gst-launch-1.0 filesrc location=videofile.mpg ! dvddemux ! ...

mpeg2dec ! xvimagesink

• filesrc location=videofile.mpg: Reads a file and passes it along
the pipeline as raw data.

• dvddemux: This element demultiplexes the data into separate streams,
in this case, it demultiplexes a DVD-compliant MPEG-2 stream.

• mpeg2dec: This element decodes the MPEG-2 video stream into raw
YUV frames that can be displayed.

• xvimagesink: This element displays the YUV frames on the X Win-
dow System using the XVideo extension.

35

2.3 Development and Working Method

2.3 Development and Working Method

2.3.1 Git

Git is a version control system that can handle all sorts of projects. This
means that users can save different versions of their code with the use of
commits. Commits make it possible to go back and review previous code
snippets, and make it easy to collaborate with others. This also makes
it possible to revert any unwanted changes by going back to an earlier
version of the project. The possibility of inviting members to contribute
simultaneously to the project is a major advantage of Git. [29]

Figure 2.8: Example of commits merged into the main branch, showing the
versatility of them. They all have their own ID which can be used to access each
commit individually.

The version control is controllable by branches, which allows users to create
diverging branches to test and verify new code implementations without
jeopardizing the contents of the main branch. The diverging branches can
be merged into the main branch to update it with the latest changes.

Gitignore

A gitignore file specifies intentionally untracked files that Git should ig-
nore. [30] Simply put, a gitignore file prevents unnecessary files from being
committed to the repository. This makes it easier to have an organized
repository where few merge conflicts happen. To easily create a gitignore
file it is possible to use the website Toptal. Toptal has a function that can
automate the creation of chosen gitignore files. [31]

36

2.3 Development and Working Method

2.3.2 Github project table

GitHub Issues is an efficient tool to organize what to do and who does what
in the project. It is a Kanban table where all members can add new to-do’s
and sort them by what needs to be done; Todo, what is currently being
worked on; In Progress, and what is completed; Done. [32] [33]

Figure 2.9: Github Projects Table

2.3.3 Development strategy

The group consisted of three members, so the communication within the
group was good and required minimal coordination to keep up to date.
The chosen method of planning and keeping track of progress was by using
Github’s project table (Ch.2.3.2). A Kanban table can easily get over-
crowded by to-do’s if the group size is too big, but in this case, it is suitable
and efficient. This allowed for splitting up tasks into what state they are in
and allocating users to each task.

Further division of work was done by dividing into different areas of the

37

2.4 Programming Language

project. As the bachelor thesis consisted of establishing a connection be-
tween the topside and the ROV, creating a GUI, and implementing steering
for the ROV and manipulator, it was possible to split work into three differ-
ent areas: communication, GUI, and steering. The result was specialization
for each member in their branch of work. Less time was used on everyone
understanding everything, and more time was used on getting a deeper
understanding of the specialized field, resulting in more efficiency.

2.3.4 Meetings

Good communication is essential in larger projects. Meetings were arranged
weekly to summarize the progress of all the groups in UiS Subsea. One
member of each group joined these meetings every Monday, giving a short
rundown of what was done last week and what needed to be done the current
week.

Other meetings were arranged between smaller groups of members. Some
groups relied more heavily on each other and could set up meetings to
discuss topics related to them. This year, members of UiS Subsea had the
opportunity to contact last year’s Subsea team, which allowed them to get
more help. Meetings with a supervisor were held every other week to give
an update on the progress and ask questions.

2.4 Programming Language

To determine the optimal programming language for the project, an evalu-
ation was conducted. The evaluation included an examination of the pro-
gramming languages previously used in UiS Subsea to create the topside
system. We looked at advantages and disadvantages to figure out which
language was optimal for our use.

38

2.4 Programming Language

2.4.1 Earlier languages

Year Earlier programming lan-
guage

Groups field of study

2014 C# and .NET Computer Science
2015 C++ Automation and Electronics

Design
2016 Python Computer Science
2017 — —
2018 Python(with ReactJS and

NODEJS)
Automation and Electronics
Design

2019 MATLAB Automation and Electronics
Design

2020 — —
2021 Python (with flask, Gunicorn

and Nginx, JS) and GO
Automation and Electronics
Design

2022 Python (with QT and PyQT) Computer Science

Table 2.1: Programming languages used by earlier groups, and which year.

Table [2.1] shows the previous year’s usage of programming languages for
the UiS Subsea project, and their field of study. Based on the table, C#
and Python were the most utilized and looked relevant to consider for the
project.

2.4.2 Python

Python is an interpreted, object-oriented, high-level programming language
that focuses heavily on readability and fast production. Python has a va-
riety of libraries to use. Another positive element is that almost all engi-
neering students in UiS Subsea have experience with Python from earlier
subjects. All this makes Python a good candidate for the project. [34]

39

2.4 Programming Language

Figure 2.10: Python logo [34]

2.4.3 C#

C# is an object-oriented programming language created by Microsoft and
designed to be a modern programming language that builds on C++ and
C.

Just like Python, C# has a variety of libraries to choose from, many of which
were developed in C++ and C, which makes for good documentation. [35]
All these features made C# look like a good candidate for the project.

Figure 2.11: C# logo [36]

2.4.4 Choosing a language

When choosing a language, there are a few things to keep in mind: project
requirements, availability of libraries and frameworks, community and doc-
umentation around the language, and development team skills.

40

2.5 Frameworks

After examining the two programming languages, we found that they ful-
filled many of our needs. Both languages met the project requirements and
had an extensive range of libraries with active communities and documenta-
tion. However, we opted for Python because there was a lack of experience
with C# throughout the team. Because everyone understood Python, it
would be easier for the groups to assist each other.

2.5 Frameworks

2.5.1 Qt

QT is a versatile framework for creat-
ing applications. It can be deployed
across multiple platforms including
mobile devices, embedded, and desk-
tops. It is written in C++ and is used
by leading companies and over 70 in-
dustries. Qt is being used to create
a variety of different programs, ex-
amples of this are Adobe Photoshop
Elements, EAGLE CAD IDE, Google
Earth, TeamViewer, and many more.
In these programs, QT is being used
to create graphical interfaces and con-
trol the data going in and out. This
can also be used to control other sys-
tems, which in our case was an ROV.
[37] [38]

Figure 2.12: QT-logo [39]

2.5.2 PyQt

PyQt is a set of Python bindings that connects the C++ application frame-
work and the cross-platform interpreted language Python. A binding is an
application that translates commands from one language, which in this case
is Python to C++ code for QT-specific commands. [40]

41

2.5 Frameworks

Creating a simple application in QT

This is how to create a simple PyQt5 Application. As shown in Code [2.2],
a simple PyQt5 application window can be created with just a few lines of
code. This is the equivalent of a Hello World! program.

Code 2.2: Pyqt5 example [41]
1 import sys
2 from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel
3

4

5 class SubseaGUI(QMainWindow):
6 def __init__(self):
7 super().__init__() # Call the __init__ method of ...

the QMainWindow class
8

9 # Create a QLabel Widget
10 label = QLabel("Hello UiS Subsea")
11

12 # Set the central widget of the Window.
13 self.setCentralWidget(label)
14

15

16 app = QApplication(sys.argv) # Create an instance of the ...
QApplication class

17 window = SubseaGUI() # Create an instance of our ...
SubseaGUI class

18 window.show() # Show the window
19 app.exec() # Execute the application

Figure 2.13: PyQt5
Window Example

Figure [2.13] shows how the window looks like in
Windows 11. The "Hello UiS Subsea" is the
Qlabel from the code.

42

2.5 Frameworks

The Event Loop

In a QT application, any interaction with the GUI, such as moving a slider
or clicking a button, generates an event that gets added to an event queue.
Whenever a waiting event is found, it gets sent to the appropriate event
handler, which handles the event and gives control to the event loop, which
waits for any new events. There is only one event loop in each application,
this loop sits in the Qapplication (line 16 in Code 2.2).

Figure 2.14: Event Loop In PyQt5 [41]

QT Designer

QT designer is one of many tools created by QT. It enables developers to
create and modify GUIs. It has a big range of tools and features for creating
layouts, using widgets, and customizing everything in the GUI. The result is
stored in an XML-based UI file that can be used directly in QT designer
or converted into a Python module with UIC.

43

2.5 Frameworks

Figure 2.15: QT Designer Window

UI-files

To convert the UI files into Python modules, UIC was used at the beginning
of the GUIs Window class. See line 12 in Figure [2.3]. [42]

Code 2.3: How to use UIC to load a UI file
1 class Window(QMainWindow):
2 def __init__(
3 self,
4 gui_queue: multiprocessing.Queue,
5 queue_for_rov: multiprocessing.Queue,
6 manual_flag,
7 t_watch: Threadwatcher,
8 id: int,
9 parent=None,

10):
11 super().__init__(parent)

44

2.5 Frameworks

12 uic.loadUi("gui/mainwindow.ui", self) # Load the ...

.ui file

After importing the UI file, it is possible to reference the widgets in the
code.

QT Style Sheets

QT Style Sheets gives us the ability to customize the appearance of our
GUI. It has many similarities with CSS. [43] [44]

QT Style Sheets can be used in two ways. One in which you design every-
thing in QT Designer and style the various widgets to change them specifi-
cally, or use a Stylesheet file to write it separately from the layout. In this
project, designing through QT Designer was used. See Figure [2.16] where
the background-color, QFrame and the QPushButton get styled.

45

2.5 Frameworks

Figure 2.16: QT Designer Window with stylesheet

2.5.3 Pygame

Pygame is designed to create video games using a set of Python modules.
Pygame adds more functionality to the already existing SDL library. The
Simple DirectMedia Layer is created to provide access to data such as joy-
sticks, mouse, audio, keyboard, and graphics hardware via OpenGL and
Direct3D. This warrants the accessing of controller data, which was used to
control both the ROV and the Manipulator. [45] [46]

46

2.6 Steering

2.6 Steering

This year it was decided to use two separate controllers for steering the
ROV and Manipulator. This decision made it possible to implement more
functions if needed and allowed for an easier understanding of the controls.

2.6.1 Choice of Controller

Choosing a suitable controller type for the project was important for gath-
ering the correct data that should be sent from the topside to the ROV.
When first approaching the decision of choosing what controllers to use, the
group started out by researching previous years’ implementation of steering
in UiS Subsea. This narrowed the choices down to two types of controllers:
Xbox 360 controller and Xbox Series X controller.

(a) Xbox 360 controller (b) Xbox Series X controller

Figure 2.17: Choice of controller type between (a) and (b)

After discussing which option would be best and testing both types of con-
trollers, it was clear that the Xbox Series X controller had advantages over
the older Xbox 360 controller. Not only would it be necessary to buy an
extra controller of the older type if this was the chosen controller type, but
it was also quite imprecise compared to the newer controller type, as seen

47

2.6 Steering

in Figure [2.18].

Having chosen a controller type, we used some of the budget for our group
to purchase two new Xbox Series X controllers. These can be seen as invest-
ments, since now they will be used by this year’s students in UiS Subsea,
and future projects can have them at their disposal.

2.6.2 Testing

To establish an understanding of how precise, which buttons, and what
values each input from the controllers gave, a website called gamepad-
tester was used to display these values. [47]

As seen in Figure [2.18] below, sub-figure (a) shows the preciseness of the
Xbox 360 controller. Compared to sub-figure (b) there is a clear difference
in the preciseness of the joysticks favoring the new Xbox Series X controller
type.

(a) Xbox 360 controller test (b) Xbox Series X controller test

Figure 2.18: The two controllers tested

An additional bonus of the new Xbox controllers is that they have the
possibility of connecting to the computer wirelessly. This was not needed
for this year’s project but might be useful for future projects if they want
to control the ROV or Manipulator without a cable.

48

2.6 Steering

2.6.3 ROV

The ROV has three directional axes: X-, Y-, and Z axis. These axes de-
scribe in which direction the ROV should move based on the input from its
controller.

Figure 2.19: ROV controls. Shows what each joystick and trigger responds to
as the corresponding directional movement.

Figure [2.19] shows which joysticks and axes were used for controlling the
ROV. Surge responds to the X axis, which was the axis for moving forward
and backward. Sway describes the Y axis, which corresponded to moving
the ROV left and right. Heave was controlled by the left and right trig-
gers, so that movement up and down vertically was possible. Finally, Yaw
controls the left and right rotation of the ROV.

49

2.7 Operating System

2.6.4 Manipulator

The Manipulator had its own controller which allowed for more functionality
if decided later in the project. The basic features of the Manipulator were
to extend and retract (telescope), tilt up and down, rotate the claw left or
right, and grip and release the claw. The Figure [2.20] below shows which
buttons and joysticks respond to these features.

Figure 2.20: Manipulator Controls

2.7 Operating System

Choosing an operating system (OS) is an important part of any project.
This is because it can have a lot of impact on compatibility, security, and
system performance. An operating system is important because it serves
as the bridge between hardware and software. Through our project, there
were two main operating systems we looked at. These were Ubuntu and
Microsoft Windows 11.

50

2.7 Operating System

2.7.1 Microsoft Windows 11

Figure 2.21: Windows 11 logo
[48]

Windows 11 is an operating system cre-
ated by Microsoft. It was released in Oc-
tober 2021 and is known for its software
ecosystem combined with a user-friendly
GUI. [49] It also has WinUI, which is
the premiere User Interface framework for
Windows desktop apps. This is a great
tool for creating UIs and could be of great
use in a project like this.

Windows 11 also has great support for WSL, Windows Subsystem for Linux,
and can be helpful to do tasks that are possible in Linux, but not in Win-
dows. [50]

Some of the features that seemed promising in Windows include:

• Great compatibility: Windows 11 has great compatibility with many
programming languages and frameworks like WinUI.

• Popularity and support: Windows 11 is very popular and there is a
lot of support to get from communities on the internet and the other
groups in UiS Subsea.

2.7.2 Ubuntu

Figure 2.22: Ubuntu
logo [51]

Ubuntu is an open-source operating system
based on the Linux Kernel. It was developed
by a British company called Canonical and a
community of other developers.
Ubuntu is known for its flexibility and aims
to be secure by default. [52]

51

2.8 Processing and Threading

Some of the features that seemed promising in Ubuntu include:

• Good Support: Ubuntu has great support for many programs, with
many official packages and repositories available. It is also easy to
install and manage these tools.

• Pre-installed SSH: Ubuntu comes with pre-installed SSH. This can
make it easy to manage another system remotely.

2.7.3 Choosing an operating system

In the end, we ended up running the project on Ubuntu. The Nvidia Jetson
was running Ubuntu, and it was better to use the same OS on all computers.
Even if Windows 11 had good support for WSL, it was still easier to run
and set up everything we needed in Ubuntu.

2.8 Processing and Threading

To effectively execute multiple tasks in our program, we used processes from
Python’s multiprocessing package and threads from Python’s threading
package.

2.8.1 Process

In the context of computing, a process is an instance of a computer program
that is being executed. It has its own memory space and is managed by the
operating system. [53]

An example of how to start a process in Python can be seen in Code [2.4].

52

2.8 Processing and Threading

Code 2.4: How to create a process in Python [54]
1 def f(name):
2 print('hello', name)
3

4 if __name__ == '__main__':
5 p = Process(target=f, args=('bob',))
6 p.start()
7 p.join()

This process prints "hello bob" in a separate process from the main process
running. The Start method executes the process, while the join method
makes sure the main process waits for the new process to complete before
continuing.

2.8.2 Thread

A thread is a subset of the process. Within an operating system, it is the
smallest unit of execution that can be scheduled. Multiple threads can
coexist within one process, sharing the process resources, but executing
independently. [53]

An example of how to start a thread can be seen in Code [2.5].

Code 2.5: How to create a thread in python [55]
1 def print_number(number):
2 print('Number:', number)
3

4 if __name__ == "__main__":
5 t = Thread(target=print_number, args=(1,))
6 t.start()

This program creates a new thread separate from the main program thread.
This thread executes and prints the number "1".

53

Chapter 3

Implementation

3.1 Process flow

This chapter will refer to the sequence of steps that a program follows to
execute specific tasks. In our case, we have several files that have to run
simultaneously to achieve the desired result. The program’s structure and
logic will be visualized using flowcharts and diagrams.

54

3.1 Process flow

Xbox-Controller

Xbox-Controller

Controller_handler.pymain.py

rovstate.py

gui.pyPyQt5-Software

Network_handler.py

Nvidia Jetson Nano

Network_handler.py

Front-Camera

Bottom-Camera

Manipulator-Camera

Topside

ROV

ROV-Cameras

Two separates controllers,
one for ROV and one for Manipulator

Local Area Network connection over
Ethernet Cable

IP: 10.0.0.2
Port: 6900

Figure 3.1: Communication structure between topside and ROV.

The figure above shows a representation of the communication structure
between the topside system and the ROV. This year, to make piloting eas-
ier, we implemented two controllers that pilot the Manipulator and ROV
separately.

Rovstate.py is where our main class Rov_State is implemented and used
by main.py. This class holds most of the functionality, such as encoding,
decoding, and creating packets.

Network_handler is where the connection between the topside and ROV
is implemented. The connection was used to send data from the topside to
ROV as a list with different IDs and data for the corresponding ID. When
receiving data from the ROV, it is received as a dictionary where the key is
the name of the packet and the value refers to a list of data. This ensured
that the right packet is being sent and received which helps place the right

55

3.1 Process flow

sensor packet at the correct location. Additionally, sensor data is being sent
via the TCP protocol, which ensures no loss when being transported.

Figure 3.2: Main file structure.

The figure above shows a detailed representation of how threads and pro-
cesses relate to main.py. The whole program is split into several threads,
and each thread has its own file. Not only does this help to get a better
overview of the structuring, but also significantly increases performance.

The program is started by running main.py, which initiates a series of
threads and processes. As we worked on multiple tasks simultaneously, we
evaluated various options for efficient execution. Through discussion within
our, and other groups, we narrowed down the options to using multipro-
cessing and threads.

When the program is started, it first checks whether the Network_handler
thread is started (see Code [3.1]). This is simply done by setting the
run_network variable to either True or False. The Network_handler
is responsible for Ethernet connection to the ROV, which uses TCP to

56

3.1 Process flow

transport heartbeat packets. Heartbeat packets work as a check function
that ensures that there still is a TCP connection between the Jetson and
the topside [56]. In case the connection drops, a new thread starts and waits
for a new connection.

Code 3.1: Initializing Network_handler thread.
1 if run_network:
2 network = Network(is_server=False, port=6900,
3 bind_addr="0.0.0.0", connect_addr="10.0.0.2")
4

5 rovstate = Rov_state(queue_for_rov, network,
6 gui_queue, manual_flag, t_watch)
7

8 id = t_watch.add_thread()
9

10 rov_state_recv_loop = threading.Thread(target=
11 rovstate.receive_data_from_rov, args=(t_watch, id), ...

daemon=True)
12

13 rov_state_recv_loop.start()
14

15 rov_state_send_loop = threading.Thread(target=
16 rovstate.send_packets_to_rov, args=(t_watch, id), ...

daemon=True)
17

18 rov_state_send_loop.start()

Next, independently of whether Network_handler is running or not, a
new process within the GUI is initiated (see Code [3.2]) that continuously
retrieves data by entering a while loop represented as Driver loop. This
process retrieves data from a queue called gui_queue that continuously
sends data until it is forcefully closed or until it gets a signal from the
Threadwatcher class which indicates that the thread has stopped. The
Threadwatcher and its function will be explained in Chapter 3.4.

57

3.1 Process flow

Code 3.2: Initializing GUI process.
1 if run_gui:
2 id = t_watch.add_thread()
3

4 gui_loop = Process(target=gui.run, args=(gui_queue,
5 queue_for_rov, manual_flag, t_watch, id), daemon=True,
6)
7

8 gui_loop.start()

The Controller_handler is another process initiated right after the GUI.
It checks for connected controller devices and initializes them. It then starts
a while loop that continuously retrieves data from the controller(s) and
sends it through a queue. Just like the GUI process, the process is con-
tinued until forcefully stopped or until it receives a stop signal from the
Threadwatcher class.

Code 3.3: Initializing Controller_handler process.
1 if run_get_controllerdata:
2 id = t_watch.add_thread()
3

4 controller_process = Process(target=controller.run, args=(
5 queue_for_rov, manual_flag, t_watch, id, True, ...

debug_all), daemon=True)
6 controller_process.start()

Lastly, send_fake_sensor_data is a function that simulates data and
sends it to the GUI. This data can be useful for a variety of reasons, such
as testing and validating software that processes sensor data, or for exper-
imenting with different scenarios and data inputs. Additionally, by using
this test thread, we can develop and test code without requiring access to
real data. This saves time, resources and helps to identify potential issues
or bugs early in the development process.

58

3.2 Data transfer between topside and Nvidia Jetson

Code 3.4: Initializing run_send_fake_sensordata thread.
1 if run_send_fake_sensordata:
2 id = t_watch.add_thread()
3

4 datafaker = threading.Thread(target=
5 send_fake_sensordata, args=(t_watch, ...

gui_queue),daemon=True,
6)
7

8 datafaker.start()

3.2 Data transfer between topside and Nvidia Jet-
son

Part of our project was to establish a communication channel between the
topside and the Jetson. We had two main tasks to perform regarding com-
munication channels. The first was to receive data from the ROV which was
then displayed in the GUI, while the second task was to send information
packets to the Jetson. The information was sent from the Jetson to one or
several circuit boards in the electrical housing of the ROV.

This year it was decided to use a larger number of circuit boards, mainly to
reduce the temperature and the risk of overheating. The image and tables
below will show every main circuit board that was used. Tables will only
show the packets that were being sent from the GUI. The data that was
received from the ROV will be shown later in the chapter.

59

3.2 Data transfer between topside and Nvidia Jetson

Figure 3.3: Electronic Housing

In Figure [3.3], you can see the electronic housing for this year’s project.
As shown in the image, the housing contains a total of seven circuit boards,
arranged from top to bottom in the following order:

1. Communication Circuit Board: Ensures communication between
the topside and other circuit boards.

2. Sensor Board: Provides sensory information.

3. Regulation Board: Handles the ROV’s regulation.

4. Motor Driver Module: Handles steering signals to the thrust of
the motors.

5. Right 12V Fuse Board: Responsible for the right side of the power
system.

60

3.2 Data transfer between topside and Nvidia Jetson

6. Left 12V Fuse Board: Responsible for the left side of the power
system.

7. 5V Fuse Board: Main fuse.

3.2.1 Control System Circuit Board

canID Byte Bit Type Description/Message Sender Note

32 Control Word IDX_Kom Init
32 B0 bytearray
32 b0 bit 0: All regulators deactivate 1: ON, 0: OFF
32 b1 bit 1: Activate roll reg.
32 b2 bit 1: Activate stamp reg.
32 b3 bit 1: Activate depth reg.
33 Styredata ROV IDX_Kom Styredata ROV
33 B0 int8 X_axis ROV framover/bakover
33 B1 int8 Y_axis ROV venstre/høyre
33 B2 int8 Z_axis ROV opp/ned
33 B3 int8 Rotation ROV snu venstre/høyre
33 B4
34 Styredata Manipulator IDX_Kom Styredata Manipulator
34 B0 int8 Manipilator IN/OUT
34 B1 int8 Rotation Left/Right
34 B2 int8 Tilt Up/Down
34 B3 int8 Claw Grip/Release

The presented table describes a communication protocol used in a system
that controls the ROV and the Manipulator. The system communicates
using messages transmitted over a CAN bus, which is a common commu-
nication standard in industrial automation and automotive applications.
[57]

The first row in the table specifies the message identifier (CAN ID), which
is a unique identifier that sorts different messages on the CAN bus. For
the regulation circuit board, three messages are defined with CAN ID 32,
33, and 34. While CAN IDs 33 and 34 are responsible for controlling the
ROVs and manipulators’ movement and directions, CAN ID 32 is used
to control ROV movement without manual interference. This method of
control is called regulation and could adjust specific parameters for the
ROV to control its roll, pitch, and depth.

A reference for how the movement functionality of the ROV and Manipu-
lator is implemented can be viewed in Code [3.14].

61

3.2 Data transfer between topside and Nvidia Jetson

3.2.2 Sensor Circuit Board

canID Byte Bit Type Description/Message Sender Note

66 Control Word IDX_Kom
66 B0 Bitarray Initializing Flag Set Initializing flag
66 b0 Zeropoint Depth Resetting Depth
66 b1 Zeropoint Angles Resetting Angles
66 b2 Calibrate IMU Calibrating IMU
66 b3 Watertype 0 = Fresh, 1 = Salt

Like in the regulation circuit board table, the sensor board table includes
information related to different bits. The bits in the Control Word are
used to initialize flags, set null points for depth and angles, specify the water
type, and calibrate IMU.

Calibrating an IMU involves setting its sensors to the correct initial values
and improving a sensor’s performance by removing structural errors from
the measurements of the sensor. In summary, calibrating an IMU is an
important step to ensure the accuracy and reliability of its measurements.
[58]

Code 3.5: Building Calibrate_IMU packet. This demonstrates one of the
packets required to be built and sent to the sensor circuit board.
1 def calibrate_IMU(self):
2 calibrate_IMU_byte = [0] * 8
3 calibrate_IMU_byte[0] |= 1 << 2
4 print("Kalibrerer IMU")
5 values = {"kalibrer_IMU": calibrate_IMU_byte}
6 print(("Want to send", 66, calibrate_IMU_byte))
7 self.queue.put((9, values))

As seen in Code [3.5], the function first initializes a packet by creating a list
of eight zeros, which is then used to construct a byte (a sequence of eight
bits) to send the IMU. To modify a specific bit in the byte, a Bitwise OR
operator was used to set the value of the third bit to 1, which is equivalent
to True in Python.

Next, we create a dictionary called "values" that includes the calibration
byte under the key name "kalibrer_IMU". This dictionary is added to a
queue and sent to the Rov_state class where its ID is specified and added

62

3.2 Data transfer between topside and Nvidia Jetson

to a list of packets to send.

3.2.3 Power Circuit Board

canID Byte Bit Type Description/Message Sender Note

97 Control Word 5V IDX_Kom
97 B0 Bitarray Function Control Set Initializing flag
97 b0 Reset Fuse 5V ’True’ to Reset
98 Control Word 12V Thruster Supply IDX_Kom Thruster = Right Side
98 B0 Bitarray Function Control
98 b0 Reset fuse 12V Thruster
98 b1 Front Light On
98 B1 uint8 Front Light Dimming SP IDX_Kom 0-100
98 B0 Bitarray Function Control Set Initializing flag
98 b0 Reset Fuse 5V ’True’ to Reset
99 Control Word 12V Manipulator Supply IDX_Kom Manipulator = Left Side
99 B0 Bitarray Function Control
99 b0 Reset fuse 12V Manipulator
99 b1 Bottom Light On
99 B1 uint8 Bottom Light Dimming SP IDX_Kom 0-100

The power circuit board includes three messages with CAN IDs 97, 98, and
99. Each message contains one or more bytes, and each byte has eight bits.
The table specifies the type of data for each byte, such as bitarray or uint8,
and provides a description of the message or function that it controls.

Message 97 controls the 5V supply to the system and contains a control
word in byte B0 that is used to set initializing flags. Bit0 is then used to
reset the fuse for the 5V supply.

Similarly, message 98 controls the 12V supply to the thruster and contains
a control word in byte B0. Bit0 in Byte0 is used to reset the 12V thruster
supply, bit1 is used to turn on/off the front light, and byte1 is a uint8 type
that is used to set front light dimming.

Lastly, message 99 has almost the same functionality, except it resets the
12V manipulator supply. It turns on/off the bottom light, and it is used to
set the bottom light dimming setpoint.

63

3.2 Data transfer between topside and Nvidia Jetson

Code 3.6: Building the Light_Dimming packet.
1 def update_label_and_print_value_down(self, value):
2 self.label_percentage_lys_down.setText(f"{value}%")
3 set_light_byte = [0] * 8
4 set_light_byte[1] = value
5 values = {"slider_bottom_light": set_light_byte}
6 print((f"Want to send", 99, set_light_byte))
7 self.queue.put((18, values))
8 print(value)

Code [3.6] shows one of the functions the power circuit board is responsible
for. The function is a method implemented in the GUI for controlling the
brightness of an LED light. It takes a numerical value, representing the
percentage of brightness to be set for the light, as input. The byte is then
added to the values variable and sent the same way as stated in Code [3.5].

3.2.4 Communication Circuit Board

The communication circuit board is a crucial component. It allows for the
transmission and reception of information through various channels. In this
project, the communication circuit board serves the purpose of transmitting
sensor data such as acceleration, temperature, error messages, water depth,
and power output.

The following code snippets illustrate the functions used to send a packet
to the Communication group, which then encoded them for the CAN bus
and forwarded them to other circuit boards.

Code 3.7: Initializing depth regulator function
1 def toggle_dybde_reg(self):
2 self.toggle_felles_regulator[0] ^= 1 << 3
3 if self.toggle_felles_regulator[0] == (1 << 3):
4 print("dybde pÃ¥")
5 elif self.toggle_felles_regulator[0] == (0 << 3):
6 print("dybde av")
7 print(("Want to send", 32, self.toggle_felles_regulator))
8 values = {"toggle_rull_reg": self.toggle_felles_regulator}
9 self.queue.put((7, values))

64

3.2 Data transfer between topside and Nvidia Jetson

Code 3.8: Building depth regulation byte.
1 def build_reset_depth(self):
2 if self.data == {}:
3 return
4 data = [0, 0, 0, 0, 0, 0, 0, 0]
5

6 data[0] = self.data["reset_depth"][0]
7

8 self.packets_to_send.append([66, data])

Code 3.9: Setting depth ID
1 def build_packets(self):
2 if self.packet_id == 1 and self.manual_flag.value == 1:
3 # self.button_handling()
4 self.build_rov_packet()
5 self.build_manipulator_packet()
6 elif self.packet_id == 2 and self.manual_flag.value == 0:
7 self.build_autonom_packet()
8 elif self.packet_id == 4:
9 self.build_reset_packet()

10 elif self.packet_id == 5:
11 self.build_reset_thruster_packet()
12 elif self.packet_id == 6:
13 self.build_reset_manipulator_packet()
14 elif self.packet_id == 7:
15 self.build_reset_depth()
16 elif self.packet_id == 8:

The toggle_dybde_reg (Code [3.7]) function modifies a variable that
controls whether the depth regulator is on or off and enqueues the updated
value to be sent over to a communication channel on the Communication
group’s side. build_reset_depth creates a byte sequence that resets the
ROV’s depth to its starting value.

The build_packets (Code [3.8]) function determines which type of packet
to build based on the value of packet_id, and calls build_reset_depth
if the value is 7. The packets are then added to a list to be sent over the
communication channel where they are coded to CAN bus.

The functions also demonstrate the importance of code modularity and
encapsulation, making it easier to update or modify specific features without
impacting the entire system.

65

3.3 Controllers

3.3 Controllers

Implementing controller functionality required the use of Pygame (see Ch.
2.5.3) to gather the data needed. To get the controller data, it was needed
to first initialize the controllers, then listen for input, and lastly add the
events to a list, allowing the data to be sent further. This data could then
be accessed and used to create packets that are sent from the topside to the
ROV.

3.3.1 Accessing the controller data

A class called Controller contains all the necessary functions and variables
to load controllers, check for input, and add the controller input data into
a queue for further use.

wait_for_controller

The first step in using a controller to steer the ROV or Manipulator is to cre-
ate a function that can initialize the controller(s). Code [3.10] displays how
to initialize either one or two controllers using Pygame’s built-in joystick
initialization:

Code 3.10: wait_for_controller function
1 def wait_for_controller(self):
2 while True:
3 try:
4 global rov_joystick
5 global mani_joystick
6 pygame.joystick.init()
7 if pygame.joystick.get_count() == 0:
8 raise Exception
9 if pygame.joystick.get_count() == 1:

10 print(f"Found ...
{pygame.joystick.get_count()} ...
controller. Connecting to ROV Only!")

11 rov_joystick = pygame.joystick.Joystick(0)

66

3.3 Controllers

12 print(f"Connected to ...
{rov_joystick.get_name()}")

13 if pygame.joystick.get_count() == 2:
14 print(f"Found ...

{pygame.joystick.get_count()} ...
controllers. Connecting BOTH!")

15 rov_joystick = pygame.joystick.Joystick(0)
16 mani_joystick = pygame.joystick.Joystick(1)
17 print(f"Connected to ...

{rov_joystick.get_name()}")
18 print(f"Connected to ...

{mani_joystick.get_name()}")
19 break
20 except Exception as e:
21 print(e)
22 if pygame.joystick.get_count() == 1:
23 rov_joystick.init()
24 elif pygame.joystick.get_count() == 2:
25 rov_joystick.init()
26 mani_joystick.init()

Line 6 in the function above checks if there are any controllers connected to
the computer, then loads any registered controllers such that they can be
used further in the function, and adds them to a list that can be accessed
by calling pygame.joystick.Joystick(index). This makes the registered
controllers available for use, but it does not automatically assign a variable
to them.

Therefore, by creating the variables rov_joystick and mani_joystick,
and assigning them to their own controller ID, they are distinguishable when
trying to access their respective inputs. At the end of wait_for_controller
(line 22-26) the controllers get individually initialized depending on if there
are one or two controllers connected.

get_events_loop

The function get_events_loop got called when running the program, and
was responsible for checking what events were called. After determining
this, it handled the events according to the intended functionality of the
corresponding controller inputs.

67

3.3 Controllers

Code 3.11: get_events_loop function
1 def get_events_loop(self, t_watch: Threadwatcher, id: int, ...

debug=False, debug_all=False):
2

3 while t_watch.should_run(id):
4 if pygame.joystick.get_count() < 1:
5 self.wait_for_controller()
6

7 self.duration = self.clock.tick(20)
8

9 for event in pygame.event.get():
10 self.manual_flag.value = 1
11 if event.type == DPAD:
12 if event.joy == MANIPULATOR_CONTROLLER_ID:
13 self.mani_dpad = event.value

This function used Threadwatcher to check if it should be running or
stopping. The t_watch.should_run(id) is a Boolean value that returns
True if the thread exists. For further explanation of the Threadwatcher
class, see Chapter 3.4.

The final action of the function was to add all the inputs from the controller
into a queue that could be accessed and further sent from the topside to
the ROV.

Code 3.12: Packing all the controller values and sending them to main.py
1 if self.queue_to_rov is not None:
2 self.queue_to_rov.put((1, self.pack_controller_values()))

3.3.2 Steering data

Most packets in the code were created using a list of eight integers, with
the initial value of zero:

data = [0,0,0,0,0,0,0,0]

Depending on the type of packet to be created, these eight integers could be
replaced by wanted data in corresponding indexes of the list. The steering

68

3.3 Controllers

data contained two types of packets: one for the ROV and one for the
Manipulator. Figure [3.4] lists the bytes used for each maneuver, and how
the packet could look on our end before it was transported and converted
to hexadecimal byte values by the Communication group.

Figure 3.4: CAN ID table of controller IDs and its supposed maneuvers.

Only the four first bytes in both packets were configured to send steering
data. This is the result of a combined interest in a simple and effective
steering system, which allowed for better control of both the ROV and
the Manipulator. It still granted possibilities for further implementation of
features, and this will be discussed in more detail in Chapter 6.3.3.

To use the packed values from get_events_loop, which is a function in a
different file named Controller_handler, we used the following function:

69

3.3 Controllers

Code 3.13: get_from_queue is a function which gets the data from a queue
and sets the empty dictionary self.data equal to the packet. This is used when
creating steering packets.
1 def get_from_queue(self):
2 """Takes data from the queue and sends it to the ...

correct handler"""
3 self.packet_id = -1
4 packet = ""
5 try:
6 self.packet_id, packet = self.queue_for_rov.get()
7 except Exception as e:
8 return
9 self.data = packet

ROV

To build the ROV packet, refer to both Figures [3.4] and [2.19], which
include the specified controls and joysticks to be used and which indexes
that correspond to the maneuvers. The packet created appended the ID for
ROV steering data and the actual data, which consisted of joystick motion
gathered from Controller_handler via a queue. This data was accessed
by reading through the self.data dictionary containing all packed data, and
using the key for ROV joystick values, as shown in Code [3.14]:

Code 3.14: A function that builds a packet to control the ROV.
1 def build_rov_packet(self):
2 if self.data == {}:
3 return
4 data = [0, 0, 0, 0, 0, 0, 0, 0]
5

6 data[0] = self.data["rov_joysticks"][X_AXIS]
7 data[1] = self.data["rov_joysticks"][Y_AXIS]
8 data[2] = self.data["rov_joysticks"][Z_AXIS]
9 data[3] = -self.data["rov_joysticks"][ROTATION_AXIS]

10

11 self.packets_to_send.append([33, data])

70

3.3 Controllers

Manipulator

The Manipulator packet was very similar to the ROV packet but used data
from the controller assigned to the Manipulator instead. Referring to the
same Figure, [3.4], but also Figure [2.20], it shows what joysticks and dpad-
presses that responded to the given maneuvers, and also what indexes in
the list of controller data to insert the values into.

Code 3.15: A function that builds a packet to control the Manipulator.
1 def build_manipulator_packet(self):
2 if self.data == {}:
3 return
4 data = [0, 0, 0, 0, 0, 0, 0, 0]
5

6 data[0] = self.data.get("mani_dpad", [0,0])[1]*100
7 data[1] = ...

self.data["mani_joysticks"][MANIPULATOR_ROTATION]
8 data[2] = -self.data["mani_joysticks"][MANIPULATOR_TILT]
9 data[3] = ...

self.data["mani_joysticks"][MANIPULATOR_GRAB_RELEASE]
10

11 self.packets_to_send.append([34, data])

3.3.3 Sending the steering data

The last step required for being able to actually move and steer the ROV
and Manipulator is to send the steering data via the Communication
group and have the Control Systems group process the incoming data and
convert this to the physical movement of the motors. The communication
part is explained in deeper detail in Chapter 3.1.

71

3.4 Threads and Processes with Threadwatcher

3.4 Threads and Processes with Threadwatcher

The Threadwatcher class was used to effectively monitor and manage
which threads and processes were running and to stop them when needed.
See Chapter 2.8 for more info on threads and processes.

An example of Threadwatcher usage can be seen in Code [3.16] where a
thread gets added to the Threadwatcher class when we create a thread for
the rov_state_send_loop. The Threadwatcher is being used the same
way whenever we start a process.

Code 3.16: Threadwatcher being used to add and monitor a thread for sending
packets to the ROV
1 id = t_watch.add_thread()
2 rov_state_send_loop = threading.Thread(
3 target=rovstate.send_packets_to_rov, args=(t_watch, ...

id), daemon=True
4)
5 rov_state_send_loop.start()

After adding the thread, the Threadwatcher class has a function to check if
the thread exists. If it exists, the next part of the Code [3.17] will run:

Code 3.17: Send to ROV
1 def send_packets_to_rov(self, t_watch: Threadwatcher, id):
2 while t_watch.should_run(id):
3 self.get_from_queue()
4 self.build_packets()
5

6 if self.packets_to_send != []:
7 self.send_packets()
8 self.data = {}

72

3.5 GUI

To stop one or multiple threads, Threadwatcher has the functions stop_thread
and stop_all_threads.

Code 3.18: Stopping all threads that were added to Threadwatcher
1 def stop_all_threads(self):
2 print("ThreadWatch: attempting to stop all threads")
3 for i in range(len(self.threads)):
4 self.stop_thread(i)
5 print(self.threads)

3.5 GUI

To make a user-friendly interface for the pilots steering the ROV and Ma-
nipulator, certain factors needed to be satisfied. The factors included an
easy-to-understand layout, straightforward information display, and styling.

3.5.1 Layout

The figure below shows the final version of the GUI, which went through
several iterations. The previous iterations only gave instructions on what
the finished GUI should contain because these did not meet all of our re-
quirements for a user-friendly GUI (see Chapter 6.4.1). The final GUI had
all the needed information displayed, as well as buttons, sliders, and warning
alarms, while still being clear and obvious to new users.

73

3.5 GUI

Figure 3.5: The final state of the GUI

Temperature, Thrusters, and Current Consumption

The GUI shows a visual representation of the eight thrusters on the ROV.
The thrusters control the movement and maneuverability of the ROV.

There are a total of eight temperature sensors connected to the ROV. One
of these monitors the water temperature, and can be seen at the top middle
part of Figure [3.6]. The rest of the sensors monitor the internal temperature
of the electronic housing.

74

3.5 GUI

Figure 3.6: Temperature, thrusters, and current consumption. The sensors show
a wide variety of temperatures with the use of fake data to present the different
colors

The internal sensors start at lightblue, become yellow above 40, orange
above 50, and red above 60. Additionally, there were two currents moni-
tored, one on the left side and one on the right side, both in green.

Alarms & Error messages

To integrate a method for showing any alarming events, a box displaying
eventual alarms was created. This was used as a reference to verify the
integrity of the ROV while being operated. If, for example, a leakage was
detected, an error message would pop up. Figure [3.7] depicts the box of
alarms in the GUI.

75

3.5 GUI

Figure 3.7: "Venstre Side" with no alarm, the rest have detected errors

The table below shows possible errors that could occur in case of an alarm
trigger.

IMU Errors Temp Errors Trykk Errors Lekkasje Errors
HAL_ERROR HAL_ERROR HAL_ERROR Probe_1
HAL_BUSY HAL_BUSY HAL_BUSY Probe_2

HAL_TIMEOUT HAL_TIMEOUT HAL_TIMEOUT Probe_3
INIT_ERROR Probe_4

WHO_AM_I_ERROR
MEMS_ERROR

MAG_WHO_AM_I_ERROR

Table 3.1: Error Codes Table for IMU, Temperature, Pressure, and Leakage
Errors

Whenever there is an error, their indices are stored in a set, and their
corresponding string error messages get added to a list which then gets
shown in the GUI. When the errors are resolved, the sensor indices get
removed from the set, and the error messages are removed from the list
which then removes the text from the GUI and resets the styling.

76

3.5 GUI

Code 3.19: Code for keeping track of alarms
1 self.currentLekkasjeAlarms = set() #Set for keeping track ...

of alarms
2 lekkasjeErrors = [#Error messages for the leak sensor
3 "Probe_1",
4 "Probe_2",
5 "Probe_3",
6 "Probe_4",
7]
8 alarmTextsLekkasje = [] #List with strings to update the ...

GUI with new alarms
9 for i in range(len(sensordata[3])):

10 if sensordata[3][i] == True:
11 self.currentLekkasjeAlarms.add(i)
12 alarmTextsLekkasje.append(lekkasjeErrors[i])
13 self.play_sound(True)
14 elif sensordata[3][i] == False and i in ...

self.currentLekkasjeAlarms:
15 self.currentLekkasjeAlarms.remove(i)
16 self.play_sound(False)
17 if alarmTextsLekkasje:
18 labelLekkasjeAlarm.setText(", ".join(alarmTextsLekkasje))
19 labelLekkasjeAlarm.setStyleSheet(self.errorGradient)
20 else:
21 labelLekkasjeAlarm.setText("")
22 labelLekkasjeAlarm.setStyleSheet("") # Reset style

Buttons & Functions

There were many buttons integrated into the GUI, and all of these had
their own function. Functions such as toggling lights, opening cameras,
and changing the values of specific regulation parameters, were some of the
integrated functions in the GUI.

The buttons added to the GUI were decided by UiS Subsea as a whole
to determine what functionality the GUI should contain. The Control
Systems group needed buttons to support their regulation of the ROV. A
camera tilt slider was added to allow the Communication groups camera
to move. Buttons to open camera video feeds, take screenshots, perform
autonomous docking, and more were implemented for the Machine Vision
group. In general, buttons were added to the GUI as different groups needed
them.

77

3.5 GUI

Qwidget’s full name CANID Description
reguleringDropdown 42 Choice of regulation tuning

tuningInput 42 Input til reguleringDropdown
btnRegTuning 42 Submit reguleringDropdown and tuningInput

slider_lys_forward 98 Change light value on front light
label_percentage_lys_forward Local Change % of light in the GUI

slider_lys_down 99 Change light value on downlight
label_percentage_lys_down Local Change % of light in the GUI

btnBunnLys 99 Turn on or off light for ROV
btnTopLys 98 Turn on or off light for ROV

btnNullpunktVinkler 66 reset roll,pitch and yaw
btnKalibrerIMU 66 Calibrate the IMU

btnManuell Local Start manual control of ROV
btnAutonom Local Start autonomous parking
btnFrogCount Local Start FrogCount

btnOpenCamera Local Open Camera
btnTakePic Local Take picture and save
btnRecord Local Record from camera

showNewWindow Local Open window that shows pictures taken
btnRegOn 32 Button for turning on all regulation

btnDybdeOn 32 Button for turning on depth control
btnStampOn 32 Button for turning pitch control
btnRullOn 32 Button for turning on roll control

btnTestSound Local Button for testing sound
btnStopSound Local Button for stop testing sound

SliderCamVinkel 200 Slider for changing the camera angle

Table 3.2: A table that shows which buttons send data to the ROV, or start
functions locally

Above are all of the functions that had to be implemented to support every
feature added to the ROV. These functions required buttons, sliders, and
input fields in the GUI.

3.5.2 GStreamer

When it was necessary to start the camera before the Machine Vision
group had implemented its functions, a direct pipeline was established for
each of the cameras using GStreamer and Python.

78

3.5 GUI

Code 3.20: Example code
1 def create_pipeline(multicast_group, port):
2 return Gst.parse_launch(
3 f"udpsrc multicast-group={multicast_group} ...

auto-multicast=true port={port} ! ...
application/x-rtp, media=video, ...
clock-rate=90000, encoding-name=H264, ...
payload=96 ! rtph264depay ! h264parse ! ...
decodebin ! videoconvert ! autovideosink ...
sync=false"

4)

The function incorporates a multicast group that decides the IP address for
our connection and the corresponding port representing the camera that
would get connected.

GStreamer is heavily reliant on threads and therefore the cameras ran in
their own thread, as seen in Code [3.21]. [28]

Code 3.21: Code to run camera 1
1 camera1_info = ("224.1.1.1", 5000)
2)
3 thread1 = Thread(target=run_camera_stream, args=camera1_info)
4 thread1.start()

3.5.3 Sending data to the GUI

To allow the GUI to get the data from the ROV, a multiprocessing.Queue
was used. This schedules a first-in, first-out (FIFO) queue, which means
that the items are retrieved in the same order they were inserted. The first
items added to the queue will be the first items received, which is perfect
for updating a GUI. [59]

Code 3.22: Sending data to GUI
1 def send_sensordata_to_gui(self, data):
2 # Sends sensordata to the gui
3 self.gui_queue.put(data)

79

3.5 GUI

Qwidget’s full name CANID Description
labelIMUAlarm 140 Get Alarm for ROV

labelLekkasjeAlarm 140 Get Alarm for ROV
labelTempAlarm 140 Get Alarm for ROV
labelTrykkAlarm 140 Get Alarm for ROV

labelRull 138 update Roll value
labelStamp 138 Update pitch value

labelGir 138 Update Yaw value
labelDybde 139 Update Depth value

labelTempSensorkort 139 Sensorcard Temperature
labelTempVann 139 Temperature in water

labelHHF 129 Thruster
labelHHB 129 Thruster
labelHVB 129 Thruster
labelHVF 129 Thruster
labelVHF 129 Thruster
labelVHB 129 Thruster
labelVVB 129 Thruster
labelVVF 129 Thruster

labelManipulatorKraft 150 Manipulator12V cards power
labelManpulatorTemp 150 Manipulator12V cards temperature
ManipulatorSikring 150 Status Manipulator12V cards fuse
Thruster12VTemp 151 Thruster12V cards temperature
ThrusterSikring 151 Status Thruster12V cards fuse
ReguleringTemp 130 Regulation cards temperature

MotorTemp 130 EngineControllercards temperature
labelDybdeSettpunkt 130 Start depth for depth regulation
TempKomKontroller 145 CommunicationController Cards Temperature
labelKraft5VTemp 152 Kraft5V cards Temperature
labelKameraVinkel Local Label that shows the current camera angle

lastSent Local Label that shows the last Regulation message

Table 3.3: A table that shows what in the GUI got values from the ROV

Table [3.3] contains all of the information being sent from subside to the
GUI. Every part has its own placement in the GUI, as depicted in Figure
[3.5].

80

3.5 GUI

3.5.4 Updating the GUI

As mentioned in Chapter 3.1, the data is received as a dictionary. up-
date_gui_data gets data from the queue and sends it to the decideGUIUp-
date function. To decide what data gets updated, the function checks the
key from the dictionary and calls the corresponding function.

Code 3.23: Deciding which data to be displayed in the GUI
1 def update_gui_data(self):
2 while not self.gui_queue.empty():
3 sensordata = self.gui_queue.get()
4 self.decideGUIUpdate(sensordata)
5

6 def decideGUIUpdate(self, sensordata):
7 self.sensor_update_function = {
8 VINKLER: self.guiVinkelUpdate,
9 DYBDETEMP: self.dybdeTempUpdate,

10 FEILKODE: self.guiFeilKodeUpdate,
11 THRUST: self.guiThrustUpdate,
12 MANIPULATOR12V: self.guiManipulatorUpdate,
13 THRUSTER12V: self.thruster12VUpdate,
14 KRAFT5V: self.kraft5VUpdate,
15 REGULERINGMOTORTEMP: self.reguleringMotorTempUpdate,
16 TEMPKOMKONTROLLER: self.TempKomKontrollerUpdate,
17 }
18 for key in sensordata.keys():
19 if key in self.sensor_update_function:
20 self.sensor_update_function[key](sensordata[key])

3.5.5 Sending data from GUI

To be able to send commands to the ROV via the GUI, functions creating
the related data were connected to their corresponding buttons. Code [3.24]
is an example of a button with its equivalent function calibrate_IMU().

Code 3.24: Connecting a button with its function
1 self.btnKalibrerIMU.clicked.connect(lambda: ...

self.calibrate_IMU())

81

Chapter 4

Testing

Throughout the project, there were constantly things being tested, both
local testing of small code implementations and larger tests with every com-
ponent of the topside and subside connected. All of these tests were crucial
for understanding the relations of the system and helped us learn more
in-depth how everything worked. With this newly learned experience, we
could further improve the code and fix potential bugs.

4.1 Local testing

Most of the local testing was conducted on the group’s personal computers
and consisted of testing small, specific implementations of the correspond-
ing objectives of the member’s distributed tasks. For example, testing the
controller steering consisted of identifying all the button and joystick in-
dexes (see Figure [4.1] below), verifying them, and then creating the actual
functioning scripts for handling the controller data.

82

4.1 Local testing

Figure 4.1: Identified IDs, Joystick axes, and button numbers

A somewhat equal process was utilized for the other tasks, communication,
and GUI, as well. When adding new additions to the system, they were
always tested to ensure that it was still operational.

All the local testing resulted in the group having a working system to be
further tested with the ROV and all its components, including sending and
receiving the required packets and displaying the wanted information in the
GUI.

In the end, when most local testing was completed, we could start testing
with the other groups. The majority of this testing was done with the
Communication group, Control Systems group, and Machine Vision
group, but small, consistent testing was done with all groups.

83

4.2 ROV testing

4.2 ROV testing

The first testing with both the topside and the ROV began with using a
personal computer. This later changed, as we bought a mini-PC to be used
for the project and for the other groups to test at their own schedule.

To start testing, the mini-PC was connected to the ROV, or more specifically
the electronic housing. As more circuit boards were completed and added
to the electronic housing, they could be individually tested.

The first test conducted was to send and receive packets. This was done in
collaboration with the Communication group, which had responsibility
for the sending and receiving of packets.

The GUI underwent several design changes, as seen in Chapter 5.2.1, but
the displaying of data worked the same. Before all the circuit boards were
integrated, a function with fake sensor data was created to see that the GUI
worked as intended. The second iteration of GUI testing was done with the
Communication group, where they sent fake sensor data from subside to
be displayed, as in the first iteration of GUI testing.

When the Control Systems group integrated their circuit board into the
electronic housing, tests were held to verify the controlling of the ROV
thrusters. After some testing, the thrusters could be controlled by the
ROV controller as planned (see Ch.3.3.2).

Lastly, the Manipulator’s functionality was tested with the Manipulator
and Control Systems group. This worked by sending steering data to the
correct CAN-ID for Manipulator data, and then checking that the code for
handling the steering data worked. The controller input being sent resulted
in the movement of the different motors that corresponded to the given
controller axes and buttons (see Figure [2.20]).

84

4.3 Communication testing

4.3 Communication testing

When working with the Communication group regarding sending and
receiving of packets, several tests were conducted to verify that the packet
sending was working as intended. To send one packet, several functions
across several files were used, meaning that a good testing procedure was
needed in order to verify where any potential error was. The first test was to
create a print statement that checked whether the packet had been added to
a list of packets or not. Figure [4.2] shows the result of the print statement.

Figure 4.2: Packet sent from the GUI

After the packet was added to a list, a
second test was conducted which tested
whether or not the packet was received on
the CAN bus, as seen in Figure [4.3]. By
using the"candump -x any" command
on the CAN bus, it was checked if the
sent packet was being converted to hex-
adecimal bytes. Lastly, different circuit
boards were tested to verify the functions
they were supposed to perform, such as
turning on/off lights, activating different
control words, etc.

Figure 4.3: Packets received on
CAN bus

85

Chapter 5

Results

The results give an indicator of how well the planned integration of the
system worked as a whole, but also what aspects worked well individually.

5.1 Water Test

The best way to test the final product was to perform a water test. This
involved assembling the ROV and dropping it in a pool to test all of its
functionalities.

The water test proved successful in showing that all the parts of our system
worked as planned. The pilots driving the ROV and controlling the Manip-
ulator managed to easily maneuver it, with all functionalities working. The
GUI showed the following:

• Sensor data sent from the ROV to the topside

• Throttle of the thrusters live over an illustration of the corresponding
thrusters on the ROV (as seen on the left in Figure [3.5])

• Interactive sliders and parameters that got sent down to the ROV

86

5.2 Topside

Another demonstration of the ROV’s ease of control was represented in
the MATE demonstration video. The video was recorded to apply for the
MATE competition by completing a series of tasks required to be able to
qualify. The requirements included a time limit of 15 minutes to do the
given tasks, and these were completed in less than 9 minutes by the pilots.
The MATE demonstration video can be accessed in the conclusion Chapter
(Ch.8).

The confirmation of successful alarms in the GUI was shown during the first
water test. There was a leakage in the electronic housing due to a gasket
not being tight enough, and this was displayed in the GUI as intended.

Figure 5.1: Leakage alarm going off in the GUI.

5.2 Topside

The topside results consist of how our system worked while water testing.
This was a good way to check how every part of the system operated com-
pared to our predictions and goals.

87

5.2 Topside

5.2.1 GUI

The graphical user interface worked as intended. Everything from running
the program to starting the GUI, and finally stopping the program, did so
without any errors. The GUI showed all the information that we wanted
to display, which means that all the planned features, as listed in Chapter
1.2.1, were implemented and working.

Figure 5.2: The final state of the GUI

5.2.2 Controllers

The steering of the ROV and Manipulator was fluid and intuitive. All
functionality worked and gave the pilots an advantage when it came to
completing the tasks required to compete in the MATE competition. Some
additional features could be added or changed to further improve the con-
trolling of the ROV and Manipulator, and this will be discussed in Chapter
6.3.3.

88

5.2 Topside

5.2.3 Data Logging

Logging of data worked well without any issues. The logging proved useful
in several scenarios. The log files were mainly used by other groups to check
the temperature levels, verify the feedback control system, or oversee packet
activity. During the first water test, a small water leak occurred. The logger
files were then used to check the timestamp for when the leak occurred and
the amount of time it took to react to it.

Figure 5.3: Logger file structure

Figure [5.3] shows how the logger structure was set up. Each sent packet
has its own timestamp, info level, packet id, and packet content.

89

Chapter 6

Discussion

6.1 Bottleneck

Certain parts of the project became significant deciders for component test-
ing. The bottleneck consisted mostly of electronic and mechanical parts not
being ready on the scheduled dates, which in turn resulted in the topside
system not being able to test its functionalities. An easy solution to the
bottleneck problem would be to schedule the testing between groups earlier,
and in general, keep up good communication between the involved groups.
This is not to say communication was bad, but rather that people could
be kept more in the loop with each other’s projects to better know when
components would be ready. This would help mitigate the downtime in the
middle of the project, where many of the topside features were ready to be
tested, but the components of the ROV were not fully completed yet.

6.2 Communication Challenges & Solutions

A communication challenge encountered was sending packets to the CAN
bus. Different solutions were tested, but only one worked. The implemented
solution entailed four different functions across three different files just to
send one packet.

90

6.3 Controller Challenges & Solutions

In addition to the packet implementation in Figures [3.7, 3.8, 3.9], there
was another function that uses the Network_handler.py file to finally
send the packets to the CAN bus, as seen Code [6.1].

Code 6.1: Sending packets to CAN bus
1 def send_packets_to_rov(self, t_watch: Threadwatcher, id):
2 while t_watch.should_run(id):
3 self.get_from_queue()
4

5 self.build_packets()
6

7 if self.packets_to_send != []:
8 self.send_packets()
9 self.data = {}

Even though this is a working solution, it could be considered a complex
approach, which makes it harder to debug. Additionally, since every func-
tion that builds a packet is sent this way, we get several hundred lines of
code, which makes it complicated to maintain the code in the long run.

6.3 Controller Challenges & Solutions

When implementing the code responsible for the controllers, there were
several complications that appeared. When programming, it is not unusual
to encounter errors and unexpected results. It is often about trial and error
to achieve the best possible outcome.

6.3.1 Mac and Windows to Ubuntu

Much of the controller-related code was implemented on Mac OS. This
turned out to create some challenges when testing between the topside and
subside.

Firstly, when testing on Mac OS, there were 15 buttons on both controllers
and six joystick axes, including the left and right triggers. The triggers

91

6.3 Controller Challenges & Solutions

had values between 0-1. This was not the case when testing on the Ubuntu
operating system. This system did not recognize the dpad (directional pad)
as buttons; instead, it represented them as tuples, as shown below:

DPAD UP DPAD DOWN DPAD LEFT DPAD RIGHT
(0,1) (0,-1) (-1,0) (1,0)

This was fixed by checking for dpad input instead of button indexes. The
dpad values were packed with the key mani_dpad and were used to control
the telescope of the Manipulator (see Ch.3.3.2).

In addition, two of the joystick axes were swapped in Ubuntu, compared to
Mac OS. When testing the original working code in Ubuntu, some of the
controller values returned unexpected outputs, and even outputted values
when no joysticks were moved. Before knowing that this was the result
of two swapped joystick axes, these results made no sense. After some
debugging, it was discovered that joystick axis 2 and 4 were swapped. These
correspond to the back left trigger and the left/right movement on the right
joystick. The fix to this problem was simply to change the axis numbers
affected by the Ubuntu changes.

Another surprising find when testing on Ubuntu was the fact that when
connecting the controllers via Bluetooth, the joystick axes were recognized
the same way Mac and Windows did, unlike how the cabled connection
was recognized. So depending on the type of controller connection to the
computer resulted in different values and indexes of some axes. A solution
to this was proposed and consisted of creating a variable that could be
set before running the program, saying if Bluetooth, Mac, or Windows is
running, the joystick axes will swap between 2 and 4 accordingly:

Code 6.2: Boolean to fix swapped axes.
1 if Bluetooth_Mac_Windows_On == True:
2 self.switch_2_4_axis = 4
3 else:
4 self.switch_2_4_axis = 2

self.switch_2_4_axis was then used in the calculation of the virtual
joystick axes (self.rov_joysticks[6] & self.mani_joysticks[6]) that combine

92

6.3 Controller Challenges & Solutions

the left and right trigger to control the Heave for the ROV and the Claw
for the Manipulator:

Code 6.3: Joystick events with fix implemented.
1 if event.type == JOYSTICK:
2 if event.joy == ROV_CONTROLLER_ID:
3 self.rov_joysticks[event.axis] = ...

self.normalize_joysticks(event)
4 self.rov_joysticks[6] = (self.rov_joysticks[5] - ...

self.rov_joysticks[self.switch_2_4_axis])
5 elif event.joy == MANIPULATOR_CONTROLLER_ID:
6 self.mani_joysticks[event.axis] = ...

self.normalize_joysticks(event)
7 self.mani_joysticks[6] = (self.mani_joysticks[5] - ...

self.mani_joysticks[self.switch_2_4_axis])

6.3.2 Initializing Controllers

The function responsible for initializing the controllers is an iteration of last
year’s GUI group, which originally made the Controller class for their
project. This year UiS Subsea decided to use two separate controllers to
control the ROV and Manipulator (Ch.2.6). A problem appeared quite early
when implementing two-controller support, where it was random which con-
troller was assigned to the ROV and Manipulator. This was because of
Pygame’s controller initialization. Both controllers get initialized at the
same time, which resulted in a random order in the list of initialized con-
trollers. The following table is a representation of this phenomenon:

First example initialize Second example initialize

[Black_Controller, White_Controller] [White_Controller, Black_Controller]

When assigning rov_joystick and mani_joystick, the controller first in
the list will become the controller for the ROV, and the second for the
Manipulator.

93

6.3 Controller Challenges & Solutions

Code 6.4: First controller: ROV. Second controller: Manipulator
1 rov_joystick = pygame.joystick.Joystick(0)
2 mani_joystick = pygame.joystick.Joystick(1)

Since both controllers were of the same type, they had the same ID in
Pygame, and this could not be used to differentiate them. There was no
easy, fast fix for this issue, but there was a workaround. As long as the
controllers were connected via cable, they could be distinguished by using
two different cables, one of which should be faster than the other. Doing
this made Pygame always initialize the controller with the fastest cable first,
allowing for this to consistently be assigned to the ROV.

6.3.3 Future improvements for steering data

Changes and improvements could be made to the way steering data is sent,
and how much data is sent. Pygame’s tick method manages how often
input from the controllers is updated.

Code 6.5: get_events_loop registers input depending on the tick-rate.
1 self.duration = self.clock.tick(20)

(1s/20hz) ∗ 1000ms = 50ms

When the tick rate is set to 20, the function will wait until 50ms has gone
by before checking for input and adding to the queue of data. Therefore, 20
times per second a packet with controller data will be added to the queue.
The downside to this is that even though the list of data is empty, the
packet will be sent, and will look like this:

data = [0,0,0,0,0,0,0,0]

An improvement to this could be to avoid sending empty packets, and rather
decide that when no controller packets are sent, there is no movement. The
only important thing to note, if this is to be done, is that there needs to
be one packet that resets the values in the controller data. If this is not

94

6.4 GUI Challenges & Solutions

done, the last updated packet will contain some values, not equal to zero,
and therefore have the subside keep responding to the latest packet values.
A possible way to implement this would be to constrain packet sending to
sending only when at least one value in the list of data is not equal to zero,
and after releasing joysticks and buttons, reset these values by sending one
packet looking like this:

1 data = [0,0,0,0,0,0,0,0]
2 self.packets_to_send(33, data)

At most four of the indexes in the list of controller data contain values, which
leaves the last four empty (as seen in Figure [3.4]). For future improvements,
it would be possible to use these four empty spaces to send even more data
from the topside to subside. This could include ROV maneuvers such as
roll, pitch, or thruster throttling. All of these maneuvers were initially
proposed to be implemented, but UiS Subsea chose to leave these ROV
steering axes for regulation only. This meant that the pilots could not
manually shift the ROV in these specific directions, but when applying
regulation provided by the Control Systems group, these maneuvers could
be controlled automatically. The decision to not include these steering
functions manually was made to ensure a steady and slow approach to the
steering of the ROV for better precision, rather than an unstable and fast
approach.

6.4 GUI Challenges & Solutions

6.4.1 Iterations of the GUI

Because of constant new input of the required information to be displayed
in the GUI, it went through many major styling and functionality changes.
As the project advanced, more and more additions were added to the GUI,
and therefore it needed to be modular to allow easy implementation of the
new additions. The final iteration of the GUI is the combination of all
the additions throughout the project and styling changes for a more user-
friendly and self-explaining design. Figure [6.1] shows the first two iterations
of the GUI. The final iteration is shown in Figure [5.2] in the results.

95

6.4 GUI Challenges & Solutions

(a) 1st iteration (b) 2nd iteration

Figure 6.1: Two versions of early GUI implementation

6.4.2 ROV data to GUI

Since the first tests on the GUI were made using dummy data, everything
seemed to run fine when we sent the data to the GUI via a pipe. However,
when we ran the code connected to the ROV, the GUI only updated the
data related to the first received packet, leaving the rest empty. This led us
to believe it was a race condition. A race condition is when the behavior of
a program is affected by the timing and how multiple threads and processes
execute their operations. [60] [61]

To fix this, the GUI updating system was changed into a queue. By intro-
ducing a queue, the synchronization issues with the pipe got fixed and the
GUI ran smoothly. [59]

Playing sound

However, not everything in the GUI was fixed when adding a queue. When
alarms first got implemented and went off, everything else stopped updating
when the sound was playing. The solution to this was using QT’s built-in
QMediaPlayer. It operates in asynchronous mode, which means it does not
block the main thread when playing sound. [62]

96

6.4 GUI Challenges & Solutions

6.4.3 Updating Alarms

In the first implementation of the alarm system, only the most recent error
message could be displayed and cleared in the GUI. This was because the
system only saved the index of the last error, as shown in line 6 in Code
[6.6]. Therefore, if multiple errors happened at once, the system only had
the capability to display and clear the latest one. This led to older errors
being overlooked until they were the "latest" error.

Code 6.6: Old alarm function
1 def guiManipulatorUpdate(self, sensordata):
2 for i in range(3):
3 if sensordata[2][i] == True:
4 labelSikring.setText(str(self.kraftFeilkoder[i]))
5 labelSikring.setStyleSheet(self.errorGradient)
6 self.lastManipulatorAlarm = i
7

8 if sensordata[2][i] == False and i == ...
self.lastManipulatorAlarm:

9 labelSikring.setText("")
10 self.lastManipulatorAlarm = -1

This was fixed by using a set to store the indices. A set was primarily
used for two reasons: it is unordered and does not allow duplicates. The
unordered property is important because the order in which the alarms
emerge does not matter, and we can easily remove them when necessary.
The restriction on duplicates was also crucial in case multiple instances of
the same alarm were accidentally stored. Additionally, a list was used to
store multiple error messages as strings that could be shown in the GUI.
This was useful because a list shows which order they came in.

97

6.5 General Challenges and Solutions

6.5 General Challenges and Solutions

6.5.1 Earlier testing/implementation

Working together on the code integration with the Machine Vision group
turned out to be tougher than expected. This was mostly due to different
ways of structuring code and the fact that we had been working separately
for too long. To avoid this, it would have been better to set a plan early on
how the end project should be and try to combine the codebases earlier.

6.5.2 Subside PC to do image processing

The Nvidia Jetson, which was used in the ROV, is typically used for AI tasks
similar to those carried out by the Machine Vision group. This would
have been a great opportunity to run the image processing tasks subside
instead of topside. It would reduce the workload on the main computer and
potentially improve the camera feed by reducing the delay.

6.5.3 Time usage

When making the program that controls the ROV and Manipulator, there
was extra responsibility added to our group. This responsibility consisted
of steering and overlooking the GUI while running the system. This was
because we had more experience and knowledge of the related parts, and
therefore a lot of time went toward this.

Furthermore, UiS Subsea decided that members of the data groups should
steer the ROV for the MATE competition. This was again because of
the deeper understanding of the operational mechanics of the ROV. This
required time, because practicing for the competition was an important
element. The time spent practicing took time away from possibly adding
more functionality or working on the thesis in general.

98

6.6 Continuation of the Subsea project

6.6 Continuation of the Subsea project

Every essential part of our system was working, but along the way, we
discovered a few ways to improve the GUI and controller features. After
the bachelor deadline, we will keep working on our system to optimize it
even further. Possible future improvements will be listed in the next chapter
(Ch. 6.7).

6.7 Summarized Future Improvements

Here is a shortened version of all of the possible future improvements and
implementations for next year:

Communication:

• Simpler implementation of packet sending

• Unit tests to verify whether specific packets were received

Controller:

• Limit the controller data being sent

• Implement more functionality for the controllers

GUI:

• Toggle buttons with visual change

• 3D model of ROV movement

• Alarms displayed over the corresponding area of error

• Live graphs

99

6.7 Summarized Future Improvements

General:

• Earlier testing/implementation

• Fixing delay on the camera feed

• Subside PC to do image processing

100

Chapter 7

Financial overview &
Environmental report

Financial resources involved in the project

A budget was given to every group in UiS Subsea, and the amount depended
on the predicted need for each group as well as previously used financial
resources from projects before. Typically, data groups tend not to need a
large budget compared to other UiS Subsea groups, because the resources
required to complete their part of the project only involve computers for
coding and testing.

We had a budget of 2500 kr and ended up using 1498 kr to buy two brand-
new controllers. Other than this, we used one monitor, a keyboard, a mouse,
and a mini-PC bought this year by UiS Subsea.

The total cost of all data-related resources is listed below. These include
every major component used and the price related. Most prices are exactly
what was spent, but the prices for the monitor, keyboard, and mouse were
gathered from equal products online, and are therefore predicted prices.
Most of these resources did not contribute to the use of our own budget but
from UiS Subsea’s total budget.

101

7.1 Environmental Report

Resource Price
Asus Mini-PC 6 582 kr
Kingston SSD 512GB 909 kr
Kingston DDR4 16GB (RAM) 649 kr
Xbox Controllers 1498 kr
Monitor 1200 kr
Keyboard 300 kr
Mouse 200 kr
Speaker 299 kr
Total 11 637 kr

Smaller components, such as cables, were not included in the table above
because these were owned by UiS Subsea, and have been for a long time.
These expenses were therefore saved, as they were only borrowed from our-
selves, and will be used in later projects as well.

7.1 Environmental Report

The theme of the MATE competition surrounds the importance of the UN’s
Sustainability goals (also mentioned in Ch.1.1.5). To support these inten-
tions, it would be ideal not to waste material and resources, and re-use if
possible.

7.1.1 Environmental impact

The new controllers and the components of the mini-PC were the only phys-
ical things that could have contributed to the impact on the environment.
They were bought as an investment so that they can be used by other UiS
Subsea projects in the future. Still, we could have used temporary solutions
such as privately owned controllers borrowed only for this project and using
one of our own PCs to run the system. This could have a smaller positive
effect on the environment, but in the long run, the investments might prove
efficient to alleviate resource spending in the future.

102

7.1 Environmental Report

The mini-PC and some of the components were bought separately, which
meant that the environmental impact was greater than if they were all
bought together.

Our system did not require much computational power to run, and since it
was only supposed to run for a limited time to complete certain tasks, this
did not have a large impact on the environment.

103

Chapter 8

Conclusion

To create a topside system, we had certain sub-tasks to complete. These
sub-tasks are listed in Chapter 1.2. They gave a sense of direction as to
what needed to be done, and further division of these sub-tasks (Ch.1.2.1)
gave a more in-depth understanding of each specific task.

The proceeding sections will summarize if and how each sub-task was im-
plemented, and to what extent.

Communication

Both sending and receiving data between the topside and subside worked
well. The established connection made data flow fast and reliable. The
logger improved our ability to oversee packets, enabling us to identify the
potential problem at a more efficient rate.

Steering data

The controller data was accessed, gathered, and sent from the topside to
subside without problems. Gathering the controller data worked well by first
checking how many controllers were connected to the mini-PC, then, after
having access to the input from the controllers, this data was successfully
sent to the ROV, which in return made it move.

104

Conclusion

Graphical User Interface

The GUI went through several design iterations, but we were happy with
the final result. The GUI showed all the necessary information: sensor data,
video feed that could display any wanted camera feed, and all the buttons
and sliders with functionality.

The conclusion to our project is that we completed all the planned tasks,
and the topside system we created worked well.

Link for MATE video: UiS-Subsea MATE Qualification Video

Link for GUI representation: GUI Video - UiS Subsea

105

https://youtu.be/yg9I5MSf8y8
https://youtu.be/lzpFy34Hd_8

Bibliography

[1] N. S. Foundation, About the mate center, https://www.marinetech.
org/about/, 2012.

[2] M. I. for Innovation, About mate ii, https://mateii.org/about-
mate-ii/, 2023.

[3] M. I. for Innovation, 2023 explorer manual final 1 17 2023 withcover,
https://files.materovcompetition.org/2023/2023_EXPLORER_
Manual_FINAL_1_17_2023_withcover.pdf.

[4] M. I. for Innovation, Mate floats! https://materovcompetition.
org/content/mate-floats, 2023.

[5] R. Jehangir, What is an underwater rov? https://bluerobotics.
com/learn/what- is- an- rov/, 2022 July 18th | Retrieved: 2023
February 9th.

[6] N. T. Centre, “Remotely operated vehicle (rov) services,” 2003 Octo-
ber 1st | Retrieved 2023 February 9th.

[7] Bluerov2, https://bluerobotics.com/store/rov/bluerov2/, Jan.
2023.

[8] R. Solutions, Underwater rovs, https://rovtechsolutions.com/
products/underwater-rovs/, 2019.

[9] OCEANEERING, Rov systems, https://www.oceaneering.com/
rov-services/rov-systems/, Jan. 2023.

[10] Equipment - Scanmudring %, nb-NO. [Online]. Available: https://
scanmudring.no/equipment/ (visited on 05/13/2023).

[11] AUVAC, Bpauv configuration, https://auvac.org/34-2/, 2023.

[12] KYSTDESIGN, Surveyor rov, https://kystdesign.no/rovs/surveyor/,
Jan. 2023.

106

https://www.marinetech.org/about/
https://www.marinetech.org/about/
https://mateii.org/about-mate-ii/
https://mateii.org/about-mate-ii/
https://files.materovcompetition.org/2023/2023_EXPLORER_Manual_FINAL_1_17_2023_withcover.pdf
https://files.materovcompetition.org/2023/2023_EXPLORER_Manual_FINAL_1_17_2023_withcover.pdf
https://materovcompetition.org/content/mate-floats
https://materovcompetition.org/content/mate-floats
https://bluerobotics.com/learn/what-is-an-rov/
https://bluerobotics.com/learn/what-is-an-rov/
https://bluerobotics.com/store/rov/bluerov2/
https://rovtechsolutions.com/products/underwater-rovs/
https://rovtechsolutions.com/products/underwater-rovs/
https://www.oceaneering.com/rov-services/rov-systems/
https://www.oceaneering.com/rov-services/rov-systems/
https://scanmudring.no/equipment/
https://scanmudring.no/equipment/
https://auvac.org/34-2/
https://kystdesign.no/rovs/surveyor/

BIBLIOGRAPHY

[13] W. H. O. Institution, Henry stommel, https://www.whoi.edu/who-
we-are/about-us/people/awards-recognition/henry-melson-
stommel-medal/, 2023.

[14] G. O. B. array, Float technology, https://www.go-bgc.org/floats,
2023.

[15] Ecomagazine, Robotic floats provide new look at ocean health and
global carbon cycle, https://www.ecomagazine.com/news/research/
robotic - floats - provide - new - look - at - ocean - health - and -
global-carbon-cycle, 2023.

[16] , TCP/IP vs. OSI: What’s the Difference Between them? | FS Com-
munity, en, Blog, Nov. 2017. [Online]. Available: https://community.
fs . com : 7003 / blog / tcpip - vs - osi - whats - the - difference -
between-the-two-models.html (visited on 05/12/2023).

[17] What is Transmission Control Protocol (TCP)? en-us, Section: Com-
puter Networks, Nov. 2021. [Online]. Available: https://www.geeksforgeeks.
org/what-is-transmission-control-protocol-tcp/ (visited on
05/12/2023).

[18] Client-Server Model, en-us, Section: Web Technologies, Oct. 2019.
[Online]. Available: https : / / www . geeksforgeeks . org / client -
server-model/ (visited on 03/10/2023).

[19] Three-Way Handshake - an overview | ScienceDirect Topics. [Online].
Available: https://www.sciencedirect.com/topics/computer-
science/three-way-handshake (visited on 05/12/2023).

[20] User Datagram Protocol (UDP), en-us, Section: Computer Networks,
Sep. 2017. [Online]. Available: https://www.geeksforgeeks.org/
user-datagram-protocol-udp/ (visited on 05/12/2023).

[21] N. Jiju, TCP/IP vs UDP: What’s the Difference? en-US, Dec. 2018.
[Online]. Available: https://www.colocationamerica.com/blog/
tcp-ip-vs-udp (visited on 05/12/2023).

[22] “An updated cost comparison of CAT 5 and fiber optic cable,” en,
Library Systems Newsletter, vol. 19, no. 10, pp. 75–76, Oct. 1999.
[Online]. Available: https://librarytechnology.org/document/
5963 (visited on 03/17/2023).

[23] USB-Hub, USB-Stereo-Cameras, USB-Wifi, en-US, May 2018. [On-
line]. Available: https://forum.digilent.com/topic/13106-usb-
hub-usb-stereo-cameras-usb-wifi/ (visited on 05/12/2023).

107

https://www.whoi.edu/who-we-are/about-us/people/awards-recognition/henry-melson- stommel-medal/
https://www.whoi.edu/who-we-are/about-us/people/awards-recognition/henry-melson- stommel-medal/
https://www.whoi.edu/who-we-are/about-us/people/awards-recognition/henry-melson- stommel-medal/
https://www.go-bgc.org/floats
https://www.ecomagazine.com/news/research/robotic-floats-provide-new-look-at-ocean-health-and-global-carbon-cycle
https://www.ecomagazine.com/news/research/robotic-floats-provide-new-look-at-ocean-health-and-global-carbon-cycle
https://www.ecomagazine.com/news/research/robotic-floats-provide-new-look-at-ocean-health-and-global-carbon-cycle
https://community.fs.com:7003/blog/tcpip-vs-osi-whats-the-difference-between-the-two-models.html
https://community.fs.com:7003/blog/tcpip-vs-osi-whats-the-difference-between-the-two-models.html
https://community.fs.com:7003/blog/tcpip-vs-osi-whats-the-difference-between-the-two-models.html
https://www.geeksforgeeks.org/what-is-transmission-control-protocol-tcp/
https://www.geeksforgeeks.org/what-is-transmission-control-protocol-tcp/
https://www.geeksforgeeks.org/client-server-model/
https://www.geeksforgeeks.org/client-server-model/
https://www.sciencedirect.com/topics/computer-science/three-way-handshake
https://www.sciencedirect.com/topics/computer-science/three-way-handshake
https://www.geeksforgeeks.org/user-datagram-protocol-udp/
https://www.geeksforgeeks.org/user-datagram-protocol-udp/
https://www.colocationamerica.com/blog/tcp-ip-vs-udp
https://www.colocationamerica.com/blog/tcp-ip-vs-udp
https://librarytechnology.org/document/5963
https://librarytechnology.org/document/5963
https://forum.digilent.com/topic/13106-usb-hub-usb-stereo-cameras-usb-wifi/
https://forum.digilent.com/topic/13106-usb-hub-usb-stereo-cameras-usb-wifi/

BIBLIOGRAPHY

[24] Jetson Nano Developer Kit | NVIDIA Developer. [Online]. Available:
https://developer.nvidia.com/embedded/jetson-nano-developer-
kit (visited on 05/10/2023).

[25] What is SSH (Secure Shell)? | SSH Academy, en. [Online]. Available:
https://www.ssh.com/academy/ssh (visited on 04/26/2023).

[26] GStreamer GitHub mirrors. [Online]. Available: https://github.
com/GStreamer (visited on 05/11/2023).

[27] What is GStreamer? [Online]. Available: https://gstreamer.freedesktop.
org / documentation / application - development / introduction /
gstreamer.html?gi-language=c (visited on 05/11/2023).

[28] S. Chachra, All you want, to get started with GStreamer in Python,
en, May 2022. [Online]. Available: https://sahilchachra.medium.
com/all-you-want-to-get-started-with-gstreamer-in-python-
2276d9ed548e (visited on 05/11/2023).

[29] git, About - Git. [Online]. Available: https://git-scm.com/about
(visited on 05/08/2023).

[30] Git - gitignore Documentation. [Online]. Available: https://git-
scm.com/docs/gitignore (visited on 05/08/2023).

[31] Gitignore.io - Create Useful .gitignore Files For Your Project. [On-
line]. Available: https://www.toptal.com/developers/gitignore
(visited on 05/08/2023).

[32] GitHub, GitHub Issues · Project planning for developers, en. [On-
line]. Available: https://github.com/features/issues (visited on
05/14/2023).

[33] L. Rachelle, What Is a Kanban Board? en-US. [Online]. Available:
https://www.planview.com/resources/guide/introduction-to-
kanban/what-is-kanban-board/ (visited on 05/14/2023).

[34] Python (programming language), en, Page Version ID: 1140647220,
Feb. 2023. [Online]. Available: https : / / en . wikipedia . org / w /
index.php?title=Python_(programming_language)&oldid=1140647220
(visited on 03/12/2023).

[35] B. Wagner, A tour of C# - Overview, en-us, Feb. 2023. [Online]. Avail-
able: https://learn.microsoft.com/en-us/dotnet/csharp/tour-
of-csharp/ (visited on 03/10/2023).

108

https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.ssh.com/academy/ssh
https://github.com/GStreamer
https://github.com/GStreamer
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html?gi-language=c
https://gstreamer.freedesktop.org/documentation/application-development/introduction/gstreamer.html?gi-language=c
https://sahilchachra.medium.com/all-you-want-to-get-started-with-gstreamer-in-python-2276d9ed548e
https://sahilchachra.medium.com/all-you-want-to-get-started-with-gstreamer-in-python-2276d9ed548e
https://sahilchachra.medium.com/all-you-want-to-get-started-with-gstreamer-in-python-2276d9ed548e
https://git-scm.com/about
https://git-scm.com/docs/gitignore
https://git-scm.com/docs/gitignore
https://www.toptal.com/developers/gitignore
https://github.com/features/issues
https://www.planview.com/resources/guide/introduction-to-kanban/what-is-kanban-board/
https://www.planview.com/resources/guide/introduction-to-kanban/what-is-kanban-board/
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1140647220
https://en.wikipedia.org/w/index.php?title=Python_(programming_language)&oldid=1140647220
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://learn.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/

BIBLIOGRAPHY

[36] C# / official or unofficial logo · Issue #27 · exercism/meta, en. [On-
line]. Available: https://github.com/exercism/meta/issues/27
(visited on 03/10/2023).

[37] QT, About Qt - Qt Wiki, Jul. 2022. [Online]. Available: https://
wiki.qt.io/About_Qt (visited on 05/08/2023).

[38] A. Solovev, Using Qt: 10 Famous and Successful Cases | HackerNoon,
en. [Online]. Available: https://hackernoon.com/using-qt-10-
famous-and-successful-cases (visited on 03/12/2023).

[39] The Qt Company logo vector download for free, en, Nov. 2020. [On-
line]. Available: https://www.logosvgpng.com/the-qt-company-
logo-vector/ (visited on 05/08/2023).

[40] u. Riverbank Computing, Riverbank Computing | Introduction. [On-
line]. Available: https : / / riverbankcomputing . com / software /
pyqt/ (visited on 03/12/2023).

[41] M. F. L. u. P. G. s. w. PyQt5, Create your first Python GUI with
PyQt5 — A simple Hello world app, en-us, May 2019. [Online]. Avail-
able: https://www.pythonguis.com/tutorials/creating-your-
first-pyqt-window/ (visited on 05/07/2023).

[42] T. Q. C. Ltd, Using .ui files from Designer or QtCreator with QUiLoader
and pyside6-uic - Qt for Python. [Online]. Available: https://doc.
qt.io/qtforpython-6/tutorials/basictutorial/uifiles.html
(visited on 05/07/2023).

[43] T. Q. C. Ltd, The Style Sheet Syntax | Qt Widgets 5.15.13. [Online].
Available: https://doc.qt.io/qt-5/stylesheet-syntax.html
(visited on 05/08/2023).

[44] T. Q. C. Ltd, Qt Style Sheets Reference | Qt Widgets 6.5.0. [Online].
Available: https://doc.qt.io/qt-6/stylesheet-reference.html
(visited on 05/07/2023).

[45] Pygame, About - pygame wiki. [Online]. Available: https://www.
pygame.org/wiki/about (visited on 04/16/2023).

[46] Simple DirectMedia Layer - Homepage. [Online]. Available: http://
www.libsdl.org/ (visited on 04/16/2023).

[47] Gamepad Tester - Check Controllers and Joysticks Online. [Online].
Available: https://gamepad-tester.com/ (visited on 05/12/2023).

109

https://github.com/exercism/meta/issues/27
https://wiki.qt.io/About_Qt
https://wiki.qt.io/About_Qt
https://hackernoon.com/using-qt-10-famous-and-successful-cases
https://hackernoon.com/using-qt-10-famous-and-successful-cases
https://www.logosvgpng.com/the-qt-company-logo-vector/
https://www.logosvgpng.com/the-qt-company-logo-vector/
https://riverbankcomputing.com/software/pyqt/
https://riverbankcomputing.com/software/pyqt/
https://www.pythonguis.com/tutorials/creating-your-first-pyqt-window/
https://www.pythonguis.com/tutorials/creating-your-first-pyqt-window/
https://doc.qt.io/qtforpython-6/tutorials/basictutorial/uifiles.html
https://doc.qt.io/qtforpython-6/tutorials/basictutorial/uifiles.html
https://doc.qt.io/qt-5/stylesheet-syntax.html
https://doc.qt.io/qt-6/stylesheet-reference.html
https://www.pygame.org/wiki/about
https://www.pygame.org/wiki/about
http://www.libsdl.org/
http://www.libsdl.org/
https://gamepad-tester.com/

BIBLIOGRAPHY

[48] Introducing Windows 11 – Press materials for Windows 11 news an-
nouncement. [Online]. Available: https://news.microsoft.com/
june-24-2021/ (visited on 05/08/2023).

[49] D. Kumar Kandakatla, Windows 11 - release information, en-us, Apr.
2023. [Online]. Available: https://learn.microsoft.com/en-us/
windows/release-health/windows11-release-information (vis-
ited on 05/07/2023).

[50] Install WSL | Microsoft Learn. [Online]. Available: https://learn.
microsoft.com/en-us/windows/wsl/install (visited on 05/08/2023).

[51] Ubuntu Logo PNG Vector (AI) Free Download, en. [Online]. Available:
https://seeklogo.com/vector-logo/262530/ubuntu (visited on
05/08/2023).

[52] , About Qt - Qt Wiki. [Online]. Available: https://wiki.qt.io/
About_Qt (visited on 03/12/2023).

[53] Python Multiprocessing: The Complete Guide, en-US, Jun. 2022. [On-
line]. Available: https://superfastpython.com/multiprocessing-
in-python/ (visited on 05/14/2023).

[54] Multiprocessing — Process-based parallelism. [Online]. Available: https:
//docs.python.org/3/library/multiprocessing.html (visited on
04/28/2023).

[55] Threading — Thread-based parallelism. [Online]. Available: https:
/ / docs . python . org / 3 / library / threading . html (visited on
05/14/2023).

[56] IBM Documentation, en-US, Jan. 2023. [Online]. Available: https:
//www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-
over-tcpip-storage-area-networks (visited on 05/12/2023).

[57] What is CAN bus and why is it so important? en-US, Oct. 2022.
[Online]. Available: https://www.onlogic.com/company/io-hub/
what-is-can-bus/ (visited on 05/08/2023).

[58] Calibration and Characterization of IMUs · VectorNav, en. [Online].
Available: https://www.vectornav.com/resources/inertial-
navigation - primer / specifications -- and -- error - budgets /
specs-imucal (visited on 05/08/2023).

[59] Multiprocessing Queue in Python, en-US, May 2022. [Online]. Avail-
able: https://superfastpython.com/multiprocessing-queue-in-
python/ (visited on 05/11/2023).

110

https://news.microsoft.com/june-24-2021/
https://news.microsoft.com/june-24-2021/
https://learn.microsoft.com/en-us/windows/release-health/windows11-release-information
https://learn.microsoft.com/en-us/windows/release-health/windows11-release-information
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://seeklogo.com/vector-logo/262530/ubuntu
https://wiki.qt.io/About_Qt
https://wiki.qt.io/About_Qt
https://superfastpython.com/multiprocessing-in-python/
https://superfastpython.com/multiprocessing-in-python/
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://www.ibm.com/docs/en/powerha-aix/7.2?topic=heartbeating-over-tcpip-storage-area-networks
https://www.onlogic.com/company/io-hub/what-is-can-bus/
https://www.onlogic.com/company/io-hub/what-is-can-bus/
https://www.vectornav.com/resources/inertial-navigation-primer/specifications--and--error-budgets/specs-imucal
https://www.vectornav.com/resources/inertial-navigation-primer/specifications--and--error-budgets/specs-imucal
https://www.vectornav.com/resources/inertial-navigation-primer/specifications--and--error-budgets/specs-imucal
https://superfastpython.com/multiprocessing-queue-in-python/
https://superfastpython.com/multiprocessing-queue-in-python/

BIBLIOGRAPHY

[60] baeldung, What Is a Race Condition? | Baeldung on Computer Sci-
ence, en-US, Jul. 2020. [Online]. Available: https://www.baeldung.
com/cs/race-conditions (visited on 05/11/2023).

[61] Pipe, en-US, Sep. 2011. [Online]. Available: https://www.techopedia.
com/definition/3410/pipe (visited on 05/11/2023).

[62] Q. Company, QMediaPlayer — Qt for Python. [Online]. Available:
https://doc.qt.io/qtforpython- 5/PySide2/QtMultimedia/
QMediaPlayer.html (visited on 05/13/2023).

[63] OpenAI, ChatGPT. [Online]. Available: https://chat.openai.com
(visited on 05/14/2023).

111

https://www.baeldung.com/cs/race-conditions
https://www.baeldung.com/cs/race-conditions
https://www.techopedia.com/definition/3410/pipe
https://www.techopedia.com/definition/3410/pipe
https://doc.qt.io/qtforpython-5/PySide2/QtMultimedia/QMediaPlayer.html
https://doc.qt.io/qtforpython-5/PySide2/QtMultimedia/QMediaPlayer.html
https://chat.openai.com

Attachments A

Figure A.1: Executive block diagram of the ROV

112

	Summary
	Preface
	Abbreviations & Expressions
	Introduction
	Introduction
	About UiS SubSea
	Mechanical
	Electronics
	Computer Science
	MATE - Marine Advanced Technology Education
	About ROV Project

	GUI - A closer look
	Overview of what needs to be done

	Background and Theory
	Technologies and Protocols
	Communication
	Transmission Control Protocol
	User Datagram Protocol
	TCP versus UDP
	Communication Medium

	Camera
	Camera Positioning
	Camera Lights
	Remote Connection
	GStreamer

	Development and Working Method
	Git
	Github project table
	Development strategy
	Meetings

	Programming Language
	Earlier languages
	Python
	C#
	Choosing a language

	Frameworks
	Qt
	PyQt
	Pygame

	Steering
	Choice of Controller
	Testing
	ROV
	Manipulator

	Operating System
	Microsoft Windows 11
	Ubuntu
	Choosing an operating system

	Processing and Threading
	Process
	Thread

	Implementation
	Process flow
	Data transfer between topside and Nvidia Jetson
	Control System Circuit Board
	Sensor Circuit Board
	Power Circuit Board
	Communication Circuit Board

	Controllers
	Accessing the controller data
	Steering data
	Sending the steering data

	Threads and Processes with Threadwatcher
	GUI
	Layout
	GStreamer
	Sending data to the GUI
	Updating the GUI
	Sending data from GUI

	Testing
	Local testing
	ROV testing
	Communication testing

	Results
	Water Test
	Topside
	GUI
	Controllers
	Data Logging

	Discussion
	Bottleneck
	Communication Challenges & Solutions
	Controller Challenges & Solutions
	Mac and Windows to Ubuntu
	Initializing Controllers
	Future improvements for steering data

	GUI Challenges & Solutions
	Iterations of the GUI
	ROV data to GUI
	Updating Alarms

	General Challenges and Solutions
	Earlier testing/implementation
	Subside PC to do image processing
	Time usage

	Continuation of the Subsea project
	Summarized Future Improvements

	Financial overview & Environmental report
	Environmental Report
	Environmental impact

	Conclusion
	Attachments
	

