
IVER B. BOLSTAD AND ROBIN AASAN
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

Simplifying Smart Contract Execution and
Trusted Environments with EGo

Bachelor's Thesis - Computer Science - May 2023

We, Iver B. Bolstad and Robin Aasan, declare that this thesis titled,
“Simplifying Smart Contract Execution andTrustedEnvironmentswithEGo” and

the work presented in it are our own. We confirm that:

■ This work was done wholly or mainly while in candidature for a bachelor’s

degree at the University of Stavanger.

■ Wherewe have consulted the publishedwork of others, this is always clearly

attributed.

■ Where we have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely our own work.

■ We have acknowledged all main sources of help.

“The computerwas born to solve problems that did not ex-
ist before.”

– Bill Gates

Abstract

IoT has had significant growth during this last decade. However, its adoption

on the edge isn’t obviously feasible as it poses risks concerning data privacy, in-

tegrity and accountability. This is particularly true in situations involving multi-

ple competitive stakeholders or when deploying devices in remote areas without

proper surveillance as data manipulation by intruders may occur. Trusted Exe-

cution Environments (TEEs) have the advantage of isolating sensitive operations

by separating themselves from the host operating system, ensuring confidential-

ity and privacy. Together with blockchain technology, TEEs can help establish

trust between stakeholders. ChainBox is one such framework that enables trusted

computing on the edge by utilizing TEEs and blockchain. Furthermore, ChainBox

incorporates the use ofWebAssembly for executing smart contracts providing ad-

ditional isolation. However, Chainbox has a complex programmingmodel. Thus,

this thesis aims to evaluate and examine a framework called EGo that provides a

straightforward programming model for developing Trusted Execution Environ-

ments (TEEs). Accomplishing this is done through reimplementing ChainBox,

leveraging the capabilities of the EGo.

We show that EGo is a user-friendly and straightforward framework, most

relevant for developers with limited experience with more advanced SDKs such

as the Intel SGX SDK. With our reimplementation of ChainBox, using simplified

smart contracts and non-secure connections, EGo performs with a throughput of

about 3 to 3.5 times worse than the standard Go compiler.

iii

Acknowledgements

Wewould first and foremost thank our sophisticated and enthusiastic supervisor,

Leander Jehl, for his guidance throughout this project. He has been extremely

helpful with both technical and theoretical questions regarding this thesis. We

would also like to extend our appreciation to Hanish Gagoda and the Edgeless

System team for helping with technical complications. Last but not least, we

would like to thank family and friends for their overall encouragement towards

ever-higher achievement.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 2

1.1 Motivation . 2

1.2 Objectives . 3

1.3 Approach and Contributions . 3

1.4 Outline . 4

2 Background 5

2.1 Trusted Execution Environment 5

2.1.1 SGX . 6

2.2 WebAssembly . 7

2.3 ChainBox . 9

2.3.1 Architecture and Design 9

2.3.2 Functionality and Use Case 11

3 EGo 12

3.1 Introduction . 12

3.2 Architecture . 12

3.3 Using EGo . 13

3.3.1 Prerequisites . 13

3.3.2 Usage . 14

3.4 Attestation with EGo . 16

3.5 MarbleRun . 17

3.6 Limitations . 17

v

4 RelatedWork 19

5 Implementation 21

5.1 Proposed Solution . 21

5.2 Implementation . 21

5.2.1 Architecture . 22

5.2.2 Runtime . 23

5.2.3 Ordering service . 24

5.2.4 Blockchain . 25

5.2.5 Sequence Diagrams and Data Flow 25

6 Experimental Evaluation 29

6.1 Testing EGo . 30

6.2 EGo vs. Go . 32

6.3 Mulitple Runtimes . 34

7 Discussion 35

7.1 Discussion of working with EGo 35

7.2 Discussion of the implementation 37

8 FutureWork and Conclusion 39

8.1 Future development . 39

8.2 Conclusion . 40

A Instructions to Compile and Run System 42

Bibliography 48

Chapter 1

Introduction

1.1 Motivation

Internet-of-things (IoT) keeps getting more attractive to smaller businesses as it

has a significant possibility for automatization and increased efficiency. How-

ever, its adoption isn’t easily implemented for all businesses when taking pri-

vacy, data integrity, cost and ownership into account. For instance, in agricul-

ture, monitoring food such as fruits may be of interest as it can be used to en-

sure consumers the quality of the fruit. Sensing-, data-, or analytics-as-a-service

can ease adoption with the monitorization, but they have significant drawbacks

mainly due to the fact that these models may belong to different competitive and

untrusted stakeholders [1] wanting to manipulate the data for their own profit.

These models, i.e., sensor infrastructure, data, and analytical models, in reality

only serve their purpose if there is reciprocal trust between the various competi-

tive stakeholders.

ChainBox [1] is one example of an application that enables trusted edge com-

puting and data sharing between users. Unlike other systems that rely on distri-

bution to facilitate trust, such as Hyperledger Fabric [2], ChainBox uses Trusted

Execution Environment (TEE) technology to achieve trusted edge computing.

This is accomplished through the use of SGX, a type of TEE that ensures the

confidentiality and integrity of sensitive data. Additionally, ChainBox utilizes

blockchain together with smart contracts for secure data sharing. The Blockchain

is employed on a single-edge device, whichminimizes costs and is reliable and se-

cure by leveraging a TEE, contrary to systems that rely on the distribution.

2

ChainBox is a sophisticated application constructed primarily using C/C++.

However, the implementation with Intel SGX has a complex programmingmodel

and limited adoption [3]. It would be of great interest to have a framework that

effectively addresses the same issues as those addressed by ChainBox, but with a

simpler programming model. Such a framework would make confidential com-

puting more feasible for a diverse range of developers. It is therefore this thesis

aims to look at and evaluate a relatively new framework called EGo. By using

the design of ChainBox as an example, we will evaluate and test EGo by reimple-

menting ChainBox with this framework. EGo supports the use of enclaves using

Intel SGX, but has the advantage of letting almost any Go-written application run

inside enclaves without needing to partition the application into untrusted and

trusted components, compared to how ChainBox is created.

1.2 Objectives

This thesis consists of two main objectives. We are first and foremost going to

evaluate the EGo as a framework for building confidential applications. With the

knowledge of how the framework works and what its limitations are, we will look

to reimplementation a smart contract framework called: ChainBox [1]. The fol-

lowing objectives will be used to achieve this:

• Describe and study EGo focusing on its potential and limitations.

• Study ChainBox and the possibility of reimplementing it with EGo

• Implement and evaluate the reimplemented version of ChainBox

1.3 Approach and Contributions

In this thesis, we adopted an approach that consisted of studying the function-

alities of both ChainBox and EGo, followed by the subsequent reimplementation

of ChainBox using EGo. The EGo SDK was downloaded and tested both in a cor-

rectly configured cloud virtual machine (VM) and on-premise, giving insight into

the process from installation to execution as well as the quality of the documen-

tation. After a clearer understanding of how to execute a variety of EGo-compiled

applications was obtained, we began the journey to reimplement ChainBoxwhich

further broadened our knowledge of the framework. Our approach led to a variety

of findings regarding EGo. To summarize, our contributions were:

• Showing how EGo compromises user-friendliness with performance

• Evaluating EGo through multiple experiments, including a comparison of

the framework to the standard Go compiler

• Showcasing how WebAssembly modules can function within an EGo en-

clave

• Proving how a sophisticated system such as ChainBox successfully can be

implemented using EGo

1.4 Outline

In ch. 2 we will cover the necessary and relevant background information for this

thesis. We will mainly introduce technologies and concepts such as Trusted Ex-

ecution Environment, focusing on Intel SGX, Webassembly and Blockchain. Ch.

3 will cover the framework used to build our application - EGo, which will pro-

vide clarity and justification for our implementation in ch. 5. In ch. 4, we review

related works to contextualize our research. In ch. 6, we show our results using

EGo through a variety of experiments. We discuss EGo overall as a framework

and elaborate on potential areas for improvement regarding our implementation

in ch. 7. Lastly, we present what was not implemented from ChainBox in ch. 8

before finally concluding and summarizing our thesis.

Chapter 2

Background

The technologies within trusted execution environments include both hardware

and software, which cooperates tomake a secure and isolated environmentwithin

the computing system. Hardware-based security systems such as Intel SGX are

designed to provide security through a specific isolated environment in the phys-

ical processor. This is also combined with software-based security technologies

and is also essential in our system. To understand how and why this works as

a whole, several different features and mechanisms need to be acknowledged.

Hence, in this chapter, we explain the key technologies that make up our system.

2.1 Trusted Execution Environment

A trusted execution environment (TEE) is a trusted area inside the main proces-

sor on a device, often on server-side machines. Trusted environments are often

used for sensitive operations and computations, and to store sensitive informa-

tion.

TEEs often combine both hardware and software to create isolated areas. At

the core of the environment is the specialized processor, as we will explain more

in the chapter below. Hardware-based solutions also need additional features

including attestation, encryption, and digital certifications to add further security

to the environment. This is achievedwith software-based solutions, whichwe also

discuss further down in this chapter.

The importance of these environments has increased over the past few years

as the demand for digital trust grows rapidly. The concept itself is not new, but it

5

is no longer used only in high-end devices [4].

2.1.1 SGX

In general, Intel Software Guard Extensions (SGX) enable applications to execute

code inside their own trusted environment, known as enclaves, allowing them to

store secret data. Personal information, encryption keys, and passwords are ex-

amples of such secrets. The SGX SDK gives the developers direct control over

the security of the system. Additionally, there are frameworks that use the SGX

SDK as their underlying technology, such as EGo, giving developers indirect ac-

cess to SGX capabilities. Enclaves are isolated and encrypted memory regions

in RAM. These regions are non-addressable and can be used by the application

when needed, often when secrets must be retrieved or modified. Secrets inside

an enclave will be kept protected even when the application, BIOS, and OS are

compromised. This allows for high integrity and security for the disadvantaged.

Figure 2.1 describes how an SGX application runs, we can see it runs in two

different components: trusted and untrusted. The application runs in untrusted

memory until it needs to retrieve ormodify secrets. When this happens, the appli-

cation will create an enclave in the trusted memory and calls, using enclave calls

(E-CALL), a trusted function used to work within the trusted part. When the E-

CALL is made, the application will see the enclave’s code and data as clear plain

text. Calls to the trusted part from any other part of the system will not work, as

can be observed at the bottom of figure 2.1. Functions can also call the outside

of enclaves with outside calls (O-CALL). This architecture is just a standard for

trusted execution environments using Intel SGX and may differ from other types

of frameworks, as we will discuss in ch. 3.

Figure 2.1: Intel SGX Application

Whenever enclaves are run on servers, connecting clients often need insur-

ance that they are connected to the expected enclave. Remote attestation is used

to verify the authenticity and integrity of the TEE by including a third party. This

ensures the relying party that it is attested to an authentic TEE. Intel SGX cur-

rently supports two different solutions to remote attestation, elliptic curve digital

signature algorithm (ECDSA) and enhanced privacy ID (EPID) based attestation

[5]. Transport layer security connections can be established through both these

attestation methods. Intel states that remote attestation gives the relying party

increased confidence that the software is running [5]:

• Inside an Intel® Software Guard Extension (Intel® SGX) enclave

• On a fully updated system at the latest security level (also referred to as the

trusted computing base [TCB] version)

2.2 WebAssembly

WebAssembly (WASM) is a low-level programming language with a binary in-

struction format. It was originally designed forweb browsers, but later on became

supported for a wide range of platforms. WASMprovides a variety of security fea-

tures. For example, when WASM modules are executed, they are not run freely

on the host system, but rather in a sandboxed execution environment [6]. This

means that the compiled code has access to neither arbitrary code, access files, or

other resources on the host machine. WASMmodules are also memory-safe and

isolated from making network requests.

In figure 2.2 you can see howWASM, compiled fromapreferred programming

language, may be used in web-embedded or non-web-embedded contexts.

Figure 2.2: Compiling code from standard programming languages toWASM for

web-embedded and non-web-embedded contexts. Figure retrieved from [7].

A Go package bringing the required API for executing WebAssembly code

calledWasmer-go [8] has been incorporated for our implementation. Wasmer-

go is based on a runtime calledWasmer, aWebAssembly runtime that enables the

utilization of lightweight containers [9]. Wasmer-go also supports WebAssemby

System Interface (WASI), a standardized interface between WASMmodules and

the host operating system, providing a secure and portable way forWebAssembly

code to interact with the underlying system. WASI is used in ChainBox which is

something our implementation therefore can use in a similar manner. Wasmer-

go needs an engine and a corresponding instance to run the code WASM code.

The Wasmer-go instance itself is an executable instance of the WASM module.

Moreover, it contains all exported WASM functions that allow calling into the

code itself from outside the sandboxed environment [10]. Note that a WASM

runtime is integrated into an application, such as an application written in Go.

It’s important to clarify that figure 2.2 demonstrates the compilation of an ap-

plication into a WebAssembly module, which should not be confused with the

integration of the runtime itself.

2.3 ChainBox

ChainBox is a TEE-based smart contract execution framework that tackles pri-

vacy, integrity, and confidentiality. It is meant to substitute systems realizing

replication anddistribution, e.g.,HyperLedger Fabric [2]whichChainBox is par-

tially based on. This makes their system more feasible for deployment in fields

with limited resources and solves multiple bottlenecks in for example Internet-

of-Things.

2.3.1 Architecture and Design

ChainBox mainly consists of three different components;

• The ordering service

• The blockchain storage

• The runtime enclave

The overall architecture is displayed in figure 2.3.

The ordering service is the core component of the system. It validates

transactions and adds them to the blockchain as shown under point 1⃝ in fig-

ure 2.3. The ordering service runs inside an enclave and signs each block from

within, ensuring the integrity of the created blocks. Communication between the

runtime enclave and the ordering service with regards to the transactions and

blocks, respectively, is attested both ways ensuring that both the components

work correctly. This inter-enclave communication is also encrypted adding fur-

ther security.

Next up is the blockchain storage, which can be seen under point 2⃝ in

figure 2.3. In ChainBox, the blockchain storage is located on disk in Protobuf

format. As mentioned above, each block is signed by the ordering service. Upon

initialization of the ordering service, eachblock is validatedwith the signing key, if

there are any existing blocks. If there is no existing one, a genesis block is created.

Each block in the blockchain is considered public information.

Lastly, the figure shows the runtime enclave under point 3⃝. The runtime

mainly consists of a WASM module, referred to as a smart contract, and offers

some API calls listed in 2.1. It is responsible for loading, instantiating, and ex-

ecuting smart contracts within the WASM module and sending transactions to

the ordering service. The runtime allows for parallel execution of smart contracts

and notifies the other runtimes when changes occur.

SET Update a key-value pair
GET Returns a pointer to memory and the length of the present value
FREE Free memory used by the smart contract

REGISTER Register the contract for callbacks on a specific key

Table 2.1: ChainBox Runtime API calls

The orderingservice and runtime, 1⃝ and 3⃝, are run inside enclaves, explained

in more detail in ch. 2.1.1. When applications run inside enclaves it is isolated

from the outside, but they can still be reached by non-encrypted connections if

they expose open ports to allow for HTTP communication, for example. To make

the system more secure, the connection between enclaves needs to be secured as

well. Chanbox uses TLS connections between the enclaves which can be seen in

2.3 as the blue and purple arrows.

Figure 2.3: ChainBox Architecture [1]

2.3.2 Functionality and Use Case

One example of ChainBox being used in the field would be something that collects

data from the real world. This could for example be weather data from a weather

station. This weather data is being used to schedule flights at an airport. Thus, it

is crucial that the data is correct and bymeans not changed with bad intent by the

station administrator. Theweather datawould be sent through their environment

and stored safely in the blockchainmaking the data considered trusted by all other

stakeholders. This use-case is of course given that the device collecting the data

functions properly and is not tampered with itself.

Chapter 3

EGo

In this chapter, we carefully analyze the EGo framework and explain its potential

and limitations. Having some background information on the framework will

hopefully simplify as well as justify the way we have reimplemented ChainBox.

3.1 Introduction

EGo is an SDK (software development kit), that Edgeless Systems have created

as an open-source solution [11]. This particular SDK has been designed to enable

the use of Intel’s SGXmechanisms in applications written in Go. Essentially, EGo

can be viewed as an extension of the Go compiler, in which it creates binaries that

can be run inside an SGX enclave.

3.2 Architecture

SGX has its own programming model where the application is partitioned into

trusted and untrusted parts, as explained in sec. 2.1.1. In EGo, however, the tran-

sition between the trusted and untrusted sections is hidden inside the EGo run-

time, making them transparent to the developer. As virtually, the whole program

runs in an enclave, developers can assume that sensitive information in their pro-

gram remains secure and unchanged throughout execution, even on untrusted

computers. Figure 3.1, illustrateswhere important sections of an application such

as theData, Code and Runtime reside within an unstrusted computer.

12

Figure 3.1: Illustration of an EGo enclave. Figure inspired from an illustration
from Edgeless Systems [11]

3.3 Using EGo

Before one can begin using EGo, a few technical details need to be addressed.

Thus, this section provides a description of the system requirements necessary

to run an EGo application, as well as instructions for downloading and using the

framework with its provided tools. While the easiest way to get started is to use a

computer from a cloud provider that is already configured for SGX enclaves, this

section will also briefly outline how to configure a computer for the use of EGo.

3.3.1 Prerequisites

Enabling SGX on the machine is essential for using EGo. While EGo does allow

for running an application in simulationmode, i.e., without the need for SGX,

our primary interest lies in running an application inside an Enclave with SGX.

Without this capability, using EGo in the first place would be pointless.

Firstly, checking if the BIOS on the desired machine is SGX-enabled can be

done as shown below. Note that this assumes the intel-CPU supports SGX which

is detailed in Intel’s documentation: link to Intel’s website.

1 & sudo apt install cpuid

https://www.intel.com/content/www/us/en/support/articles/000028173/processors.html

2 $ cpuid | grep SGX
3 SGX: Software Guard Extensions supported = true
4 SGX_LC: SGX launch config supported = true
5 SGX capability (0x12/0):
6 SGX1 supported = true

Listing 3.1: Terminal commands for checking if the hardware supports SGXusing

the Cpuid program.

If either of SGX, SGX_LC or SGX1 returns false it means the BIOS is not

configured for SGX which can be done through the BIOS.

3.3.2 Usage

Compiling a Go application to EGo can be done in a few steps. The first step is

to download the DEB package through the snap on Ubuntu (version 18.04 and

20.04). The second step is to compile your go application into an EGo binary

with the ego-go build command. The first time building the application, EGo

will also create an enclave.json file with enclave-specific configurations. There-
after, signing the executable can be done using the ego sign command which is

required as every executable must have its own signature to function. The last

step is to run the executable with the ego run command which will run the ex-

ecutable binary, loading it into and running it as an enclave [12]. An example of

the whole sequence from downloading to executing an application written in Go

is summarized as terminal commands shown below.

1 sudo snap install ego-dev --classic
2 ego-go build helloworld.go
3 ego sign helloworld
4 ego run helloworld

Listing 3.2: How to download and use the EGo SDK for an application written in

Go named helloworld.go

The enclave-specific configurations in the enclave.json file created by the ego-

go build command, have the fields as described in 3.3.2.

1 {
2 "exe": "helloworld",
3 "key": "private.pem",
4 "debug": true,
5 "heapSize": 512,

6 "executableHeap": false ,
7 "productID": 1,
8 "mounts": [
9 {
10 "source": "/home/user",
11 "target": "/data",
12 "type": "hostfs",
13 "readOnly": false
14 },
15],
16 "files": [],
17 "env": []
18 }

Listing 3.3: Enclave specific configurations in the enclave.json.

Most fields are self-explanatory, therefore, we won’t go through them all in

much detail. An important takeaway from the enclave.json file is that it lets you

include files in themounts and the files fields. The mounts field specifies the

files presented to the enclave from the host file system, while the files field de-

fines the files embedded into the enclave binary and available in-enclave-memory

filesystem. Both fields define a source and target indicating where the file is lo-

cated in the host filesystem (source), and where the file can be accessed by the

enclave (target). It’s worth noting that the main difference between accessing

files with either mounts or files is that the former allows the enclave to access the

filesystem during execution, whereas the latter involves a copy of the file embed-

ded within the enclave binary, meaning the file is not being edited on the host

file system. The filesystem is in general regarded as untrusted with respect to the

enclave which the developer should be aware of before allowing the enclave to ac-

cess files. Other useful fields areheapSizewhich decides the amount of memory

(in MB) the enclave can allocate, and productId for letting an attester distinguish

between different enclaves signed with the same key.

A complete list of supplementary tooling has been itemized in the table below.

sign Sign an executable built with ego-go

run Run a signed executable in standalone mode

marblerun Run a signed executable as a MarbleRun Marble

bundle Bundle a signed executable with the current EGo runtime

into a single executable

signerid Print the SignerID of a signed executable

uniqueid Print the UniqueID of a signed executable

env Run a command in the EGo environment

install Install drivers and other components

Table 3.1: EGo command-line arguments [12]

In addition to the commands above Ego offers a way to run an application

in simulation mode with the OE_SIMULATION=1 flag for the run command. This

makes the application easier to debug as no data nor code gets encrypted during

execution. Simulation mode is also useful when not having a CPU that supports

SGX, but you still want to verify that an EGo application runs correctly. Note

that simulation mode only works as long as the application doesn’t rely on any

SGX-specific functions such as remote attestation [12].

3.4 Attestation with EGo

EGo facilitates both local and remote attestation by providing Go packages for

easier implementation of these features [13]. Remote attestation in general re-

lies on external SGX services, which include a Quote provider that connects to

Intel’s Provisioning Certificate Caching Service (PCCS). With regards to EGo, the

Quote Provider connects the enclave to the PCCS. This allows for remote attes-

tation to be issued from a client, ensuring the authenticity and integrity of the

enclave. Cloud providers like Microsoft Azure operate their own PCCSs, which

simplifies the usage of remote attestation. However, if the application is to be

run on-premise, the developer must host their own PCCS. To address this, Edge-

less Systems has created a Docker image that can be pulled and run locally as a

container to host a PCCS, provided that the user has an API key from Intel’s PCK

Certificate [14].

Local attestation is a term used by Intel SGX that describes how two enclaves

can communicate through a secure channel after attesting each other’s integrity.

It does, however, require both enclaves to run on the same host. By utilizing

two packages created for EGo called Enclave and Eclient [13], local attestation

between two EGo-enclaves can be implemented by taking advantage of the func-

tionalities predefined in the packages.

3.5 MarbleRun

Microservice architectures have become an important and popular way of dis-

tributing applications for a variety of industries. Thus, begs the question of how

an EGo application easily can be handled in a distributed and confidential man-

ner. Edgeless systems’ solution to this is Marblerun; a framework that works

as a complement to EGo. Marblerun handles the whole distributed architecture

on a Kubernetes cluster, enabled with intel-SGX. Marblerun is then able to ver-

ify the integrity of the services, as well as set up encrypted connections between

them [15]. Although our implementation does not rely on Marblerun, it is worth

mentioning for context and practical knowledge to reveal how EGo can work in a

distributed system.

3.6 Limitations

EGo as a framework is designed to be as close to Go as possible. It gives users

an easy way of transporting their applications for use in confidential computing.

The developers of EGo suspect that it is likely thatmost apps in the future will run

most of the code inside enclaves, especially considering how the world is moving

their applications to the cloud [16]. This was one of the reasons for EGo’s origin; it

reduces the time developers have to port or refactor their code to C/C++ with the

SGXSDK. EGo compromises being user-friendlywith the control a developer gets

overwhat is computed inside and outside an enclave. Performance has, therefore,

the potential of being lost by context switches, i.e. switching between trusted and

untrusted environments. This will be addressed later in the thesis.

Booting an EGo application also comes at the cost of time as EGo has to load

the whole binary into the enclave, i.e., the larger the application is, the more time

it takes to initiate it. A work using EGo, Porambage et. al [17] showed a difference

of slightly over 8s to boot a process compared to Intel SGX in C++. Using EGo in

such a manner that requires the application to often restart, would therefore be

very inefficient.

Chapter 4

RelatedWork

In this section, we investigateworks regardingTEE,works around theEGo frame-

work or combinations of the two. ChainBox is to some degree inspired by Hyper-

ledger fabric’s [2] in terms of the overall design, which is also taken into account

in part of the thesis.

Hyperledger Fabric Fabric is an open-source system for permissioned

blockchain technology aiming at flexibility, scalability and confidentiality for dis-

tributed applications. It is hosted by the Linux foundation and is one of few

blockchain systems that rundistributed applicationswritten in standard, general-

purpose programming languages [2]. Fabric uses a execute-order-validate archi-

tecture in which the three steps can be run on different entities in the system. The

execution step means that multiple peers execute a smart contract which implies

also checking its correctness, thereby endorsing it. The transaction computed by

the smart contract then gets sent to the ordering service i.e., the component re-

sponsible for the consistency of the immutable ledger. Lastly, a block is created

from all transactions in the ordering service that get sent to all peer nodes. The

peers will then append the validated transactions to their local copy of the ledger

preventing inconsistency due to concurrency.

Secured Routines: Language-based Construction of Trusted Execu-

tion Environments Ghosn et al. (2019) [3] introduced a language-based

construction of TEEs as an approach to fully integrate trusted execution by allow-

ing goroutines (user-level abstraction of threads specific to the go programming

19

language) to execute within an enclave. Channels are used to communicate be-

tween untrusted and trusted environments. The compiler and runtime calledGO-

TEE is an extension of the Go language and serves the purpose of automatically

extracting secure code and data, necessary to run the enclave. Function calls to

an enclave from untrusted code are accomplished by running secure goroutines.

Secure routines are run by the gosecure command, a keyword which is an ex-

tension of Go’s standard go routine executed by the go command. Only a single

annotation is therefore needed to distinguish trusted and untrusted execution.

Through efficient compiler-driven code and data partitioning, GOTEE achieves

up to 5.2x throughput and a 2.3x latency over the intel SGX SDK. Because of this

improvement over the SGX SDK, the developers claimed the most effective use

of TEE in general, is to have it execute only trusted operations while running the

remaining part of the application outside of the enclave.

Go Language support in Hyperledger Fabric Private Chainode A

work by Riccardo Zappoli [18] shares the interest in extending the language sup-

port for running smart contracts in TEEs with SGX, just like Secured routines.

This is similar and partly the purpose of our reimplementation of ChainBox us-

ing EGo. This study mainly consists of continuing Hyperledger Fabric Private

Chaincode (FPC), a program that enables execution of chaincodes (smart con-

tracts specific toHyperledger Fabric) using intel SGX forHyperledger Fabric [19].

The reasoning for their study was to allow for Go-written chaincodes since FPC

only allowed for C/C++-written ones due to compatibility requirements for SGX.

A Go Chaincode Package was created and intended to be used and integrated into

FPC. Like our implementation, they used the EGo SDK, which we will further

discuss in ch. 7.

Chapter 5

Implementation

In this chapter, we will explain how our system is built component by component.

How and where data flows through our program is also presented, giving further

insight into the reimplementation. The combination of the Wasmer WebAssem-

bly runtime (Wasmer-go), attestation, and SGX are key features in making the

system secure. Thus, we will discuss how these technologies and mechanisms

work together with EGo constructing a trusted execution environment.

5.1 Proposed Solution

Our product is a reimplementation of ChainBox, [1], using Golang with its ex-

tended framework EGo. As ChainBox, our system consists of a runtime, an order-

ing service, and a blockchain. Our solution also realizes blockchain on a single-

edge device and relies on Intel SGX indirectly through EGo to ensure the pro-

gram’s integrity. Since our reimplementation is based on EGo, which is a more

straightforward way of constructing Intel SGX applications than the Intel SGX

SDK, our solution is just as, or even more, feasible than ChainBox. The sys-

tem is specifically built to withstand a non-secure server side and provides ven-

dors/users with a confidential log-based platform.

5.2 Implementation

We make the same assumptions as ChainBox when it comes to the design of the

application. Firstly, we assume a consortium of independent vendors (stakehold-

21

ers) taking part in the field with physical devices or software. Secondly, we en-

able the utilization of an immutable ledger to allow devices to generate data and

perform operations, as well as consume data produced by other vendors. Thus,

ensuring consistency among all vendors, meaning all users can access the same

data. Thirdly, our Threat model seeks to specifically handle the following at-

tempts to take advantage of the system:

1. The system is located on an untrusted field.

2. Vendors want to retract recorded data to gain an advantage over other ven-

dors

3. Vendors may want to present conflicting information to other vendors.

4. The system administratormaywant to suppress data or recordings from the

vendors.

5.2.1 Architecture

In figure 5.1 you can see the overall architecture of our reimplementation. It con-

sists of three parts, the runtime 1⃝, ordering service 2⃝, and blockchain 3⃝. The

green zones represent trusted environments, i.e., enclaves, contrary to untrusted

grey zones. The figure also displays a blue zone, which represents a Wasmer-go

runtime, running inside the trusted environment. The red arrows between the

client and runtime, and runtime to the ordering service show secure connections

while the dotted black shows write operations to disk. This architecture is equiv-

alent to the architecture in ChainBox.

Figure 5.1: Application Architecture

We have chosen an asynchronousmodel for communication between the run-

time and the ordering service. Through local attestation, as described in ch. 3,

secure and encrypted communication is obtained between the runtime and the

ordering service. The process of local attestation in our implementation is in-

spired by an example from the developers’ GitHub repository [20]. Only after

a mutual TLS connection is established in the form of a WebSocket, the runtime

can begin handling, respectively, transactions from the clients and created blocks

from the ordering service. The rationale behind this method is twofold: first, it

allows for faster and more efficient asynchronous communication, and second, it

ensures that all runtimes are notified promptly when a new block is generated,

necessitating an open connection between the two components.

5.2.2 Runtime

The main task of the runtime is to act as an intermediate joint between the client

and the ordering service that executes smart contracts. As we observe point 1⃝ in

figure 5.1, this is where the Wasmer-go runtime and key-value store are config-

ured.

The runtime listens on a port for API calls from the client and processes the

request depending on the endpoints listed in table 5.1.

INIT Initiate a specific client

UPLOAD Upload a single smart contract

SET Initiate specified smart contract with a key-value pair

Table 5.1: Runtime API calls

Currently, the Wasmer-go runtime is simplified to accept just one type of

smart contract. This smart contract simply increments the value of a transac-

tion by one. When a transaction is processed by the Wasmer-go runtime, it is

sent to the ordering service through a secure WebSocket connection. We discuss

the use of these connections in more detail in sec. 5.2.5.

As mentioned, the runtime is persistent by storing transactions on disk. They

are specifically stored in a .store file, which is mounted in the runtimes en-

clave.json file. This in itself does not store the file in a secure way and is why we

use a seal function fromEGo’s ecrypto package. This function encrypts plaintext

within the file with the signer- and productid of the enclave.

Since one big focus in ChainBox is making cheap on-site deployment feasible,

storing transactions both on runtimes and in the blockchain seems unnecessary

and only consumes resources. This is mainly implemented because this thesis

focus is the reimplementation of ChainBox.

5.2.3 Ordering service

Themain task of the ordering service, point 2⃝ in figure 5.1, is logging theWasmer-

go generated transactions from the runtime to the blockchain. It is also responsi-

ble for updating the connected runtimeswhen anewblock is added to the blockchain.

The ordering service writes to the blockchain using the mount configuration

in enclave.json. The ordering service is programmed to create a new block for

a fixed size of transactions. When it receives transactions from the runtime, it

stores them temporarily until the number of transactions stored, i.e., a transac-

tion counter is equal to the block size. To make the ordering service handle in-

coming transactions concurrently, the routine (lightweight CPU thread for Go)

locks around the list containing all transactions to prevent race conditions for the

other running routines.

The ordering service responds to the runtimes in twodifferentways, whenever

a new transaction is stored or when a new block is created. An explanation of how

the two enclaves communicate will be elaborated later in sec. 5.2.5.

5.2.4 Blockchain

Ourblockchain storage is currently, also asChainBox states, assumedpublic knowl-

edge. This is a simplified immutable ledger where each block is stored in JSON-

format sequentially on disk. The block size varies, depending on the configura-

tion of the ordering service. When the ordering service is initiated, a genesis block

is created if there are no blocks (files) in the filesystem beforehand. The genesis

block does not contain any transaction data, only the genesis hash and time of cre-

ation. Each block, excluding the genesis block, contains multiple data attributes.

It contains a timestamp of creation, a unique hash with the corresponding previ-

ous blocks’ hash, and the transactions themselves.

5.2.5 Sequence Diagrams and Data Flow

A clear explanation for attesting the integrity, both ways, between the runtime

and ordering service enclave resolving in the aforementioned secure WebSocket

connection will be provided in this section. Additionally, we will show how a

transaction (i.e., smart contract execution) gets handled in every componentwithin

our implementation.

For the previously mentioned local attestation, two Go packages designed for

EGo have been incorporated, called Enclave andEclient. These packages provide

handling so-called Reports, which includes important specifications and func-

tionality [13]. In the figure below, the green text represents functions used from

the forenamed Go packages.

Figure 5.2: Sequence diagram showing the data flow between the runtime en-

clave and the ordering service enclave during local attestation, ending in a secure

(TLS) WebSocket. Both enclaves verify each other Report-data by communicat-

ing certificates and a public key.

At initialization of the runtime, it retrieves a certificate generated by the or-

dering service using the x509 format, together with a belonging private key 1⃝.

The next steps mainly consist of both enclaves generating reports 2⃝, and there-

after verifying them with the other enclaves’ report data 3⃝ together with the ini-

tial certificate. Next, the runtime generates a public keywhich is sent and used by

the ordering service to generate a New certificate 4⃝. Lastly, the new certificate

togetherwith the private key is used for the TLS connectionwithin theWebSocket

5⃝.

After a secure connection between the enclaves is obtained, and a client has

initiated and uploaded the smart contract (described in table 5.1), a connected

client can execute the smart contract by using the SET API call with a key-value

pair.

Diagram 5.3 illustrates a round-trip for the execution of a smart contract, i.e.,

how a transaction is handled for every individual component. The round-trip

resolves with an acknowledgement to the initial client. HTTP Long Polling for

the client was configured to achieve this.

Figure 5.3: Data flow through every component during a round-trip of a single

transaction.

A connected client can execute its uploaded WASM module using the SET

API call which includes a key and value 1⃝. Other data types besides integers will

be rejected by the runtime, resulting in an error. The runtime will, subsequently,

find the client’sWasmer-go instance, and call the exported function defined in the

uploaded WASM module, hence, invoking the function 2⃝. The Wasmer-go run-

timewill then execute the smart contract, which includes calling another function

from within the sandboxed environment using the key-value pair as parameters.

The resulting Key and New value will be returned to the runtime 3⃝. Continu-

ing the transportation of the created key-value pair; the created key-value pair is

sent from the runtime to the ordering service in which a new block gets created if

the amount of transactions exceeds the block size as described in sec. 5.2.3 (4⃝).

Once a block is created, the ordering service will distribute all transactions to all

connected runtimes. Each runtime will store the transactions within their .store

file as mentioned in sec. 5.2.2. Finally, an acknowledgement will be returned to

the initial client 5⃝. Note that an acknowledgement is still sent to the runtime if

there is no created block, and thereafter to the initial client from the runtime.

Chapter 6

Experimental Evaluation

With our reimplementation, we wanted to simplify and cover all of the features

ChainBoxoffers, while also preserving the same level of security. However, achiev-

ing the aforementioned goals simultaneously comes with a performance cost.

This is due to EGo’s programming model regarding the context switches as ex-

plained in sec. 3.6. In that regard, three experiments have been conducted, show-

ing the system’s performance.

Wemeasured the total round-trip latency for the systemwhen sending a trans-

action i.e., executing a single smart contract. Measuring the round-trip in this

context implies measuring the latency for a transaction to get handled by, firstly,

the Runtime (including the Wasmer-go runtime), and secondly, it involves the

processing time within the ordering service. Subsequently, an acknowledgement

is returned to the runtime before it is finally sent back to the initial client, com-

pleting the round-trip. A visualization of the round-trip can be found in sec. 5.2.5.

Average total time and throughput measurements were calculated for every ex-

periment as well.

All data points were obtained by sending a total of 5000 transactions per ex-

periment, with three repetitions. For each experiment, we increased the number

of transactions sent concurrently e.g., two transactions sent concurrently imply

sending a total of 5000 transactions where two and two are sent concurrently.

The block size for all experiments is 20, except for the first in which the block size

varies.

We ran all our experiments on Microsoft Azure. The virtual machine comes

with one physical core, 8 GB of memory, and 75 GiB of SSD memory. It’s worth

29

noting that all transactions from the experiments were sent from the same ma-

chine our application was hosted on, reducing the available recourses for the ap-

plication.

Monitoring the virtual machine, displayed in figure 6.1, as we conduct these

experiments shows that average CPU utilization lies around 55-65% independent

of block size and concurrent transactions sent.

Figure 6.1: Azure VMmetrics - Avg. CPU usage (%)

6.1 Testing EGo

In this experiment, displayed in 6.1 and 6.2, we increase the block size from 10 to

40 to detect if any significant change in the data occurs.

Requests sent concurrently Total time (s) latency (µs) Throughput

1 37.10 7294 134.77

2 36.73 14512 136.13

4 36.77 28910 135.98

8 36.34 56579 137.59

16 35.97 111200 139.00

Table 6.1: Results using EGo with a blocksize of 10

The table above shows the data points when the ordering service is config-

ured with 10 transactions per block. If we observe the latency, we can see a dou-

bling when the concurrent requests are increased. The reason for this is the list

that stores the transactions temporarily in the ordering service. As mentioned in

ch. 5.2.3, the transaction storage list is locked when the ordering service receives

transactions. Incoming transactions thus have to wait before appending to the

list, specifically, during Send(Key, NewValue) and CreateBlock(), in figure 5.3.
This causes extra latency per transaction, and even more latency every time the

list exceeds the block size because of block creation by the ordering service.

In table 6.2, the block size is increased to 40 transactions per block.

Requests sent concurrently Total time (s) latency (µs) Throughput

1 36.07 7089 138.62

2 36.52 14407 136.91

4 36.21 28307 138.08

8 35.76 55268 139.82

16 35.37 108960 141.36

Table 6.2: Results using EGo with a blocksize of 40

If we calculate the average throughput for all requests sent concurrently in re-

spectively table 6.1 and table 6.2, we observe a 1.66% decrease. This suggests that

the difference in block size imposes a marginal difference in throughput which

may be because of fewer block creations, i.e., fewer write operations to disk. We

still however see roughly, a doubling in latency for each doubling of concurrent

requests.

6.2 EGo vs. Go

In this experiment, we examined our application runningwith EGo andGo. Com-

pared to previous experiments, we removed local attestation between the runtime

and ordering service because of incompatibility with Go. We further simplified

the TLS connection between the runtime and ordering service, and furthermore,

removed it completely from the client to the runtime to simplify the experiment.

Keep inmind that the results reflect this change compared to the experiment con-

ducted in 6.1 in which the TLS connections remained unchanged.

Requests sent concurrently Total time (s) latency (µs) Avg. Throughput

1 5.15 1007.99 970.87

2 4.47 1751.85 1118.57

4 4.37 3428.95 1144.16

Table 6.3: Results using EGo

Requests sent concurrently Total time (s) latency (µs) Throughput

1 1.68 318.17 2976.19

2 1.57 602.28 3184.71

4 1.56 1079.89 3205.13

Table 6.4: Results using Go

The comparison shows that Go in general performs roughly three times faster

in terms of the Total time,Average latency, andAverage throughput. The

results demonstrate a slight decrease in total time and a slight increase in through-

put for both EGo and Go when increasing the requests sent concurrently.

To further demonstrate the difference between using EGo compared to Go, a

histogram is shown in figure 6.2, using the data sets as the first row in table 6.3

and 6.4.

Distribution with EGo

0 2000 4000 6000

Latency (µs)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
en

ci
ty

Normalized frequency

Distribution with Go

0 1000 2000 3000

Latency (µs)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

D
en

ci
ty

X 695
Y 0.4806

X 200
Y 0.4922

X 253.4
Y 0.3458

X 306.8
Y 0.055

X 500
Y 0.2984

X 890
Y 0.0906

Figure 6.2: Distribution of latencies for EGo and Go sending all requests sequen-

tially.

We can observe the difference in the overall distribution of latencies for EGo

andGo for sending all requests sequentially (i.e., 1 request sent concurrently from

table 6.3 and 6.4). Go shows a much less distribution of latencies, varying from

roughly 200 to 1500 µs while EGo shows ranges from about 500 to 6000 µs. The

wide distribution of latencies for EGo proves how it operates much less consis-

tently than Go. Additionally, the top coordinates marked in both histograms in-

dicate that Go performs almost 3.5 (695/200) times better than EGo, 48-49% of

the time.

6.3 Mulitple Runtimes

We also wanted to observe our system using multiple runtimes at the same time.

Multiple runtimes basically mean concurrent requests, but each transaction is

sent from different runtimes. We can clearly see, in table 6.5, that the results

follow the almost identical pattern as the other tests. This is because of the same

lock as discussed in 6.1 in which the lock blocks other routines from appending

to the transaction list.

Runtimes Total time (s) latency (µs) Throughput

1 37.32 7220.30 133.98

2 38.59 15237.33 129.57

4 38.67 30346.00 129.30

Table 6.5: Results using 1, 2, 4 runtimes

Chapter 7

Discussion

This thesis serves two purposes, namely to evaluate EGo and to reimplement

ChainBoxusingEGo. Wewill, accordingly, in this chapter discussEGo as a frame-

work for confidential computing by focusing on its architecture, user-friendliness,

and documentation. Subsequently, we elaborate on certain aspects of our imple-

mentation both in and outside the context of EGo.

7.1 Discussion of working with EGo

The decision to reimplement ChainBox using EGo proved to be advantageous in

terms of ease of implementation since the components i.e., ordering service and

runtime, were almost built as if they were to be written and run with the standard

Go compiler. Only a few packages i.e, Eclient, Ecrypto and Enclave from the Go

package designed for EGo [13] were used. In our experience, porting code from

Go to EGo and vice-versa requires minimal refactoring since using the latter typ-

ically requires only a few additional packages such as the aforementioned ones.

For example, for attesting to and from an enclave, the Enclave and Eclient pack-

ages are typically used, while the Ecrypto package revolves around sealing and

unsealing files to persist encrypted data to disk.

Moving on to another subject, the challenge of optimizing the code to run ef-

ficiently within an EGo enclave goes beyond the capability of the developer be-

cause of the transparency with the context switches related to SGX. As a result,

while our reimplementation of ChainBox using EGomay be optimal for the prob-

lem at hand, it may also potentially be suboptimal without our knowledge. This

35

highlights the tradeoff between the user-friendliness of EGo and the control the

developer has over the execution of the code inside and outside of the enclave, as

mentioned in ch. 3. It is therefore important for developers to carefully consider

the potential performance implications of using EGo. Moreover, documentation

detailing how EGo works under the hood, especially with regard to how it works

with SGX is not something the developers have provided as far as we can tell.

This aspect diminishes the appeal of the framework for developers who possess

expertise in tools such as the Intel SGX SDK.

Continuing the exploration in EGo; we found EGo’s documentation for get-

ting started with it pretty straightforward, but this was only the case after getting

access to an Intel SGX-compatible machine that had the required updated ker-

nel. An attempt to run EGo on an on-premise server did not work, following a

number of error messages due to the outdated kernel. We sufficed to use a pre-

configured virtual machine image from Microsoft Azure which was much more

convenient in our experience. On the former, the developers for EGo, Edgeless

Systems, were very helpful in interpreting various error messages. However, it

would have been convenient to see a supplementary system requirements list in

the documentation.

Studies like Secure routines [3] and Go Language Support in Hyperledger

[18] as mentioned in ch. 4 both integrate trusted execution in a way that doesn’t

require an application as a whole to be run inside an enclave. Similarly, we could

have looked to rearchitected ChainBox in which the most vulnerable code was

handled byEGo. It’s hard to say if thiswould have outperformed our implementa-

tion as several secure channels would be required to communicate back and forth

between the secure EGo enclave. One could also argue that it would have taken

away the purpose of using EGo considering how it is meant to run an application

as a whole within an enclave, implying that it also should be optimized for that

purpose. This approach however stands in contrast to the findings with Secure

routines where they claim that the best approach is to have the TEE only execute

trusted operations as described in ch. 4. This raises the question of whether we

will see new frameworks following the approach of Secure Routines, making the

EGo framework obsolete in comparison.

7.2 Discussion of the implementation

The first detail worth addressing is with regard to the local attestation between

the runtime and ordering service as this assumes the two enclaves are running

on the same host. Having the option of running each enclave on separate hosts

would be beneficial to allow scaling out our system with several vendors (run-

times), without taking away valuable resources from the ordering service. The

reasons for sufficing to local attestation instead of something like remote attesta-

tion were the following:

1. Test howwe could attest bothways that our enclaveswere running as, specif-

ically, EGo-created enclaves.

2. Take advantage of and thereby test the packages designed for use with EGo,

i.e., the enclave and eclient package [13], giving a clearer overall impression

of the framework.

3. Having a secure application that can be deployed with the requirement of

only one server which lowers cost compared to Hyperledger Fabric, which

requires distribution to facilitate trust [2].

As our primary focus was on working with EGo rather than developing a fully

functioning blockchain, we implemented a simplified version of the blockchain

architecture. The current blockchain in our applicationdoes include cryptographic

hashes using SHA-256, with the input being the data and the previous hash, en-

suring the immutability of the blockchain. It does not, however, include a signa-

ture from the ordering services’ enclave like ChainBox does, which we will come

back to in ch. 8. The blockchain is also simplified in terms of how the blocks are

stored on the host’s file system; all files, i.e., the blocks, are named using Unix

time (in nanoseconds). Consequently, all blocks are stored sequentially in the

filesystem due to the slight increase in time for each created file. This made the

re-loading of all blocks into the ordering service enclave effortless since we could

loop through the folder where the blocks were located. A finished product with

our implementation would, therefore, be in need of a much more comprehen-

sive and efficient blockchain implementation in terms of signatures and how the

blocks are stored, than the current one.

Both the runtime and ordering service, handling the storage file (earlier re-

ferred to as the .store file) and the blockchain respectively, read and writes files

to and from the host system. Once again, context switches come into play inwhich

the enclave needs to perform system calls to the host operating system, leading to

additional overhead for the application as a whole. This may be the reason for the

1.66% decrease in average throughput when increasing the block size from 10 to

40 in our first experiment in ch. 6. As blocks get created, based on a predefined

block size constant, and the runtime also stores all created blocks to file while

simultaneously decrypting the storage file, the application ends up using a lot of

resources. Some of which may also be unnecessary as the storage file serves no

purpose, as described in sec. 5.2.2, for our implementation. Thus, removing how

the runtimes store all blocks, may be a feature to be removed in the future, unless

it appears to be required for a refined version of our implementation.

Chapter 8

FutureWork and Conclusion

Our implementation started to look something like ChainBox, but there are still

some shortcomings. In that context, we will in this chapter present the most cru-

cial missing features our reimplementation ought to be extended with before it

could be considered finished, before finally concluding the paper by summariz-

ing our key findings.

8.1 Future development

The connection between the clients and runtimes is currently not as secure as they

potentially can be. Clients connect to the runtime with the enclave’s UniqueID.

The UniqueID is subsequently used to verify the integrity of the enclave. How-

ever, this is a simplified version of a Remote attestation that later should be in-

cluded. Furthermore, a client chooses their own API key defined with the INIT

API call, which can be any sort of string. A solution could be to implement pre-

defined API keys for the runtime and clients instead.

Unlike ChainBox, the blockchain lacks a signature from the ordering services’

enclave, hence the blockchain is never verified for its origin from the ordering

enclave. Thus, re-loading a blockchain into the ordering service from the host’s

filesystem happens with no verification to ensure that it was initially created by

the ordering service enclave.

In our current implementation of the ordering service, each block is only cre-

ated when it has received a certain amount of transactions. This means that some

transactions would be stuck if suddenly no more transactions were sent. This

39

could easily be fixed with a timeout where a new block is created after, e.g., 5

seconds after the last received transaction.

ChainBox’s WebAssembly runtime has more functionality than ours. For ex-

ample,Get,Register, and, Free is currently not options in our runtime and should

be implemented in future versions of the system.

Our webassembly runtime is executed inside an enclave, and also in a sand-

boxed environment. This makes integrity and confidentiality high, but our pro-

gram does not check if the uploaded Wasmer-go module might drain the host

system for resources. This has the potential of being extremely costly if the pro-

gram was run on a cloud platform. One solution to this would be spawning a

process solely for the purpose of running the Wasmer-go runtime and capping

the resources for that single process. However, EGo does not support spawning

new processes. A fix to this should be implemented in future versions.

Marblerun is another feature Edgeless Systems has developed, mentioned in

ch. 3. Deploying our product with Marblerun as a Kubernetes cluster can po-

tentially be much more efficient, especially if the program is intended to run on

a cloud platform. Each node - the runtime, ordering service, and blockchain -

would be run as different microservices. This would increase the elasticity and

scalability of the program as a whole.

8.2 Conclusion

Our main focus in this thesis is researching EGo and reimplementing ChainBox

as securely and efficiently as possible. We show that EGo is not far from plug

and play, however, it has its limitations mainly when it comes to performance.

Since EGo runs the entire program in one single enclave, it makes the develop-

ment process much easier but can impose limitations on the developer’s ability

to customize and optimize the program to align with its intended use case. On

the other hand, it means that the development becomes much easier than with

other frameworks such as with the Intel SGX SDK. Thus, EGo is a type of frame-

work that trades complexity for simplicity, sacrificing some optimization oppor-

tunities in favour of user-friendliness. When it comes to the documentation for

EGos underlying architecture, we found it to be insufficient which undermines

its trustworthiness. However, the documentation for using the framework was

straightforward, especially when using an SGX pre-configured virtual machine

(VM). With our reimplementation of ChainBox, we found the throughput to be

about 3 to 3.5 times worse than with the standard Go compiler. Although the

aforementioned result was found with an experiment using simplified smart con-

tracts and unsecured connections, it suggests that EGo may be feasible and used

as a substitute for the SGX SDK.

Appendix A

Instructions to Compile and

Run System

Refer to ch. 3 to see the system requirements and tutorial for downloading EGo.

Pull our public GitHub repository here.

Firstly, two packages need to be installed for the attestation to work and can

be installed as followed;

• sudo apt install libssl-dev

• sudo ego install az-dcap-client - Only if the system is hosted on Mi-

crosoft Azure (Recommended)

If the system is running on-premise, you have to apply for an Intel PCCS API

key andhost your ownPCCS.DownloadEGo’s docker PCCS imageusing this com-

mand;

docker run -e APIKEY=<your-API-key> -p 8081:8081
--name pccs -d ghcr.io/edgelesssys/pccs

Secondly, the go-environment needs some environment variables to be set be-

fore building the executables. This is done with the following two commands;

• go env − w CGO_CFLAGS = I/opt/ego/include

• go env − w CGO_LDFLAGS = −L/opt/ego/lib

42

https://github.com/robinaasan/Bachelor_Ego
https://api.portal.trustedservices.intel.com/provisioning-certification
https://api.portal.trustedservices.intel.com/provisioning-certification

The next step is to figure out which ports you want our system to run on;

1. Unsecure and secure ports in the ordering service’s server connecting with

the runtime (Orderingservice/main.go - line 135 and 151). Blocksize can

also be specified on line 28.

2. Then insert the ports from the ordering service into runtime/main.go (lines

146 and 147) and insert the port you want the runtime server to run on (line

223)

3. Then you need to insert the runtime ports in the client (client/main.go -

lines 32, 33, and 34)

Both orderingservice/enclave.json and orderingservice/enclave.json
need their mounts updated, in source simply enter the directory you want your

enclave to have access to. The enclave also needs the Target folder where it can

write to.

Our program consists of two different parts that need to beBuilt andSigned.

1. ./buildordering - Bash-script that builds, signs, then runs the ordering

service

2. ./buildruntime - Bash-script that builds, signs, then runs the runtime

The runtime should now have printed the UniqueID and established a con-

nection to the orderingservice. Moving forward, the UniqueID now needs to be

inserted into line 39 in client/main.go.

Everything should nowbe set up, and the final step is the following commands

while in the client folder;

1. initiate a new client by writing the following command go run main.go
INIT <API-key>

2. Upload a smart contract bywriting go run main.go UPLOAD <path to WASM
module> <API-key>

Transactions cannowbe executedbyusing go run main.go SET <key> <value>
<API-key> and new blocks should appear in folder orderingservice/files/block-

Files whenever the amount of transactions exceeds blocksize.

More information regarding run and compile instructions can be found in our

README.md file in our repository.

Bibliography

[1] MahhoukM. Almstedt L. Jehl L. Bleeke, K. and R Kapitza. Chainbox: Using

tees and webassembly to run smart contracts on the edge. 2022.

[2] Elli Androulaki, ArtemBarger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gen-

nady Laventman, Yacov Manevich, Srinivasan Muralidharan, Chet Murthy,

Binh Nguyen, Manish Sethi, Gari Singh, Keith Smith, Alessandro Sorniotti,

Chrysoula Stathakopoulou, Marko Vukolić, Sharon Weed Cocco, and Jason

Yellick. Hyperledger fabric: A distributed operating system for permis-

sioned blockchains. EuroSys ’18, New York, NY, USA, 2018. Association

for Computing Machinery.

[3] Adrien Ghosn, James R. Larus, and Edouard Bugnion. Secured routines:

Language-based construction of trusted execution environments. In 2019

USENIX Annual Technical Conference (USENIX ATC 19), pages 571–586,

Renton, WA, July 2019. USENIX Association.

[4] Corinne Bernstein. The usage of tee’s, Accessed 2023. The usage of TEE’s.

[5] Intel. Build an intel® software guard extensions ecdsa attestation service

to strengthen enclave security, Accessed 2023. [Intel SGX].

[6] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. Not so

fast: Analyzing the performance ofwebassembly vs. native code. InUSENIX

Annual Technical Conference, pages 107–120, 2019.

[7] MegaEasy. Extend backend application with webassembly, 2021. [We-

bAssembly architecture].

[8] Github repository. wasmer-go. https://github.com/wasmerio/
wasmer-go, 2021.

46

https://github.com/wasmerio/wasmer-go
https://github.com/wasmerio/wasmer-go

[9] Github repository. Wasmer github repository. https://github.com/
wasmerio/wasmer/#-language-integrations, 2021.

[10] MDN Web Docs. Wasm-instance documentation. https://developer.
mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/
Instance, Feb, 23. 2023.

[11] Edgeless systems. https://www.edgeless.systems/. Accessed: April 16,
2023.

[12] Edgeless Systems: EGO. https://docs.edgeless.systems/ego/. Ac-

cessed: March 16, 2023.

[13] Edgeless Systems. Ego enclave framework documentation. https://pkg.
go.dev/github.com/edgelesssys/ego@v1.2.0, 2021. Accessed: April 17,
2023.

[14] Intel Corporation. Intel(R) PlatformCertificate Service API - PCSCertificate

v3. https://api.portal.trustedservices.intel.com/documentation#
pcs-certificate-v3, 2021. [Accessed: March 15, 2023].

[15] Edgeless Systems. Marblerun documentation. https://docs.edgeless.
systems/marblerun/, Accessed: 2023.

[16] Edgeless Systems. How we built ego. Edgeless Systems Blog, February

2022.

[17] Pawani Porambage, Yushan Siriwardana, Roshan Sedar, Charalampos

Kalalas, Wissem Soussi, Huu Nghia Nguyen, Edgardo Montes de Oca, Vin-

cent Lefebvre, Gianni Santinelli, Juan Carlos Caja, Antonio Pastor, Chafika

Benzaid, Othmane Hireche, Yongchao Dang, Tarik Taleb, Geoffroy Chollon,

Maria Christopoulou, Pablo Fernández, and Alejandro Molina Zarca. 5g se-

curity: New breed of enablers. Technical report, INSPIRE-5Gplus Project,

March 2023.

[18] Riccardo Zappoli. Go language support in hyperledger fabric private chain-

code. 2022.

[19] Hyperledger Foundation. Hyperledger fabric private chaincod, Accessed on

2023-04-23.

https://github.com/wasmerio/wasmer/#-language-integrations
https://github.com/wasmerio/wasmer/#-language-integrations
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Instance
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Instance
https://developer.mozilla.org/en-US/docs/WebAssembly/JavaScript_interface/Instance
https://www.edgeless.systems/
https://docs.edgeless.systems/ego/
https://pkg.go.dev/github.com/edgelesssys/ego@v1.2.0
https://pkg.go.dev/github.com/edgelesssys/ego@v1.2.0
https://api.portal.trustedservices.intel.com/documentation#pcs-certificate-v3
https://api.portal.trustedservices.intel.com/documentation#pcs-certificate-v3
https://docs.edgeless.systems/marblerun/
https://docs.edgeless.systems/marblerun/

[20] Edgeless Systems GmbH. EGo. https://github.com/edgelesssys/ego,
2021. Accessed: March 15, 2023.

https://github.com/edgelesssys/ego

4036 Stavanger

Tel: +47 51 83 10 00

E-mail: post@uis.no

www.uis.no

Cover Photo: Hein Meling

© 2023 Iver B. Bolstad and Robin Aasan

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives
	Approach and Contributions
	Outline

	Background
	Trusted Execution Environment
	SGX

	WebAssembly
	ChainBox
	Architecture and Design
	Functionality and Use Case

	EGo
	Introduction
	Architecture
	Using EGo
	Prerequisites
	Usage

	Attestation with EGo
	MarbleRun
	Limitations

	Related Work
	Implementation
	Proposed Solution
	Implementation
	Architecture
	Runtime
	Ordering service
	Blockchain
	Sequence Diagrams and Data Flow

	Experimental Evaluation
	Testing EGo
	EGo vs. Go
	Mulitple Runtimes

	Discussion
	Discussion of working with EGo
	Discussion of the implementation

	Future Work and Conclusion
	Future development
	Conclusion

	Instructions to Compile and Run System
	Bibliography

