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Abbreviations

ADC Analog Digital Converter

BMS Battery Management System

CAN Controller Area Network

CCR Capture Compare Register

ESL Equivalent Series Inductance

ESR Equivalent Series Resistance

FSUK Formula Student United Kingdom

FSG Formula Student Germany

FSN Formula Student Netherlands

HSE High Speed External
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LED Light Emitting Diode

LL Low Level
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MOSFET Metal Oxide Semiconductor Field Effect Transistor

PCB Printed Circuit Board

PWM Pulse-Width Modulation

RDC Resolver To Digital Converter

SCF Switched Capacitance Filter

SCS System Critical Signal

SOC State of Charge

TS Tractive System

USART Universal Synchronous/Asynchronous Receiver/Transmitter

3



Abstract

This thesis is written in cooperation with the student organization ION Racing at the
University of Stavanger. ION Racing is a Formula Student team that competes in the
Formula Student competition each year. The choice to make a motor controller was made
due to how it was the only electrical system that was not produced within ION Racing,
and having self-produced systems gives a higher score at the competition. Testing and
designing the motor controller has been a valuable, challenging and fun experience.

A development board and a gate driver was used to test motor control algorithms. Due
to resolver availability the algorithms were only partially successful. A potential design
has been drafted, which can be expanded upon.
In the end the MCU was not produced within the time of this thesis due to supply line
challenges and time constraints, but will be produced and tested in the future for the
2024 car.
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Chapter 1

Introduction

Figure 1.1: ION Racing & Formula Student

ION Racing is a formula student team and a student organisation at the Univeristy of
Stavanger (UiS). Each year a race car is designed and created in order to compete in
Formula Student. The organisation was founded in 2012 and mainly consists of engineer-
ing students, such as mechanical, electrical and computer science engineers. ION Racing
however also consists of students from various courses including economic and marketing
students.
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1.1. FORMULA STUDENT CHAPTER 1. INTRODUCTION

1.1 Formula Student

Formula student is the biggest engineering competition for engineering students where
students from over 650 universities compete. The competition is held in multiple countries
all over the world, for example England, Netherlands and Germany. Each competition has
a comprehensive list of rules and guidelines in order to compete and keep the competition
safe. The rules encompass just about everything about the car from the frame of the car
down to which bolts you can fasten your seat with.

Each year to qualify for the different competitions each competition holds quizzes the
teams have to take to attend. The quizzes contain questions from the rules and technical
mechanical and electrical problems.

ION Racing has competed in Formula Student for several years. Last season (2022) ION
Racing competed in Formula Student United Kingdom, henceforth referred to as FSUK,
where the team will be competing once again this year. The competition is held at the
Silverstone Circuit, Northhamptonshire England, at the end of July. This thesis will
therefore be based on the rules of FSUK.

The competition is divided into two parts. A Dynamic event and a Static event. The
winner of the competition is the team with most points in total from both events. There
are also prizes teams can win in individual categories. Last year ION Racing won the
”Efficiency” category after completing the endurance race with the most efficient electrical
car.

There are three entry classes: Formula Student Class (FS Class), Formula Student -
Artificial Intelligence Class (FS-AI Class) and a Concept Class. Since ION Racing has
focused on electric cars the past years, the FS Class (class with a functioning car) will be
considered, specifically the rules for electric vehicles (EV).

1.1.1 Point distribution in FSUK

Dynamic Static

Acceleration

Skidpad

Autocross/Sprint

Endurance

Efficiency

75 pts

75 pts

75 pts

250 pts

100 pts

Business Plan Presentation

Cost and Manufacturing

Engineering Design Event

Lap Time Simulation

115 pts

115 pts

150 pts

20 pts

Total Dynamic 575 pts Total Static 400 pts

Table 1.1: Point Distribution
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1.1. FORMULA STUDENT CHAPTER 1. INTRODUCTION

The Dynamic events of the competition consists of: [5]

• Acceleration: 75 Points
The cars acceleration is tested over 75 meters.

• Skidpad: 75 Points
The car is driven in a figure 8 to test the maneuverability of the car.

• Autocross/Sprint: 75 Points
The car is driven through a small track consisting of straights, constant turns, slaloms,
and chicanes to test the racing capability of the car.

• Endurance: 250 Points
The car is driven around a set track for a complete distance of 23km.

• Efficiency: 100 Points
A measurement of how much energy the car has consumed during endurance is made,
and the car is scored based on the results.

The Static events of the competition consists of: [5]

• Business Plan Presentation: 115 Points
The team holds a presentation and the judges evaluate the team’s ability to develop
and deliver a comprehensive business model.

• Cost and Manufacturing: 115 Points
The team is judged on their understanding of the manufacturing process and costs
associated with building a car.

• Engineering Design Event: 150 Points
Each team has practical design presentation of their car and answers any question
given by the judges.

• Lap Time Simulation: 20 Points (40 for concept class) The team simulates the
dynamic events.

12



1.2. THE ELECTRICAL SYSTEM CHAPTER 1. INTRODUCTION

1.2 The electrical system

The electrical system of the car consists of many different parts working together(see
figure 1.2).

Figure 1.2: Overview of the electrical system in the car

• Electronic Control Unit (ECU): Viewed as the brain of the car as it is responsible
for receiving and transmitting data with the rest of the electronics in the car. This
includes reading data from sensors, sending torque requests to the MCU, checking
for errors and determines whether the car is operating under normal conditions.

• Motor Control Unit (MCU): The main function of the MCU is to match the
created torque in the motor to the pressure on the gas pedal. It also needs to take
readings from the driver card.

• Inverter-bridge: The inverter-bridge is responsible for converting the DC voltage
from the battery into three phase AC voltage to the motor.

• High Voltage Battery: Energy source of the engine of the car aswell as some other
components that require a higher voltage.

• Dashboard and Display: The dashboard of the car includes numerous mandatory
signals and switches. These are either a part of the start-up sequence of the car or
warning lights informing of different states of the car. The display of the car is a

13



1.3. OBJECTIVE OF THIS PROJECT CHAPTER 1. INTRODUCTION

customizable display showing the driver information during driving such as speed or
battery level.

• Sensors: There is a plethora of sensors on the car monitoring the states of different
components. There are sensors monitoring the temperature of the motor, the voltage
and current levels in select areas of the car, pedal positions and RPM of the wheels.

• Data logger: The data logger stores data of various sensors in the car so the team
can review it later for optimization or trouble shooting.

• Motor(s): The motor is a brushless motor either placed centrally in the back of the
car in the case of a single motor car, or in the case of 4 motors placed on each wheel.

1.3 Objective of this project

The increase of electric vehicles in the past 10 years has been immense and now that
world is more environmentally aware, the electric type seems to be the future of vehicles.
Since 2014 ION Racing’s goal has been to compete in Formula Student using electric race
cars. The team has over the years focused building in-house components rather than
purchasing them as this results in more points in the static events of competitions.

The objective of this thesis is to design a motor controller that can control several motors
simultaneously. Although the objective is to be able to control up to 4 motors, it’s
important to take into account the budget, difficulty and whether it is optimal to proceed
to four-wheel drive over having one or two motors first. With this in mind there are a
few requirements that has to be met. The controller needs to be able to communicate
over CAN, output several PWM signals, take in resolver or encoder data and use ADCs
to keep track of information from the driver cards.

1.4 Concept

This MCU has a centralized concept consisting of one PCB. Designing the MCU in this
way has its pros and cons. Table 1.2 will show and illustrate pros and cons of the cen-
tralized concept.

14



1.4. CONCEPT CHAPTER 1. INTRODUCTION

Centralized Decentralized

Occupies less space Occupies more space

Lower cost Higher cost

Lower complexity of design Greater complexity of design

Higher noise generation Lower noise generation

Difficult to expand Easy to expand

Cannot be modified Can be modified to an extent

Entire system must be Subsystems can be
replaced in case of damages replaced in case of damages

Many connections to one card Few connections to each card

Table 1.2: Arguments for and against centralized and decentralized systems

Walk-through of the following arguments for and against a centralized concept.

• Occupies less space:
As the rear of the car is cramped between the motor, driveshaft, battery and other
mechanical components. Taking the possibility of still having one motor for the next
car, and experiences with the current car. Space is essential to having a solution that
is easy to work with and is less prone to accidental damage from working on the car.

• Lower Price:
Fewer components and smaller area compared to decentralized will lead to a lower
production price. The system will still be cheaper than a commercial solution.

• Lower complexity of design:
There are fewer cards that need to be designed and there is no requirement for
communication between them. This will lead to a smaller workload compared to
designing and building multiple cards.

• Increased noise:
In a centralized design parts that generate noise such as PWM be placed closer to
other parts that are sensitive to noise. This will be countered by using more robust
ADCs such as differential ADCs that have a higher tolerance for noise.

• Expansion is somewhat harder:
A centralized design would require you to produce a new card every revision instead
of being able to add another card.

15



1.5. TASKS REQUIRED FOR THE MCU CHAPTER 1. INTRODUCTION

• Cannot easily be modified:
Modifying a card in a decentralized design would require you to replace the entire
card compared to a decentralized card that would just require you to replace the
upgraded card.

• Replaceability:
If a part of the card is damaged and cannot be repaired a new card has to be produced.
In a decentralized design you would have the opportunity to only have to reproduce
the damaged card.

• More cables:
More cables would mean more EMI, which would require sensitive signals to be
shielded in certain cables. Additionally this would increase the complexity of the
cable network and increase the difficulty of troubleshooting. This can be countered
by practising proper cable management techniques and marking of cables.

1.5 Tasks required for the MCU

The MCU needs to do these following tasks:

• Acquire data from ECU through CAN.

• Activate the inverters.

• Output PWM to the inverters.

• Acquire signals and data from the inverters.

• Shutdown when fault is detected from the inverters.

• Log information gained from inverters.

• Communicate with inverters and ECU.

• Communicate with external PC.

16



1.6. PHYSICAL PLACEMENT OF THE CARD CHAPTER 1. INTRODUCTION

The design for the inverter has yet to be finalized so the details of the signals the MCU
is supposed to read and transmit is currently only conceptualized. The current list per
card is as follows:

• 1x Fault

• 1-6x PWM inputs (Input capture)

• 2x Analogue current sensors (Differential if possible)

• 2x Delta sigma current signals

• 1x Digital bus (I2C or SPI)

In order to facilitate these requirements the MCU will be designed with both I2C and
SPI, as well as using the more robust differential ADCs available on the selected µC. The
MCU will also be able to connect to the CAN network in the car to transmit and log its
readings. Communication with the resolvers will be through ADCs that have been filtered
from high frequency noise and then further filtered and processed in software. The data
from the resolver will be used to determine what PWM signals are output to the inverters
and to measure the angle and speed of the motors.

1.6 Physical placement of the card

The card will be placed in the back of the car in a box containing the ECUs decentralized
temperature sensor card and one to four inverters 1.3.

17



1.6. PHYSICAL PLACEMENT OF THE CARD CHAPTER 1. INTRODUCTION

Figure 1.3: Placement in the car

The box is made by the mechanical team of ION Racing and will be made of carbon fiber.
The box will have a heatsink attached to the underside as seen in figure 1.4.

18



1.7. FSUK RULES CHAPTER 1. INTRODUCTION

Figure 1.4: The incomplete motor controller box

1.7 FSUK Rules

Formula student UK has their own rules that are independent of the general Formula
Student rules.

Here are a list of some of the relevant ones. All text in cursive has been directly copied
from the FSUK rules. [5]

• T11.9 System Critical Signal
System critical signals are signals that influence actions on the shutdown circuit,
influence wheel torque, critical LED indicators, Tractive System Active Light, and
the Isolation monitoring device.
These are mostly handled by the ECU but will still influence the final design.

• EV1.1 Tractive System

- EV1.1.1 Tractive System (TS) – every part that is electrically connected to the
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1.7. FSUK RULES CHAPTER 1. INTRODUCTION

motor(s) and TS accumulators.
This rule dictates what is considered a part of the TS.

• EV2.2 Power Limitation

- EV2.2.1 The TS power, measured by the Energy Meter, must not exceed +80
kW for two (2) wheel drive vehicles or +60 kW for four (4) wheel drive vehicles.
This rule is one that will influence how many motors the controller will control
in 2024.

• EV3.2 Overcurrent Protection

- EV3.2.1 All electrical systems must have appropriate overcurrent protection.

- EV3.2.4 All overcurrent protection devices must be rated for the highest voltage
in the systems they protect. All devices used must be rated for DC.
These rules will be taken into consideration in the design.

- EV3.2.6 The overcurrent protection must be designed for the expected surround-
ing temperature range but at least for 0°C to 85 °C.
Parts that are rated within these requirements will be selected.

• EV4 Tractive System

- EV4.1.2 All components in the TS must be rated for the maximum TS voltage.
The MCU is not directly connected to the motors or the TS Accumulators and
according to EV1.1 is not considered part of the TS.

- EV4.1.3 All components must be rated for the maximum possible temperature
that may occur during use.
Our components are chosen to be rated within required temperatures, and if the
system gets too hot, it will shut down as a safety feature.

• EV6 EV Shutdown Circuit and Systems
The shutdown circuit is a safety measure that has to be fulfilled and documented
properly. These are handled by their respective systems. There is no direct require-
ment for the MCU to shutdown.
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Figure 1.5: An illustration of the shutdown circuit
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Chapter 2

Theory

Before going into detail about the construction of the motor controller, some theory is
required. This chapter will cover useful material on electric motors, torque generation
and how torque can be controlled by using various methods. It also includes the imple-
mentation of these methods in a microcontroller.
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2.1 Electric motors

There are numerous types of electric motors and each type has it’s strengths and weak-
nesses. The type to use all depends on the specific application. Electric motors used in
electric vehicles are typically:

• AC induction motors

• Switched reluctance motors (SRM)

• Brushless permanent magnet synchronous motors (PMSM)

• Brushless DC motors (BLDC)

This section of the chapter will focus on brushless permanent magnet synchronous motors
as ION Racing utilizes such a motor, the EMRAX 228. Information regarding the EM-
RAX 228 will be covered in its own section, including it’s technical specifications.

2.1.1 Permanent Magnet Synchronous Motors

Permanent magnet synchronous motors (PMSM) are known for being highly efficient and
providing a great amount of power for their size. Unlike motors with electromagnets,
permanent magnet motors do not require external energy to be magnetized and maintain
their magnetic field which makes them highly efficient. This type of motor consists of a
rotor where the permanent magnets (poles) are attached and a stator with electromagnetic
coils as illustrated in figure 2.1.

Figure 2.1: Permanent magnet motor with 2 pole pairs
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When current is applied to the stator coils they create a rotating magnetic field. This
force interacts with the magnetic poles of the rotor which creates torque which causes the
rotor to spin. PMSM motors operate at a fixed speed synchronized with the frequency
of the power supply. In other words the rotor rotates at the exact same speed as the
magnetic field of the stator. This is essential for applications where precise speed control
is required and is the reason this type of motor is ideal in electric vehicles.

This is a three-phase motor which means that it is supplied with alternating current with
phases U, V and W. Each phase has its corresponding phase connection, respectively -U,
-V and -W, which are internally connected to one another. They are labeled with a minus
sign as current flows in the negative direction opposed to their equivalent connection.
This means that the flow of current through U is in the opposite direction of the flow of
current in -U. So when current is applied to these coils, the magnetic fields generated have
opposite directions, which is necessary for the fields to combine and create the rotating
magnetic field.

Phase configuration

The phase connections in motors can either be connected in a delta-configuration or a
star-configuration. Figure 2.2 shows how the two different connections are made between
the coils. The main difference between them is the amount of power supplied by the three
phases.

Figure 2.2: Star and delta configurations
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The total power supplied in a star connection is calculated by:

P = 3 · VPH · IPH · cosϕ =
√
3 · V · I (2.1)

and the total power supplied in a delta connection:

P = 3 · VPH · IPH · cosϕ = 3 · V · I (2.2)

In delta connected motors the power is higher due to each phase voltage being equal the
total line voltage. They provide a higher torque, but also require higher current which
can cause instability during startup. The voltage of each phase in star connected motors
however is 1√

3
of the total line voltage. Star connected motors have more balanced currents

and can operate under normal conditions without overheating. Compared to motors with
a delta-configuration, the star-configuration is preferred for applications such as driving
a car over longer distances. This is one of the reasons ION Racing uses the EMRAX 228,
a star-configurated motor.

2.1.2 EMRAX 228

The motor that will be utilized and modulated in this thesis is the EMRAX 228 by
EMRAX, a Slovenian company who manufactures and develops electric motors. The 228
is well suited for automotive and airplane applications due to it’s powerful 124 kW peak
output and it being compact and lightweight at only 12,9 kg.

Figure 2.3: EMRAX 228 as shown in [[4], Figure 8, Page 8]

Motor
Axial flux permanent magnet
synchronous electric motor

Operating Voltage 50 - 710 V

Weight 12,9 - 13,5 kg Peak / Continous Power 124 kW / 75 kW*

Cooling Air / Water / Combined Peak / Continous Torque 230 Nm / 130 Nm*

Diameter / Length 228 mm / 86 mm Maximum Speed 6500 RPM

Table 2.1: Mechanical & electrical EMRAX 228 data from [[3], Page 1]
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2.2 Torque modulation

To modulate the torque of the EMRAX 228 a technique called pulse width modulation
(PWM) will be utilized. With PWM the power supply to the motor will be switched on
and off in pulses. With a voltage supply of 400 V any voltage output between 0 V and
400 V can be achieved by varying the width of these pulses.

Figure 2.4: Illustration of duty cycles

The figure above (2.4) shows some fundamental duty cycles. To calculate the average
voltage output of different duty cycles equation 2.3 is used.

Vrms = Vamplitude · dutycycle (2.3)

With a 400 V source the average output for these fundamental duty cycles are as follows:
A 25% duty cycle leads to a 100 V average output, a 50% duty cycle leads to a 200
V average output, while a 75% duty cycle leads to a 300 V average output. Solving
equation 2.3 for the duty cycle, the duty cycle for a desired average voltage output can
be found.
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2.3 Positional Detection of the Motor Shaft

Knowing the rotation of the motor shaft is one of the most useful pieces of information
to know. Knowing the position allows the MCU to precisely control the motor. Precise
control of the motor allows for much greater control of motor speed and torque, which is
critical for efficient operation.

There are two main ways of detecting the position of the motor shaft, using an Encoder
or a Resolver. These components both have their strengths and weaknesses. In the case
of a motorized vehicle going with a resolver is the better choice, as encoders usually are
a lot more sensitive to shocks and vibrations which the car would generate a lot of.

2.3.1 Resolver Theory

A resolver is an electrical device that is used to measure the angular position and velocity
of a rotating motor shaft. It operates based on electromagnetic induction, where a coil is
used to excite a secondary coil that is fixed to the motor shaft. This allows for the resolver
to detect angular position and output them as two signals, one sin and one cos.

With the sine and cosine signals the MCU can use the unit circle 2.5 to determine exactly
where in a rotation the motor shaft currently is.

Figure 2.5: Illustration of a Simple Unit Circle

From this information the MCU can apply a inverse trigonometric function for example
the following equation(2.4) to calculate the angle.
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α = atan(
cos

sin
) (2.4)

2.3.2 Sensorless detection of the motor shaft position

Due to availability issues during testing, a sensorless detection method had to be imple-
mented temporarily. A common way to achieve this is reading the back EMF (BEMF)
from the motor phases. These levels will then be used in conjunction with a 6 step com-
mutation algorithm. The back EMF readings will inform the algorithm when to move
on to the next step in the 6 step sequence. The 6 step sequence is displayed in table
2.2.

Commutation step Phase A Phase B Phase C

1 High Low -

2 High - Low

3 - High Low

4 Low High -

5 Low - High

6 - Low High

Table 2.2: Illustration of the sensorless commutation sequence

When the rotor in the motor is induced by the electrical fields created by the motor
windings, a magnetic field resisting the induced change is created. This magnetic field
induces a current back through the windings. This current is referred to as the back
EMF, counter EMF, or BEMF, and the magnitude of it will vary for each winding based
on rotor position.[11]

Figure 2.6 shows the output from the motor while it is not being supplied and manually
rotated. This signal is technically not back EMF as the rotor is not being excited by
an electrical field, but the relevant phase should look similar. As seen in table 2.2, at
each step in the commutation sequence there is one phase that is switched off, this phase
is referred to as the ”floating phase”. The algorithm will look for zero-crossings on the
floating phase as the signal to move to the next step in the commutation sequence.
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Figure 2.6: Measured voltage from manually rotated motor

An illustration of how the commutation sequence would be commuted from the back EMF
readings is shown in figure 2.7. Again these are not actual back EMF signals as the motor
was rotated manually. If these were actual back EMF signals from a running motor the
floating phase would have more noise, while the two active phases would look completely
different. If table 2.2 and figure 2.7 is compared the algorithm can be seen. From the
table during step 3 the floating phase is phase A, and from the figure it can be seen that
it is when phase A crosses the zero line that the sequence commutates to step 4. In step
4 the floating phase is phase C, so when phase C crosses zero the sequence commutates
to step 5. These steps will then be cycled through as long as needed.
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Figure 2.7: Commutation sequence from hypothetical back EMF readings

2.4 Implementation in a microcontroller

The resolver that is planned to be used is the MLX90380. The MLX90380 is a monolithic
contactless sensor IC sensitive to the flux density applied orthogonally and parallel to the
IC surface. [9]

The MLX90380 outputs its signals as a percentage of Vdd where for an example sin ≈ 1
is reached at 90% of Vdd and sin ≈ −1 is reached at 10% of Vdd as shown in figure
2.8.
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Figure 2.8: Output characteristics plot taken from the MLX90380 datasheet [9]

Using ADCs to measure these voltages allows the MCU to calculate the position and
velocity of the motor.
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Chapter 3

Software and testing

In order to design and eventually produce a well functioning motor controller, it is essential
to test the system with development boards. This chapter covers the setup of the early
motor controller system and the software used to operate the motor.
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3.1 Testing setup

The setup of the early system consists of the following boards:

• Micro controller development board

• Gate driver demonstration board

• Expansion board

The micro controller and gate driver were purchased at the beginning of this thesis.
After some evaluation an in-house expansion board was designed and produced at the
university.

3.1.1 Micro controller

The micro controller used for testing is the NUCLEO-H723ZG micro controller (µC)
development board from STMicroelectronics as depicted in figure 3.1.

Figure 3.1: NUCLEO-H723ZG development board

The NUCLEO-H723ZG unit’s main goal is to control the EMRAX228 by sending pulse
width modulation signals to the gate driver board.
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3.1.2 Gate driver

The pulse width modulation signals from the µC are received by the EVALSTDRIVE601,
a three phase power board from STMicroelectronics. This board has been chosen due to
compatibility and ease of connection by using a 34-pin ribbon cable on the J4 connector
(marked in red) as shown in figure 3.2.

Figure 3.2: EVALSTDRIVE601 demonstration board

The board is suitable for a six step algorithm or field oriented control and allows driving
PMSM motors, such as the EMRAX228. Additional functions of the EVALSTDRIVE601
are sensing the phase currents, back EMF sensing and over-current protection.

3.1.3 Expansion board

In order to establish the required connections between the µC and the gate driver, a
expansion board has been constructed (see figure 3.3). The expansion board has been
designed in Altium Designer[1] and has been milled out and soldered in the laboratory at
UiS.
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Figure 3.3: Expansion board

Figure 3.4: Expansion board in Altium
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A overview of all signals from the micro controller to the gate driver via the expansion
board are shown in table 3.1.

EVALSTDRIVE601 NUCLEO-H723ZG

Pin J4 Name Description Pin uC

1 FAULT Driver FAULT signal (high when signal is active) PF1

2 GND Ground GND

3 HIN1 High input transistor U PE9

4 GND Ground GND

5 LIN1 Low input transistor U PE8

6 GND Ground GND

7 HIN2 High input transistor V phase PE11

8 GND Ground GND

9 LIN2 Low input transistor V phase PE10

10 GND Ground GND

11 HIN3 High input transistor W phase PE13

12 GND Ground GND

13 LIN3 Low input transistor W phase PE12

14 VBUS Bus Voltage PA0

15 SENSE 1 Current sensing in phase U PC2 C

16 GND Ground GND

17 SENSE 2 Current sensing in phase V PC3 C

18 GND Ground GND

19 SENSE 3 Current sensing in phase W PF9

20 GND Ground GND

21 GPIO BEMF Divider enable for BEMF sensing PA5

22 GND Ground GND

23 ENABLE Driver enable signal from uC PB2

24 GND Ground GND

25 E5V External 5V for Hall power supply 5V EXT

26 NC Not connected -

27 CPOUT Current comparator output signal to uC PA6

28 VDD Supply voltage 3V3 VDD

29 C REF Current reference signal from uC PA4

30 GND Ground GND

31 BEMF A BEMF output A signal to uC PF13

32 GND Ground GND

33 BEMF B BEMF output B signal to uC PF14

34 BEMF C BEMF output C signal to uC PB1

Table 3.1: Signals between µC and gate driver
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The entire testing setup with all three mentioned boards and the rest of equipment used
can be seen in the figure below(3.5). The EMRAX 228 and the displacement sensor were
acquired from ION Racing. The remaining equipment used for testing were available for
use in the laboratory at the University of Stavanger.

Figure 3.5: Entire testing setup

The EMRAX 228 used during the testing period was equipped with a resolver. The re-
solver is an outdated model and requires a specific RDC. The resolver could unfortunately
not be used as the manufacturer of the resolver no longer produces the compatible model
of the RDC.
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3.1.4 Software

When choosing a micro controller the original plan was to find one compatible with the
software ”Motor Control Workbench” by STMicroelectronics. Due to availability issues
at the time, the NUCLEO-H723ZG was chosen as it was the only one available. Unfor-
tunately the NUCLEO-H723ZG is not supported by motor control workbench, meaning
the software had to be written from manually.

This proved to be challenging for a number of reasons. First was the phase-shifting of
the three phases. The plan was to set the timer in slave mode and its channels in output
compare mode. Each channel would also have a complementary output which always
outputs the opposite signal of the channel (see figure 3.6) .

Figure 3.6: Example of complementary channels, where yellow and green are complementary, and blue and purple
are complementary

With this setup the phase shift and duty cycle could easily be set by altering the Capture
Compare Registers (CCR’s) of the channels. The value in a channels CCR is what the
slave timer compares to the master timer. When the master timer has counted up to the
CCR value the channels output toggles between low and high. On the NUCLEO-H745
each channel has two CCR’s, one for CHx and one for the complementary output CHxN.
The value in CHx’s CCR would instruct when to output a high signal on CHx, also forcing
the output on CHxN to a low signal. While the value in CHxN’ s CCR would instruct
when to output a high signal on CHxN, also forcing the output on CHx to a low signal.
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The phase shift would then be set by spacing out the values of the three CHx CCR’s,
letting the different channels be turned on at different times. The duty cycle would be
set by changing the three CHxN CCR’s, forcing the CHx signals to a low signal when
desired.

Unfortunately the NUCLEO-H723ZG only has one CCR for each channel, meaning the
complementary signal on the NUCLEO-H723ZG is a passive signal that only follows the
channels ouput and reverses it. This means that on the NUCLEO-H723ZG this method
can still achieve a phase shift, but would be locked to a 50% duty cycle. The output with
this setup would be toggled between high and low every time the master counter reaches
the CCR value of the channel. Duty cycle control could still be achieved by changing the
CCR value back and forth for every pulse, but this method would be inefficient.

Instead an alternate method was implemented. By putting the channels in regular PWM
mode the context for the CCR value changes. The channels CCR value is compared to
the clock counter to check if its higher or lower. With polarity mode set to low, if the
CCR value is higher than the count the channel outputs a low signal, and if it is lower
than the count the channel outputs a high signal. To set a duty cycle the CCR value
would now just be set as the desired percentage of the max counter value. All phases still
run at the same time however. To achieve the phase shift a separate timer was set up
with a global interrupt that changes the CCR values of the channels to turn them on or
off. With this method both phase shift and duty cycle control is demonstrated in figure
3.7 and 3.8. The duty cycle here is managed by the displacement sensor, by reading the
ADC and changing the CCR values.
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Figure 3.7: Phase A, B and C’s high output (yellow, green and blue respectively) with a moderate duty cycle

Figure 3.8: Phase A, B and C’s high output (yellow, green and blue respectively) with a lower duty cycle
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Due to the passive nature of the complementary channel on the NUCLEO-H723ZG the
sensorless commutation sequence (see table 2.2) could not be done with a single timer.
At least not without interference from other phases. To make the commutation sequence
work with the NUCLEO-H723ZG during testing a second timer was also used for the
PWM signals. With this configuration timer 1 will have three channels representing
HIN1, HIN2 and HIN3. While timer 8 have three channels representing LIN1, LIN2 and
LIN3. Figure 3.9 shows HIN1 (yellow), LIN1 (green), HIN2 (blue) and LIN2 (purple)
with this configuration. The logic of this configuration is also illustrated as flowcharts in
figure 3.10 and 3.11. The full code for these flowcharts is shown in appendix A.1 and A.2
respectively.

Figure 3.9: Readings from 2 of the phases from top to bottom: HIN1, LIN1, HIN2 and LIN2
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Figure 3.10: Flowchart for the main.c logic in the project (full code in appendix A.1)
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Figure 3.11: Flowchart for the interrupts in stm32h7xx it.c (full code in appendix A.2)

For the back EMF values to be usable it requires the motor to already be rotating at a
certain speed. This would be done during a startup sequence. This is another aspect that
was planned for the ”Motor Control Workbench” software to handle. Unfortunately the
startup algorithm is typically proprietary knowledge among MCU manufacturers. During
this startup phase of the program the back EMF values and other motor parameters
used is unreliable even with simple motors with only 3 windings. The Emrax-228’s 10
pole pairs make them even less readable. Figure 3.12 shows HIN1 (yellow) aswell as the
three back EMF readings, A (green), B (blue) and C (purple) when the power supply is
switched on.
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Figure 3.12: Readings from HIN1 (yellow) and the three back EMF readings, A (green), B (blue) and C (purple)

Figure 3.12 above shows that all the back EMF readings jumps to and stay at or close to
their maximum level when the power supply is switched on. This nullifies the algorithm
and the commutation sequence would be stuck at a certain step.
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Chapter 4

Controller Design

This chapter focuses on the design of the motor controller, providing a detailed analysis of
the chosen components and examination of the schematics. Additionally, the controller’s
PCB design will also be presented, including the design decisions made.
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4.1 Component choices and schematics

To minimize the manual workload, the PCBs and most surface mounted components
will be produced and mounted by the PCB-Producer JLC PCB. Therefore whether the
components are in stock heavily weighs on the components selected. Some components
are chosen because ION Racing has them in stock.

4.1.1 The controller STM32H723ZGTx

The controller used is the STM32H723ZGTx. The controller was selected based on the
following requirements:

- Sufficient amount of timers
In order to control a motor you need 1-2 timers depending on your setup. The
controller has two advanced-control timers, twelve general-purpose timers, two basic
timers, five low-power timers, two watchdogs and a SysTick timer [12]. An Advanced-
control timer can usually control 1 motor by itself using 6 channels to generate the
needed PWM signals.

- Sufficient amount of ADC channels
There are a lot of different sensor readings that could be beneficial to measure and
process in order to control a motor more efficiently. The controller has two 16-bit
ADCs with up to 18 channels, and one 12-bit ADC with up to 12 channels. Several
of these channels can be set to differential mode.

- A high clock speed.
Having a high clock speed is beneficial when controlling multiple motors because it
allows the microcontroller to perform more calculations and execute more instructions
in a shorter amount of time. A higher clock speed can improve the precision of
motor control signals by allowing the microcontroller to generate more accurate PWM
signals.

- In Stock at JLC PCB
Being in stock is a massive bonus as this cuts down the amount of soldering work
and logistical issues stemming from having to source the part separately.

These points make the STM32H723ZGTx a solid choice. The microcontroller has a 144 pin
package which is what is used in this thesis. According to the datasheet, the controller
boots from flash if BOOT0 is connected to ground. Connecting a crystal oscillator to
its respective pins (PC14 and PC15) was considered, but the internal oscillators were
determined to be robust enough for the needed use-cases. Several pins have been made
ready to control LEDs but later decisions caused these plans to be scrapped. This was
due to the inaccessible location the card would be placed in would not allow for the LEDs
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to be seen.

Figure 4.1: The controller in Altium Designer

On the power side of the uC, 3.3 V has been connected to all the necessary pins. The
decoupling capacitors are put as its own line below due to readability but will be connected
to their respective pins on the layout part of the design. Decoupling capacitors are used
to filter out voltage spikes and pass through only the DC component of the signal. For
this one capacitor of value 100nF is used per input.
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Figure 4.2: The power section of the controller

4.1.2 The TSR 1-2450

The TSR 1-2450 is a step down switching regulator with a high efficiency up to 96% [10].
This down switching regulator takes 12 V as its input and reduces it to 5 V.

- In-house stock
ION Racing has its own stock of these components, and they’re easy to solder.

- Simplicity
The TSR 1-2450 is easy to place and use in electrical designs. This reduces complexity
of the design.

48



4.1. COMPONENT CHOICES AND SCHEMATICS CHAPTER 4. CONTROLLER DESIGN

- Delivers enough current
The component has a max input current of 1000 mA.

The design is simple, input output. The TSR 1-2450 handles the rest by itself. Decoupling
caps have been placed at the input and output to make sure the current is stable. A TVS-
Diode has been placed to protect from overcurrent.

Figure 4.3: TSR in Altium Designer
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4.1.3 The LP2989

The LP2989 is a fixed-output 500 mA precision LDO regulator designed for use with
ceramic output capacitors. [6]

This regulator is used to convert 5 V to 3.3 V. It has a max output of 500 mA. This com-
ponent is rated for temperatures from -40 to 125 °C. It comes with overtemperature and
overcurrent protection. [6] Additionally one can use the following equation to determine
if additional cooling is needed.

PMAX =
TJ(MAX) − TA

RRΘJA

=
125°C − 30°C
156.5°C/W

= 607mW (4.1)

For this equation TJ(MAX) is = 125 °C which is the maximum temperature inside the
LP2989 before the overtemperature protection shuts down. TA = 30 °C is the maximum
temperature in the air around the circuit. Due to the high temperatures at FSUK 2022
30 °C has been used as air temperature. The motor controller box is water cooled.

- In house stock
ION Racing has its own stock of these components

- Delivers 500 mA
According to the built in power consumption calculator in STM32Cube IDE this is
sufficient to power the entire card and the resolvers.

Figure 4.4 shows the schematics for the regulator. There are decoupling capacitors con-
nected to the input and output of the regulator, these make sure that the current in and
out is stable. As this component has built in overcurrent protection there is no TVS-Diode
connected to it.
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Figure 4.4: The LP2989 in Altium Designer

4.1.4 The MAX3051EKA+T

The MAX3051 is a Low-supply-Current CAN Transceiver that interfaces between the
CAN protocol controller and the physical wires of the bus lines in a controller area network.
[8]

The CAN-transceiver is used to transform the CAN-signals from the microcontroller into
a differential signal to communicate with other electrical circuits on the car. Information
about the CAN-protocol and why its chosen is found in a later chapter.

- In house stock
ION Racing has its own stock of these components

- Already used in ION Racing designs
Using already tested and completed designs allows for a faster testing phase when
the card is produced.

A schematic of the CAN-Transceiver is shown in figure 4.5. A 100 nF decoupling capacitor
is connected to VSS. This component has an adjustable maximum data rate. To select
the data rate a resistance is placed between the RS-pin and ground. The equation for
the resistance needed is taken from the data-sheet for the transceiver. The data rate is
matched to the data rate of the ECU.

RRS(kΩ) =
12000

kbps
(4.2)
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There is placed a TVS Diode between CAN H and CAN L to protect the can transceiver
from over current. To avoid noise and signal reflection, the transceiver is terminated with a
120 Ω resistor. There placed 4 test points to measure RX, TX, CAN-H and CAN-L.

Figure 4.5: The MAX3051 in Altium Designer

4.1.5 The MLX90380

The MLX90380 is a monolithic contactless sensor IC sensitive to the flux density applied
orthogonally and parallel to the IC surface. [9]

- Easy to use
The MLX90380 outputs 2 signals that can easily be picked up by ADCs.

- Small and Cheap
the MLX90380 comes is a SOIC-8 Package and costs only $6 USD, which compared
to the previous resolver ION Racing used is a 94% reduction in costs.
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For reference the previous resolver had a price of $100 USD

- High Accuracy
The total angular error according to the data-sheet is ±1°.

- Easy to place
The MLX90380 can be placed in multiple different configurations and positions which
allows for more flexibilty during testing and production.

- Covers the motors maximum RPM
The MLX90380 has a maximum Angular Speed of 25000 RPM

- In stock at JLC PCB
JLC PCB keeps a stock.

This design is setup to match the recommended setup in the MLX30980 datasheet [9].

Figure 4.6: The MLX90380 in Altium Designer

4.1.6 Molex DuraClik

Most connectors on the board are of the DuraClik variant due to its simplicity.

- Simple
The DuraClik is easy to use, and is modular as each pin gets its own cable from the
card.

- Modular
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The DuraCliks modularity makes it easy to swap out a cable if needed.

- In House Stock
ION Racing has a wide selection of the Molex DuraClik connectors available, for
example 2 pin, 4 pin, 6 pin, and 8 pin.

- The usual standard used at ION Racing
Alumni have recommended this connector and in house experience shows these to be
reliable and easy to work with.

4.2 Differential ADC Design

To reduce noise for the differential ADCs a common mode differential filter has been
designed. To protect from ESD TVS-Diodes have been implemented into the design. The
following equations were used to design this filter.

Rflt =
Vov − Vesd

Imax

(4.3)

Cdiff =
1

2 · π · fc · (2 ∗Rflt)
(4.4)

Ccm =
Cdiff

10
(4.5)

The filter ends up looking like this in Altium [4.7], Where the differential pair input is
put through a low pass filter to remove any high frequency noise, and then passed into
the controller for processing. Because the ADC is set to differential mode no additional
digital filter within the uC should be needed. TVS-Diodes are used to protect from
overcurrent.
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Figure 4.7: Common Mode Differential Filter Design in Altium

The value for resistance is the minimum required to limit the current into the ADC pins
given the system parameters and can be quickly changed if it is shown to be insuffi-
cient.

4.3 Resolver ADC design

For the signals output by the MLX30980 2 ADC channels are employed. These are filtered
through a low pass RC-filter and will be further filtered through a digital filter within the
uC. Eventually if testing reveals too much noise, a filter on the resolver card or using a
higher order filter on the MCU might be beneficial, there might be grounds to use buffers
aswell. There is also connected a TVSD between the sin and cos lines to protect from
overvoltage.

The following component values were used in the filter:

F c R C

198.94 Hz 20k 40 nF
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Figure 4.8: ADC circuit with Cos and Sin

This gives a Fc = 198.94Hz.

Because the signal measured is either a cos or sin, where the max frequency is controlled
by how fast the motor can rotate, Fc has been chosen to be around 200 Hz. Maximum
motor spin is 6500 RPM, which translated to Hz will be 108.33 Hz. This will remove most
EMI, and additional filtration will be done in software.

4.4 Connectors

The following schematics are for the connectors used in this design. The TFML-112-02-
L-D-LC is a 24-pin connector is a placeholder until the planned counterpart has been
decided on. This is due to how there are plans to use a ribbon cable between the MCU
and inverter drivers.
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Figure 4.9: 12 Volt input

Figure 4.10: Connector to drivers
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Figure 4.11: Debug connector

Figure 4.12: Resolver Connectors
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Figure 4.13: Connectivity: SPI, I2C and CAN
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4.5 Printed circuit board

During the controller’s PCB design process a couple of critical points have been taken
into consideration.

- Board size
There isn’t a specific size requirement. There should be enough room for the com-
ponents to be somewhat separated to avoid noise or interference. As of the latest
revision, the PCB has a size of 14.5 cm x 9.5 cm, but can be reduced in future
revisions with a smarter routing strategy between the components.

- Number of layers
Number of layers required depends on the size of the board, the routing connections
and how many signal/net planes are desired. The current revision has 6 layers for
ease of connection, however a 4 layered version would suffice.

- Component placement
The placement of the different components is the most significant point. The layout
of components can be seen in figure 4.15. Some parts of the controller need to be
seperated, especially as the PWM and differential ADC signals can interfere with
other signals and cause undesired noise. CAN, SPI and I2C are kept apart from
the PWM and differential ADC as they are vulnerable to noise. The decoupling
capacitors have been placed near the µC for filtering out voltage spikes.

Figure 4.14: Top view of controller in Altium Designer
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Figure 4.15: Placement of parts on the controller

4.5.1 Improvements which should be considered

Before sending the PCB design for production, several potential improvements need to
be addressed. Firstly, better organization of the components can reduce the size of the
board. Secondly, the signal routing between components requires a redesign, particularly
for the improvement of differential paired routing to ensure balanced transmission between
signals. This not only contributes to a more compact controller but also helps minimize
noise interference. A 4-layered board instead of 6 layered is enough and is also cost
efficient. By separating parts of each layer into zones with the desired net, a signal/net
plane for the entire layer can be avoided. This approach also provides some immunity
from external sources.

The controller couldn’t be completed and produced due to time constraints, so it will
need to be done at a later stage.
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Connectivity

This chapter is about the connectivity options chosen and why they were chosen.

5.1 CAN

Controller Area Network (CAN) is a communication protocol and bus standard that was
originally developed for use in the automotive industry. It is a robust and widely used
network protocol for connecting electronic control units (ECUs) within vehicles and other
industrial applications.

CAN allows for multiple controller units to communicate with each other over a shared
bus. It uses differential signals to transmit data, which provides noise immunity and
allows for longer cable lengths. CAN is a message-oriented protocol which means data is
transmitted in the form of messages, with each message consisting of an identifier and a
payload. The identifier determines its priority and the content.

5.1.1 Why use CAN?

CAN is used because this is what the AMS and ECU is communicating with, and switching
away from CAN will lead to several major changes being needed to made to those systems.
Using CAN several electrical units can communicate over one network of cables. This
leads to a simpler and smaller cable network compared to if every card needed to be
connected individually. As all units connected have access to all communication on the
network, it would be easy to expand systems with new units. New units would be able
to retrieve and transmit without making changes to the existing units. CAN also has
built in functionality to detect faults or errors in messages. This makes troubleshooting
easier.

The STM32H723ZGx has support for FDCAN, which will not be used due to the rest
of the units in the car still using normal CAN. FDCAN ”Flexible Data-Rate Controller
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Area Network” supports higher data rates compared to traditional CAN. While CAN
typically supports up to 1 Mbps, FDCAN supports up to 8 Mbps allowing for faster
communication. FDCAN is backwards compatible with CAN. This means FDCAN can
communicate with existing CAN devices and networks using the CAN protocol.

The data rate chosen in this design is 500 kbps which is the same as the ECU and AMS. In
a CAN network, all connected controllers should ideally operate at the same data rate to
ensure reliable communication. If controllers within the network operate at different data
rates, it can lead to communication issues such as message collisions and data corruption.
This is also one of the reasons the MCU is using CAN instead of FDCAN, as the existing
network is running on CAN.

5.1.2 Differential signaling

The CAN-transceiver transforms CAN-TX and CAN-RX into two differential signals that
each consists of CAN-H and CAN-L. To send sizeable amounts of data without major in-
terference from EMI the signals are made into differential signals. Differential signaling
is a method used to transmit data reliably over a distance by utilizing the voltage differ-
ences between the two signal lines. It involves sending the same signal, but with opposite
polarities, on two separate conductors or traces. The receiver then compares the voltage
difference between the two lines to interpret the transmitted data. Since the receiver
looks at the voltage difference, it can effectively reject common-mode noise which will
affect both lines equally. This leads to any noise or interference that is common to both
lines to be canceled out, resulting in improved signal integrity.

5.1.3 CAN Setup

The CAN setup can be divided into multiple sections as shown in the following table.

Start of frame Arbitration Control Data CRC End of frame

• Start of frame: Is the start of the message.

• Arbitration: Contains the messages ID and priority.

• Control: States the length of the data.

• Data: Contains the data being sent.

• CRC: Cyclic redundancy check, This is used for detection of errors through calcu-
lating a checksum from the transmitted bits.

• End of frame: Is the end of the message.
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5.1.4 Notes regarding further design with CAN

If a further design of the MCU is selected to be decentralized, using FDCAN between the
parts could be beneficial due to the high speed and increased size of messages. FDCAN
supports up to 64 bytes of data per message compared to CANs 8 bytes. This could be
done using a separate FDCAN network isolated from the original CAN network that is
only used within the different units produced in a decentralized design.

5.2 SPI

Serial Peripheral Interface (SPI) is a synchronous serial communication interface spec-
ification used for short-distance communication. SPI allows for the exchange of data
between a master device and one or more slave devices. The SPI communication follows a
full-duplex data transfer mechanism, where data can be simultaneously transmitted and
received. The master device controls the communication by generating the clock signal
and initiating the data transfer. To select which slave device to communicate with, a
specific SS/CS line will be pulled low, indicating that communication with the slave is
desired. [2]

5.2.1 Why use SPI

During the design phase of this thesis, a member of ION Racing was designing the driver
cards and inverters that are going to be produced and tested on the 2024 car. During
their planning phase they requested the possibility for SPI. This is why the MCU has SPI
in its design.

5.2.2 How SPI works

Here is a brief overview of how SPI works:[2]

• SCK (Serial Clock): This line carries the clock signal generated by the master
device. This synchronizes the data transfer between the master and slaves.

• MOSI (Master Out Slave In): This line is used by the master to send data to
the slaves.

• MISO (Master In Slave Out): This line is used by the slaves to send data to the
master.

• SS/CS (Slave Select/Chip Select): This line is used by the master to select the
specific slave device with which it wants to communicate. Each slave typically has
its own SS/CS line.

During data transfer, the master sends data on the MOSI line while the slaves send data
on the MISO line. The data is transmitted in a synchronized manner based on the clock
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signal on the SCK line.

5.3 I2C

Inter-Integrated Circuit (I2C) is a popular synchronous serial communication protocol
used to enable communication between integrated circuits. It allows multiple devices to
communicate with each other using only two lines: a serial data line (SDA) and a serial
clock line (SCL). The I2C protocol operates in a master-slave configuration, where one
device acts as the master and initiates and controls the communication with one or more
slave devices. The master device generates the clock signal on the SCL line to synchronize
the data transfer. [7]

5.3.1 Why use I2C

The usage of I2C has not been decided yet but it could be used to upgrade certain systems
or parts in the future. One of the upgrades that could be made using I2C would be to the
resolver used. The MLX90381 is the same resolver as the MLX90380, except it has a lower
output refresh rate of 2 µs while the MLX90380 has a refresh rate of 4 µs. The MLX90381
can also change its detection field based on the programming while the MLX90380 cannot
due to its pre-programmed state. This would also allow for a more modular approach as
one could change the orientation of the detectors on the fly as needed. This is why the
MCU has I2C in its design.

5.3.2 How I2C works

Here is a brief overview of how I2C works: [7]

1. Start Condition: The master initiates communication by sending a specific se-
quence of signals on the SDA and SCL lines. This indicates the start of a transaction.

2. Addressing: The master sends the address of the slave device it wants to commu-
nicate with. Each slave has its own unique address assigned. The address includes a
read/write bit, indicating which function the master would like to access.

3. Data Transfer: Once the slave device with the matching address is selected, data is
transmitted in a series of 8-bit chunks. Each chunk is acknowledged by the receiving
device.

4. Stop Condition: After the data has been transferred, the master sends a stop
condition that indicates the end of the transaction.
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Chapter 6

Discussion and further work

This thesis and project has proven to be quite a challenge for someone with close to no
knowledge on controlling a three-phase motor. The magnitude of work and effort required
to design and produce a motor controller was not anticipated. Only a few of the goals set
for the testing phase were met and the remaining will need to be completed at at later
point in time. A great portion of the entire project is incomplete with some errors that
need to be reworked before a final version of the controller is ready for production.
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6.1 The system

The system that was created for testing introduced a lot of time consuming issues. Mostly
due to the lack of availability for both microcontrollers and resolvers. A microcontroller
that did not meet all the requirements of the project had to be used, and without a
resolver a sensorless algorithm had to be implemented. These two complications made
the software a lot more challenging to create.

6.2 Software

The software outlined in figure 3.10 and 3.11 does not make the motor spin smoothly
since it lacks a startup phase. Without the startup phase, the back EMF readings are not
useful and the software can’t use their readings for 6-step commutation. The motor has
however been spun by removing the back EMF portion of the software and periodically
iterating the commutation sequence. This method is highly inefficient, but demonstrates
that the software could function with either a working resolver or a back EMF startup
phase.

6.3 Design

The design created in this project would in theory work on 2 motors, but if attempted
to scale up to four motors would be lacking. This is due to each differential ADC using
2 pins each and each timer requiring 6. Due to how not every pin can be an input for
ADCs or output PWM, this means the design has to be updated to take into account
the increased requirements. Eventually a decentralized design with a main controller and
several sensor modules with communication through FDCAN might be the way to expand
upon this design.

The design is also lacking LEDs, but the pins for LEDs have been selected and put into
the design. The need for LEDs is questionable due to the placement of the card in a
cramped closed box. An argument can be made for implementing LEDs as they could
help with debugging.

Before production, potential improvements for the PCB design should be made. Changes
such as smarter component organization, redesigned signal routing and additional noise
reduction strategies will be beneficial to the final product.

6.4 Further work

As mentioned, the controller still requires a great deal of work. An objective of this project
was to settle between controlling 2 or 4 motors. Only 1 motor control was accomplished
to some degree and a desired PI-controller remains to be applied. In order to implement
the controller in a electric race car, the following objectives need attending:
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• Expand software

• Improved revision of the controller’s PCB design

• Produce the controller

• Establish connection with the car’s ECU

• Test the controller with the car’s high voltage accumulator.

• Optimize the controller for Formula Student events

6.5 Conclusion

This thesis’s primary objective has been to attempt to design and produce a motor con-
troller for an electric race car. The thesis was more complicated than anticipated, and
availability issues further added to the complexity. There is a lot of work to be done still
to finish the motor controller and fit it to the car. A lot of progress was still made, and
a good starting point for both the software and the design has been achieved.

Further development will be done for the next formula student season. Testing revealed
some missteps made with the selection of the STM32H723ZG compared to other op-
tions. This thesis writing experience has been highly educational and informative, pro-
viding valuable insights into motor control techniques and the essential components in-
volved.
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Appendix A

Software code

A.1 main.c
1

2

3 /∗ USER CODE BEGIN Header ∗/
4 /∗∗
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
6 ∗ @f i l e : main . c
7 ∗ @brie f : Main program body
8 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
9 ∗ @attent ion

10 ∗
11 ∗ Copyright ( c ) 2023 STMicroe l ec t ron i c s .
12 ∗ Al l r i g h t s r e s e rved .
13 ∗
14 ∗ This so f tware i s l i c e n s e d under terms that can be found in the LICENSE f i l e
15 ∗ in the root d i r e c t o r y o f t h i s so f tware component .
16 ∗ I f no LICENSE f i l e comes with t h i s so ftware , i t i s provided AS−IS .
17 ∗
18 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
19 ∗/
20 /∗ USER CODE END Header ∗/
21 /∗ Inc lude s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
22 #inc lude ”main . h”
23

24 /∗ Pr ivate i n c l ude s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
25 /∗ USER CODE BEGIN Inc lude s ∗/
26 #inc lude ” stm32h7xx hal gpio . h”
27 #inc lude ” stm32h7xx hal cortex . h” // l a t i l
28 #inc lude ” stm32h7xx hal t im . h”
29 #inc lude <s tdboo l . h>
30 #inc lude <s t d i o . h>
31 //#inc lude ” stm32h7xx hal . h”
32 /∗ USER CODE END Inc lude s ∗/
33

34 /∗ Pr ivate typede f −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
35 /∗ USER CODE BEGIN PTD ∗/
36

37 /∗ USER CODE END PTD ∗/
38

39 /∗ Pr ivate d e f i n e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
40 /∗ USER CODE BEGIN PD ∗/
41

42 /∗ USER CODE END PD ∗/
43

44 /∗ Pr ivate macro −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
45 /∗ USER CODE BEGIN PM ∗/
46
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47 /∗ USER CODE END PM ∗/
48

49 /∗ Pr ivate v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
50 ADC HandleTypeDef hadc1 ;
51 ADC HandleTypeDef hadc2 ;
52 ADC HandleTypeDef hadc3 ;
53 DMA HandleTypeDef hdma adc1 ;
54 DMA HandleTypeDef hdma adc2 ;
55

56 DAC HandleTypeDef hdac1 ;
57

58 DTS HandleTypeDef hdts ;
59

60 TIM HandleTypeDef htim1 ;
61 TIM HandleTypeDef htim4 ;
62 TIM HandleTypeDef htim8 ;
63

64 UART HandleTypeDef huart3 ;
65

66 /∗ USER CODE BEGIN PV ∗/
67 PWM State t Cur PWM State = PWMON;
68 Commutation State t Cur Commutation State = s t ep 1 ;
69 Master Count Step t Cur Master Count Step = Step 1 ;
70 u in t32 t Period Timer = 65535;
71 u in t16 t BEMF ADC Val [ 3 ] ;
72 u in t32 t Pedal ADC Val ;
73 u in t16 t Pedal Val = 0 ;
74 u in t16 t BEMF ZeroPoint = 64000;
75 u in t16 t Pre s ca l e r Va lue = 300 ;
76 bool LetsGo = f a l s e ;
77 bool BEMF A ispositive = f a l s e ;
78 bool BEMF B ispositive = f a l s e ;
79 bool BEMF C ispositive = f a l s e ;
80 bool Phase A Running = f a l s e ;
81 bool Phase AN Running = f a l s e ;
82 bool Phase B Running = f a l s e ;
83 bool Phase BN Running = f a l s e ;
84 bool Phase C Running = f a l s e ;
85 bool Phase CN Running = f a l s e ;
86 // t e s t v a r i a b l e
87 u in t16 t Test = 0 ;
88

89

90 /∗ USER CODE END PV ∗/
91

92 /∗ Pr ivate func t i on prototypes −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
93 void SystemClock Config ( void ) ;
94 void PeriphCommonClock Config ( void ) ;
95 s t a t i c void MX GPIO Init ( void ) ;
96 s t a t i c void MX DMA Init ( void ) ;
97 s t a t i c void MX ADC2 Init ( void ) ;
98 s t a t i c void MX ADC3 Init ( void ) ;
99 s t a t i c void MX DTS Init ( void ) ;

100 s t a t i c void MX TIM1 Init ( void ) ;
101 s t a t i c void MX TIM4 Init ( void ) ;
102 s t a t i c void MX TIM8 Init ( void ) ;
103 s t a t i c void MX USART3 UART Init( void ) ;
104 s t a t i c void MX USB OTG HS USB Init ( void ) ;
105 s t a t i c void MX ADC1 Init ( void ) ;
106 s t a t i c void MX DAC1 Init ( void ) ;
107 /∗ USER CODE BEGIN PFP ∗/
108 void Execute Commutation ( Commutation State t Cur Commutation State ) ;
109 /∗ USER CODE END PFP ∗/
110

111 /∗ Pr ivate user code −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
112 /∗ USER CODE BEGIN 0 ∗/
113

114

115

116 // Def ine func t i on f o r c a l c u l a t i n g value f o r t imers to count to
117

118 void Execute Commutation ( Commutation State t Cur Commutation State ){
119 // Function f o r execut ing the c o r r e c t s tep o f the commutation sequence
120 // Get read ing from pedal s enso r
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121 HAL ADC Start DMA(&hadc1 , &Pedal ADC Val , 1) ;
122 HAL ADC PollForConversion(&hadc1 , 10) ;
123 Pedal Val = HAL ADC GetValue(&hadc1 ) ;
124 // Switch on and o f f the c o r r e c t outputs
125 switch ( Cur Commutation State ){
126 case s t ep 1 :
127 Phase C Running = f a l s e ;
128 Phase A Running = true ;
129 break ;
130

131 case s t ep 2 :
132 Phase BN Running = f a l s e ;
133 Phase CN Running = true ;
134 break ;
135

136 case s t ep 3 :
137 Phase A Running = f a l s e ;
138 Phase B Running = true ;
139 break ;
140

141 case s t ep 4 :
142 Phase CN Running = f a l s e ;
143 Phase AN Running = true ;
144 break ;
145

146 case s t ep 5 :
147 Phase B Running = f a l s e ;
148 Phase C Running = true ;
149 break ;
150

151 case s t ep 6 :
152 Phase AN Running = f a l s e ;
153 Phase BN Running = true ;
154 break ;
155 }
156 }
157

158 void Pulse ( Master Count Step t Cur Master Count Step ){
159 /∗ Function that outputs the phases in sequence to mimic phase s h i f t ∗/
160 // Check which step the master counter i s at and output the appropr ia te phase
161 switch ( Cur Master Count Step ){
162 case Step 1 :
163 // Only output the phase when i t i s supposed to in the commutation sequence
164 i f ( Phase A Running ){
165 TIM1−>CCR1 = Pedal Val ;
166 }
167 i f ( Phase AN Running ){
168 TIM8−>CCR1 = Pedal Val ;
169 }
170 // Turn the other outputs o f f
171 TIM1−>CCR2 = 0 ;
172 TIM8−>CCR2 = 0 ;
173 TIM1−>CCR3 = 0 ;
174 TIM8−>CCR3 = 0 ;
175 break ;
176 case Step 2 :
177 // Only output the phase when i t i s supposed to in the commutation sequence
178 i f ( Phase B Running ){
179 TIM1−>CCR2 = Pedal Val ;
180 }
181 i f ( Phase BN Running ){
182 TIM8−>CCR2 = Pedal Val ;
183 }
184 // Turn the other outputs o f f
185 TIM1−>CCR1 = 0 ;
186 TIM8−>CCR1 = 0 ;
187 TIM1−>CCR3 = 0 ;
188 TIM8−>CCR3 = 0 ;
189 break ;
190 case Step 3 :
191 // Only output the phase when i t i s supposed to in the commutation sequence
192 i f ( Phase C Running ){
193 TIM1−>CCR3 = Pedal Val ;
194 }
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195 i f ( Phase CN Running ){
196 TIM8−>CCR3 = Pedal Val ;
197 }
198 // Turn the other outputs o f f
199 TIM1−>CCR1 = 0 ;
200 TIM8−>CCR1 = 0 ;
201 TIM1−>CCR2 = 0 ;
202 TIM8−>CCR2 = 0 ;
203 break ;
204 }
205 }
206 /∗ USER CODE END 0 ∗/
207

208 /∗∗
209 ∗ @brie f The app l i c a t i on entry po int .
210 ∗ @retval i n t
211 ∗/
212 i n t main ( void )
213 {
214 /∗ USER CODE BEGIN 1 ∗/
215

216 /∗ USER CODE END 1 ∗/
217

218 /∗ MCU Conf igurat ion−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
219

220 /∗ Reset o f a l l p e r i phe ra l s , I n i t i a l i z e s the Flash i n t e r f a c e and the Sys t i ck . ∗/
221 HAL Init ( ) ;
222

223 /∗ USER CODE BEGIN I n i t ∗/
224

225 /∗ USER CODE END In i t ∗/
226

227 /∗ Conf igure the system c lock ∗/
228 SystemClock Config ( ) ;
229

230 /∗ Conf igure the p e r i ph e r a l s common c l o ck s ∗/
231 PeriphCommonClock Config ( ) ;
232

233 /∗ USER CODE BEGIN Sys In i t ∗/
234

235 /∗ USER CODE END Sys In i t ∗/
236

237 /∗ I n i t i a l i z e a l l con f i gu red p e r i ph e r a l s ∗/
238 MX GPIO Init ( ) ;
239 MX DMA Init ( ) ;
240 MX ADC2 Init ( ) ;
241 MX ADC3 Init ( ) ;
242 MX DTS Init ( ) ;
243 MX TIM1 Init ( ) ;
244 MX TIM4 Init ( ) ;
245 MX TIM8 Init ( ) ;
246 MX USART3 UART Init ( ) ;
247 MX USB OTG HS USB Init ( ) ;
248 MX ADC1 Init ( ) ;
249 MX DAC1 Init ( ) ;
250 /∗ USER CODE BEGIN 2 ∗/
251 // Turn a l l PWM outputs o f f at the s t a r t
252 TIM1−>CCR1 = 0 ;
253 TIM1−>CCR2 = 0 ;
254 TIM1−>CCR3 = 0 ;
255 TIM8−>CCR1 = 0 ;
256 TIM8−>CCR2 = 0 ;
257 TIM8−>CCR3 = 0 ;
258

259 /∗ USER CODE END 2 ∗/
260

261 /∗ I n f i n i t e loop ∗/
262 /∗ USER CODE BEGIN WHILE ∗/
263 whi le (1 )
264 {
265 // Check i f PWM i s supposed to be on
266 i f (Cur PWM State == PWMON){
267 // Get read ings from the back EMF ADC
268 HAL ADC Start DMA(&hadc2 , ( u i n t 16 t ∗)&BEMF ADC Val [ 0 ] , 3) ;
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269 HAL ADC PollForConversion(&hadc2 , 15) ;
270 // Check what commutation step the a lgor i thm i s in
271 switch ( Cur Commutation State ){
272 case s t ep 1 :
273 // I f the back EMF reading from phase C has dropped below the ze ropo in t move on to the

next commutation step
274 i f (BEMF ADC Val [ 2 ] < BEMF ZeroPoint ){
275 Cur Commutation State = s t ep 2 ;
276 }
277 // Cal l to the Execute Commutation func t i on to update the duty cyc l e and p o t e n t i a l l y

phase output
278 Execute Commutation ( Cur Commutation State ) ;
279 break ;
280

281 case s t ep 2 :
282 // i f the back EMF reading from phase B goes above the ze ropo in t move on to the next

commutation step
283 i f (BEMF ADC Val [ 1 ] > BEMF ZeroPoint ){
284 Cur Commutation State = s t ep 3 ;
285 }
286 // Cal l to the Execute Commutation func t i on to update the duty cyc l e and p o t e n t i a l l y

phase output
287 Execute Commutation ( Cur Commutation State ) ;
288 break ;
289

290 case s t ep 3 :
291 // I f the back EMF reading from phase A has dropped below the ze ropo in t move on to the

next commutation step
292 i f (BEMF ADC Val [ 0 ] < BEMF ZeroPoint ){
293 Cur Commutation State = s t ep 3 ;
294 }
295 // Cal l to the Execute Commutation func t i on to update the duty cyc l e and p o t e n t i a l l y

phase output
296 Execute Commutation ( Cur Commutation State ) ;
297 break ;
298

299 case s t ep 4 :
300 // i f the back EMF reading from phase C goes above the ze ropo in t move on to the next

commutation step
301 i f (BEMF ADC Val [ 2 ] > BEMF ZeroPoint ){
302 Cur Commutation State = s t ep 5 ;
303 }
304 // Cal l to the Execute Commutation func t i on to update the duty cyc l e and p o t e n t i a l l y

phase output
305 Execute Commutation ( Cur Commutation State ) ;
306 break ;
307

308 case s t ep 5 :
309 // I f the back EMF reading from phase B has dropped below the ze ropo in t move on to the

next commutation step
310 i f (BEMF ADC Val [ 1 ] < BEMF ZeroPoint ){
311 Cur Commutation State = s t ep 6 ;
312 }
313 // Cal l to the Execute Commutation func t i on to update the duty cyc l e and p o t e n t i a l l y

phase output
314 Execute Commutation ( Cur Commutation State ) ;
315 break ;
316

317 case s t ep 6 :
318 // i f the back EMF reading from phase A goes above the ze ropo in t move on to the next

commutation step
319 i f (BEMF ADC Val [ 0 ] > BEMF ZeroPoint ){
320 Cur Commutation State = s t ep 1 ;
321 }
322 // Cal l to the Execute Commutation func t i on to update the duty cyc l e and p o t e n t i a l l y

phase output
323 Execute Commutation ( Cur Commutation State ) ;
324 break ;
325 }
326 }
327

328 e l s e {
329 // Turn o f f PWM output
330 HAL TIM PWM Stop(&htim1 , TIM CHANNEL 1) ;
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331 HAL TIM PWM Stop(&htim1 , TIM CHANNEL 2) ;
332 HAL TIM PWM Stop(&htim1 , TIM CHANNEL 3) ;
333 HAL TIM PWM Stop(&htim8 , TIM CHANNEL 1) ;
334 HAL TIM PWM Stop(&htim8 , TIM CHANNEL 2) ;
335 HAL TIM PWM Stop(&htim8 , TIM CHANNEL 3) ;
336 }
337

338

339 /∗ USER CODE END WHILE ∗/
340

341 /∗ USER CODE BEGIN 3 ∗/
342 }
343 /∗ USER CODE END 3 ∗/
344 }
345

346 /∗∗
347 ∗ @brie f System Clock Conf igurat ion
348 ∗ @retval None
349 ∗/
350 void SystemClock Config ( void )
351 {
352 RCC OscInitTypeDef RCC OscInitStruct = {0} ;
353 RCC ClkInitTypeDef RCC ClkInitStruct = {0} ;
354

355 /∗∗ Supply c on f i gu r a t i on update enable
356 ∗/
357 HAL PWREx ConfigSupply (PWR LDO SUPPLY) ;
358

359 /∗∗ Conf igure the main i n t e r n a l r e gu l a t o r output vo l tage
360 ∗/
361 HAL PWR VOLTAGESCALING CONFIG(PWR REGULATOR VOLTAGE SCALE0) ;
362

363 whi le ( ! HAL PWR GET FLAG(PWRFLAGVOSRDY) ) {}
364

365 /∗∗ I n i t i a l i z e s the RCC Os c i l l a t o r s accord ing to the s p e c i f i e d parameters
366 ∗ in the RCC OscInitTypeDef s t r u c tu r e .
367 ∗/
368 RCC OscInitStruct . Osc i l l a to rType = RCC OSCILLATORTYPE HSI48 |RCC OSCILLATORTYPE HSI ;
369 RCC OscInitStruct . HSIState = RCC HSI DIV1 ;
370 RCC OscInitStruct . HSICal ibrat ionValue = 64 ;
371 RCC OscInitStruct . HSI48State = RCC HSI48 ON ;
372 RCC OscInitStruct .PLL. PLLState = RCC PLL ON;
373 RCC OscInitStruct .PLL. PLLSource = RCC PLLSOURCE HSI ;
374 RCC OscInitStruct .PLL.PLLM = 4 ;
375 RCC OscInitStruct .PLL.PLLN = 34 ;
376 RCC OscInitStruct .PLL.PLLP = 1 ;
377 RCC OscInitStruct .PLL.PLLQ = 4 ;
378 RCC OscInitStruct .PLL.PLLR = 2 ;
379 RCC OscInitStruct .PLL.PLLRGE = RCC PLL1VCIRANGE 3 ;
380 RCC OscInitStruct .PLL.PLLVCOSEL = RCC PLL1VCOWIDE;
381 RCC OscInitStruct .PLL.PLLFRACN = 3072;
382 i f (HAL RCC OscConfig(&RCC OscInitStruct ) != HAL OK)
383 {
384 Error Handler ( ) ;
385 }
386

387 /∗∗ I n i t i a l i z e s the CPU, AHB and APB buses c l o ck s
388 ∗/
389 RCC ClkInitStruct . ClockType = RCC CLOCKTYPE HCLK|RCC CLOCKTYPE SYSCLK
390 |RCC CLOCKTYPE PCLK1 |RCC CLOCKTYPE PCLK2
391 |RCC CLOCKTYPE D3PCLK1 |RCC CLOCKTYPE D1PCLK1;
392 RCC ClkInitStruct . SYSCLKSource = RCC SYSCLKSOURCE PLLCLK;
393 RCC ClkInitStruct . SYSCLKDivider = RCC SYSCLK DIV1 ;
394 RCC ClkInitStruct . AHBCLKDivider = RCC HCLK DIV2 ;
395 RCC ClkInitStruct . APB3CLKDivider = RCC APB3 DIV2 ;
396 RCC ClkInitStruct . APB1CLKDivider = RCC APB1 DIV2 ;
397 RCC ClkInitStruct . APB2CLKDivider = RCC APB2 DIV2 ;
398 RCC ClkInitStruct . APB4CLKDivider = RCC APB4 DIV2 ;
399

400 i f (HAL RCC ClockConfig(&RCC ClkInitStruct , FLASH LATENCY 3) != HAL OK)
401 {
402 Error Handler ( ) ;
403 }
404 }
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405

406 /∗∗
407 ∗ @brie f Pe r i phe ra l s Common Clock Conf igurat ion
408 ∗ @retval None
409 ∗/
410 void PeriphCommonClock Config ( void )
411 {
412 RCC PeriphCLKInitTypeDef Per iphClk In i tS t ruc t = {0} ;
413

414 /∗∗ I n i t i a l i z e s the p e r i ph e r a l s c l o ck
415 ∗/
416 Per iphClk In i tS t ruc t . Per iphClockSe l ec t i on = RCC PERIPHCLK ADC;
417 Per iphClk In i tS t ruc t .PLL2 .PLL2M = 4 ;
418 Per iphClk In i tS t ruc t .PLL2 .PLL2N = 12 ;
419 Per iphClk In i tS t ruc t .PLL2 .PLL2P = 2 ;
420 Per iphClk In i tS t ruc t .PLL2 .PLL2Q = 2 ;
421 Per iphClk In i tS t ruc t .PLL2 .PLL2R = 2 ;
422 Per iphClk In i tS t ruc t .PLL2 .PLL2RGE = RCC PLL2VCIRANGE 3 ;
423 Per iphClk In i tS t ruc t .PLL2 .PLL2VCOSEL = RCC PLL2VCOWIDE;
424 Per iphClk In i tS t ruc t .PLL2 .PLL2FRACN = 0 ;
425 Per iphClk In i tS t ruc t . AdcClockSe lect ion = RCC ADCCLKSOURCE PLL2;
426 i f (HAL RCCEx PeriphCLKConfig(&Per iphClk In i tS t ruc t ) != HAL OK)
427 {
428 Error Handler ( ) ;
429 }
430 }
431

432 /∗∗
433 ∗ @brie f ADC1 I n i t i a l i z a t i o n Function
434 ∗ @param None
435 ∗ @retval None
436 ∗/
437 s t a t i c void MX ADC1 Init ( void )
438 {
439

440 /∗ USER CODE BEGIN ADC1 Init 0 ∗/
441

442 /∗ USER CODE END ADC1 Init 0 ∗/
443

444 ADC MultiModeTypeDef multimode = {0} ;
445 ADC ChannelConfTypeDef sConf ig = {0} ;
446

447 /∗ USER CODE BEGIN ADC1 Init 1 ∗/
448

449 /∗ USER CODE END ADC1 Init 1 ∗/
450

451 /∗∗ Common con f i g
452 ∗/
453 hadc1 . Ins tance = ADC1;
454 hadc1 . I n i t . C lockPre sca l e r = ADC CLOCK ASYNC DIV2;
455 hadc1 . I n i t . Reso lut ion = ADC RESOLUTION 16B;
456 hadc1 . I n i t . ScanConvMode = ADC SCAN DISABLE;
457 hadc1 . I n i t . EOCSelection = ADC EOC SINGLE CONV;
458 hadc1 . I n i t . LowPowerAutoWait = DISABLE;
459 hadc1 . I n i t . ContinuousConvMode = DISABLE;
460 hadc1 . I n i t . NbrOfConversion = 1 ;
461 hadc1 . I n i t . DiscontinuousConvMode = DISABLE;
462 hadc1 . I n i t . ExternalTrigConv = ADC SOFTWARE START;
463 hadc1 . I n i t . ExternalTrigConvEdge = ADCEXTERNALTRIGCONVEDGENONE;
464 hadc1 . I n i t . ConversionDataManagement = ADC CONVERSIONDATA DMA CIRCULAR;
465 hadc1 . I n i t . Overrun = ADC OVR DATA PRESERVED;
466 hadc1 . I n i t . L e f tB i t Sh i f t = ADC LEFTBITSHIFT NONE;
467 hadc1 . I n i t . OversamplingMode = DISABLE;
468 i f (HAL ADC Init(&hadc1 ) != HAL OK)
469 {
470 Error Handler ( ) ;
471 }
472

473 /∗∗ Conf igure the ADC multi−mode
474 ∗/
475 multimode .Mode = ADCMODE INDEPENDENT;
476 i f (HAL ADCEx MultiModeConfigChannel(&hadc1 , &multimode ) != HAL OK)
477 {
478 Error Handler ( ) ;
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479 }
480

481 /∗∗ Conf igure Regular Channel
482 ∗/
483 sConf ig . Channel = ADC CHANNEL 6;
484 sConf ig . Rank = ADC REGULAR RANK 1;
485 sConf ig . SamplingTime = ADC SAMPLETIME 1CYCLE 5;
486 sConf ig . S i n g l eD i f f = ADC SINGLE ENDED;
487 sConf ig . OffsetNumber = ADC OFFSET NONE;
488 sConf ig . O f f s e t = 0 ;
489 sConf ig . O f f s e tS i gnedSatura t i on = DISABLE;
490 i f (HAL ADC ConfigChannel(&hadc1 , &sConf ig ) != HAL OK)
491 {
492 Error Handler ( ) ;
493 }
494 /∗ USER CODE BEGIN ADC1 Init 2 ∗/
495

496 /∗ USER CODE END ADC1 Init 2 ∗/
497

498 }
499

500 /∗∗
501 ∗ @brie f ADC2 I n i t i a l i z a t i o n Function
502 ∗ @param None
503 ∗ @retval None
504 ∗/
505 s t a t i c void MX ADC2 Init ( void )
506 {
507

508 /∗ USER CODE BEGIN ADC2 Init 0 ∗/
509

510 /∗ USER CODE END ADC2 Init 0 ∗/
511

512 ADC ChannelConfTypeDef sConf ig = {0} ;
513

514 /∗ USER CODE BEGIN ADC2 Init 1 ∗/
515

516 /∗ USER CODE END ADC2 Init 1 ∗/
517

518 /∗∗ Common con f i g
519 ∗/
520 hadc2 . Ins tance = ADC2;
521 hadc2 . I n i t . C lockPre sca l e r = ADC CLOCK ASYNC DIV2;
522 hadc2 . I n i t . Reso lut ion = ADC RESOLUTION 16B;
523 hadc2 . I n i t . ScanConvMode = ADC SCAN ENABLE;
524 hadc2 . I n i t . EOCSelection = ADC EOC SEQ CONV;
525 hadc2 . I n i t . LowPowerAutoWait = DISABLE;
526 hadc2 . I n i t . ContinuousConvMode = DISABLE;
527 hadc2 . I n i t . NbrOfConversion = 3 ;
528 hadc2 . I n i t . DiscontinuousConvMode = DISABLE;
529 hadc2 . I n i t . ExternalTrigConv = ADC SOFTWARE START;
530 hadc2 . I n i t . ExternalTrigConvEdge = ADCEXTERNALTRIGCONVEDGENONE;
531 hadc2 . I n i t . ConversionDataManagement = ADC CONVERSIONDATA DMA CIRCULAR;
532 hadc2 . I n i t . Overrun = ADC OVR DATA PRESERVED;
533 hadc2 . I n i t . L e f tB i t Sh i f t = ADC LEFTBITSHIFT NONE;
534 hadc2 . I n i t . OversamplingMode = DISABLE;
535 i f (HAL ADC Init(&hadc2 ) != HAL OK)
536 {
537 Error Handler ( ) ;
538 }
539

540 /∗∗ Conf igure Regular Channel
541 ∗/
542 sConf ig . Channel = ADC CHANNEL 2;
543 sConf ig . Rank = ADC REGULAR RANK 1;
544 sConf ig . SamplingTime = ADC SAMPLETIME 1CYCLE 5;
545 sConf ig . S i n g l eD i f f = ADC SINGLE ENDED;
546 sConf ig . OffsetNumber = ADC OFFSET NONE;
547 sConf ig . O f f s e t = 0 ;
548 sConf ig . O f f s e tS i gnedSatura t i on = DISABLE;
549 i f (HAL ADC ConfigChannel(&hadc2 , &sConf ig ) != HAL OK)
550 {
551 Error Handler ( ) ;
552 }
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553

554 /∗∗ Conf igure Regular Channel
555 ∗/
556 sConf ig . Channel = ADC CHANNEL 5;
557 sConf ig . Rank = ADC REGULAR RANK 2;
558 i f (HAL ADC ConfigChannel(&hadc2 , &sConf ig ) != HAL OK)
559 {
560 Error Handler ( ) ;
561 }
562

563 /∗∗ Conf igure Regular Channel
564 ∗/
565 sConf ig . Channel = ADC CHANNEL 6;
566 sConf ig . Rank = ADC REGULAR RANK 3;
567 i f (HAL ADC ConfigChannel(&hadc2 , &sConf ig ) != HAL OK)
568 {
569 Error Handler ( ) ;
570 }
571 /∗ USER CODE BEGIN ADC2 Init 2 ∗/
572

573 /∗ USER CODE END ADC2 Init 2 ∗/
574

575 }
576

577 /∗∗
578 ∗ @brie f ADC3 I n i t i a l i z a t i o n Function
579 ∗ @param None
580 ∗ @retval None
581 ∗/
582 s t a t i c void MX ADC3 Init ( void )
583 {
584

585 /∗ USER CODE BEGIN ADC3 Init 0 ∗/
586

587 /∗ USER CODE END ADC3 Init 0 ∗/
588

589 ADC ChannelConfTypeDef sConf ig = {0} ;
590

591 /∗ USER CODE BEGIN ADC3 Init 1 ∗/
592

593 /∗ USER CODE END ADC3 Init 1 ∗/
594

595 /∗∗ Common con f i g
596 ∗/
597 hadc3 . Ins tance = ADC3;
598 hadc3 . I n i t . C lockPre sca l e r = ADC CLOCK ASYNC DIV1;
599 hadc3 . I n i t . Reso lut ion = ADC RESOLUTION 12B;
600 hadc3 . I n i t . DataAlign = ADC3 DATAALIGN RIGHT;
601 hadc3 . I n i t . ScanConvMode = ADC SCAN ENABLE;
602 hadc3 . I n i t . EOCSelection = ADC EOC SINGLE CONV;
603 hadc3 . I n i t . LowPowerAutoWait = DISABLE;
604 hadc3 . I n i t . ContinuousConvMode = ENABLE;
605 hadc3 . I n i t . NbrOfConversion = 3 ;
606 hadc3 . I n i t . DiscontinuousConvMode = DISABLE;
607 hadc3 . I n i t . ExternalTrigConv = ADC SOFTWARE START;
608 hadc3 . I n i t . ExternalTrigConvEdge = ADCEXTERNALTRIGCONVEDGENONE;
609 hadc3 . I n i t . DMAContinuousRequests = DISABLE;
610 hadc3 . I n i t . SamplingMode = ADC SAMPLINGMODENORMAL;
611 hadc3 . I n i t . ConversionDataManagement = ADC CONVERSIONDATADR;
612 hadc3 . I n i t . Overrun = ADC OVR DATA PRESERVED;
613 hadc3 . I n i t . L e f tB i t Sh i f t = ADC LEFTBITSHIFT NONE;
614 hadc3 . I n i t . OversamplingMode = DISABLE;
615 i f (HAL ADC Init(&hadc3 ) != HAL OK)
616 {
617 Error Handler ( ) ;
618 }
619

620 /∗∗ Conf igure Regular Channel
621 ∗/
622 sConf ig . Channel = ADC CHANNEL 0;
623 sConf ig . Rank = ADC REGULAR RANK 1;
624 sConf ig . SamplingTime = ADC3 SAMPLETIME 2CYCLES 5 ;
625 sConf ig . S i n g l eD i f f = ADC SINGLE ENDED;
626 sConf ig . OffsetNumber = ADC OFFSET NONE;
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627 sConf ig . O f f s e t = 0 ;
628 sConf ig . O f f s e tS i gn = ADC3 OFFSET SIGN NEGATIVE;
629 i f (HAL ADC ConfigChannel(&hadc3 , &sConf ig ) != HAL OK)
630 {
631 Error Handler ( ) ;
632 }
633

634 /∗∗ Conf igure Regular Channel
635 ∗/
636 sConf ig . Channel = ADC CHANNEL 1;
637 sConf ig . Rank = ADC REGULAR RANK 2;
638 i f (HAL ADC ConfigChannel(&hadc3 , &sConf ig ) != HAL OK)
639 {
640 Error Handler ( ) ;
641 }
642

643 /∗∗ Conf igure Regular Channel
644 ∗/
645 sConf ig . Channel = ADC CHANNEL 2;
646 sConf ig . Rank = ADC REGULAR RANK 3;
647 i f (HAL ADC ConfigChannel(&hadc3 , &sConf ig ) != HAL OK)
648 {
649 Error Handler ( ) ;
650 }
651 /∗ USER CODE BEGIN ADC3 Init 2 ∗/
652

653 /∗ USER CODE END ADC3 Init 2 ∗/
654

655 }
656

657 /∗∗
658 ∗ @brie f DAC1 I n i t i a l i z a t i o n Function
659 ∗ @param None
660 ∗ @retval None
661 ∗/
662 s t a t i c void MX DAC1 Init ( void )
663 {
664

665 /∗ USER CODE BEGIN DAC1 Init 0 ∗/
666

667 /∗ USER CODE END DAC1 Init 0 ∗/
668

669 DAC ChannelConfTypeDef sConf ig = {0} ;
670

671 /∗ USER CODE BEGIN DAC1 Init 1 ∗/
672

673 /∗ USER CODE END DAC1 Init 1 ∗/
674

675 /∗∗ DAC I n i t i a l i z a t i o n
676 ∗/
677 hdac1 . Ins tance = DAC1;
678 i f (HAL DAC Init(&hdac1 ) != HAL OK)
679 {
680 Error Handler ( ) ;
681 }
682

683 /∗∗ DAC channel OUT1 con f i g
684 ∗/
685 sConf ig . DAC SampleAndHold = DAC SAMPLEANDHOLD DISABLE;
686 sConf ig . DAC Trigger = DAC TRIGGER NONE;
687 sConf ig . DAC OutputBuffer = DACOUTPUTBUFFER ENABLE;
688 sConf ig . DAC ConnectOnChipPeripheral = DAC CHIPCONNECT DISABLE;
689 sConf ig . DAC UserTrimming = DAC TRIMMING FACTORY;
690 i f (HAL DAC ConfigChannel(&hdac1 , &sConfig , DAC CHANNEL 1) != HAL OK)
691 {
692 Error Handler ( ) ;
693 }
694 /∗ USER CODE BEGIN DAC1 Init 2 ∗/
695

696 /∗ USER CODE END DAC1 Init 2 ∗/
697

698 }
699

700 /∗∗
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701 ∗ @brie f DTS I n i t i a l i z a t i o n Function
702 ∗ @param None
703 ∗ @retval None
704 ∗/
705 s t a t i c void MX DTS Init ( void )
706 {
707

708 /∗ USER CODE BEGIN DTS Init 0 ∗/
709

710 /∗ USER CODE END DTS Init 0 ∗/
711

712 /∗ USER CODE BEGIN DTS Init 1 ∗/
713

714 /∗ USER CODE END DTS Init 1 ∗/
715 hdts . Ins tance = DTS;
716 hdts . I n i t . QuickMeasure = DTS QUICKMEAS DISABLE;
717 hdts . I n i t . RefClock = DTS REFCLKSEL PCLK;
718 hdts . I n i t . Tr igger Input = DTS TRIGGER HW NONE;
719 hdts . I n i t . SamplingTime = DTS SMP TIME 15 CYCLE ;
720 hdts . I n i t . Div ider = 0 ;
721 hdts . I n i t . HighThreshold = 0x0 ;
722 hdts . I n i t . LowThreshold = 0x0 ;
723 i f (HAL DTS Init(&hdts ) != HAL OK)
724 {
725 Error Handler ( ) ;
726 }
727 /∗ USER CODE BEGIN DTS Init 2 ∗/
728

729 /∗ USER CODE END DTS Init 2 ∗/
730

731 }
732

733 /∗∗
734 ∗ @brie f TIM1 I n i t i a l i z a t i o n Function
735 ∗ @param None
736 ∗ @retval None
737 ∗/
738 s t a t i c void MX TIM1 Init ( void )
739 {
740

741 /∗ USER CODE BEGIN TIM1 Init 0 ∗/
742

743 /∗ USER CODE END TIM1 Init 0 ∗/
744

745 TIM ClockConfigTypeDef sClockSourceConf ig = {0} ;
746 TIM MasterConfigTypeDef sMasterConf ig = {0} ;
747 TIMEx BreakInputConfigTypeDef sBreakInputConf ig = {0} ;
748 TIM OC InitTypeDef sConfigOC = {0} ;
749 TIM BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0} ;
750

751 /∗ USER CODE BEGIN TIM1 Init 1 ∗/
752

753 /∗ USER CODE END TIM1 Init 1 ∗/
754 htim1 . Ins tance = TIM1 ;
755 htim1 . I n i t . P r e s c a l e r = Pre s ca l e r Va lue − 1 ;
756 htim1 . I n i t . CounterMode = TIMCOUNTERMODEUP;
757 htim1 . I n i t . Period = 65535;
758 htim1 . I n i t . C lockDiv i s ion = TIM CLOCKDIVISION DIV1 ;
759 htim1 . I n i t . Repet i t ionCounter = 0 ;
760 htim1 . I n i t . AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;
761 i f ( HAL TIM Base Init(&htim1 ) != HAL OK)
762 {
763 Error Handler ( ) ;
764 }
765 sClockSourceConf ig . ClockSource = TIM CLOCKSOURCE INTERNAL;
766 i f ( HAL TIM ConfigClockSource(&htim1 , &sClockSourceConf ig ) != HAL OK)
767 {
768 Error Handler ( ) ;
769 }
770 i f (HAL TIM PWM Init(&htim1 ) != HAL OK)
771 {
772 Error Handler ( ) ;
773 }
774 sMasterConf ig . MasterOutputTrigger = TIM TRGO RESET;
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775 sMasterConf ig . MasterOutputTrigger2 = TIM TRGO2 RESET;
776 sMasterConf ig . MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
777 i f ( HAL TIMEx MasterConfigSynchronization(&htim1 , &sMasterConf ig ) != HAL OK)
778 {
779 Error Handler ( ) ;
780 }
781 sBreakInputConf ig . Source = TIM BREAKINPUTSOURCE BKIN;
782 sBreakInputConf ig . Enable = TIM BREAKINPUTSOURCE ENABLE;
783 sBreakInputConf ig . Po l a r i t y = TIM BREAKINPUTSOURCE POLARITY HIGH;
784 i f ( HAL TIMEx ConfigBreakInput(&htim1 , TIM BREAKINPUT BRK, &sBreakInputConf ig ) != HAL OK)
785 {
786 Error Handler ( ) ;
787 }
788 sConfigOC .OCMode = TIMOCMODEPWM2;
789 sConfigOC . Pulse = 20000;
790 sConfigOC . OCPolarity = TIM OCPOLARITY LOW;
791 sConfigOC . OCNPolarity = TIM OCNPOLARITY LOW;
792 sConfigOC .OCFastMode = TIM OCFAST DISABLE;
793 sConfigOC . OCIdleState = TIM OCIDLESTATE RESET;
794 sConfigOC . OCNIdleState = TIM OCNIDLESTATE RESET;
795 i f (HAL TIM PWM ConfigChannel(&htim1 , &sConfigOC , TIM CHANNEL 1) != HAL OK)
796 {
797 Error Handler ( ) ;
798 }
799 i f (HAL TIM PWM ConfigChannel(&htim1 , &sConfigOC , TIM CHANNEL 2) != HAL OK)
800 {
801 Error Handler ( ) ;
802 }
803 i f (HAL TIM PWM ConfigChannel(&htim1 , &sConfigOC , TIM CHANNEL 3) != HAL OK)
804 {
805 Error Handler ( ) ;
806 }
807 sBreakDeadTimeConfig . OffStateRunMode = TIM OSSR DISABLE ;
808 sBreakDeadTimeConfig . OffStateIDLEMode = TIM OSSI DISABLE ;
809 sBreakDeadTimeConfig . LockLevel = TIM LOCKLEVEL OFF;
810 sBreakDeadTimeConfig . DeadTime = 0 ;
811 sBreakDeadTimeConfig . BreakState = TIM BREAK ENABLE;
812 sBreakDeadTimeConfig . BreakPolar i ty = TIM BREAKPOLARITY HIGH;
813 sBreakDeadTimeConfig . BreakF i l t e r = 0 ;
814 sBreakDeadTimeConfig . Break2State = TIM BREAK2 DISABLE;
815 sBreakDeadTimeConfig . Break2Polar i ty = TIM BREAK2POLARITY HIGH;
816 sBreakDeadTimeConfig . Break2F i l t e r = 0 ;
817 sBreakDeadTimeConfig . AutomaticOutput = TIM AUTOMATICOUTPUT DISABLE;
818 i f (HAL TIMEx ConfigBreakDeadTime(&htim1 , &sBreakDeadTimeConfig ) != HAL OK)
819 {
820 Error Handler ( ) ;
821 }
822 /∗ USER CODE BEGIN TIM1 Init 2 ∗/
823 // Star t the PWM counter f o r i n t e r r up t s
824 HAL TIM PWM Start IT(&htim1 , TIM CHANNEL 1) ;
825 HAL TIM PWM Start IT(&htim1 , TIM CHANNEL 2) ;
826 HAL TIM PWM Start IT(&htim1 , TIM CHANNEL 3) ;
827 // Star t the output compare
828 HAL TIM OC Start(&htim1 , TIM CHANNEL 1) ;
829 HAL TIM OC Start(&htim1 , TIM CHANNEL 2) ;
830 HAL TIM OC Start(&htim1 , TIM CHANNEL 3) ;
831 HAL TIMEx OCN Start(&htim1 , TIM CHANNEL 1) ;
832 HAL TIMEx OCN Start(&htim1 , TIM CHANNEL 2) ;
833 HAL TIMEx OCN Start(&htim1 , TIM CHANNEL 3) ;
834 /∗ USER CODE END TIM1 Init 2 ∗/
835 HAL TIM MspPostInit(&htim1 ) ;
836

837 }
838

839 /∗∗
840 ∗ @brie f TIM4 I n i t i a l i z a t i o n Function
841 ∗ @param None
842 ∗ @retval None
843 ∗/
844 s t a t i c void MX TIM4 Init ( void )
845 {
846

847 /∗ USER CODE BEGIN TIM4 Init 0 ∗/
848
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849 /∗ USER CODE END TIM4 Init 0 ∗/
850

851 TIM ClockConfigTypeDef sClockSourceConf ig = {0} ;
852 TIM MasterConfigTypeDef sMasterConf ig = {0} ;
853 TIM OC InitTypeDef sConfigOC = {0} ;
854

855 /∗ USER CODE BEGIN TIM4 Init 1 ∗/
856

857 /∗ USER CODE END TIM4 Init 1 ∗/
858 htim4 . Ins tance = TIM4 ;
859 htim4 . I n i t . P r e s c a l e r = Pre s ca l e r Va lue − 1 ;
860 htim4 . I n i t . CounterMode = TIMCOUNTERMODEUP;
861 htim4 . I n i t . Period = 65535;
862 htim4 . I n i t . C lockDiv i s ion = TIM CLOCKDIVISION DIV1 ;
863 htim4 . I n i t . AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;
864 i f ( HAL TIM Base Init(&htim4 ) != HAL OK)
865 {
866 Error Handler ( ) ;
867 }
868 sClockSourceConf ig . ClockSource = TIM CLOCKSOURCE INTERNAL;
869 i f ( HAL TIM ConfigClockSource(&htim4 , &sClockSourceConf ig ) != HAL OK)
870 {
871 Error Handler ( ) ;
872 }
873 i f (HAL TIM OC Init(&htim4 ) != HAL OK)
874 {
875 Error Handler ( ) ;
876 }
877 sMasterConf ig . MasterOutputTrigger = TIM TRGO UPDATE;
878 sMasterConf ig . MasterSlaveMode = TIMMASTERSLAVEMODE ENABLE;
879 i f ( HAL TIMEx MasterConfigSynchronization(&htim4 , &sMasterConf ig ) != HAL OK)
880 {
881 Error Handler ( ) ;
882 }
883 sConfigOC .OCMode = TIM OCMODE TIMING;
884 sConfigOC . Pulse = 0 ;
885 sConfigOC . OCPolarity = TIM OCPOLARITY HIGH;
886 sConfigOC .OCFastMode = TIM OCFAST DISABLE;
887 i f (HAL TIM OC ConfigChannel(&htim4 , &sConfigOC , TIM CHANNEL 1) != HAL OK)
888 {
889 Error Handler ( ) ;
890 }
891 /∗ USER CODE BEGIN TIM4 Init 2 ∗/
892 // Star t the t imer counter s
893 HAL TIM ENABLE IT(&htim4 , TIM IT UPDATE ) ;
894 HAL TIM Base Start(&htim4 ) ;
895 HAL TIM PWM Start(&htim4 , TIM CHANNEL 1) ;
896 HAL TIM Base MspInit(&htim4 ) ;
897 // Enable and s e t p r i o r i t y o f the t imer i n t e r r up t
898 HAL NVIC SetPriority (TIM4 IRQHandler ( ) , 0 , 0) ;
899 HAL NVIC EnableIRQ(TIM4 IRQHandler ( ) ) ;
900 HAL TIM Base Start IT(&htim4 ) ;
901 /∗ USER CODE END TIM4 Init 2 ∗/
902

903 }
904

905 /∗∗
906 ∗ @brie f TIM8 I n i t i a l i z a t i o n Function
907 ∗ @param None
908 ∗ @retval None
909 ∗/
910 s t a t i c void MX TIM8 Init ( void )
911 {
912

913 /∗ USER CODE BEGIN TIM8 Init 0 ∗/
914

915 /∗ USER CODE END TIM8 Init 0 ∗/
916

917 TIM ClockConfigTypeDef sClockSourceConf ig = {0} ;
918 TIM MasterConfigTypeDef sMasterConf ig = {0} ;
919 TIM OC InitTypeDef sConfigOC = {0} ;
920 TIM BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0} ;
921

922 /∗ USER CODE BEGIN TIM8 Init 1 ∗/
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923

924 /∗ USER CODE END TIM8 Init 1 ∗/
925 htim8 . Ins tance = TIM8 ;
926 htim8 . I n i t . P r e s c a l e r = Pre s ca l e r Va lue − 1 ;
927 htim8 . I n i t . CounterMode = TIMCOUNTERMODEUP;
928 htim8 . I n i t . Period = 65535;
929 htim8 . I n i t . C lockDiv i s ion = TIM CLOCKDIVISION DIV1 ;
930 htim8 . I n i t . Repet i t ionCounter = 0 ;
931 htim8 . I n i t . AutoReloadPreload = TIM AUTORELOAD PRELOAD DISABLE;
932 i f ( HAL TIM Base Init(&htim8 ) != HAL OK)
933 {
934 Error Handler ( ) ;
935 }
936 sClockSourceConf ig . ClockSource = TIM CLOCKSOURCE INTERNAL;
937 i f ( HAL TIM ConfigClockSource(&htim8 , &sClockSourceConf ig ) != HAL OK)
938 {
939 Error Handler ( ) ;
940 }
941 i f (HAL TIM PWM Init(&htim8 ) != HAL OK)
942 {
943 Error Handler ( ) ;
944 }
945 sMasterConf ig . MasterOutputTrigger = TIM TRGO RESET;
946 sMasterConf ig . MasterOutputTrigger2 = TIM TRGO2 RESET;
947 sMasterConf ig . MasterSlaveMode = TIM MASTERSLAVEMODE DISABLE;
948 i f ( HAL TIMEx MasterConfigSynchronization(&htim8 , &sMasterConf ig ) != HAL OK)
949 {
950 Error Handler ( ) ;
951 }
952 sConfigOC .OCMode = TIMOCMODEPWM2;
953 sConfigOC . Pulse = 20000;
954 sConfigOC . OCPolarity = TIM OCPOLARITY LOW;
955 sConfigOC . OCNPolarity = TIM OCNPOLARITY LOW;
956 sConfigOC .OCFastMode = TIM OCFAST DISABLE;
957 sConfigOC . OCIdleState = TIM OCIDLESTATE RESET;
958 sConfigOC . OCNIdleState = TIM OCNIDLESTATE RESET;
959 i f (HAL TIM PWM ConfigChannel(&htim8 , &sConfigOC , TIM CHANNEL 1) != HAL OK)
960 {
961 Error Handler ( ) ;
962 }
963 i f (HAL TIM PWM ConfigChannel(&htim8 , &sConfigOC , TIM CHANNEL 2) != HAL OK)
964 {
965 Error Handler ( ) ;
966 }
967 i f (HAL TIM PWM ConfigChannel(&htim8 , &sConfigOC , TIM CHANNEL 3) != HAL OK)
968 {
969 Error Handler ( ) ;
970 }
971 sBreakDeadTimeConfig . OffStateRunMode = TIM OSSR DISABLE ;
972 sBreakDeadTimeConfig . OffStateIDLEMode = TIM OSSI DISABLE ;
973 sBreakDeadTimeConfig . LockLevel = TIM LOCKLEVEL OFF;
974 sBreakDeadTimeConfig . DeadTime = 0 ;
975 sBreakDeadTimeConfig . BreakState = TIM BREAK DISABLE;
976 sBreakDeadTimeConfig . BreakPolar i ty = TIM BREAKPOLARITY HIGH;
977 sBreakDeadTimeConfig . BreakF i l t e r = 0 ;
978 sBreakDeadTimeConfig . Break2State = TIM BREAK2 DISABLE;
979 sBreakDeadTimeConfig . Break2Polar i ty = TIM BREAK2POLARITY HIGH;
980 sBreakDeadTimeConfig . Break2F i l t e r = 0 ;
981 sBreakDeadTimeConfig . AutomaticOutput = TIM AUTOMATICOUTPUT DISABLE;
982 i f (HAL TIMEx ConfigBreakDeadTime(&htim8 , &sBreakDeadTimeConfig ) != HAL OK)
983 {
984 Error Handler ( ) ;
985 }
986 /∗ USER CODE BEGIN TIM8 Init 2 ∗/
987 // Star t the PWM counter s f o r i n t e r r up t s
988 HAL TIM PWM Start IT(&htim8 , TIM CHANNEL 1) ;
989 HAL TIM PWM Start IT(&htim8 , TIM CHANNEL 2) ;
990 HAL TIM PWM Start IT(&htim8 , TIM CHANNEL 3) ;
991 // Star t the output compare
992 HAL TIM OC Start(&htim8 , TIM CHANNEL 1) ;
993 HAL TIM OC Start(&htim8 , TIM CHANNEL 2) ;
994 HAL TIM OC Start(&htim8 , TIM CHANNEL 3) ;
995 HAL TIMEx OCN Start(&htim8 , TIM CHANNEL 1) ;
996 HAL TIMEx OCN Start(&htim8 , TIM CHANNEL 2) ;
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997 HAL TIMEx OCN Start(&htim8 , TIM CHANNEL 3) ;
998

999 /∗ USER CODE END TIM8 Init 2 ∗/
1000 HAL TIM MspPostInit(&htim8 ) ;
1001

1002 }
1003

1004 /∗∗
1005 ∗ @brie f USART3 I n i t i a l i z a t i o n Function
1006 ∗ @param None
1007 ∗ @retval None
1008 ∗/
1009 s t a t i c void MX USART3 UART Init( void )
1010 {
1011

1012 /∗ USER CODE BEGIN USART3 Init 0 ∗/
1013

1014 /∗ USER CODE END USART3 Init 0 ∗/
1015

1016 /∗ USER CODE BEGIN USART3 Init 1 ∗/
1017

1018 /∗ USER CODE END USART3 Init 1 ∗/
1019 huart3 . Ins tance = USART3;
1020 huart3 . I n i t . BaudRate = 115200;
1021 huart3 . I n i t .WordLength = UARTWORDLENGTH 8B;
1022 huart3 . I n i t . StopBits = UART STOPBITS 1 ;
1023 huart3 . I n i t . Par i ty = UART PARITY NONE;
1024 huart3 . I n i t .Mode = UART MODE TX RX;
1025 huart3 . I n i t . HwFlowCtl = UARTHWCONTROLNONE;
1026 huart3 . I n i t . OverSampling = UART OVERSAMPLING 16;
1027 huart3 . I n i t . OneBitSampling = UART ONE BIT SAMPLE DISABLE;
1028 huart3 . I n i t . C lockPre sca l e r = UART PRESCALER DIV1;
1029 huart3 . AdvancedInit . AdvFeatureInit = UART ADVFEATURE NO INIT;
1030 i f (HAL UART Init(&huart3 ) != HAL OK)
1031 {
1032 Error Handler ( ) ;
1033 }
1034 i f (HAL UARTEx SetTxFifoThreshold(&huart3 , UART TXFIFO THRESHOLD 1 8) != HAL OK)
1035 {
1036 Error Handler ( ) ;
1037 }
1038 i f (HAL UARTEx SetRxFifoThreshold(&huart3 , UART RXFIFO THRESHOLD 1 8) != HAL OK)
1039 {
1040 Error Handler ( ) ;
1041 }
1042 i f (HAL UARTEx DisableFifoMode(&huart3 ) != HAL OK)
1043 {
1044 Error Handler ( ) ;
1045 }
1046 /∗ USER CODE BEGIN USART3 Init 2 ∗/
1047

1048 /∗ USER CODE END USART3 Init 2 ∗/
1049

1050 }
1051

1052 /∗∗
1053 ∗ @brie f USB OTG HS I n i t i a l i z a t i o n Function
1054 ∗ @param None
1055 ∗ @retval None
1056 ∗/
1057 s t a t i c void MX USB OTG HS USB Init ( void )
1058 {
1059

1060 /∗ USER CODE BEGIN USB OTG HS Init 0 ∗/
1061

1062 /∗ USER CODE END USB OTG HS Init 0 ∗/
1063

1064 /∗ USER CODE BEGIN USB OTG HS Init 1 ∗/
1065

1066 /∗ USER CODE END USB OTG HS Init 1 ∗/
1067 /∗ USER CODE BEGIN USB OTG HS Init 2 ∗/
1068

1069 /∗ USER CODE END USB OTG HS Init 2 ∗/
1070
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1071 }
1072

1073 /∗∗
1074 ∗ Enable DMA con t r o l l e r c l o ck
1075 ∗/
1076 s t a t i c void MX DMA Init ( void )
1077 {
1078

1079 /∗ DMA con t r o l l e r c l o ck enable ∗/
1080 HAL RCC DMA1 CLK ENABLE( ) ;
1081

1082 /∗ DMA in t e r rup t i n i t ∗/
1083 /∗ DMA1 Stream0 IRQn in t e r r up t c on f i gu r a t i on ∗/
1084 HAL NVIC SetPriority (DMA1 Stream0 IRQn , 0 , 0) ;
1085 HAL NVIC EnableIRQ(DMA1 Stream0 IRQn) ;
1086 /∗ DMA1 Stream1 IRQn in t e r r up t c on f i gu r a t i on ∗/
1087 HAL NVIC SetPriority (DMA1 Stream1 IRQn , 0 , 0) ;
1088 HAL NVIC EnableIRQ(DMA1 Stream1 IRQn) ;
1089

1090 }
1091

1092 /∗∗
1093 ∗ @brie f GPIO I n i t i a l i z a t i o n Function
1094 ∗ @param None
1095 ∗ @retval None
1096 ∗/
1097 s t a t i c void MX GPIO Init ( void )
1098 {
1099 GPIO InitTypeDef GPIO InitStruct = {0} ;
1100 /∗ USER CODE BEGIN MX GPIO Init 1 ∗/
1101 /∗ USER CODE END MX GPIO Init 1 ∗/
1102

1103 /∗ GPIO Ports Clock Enable ∗/
1104 HAL RCC GPIOC CLK ENABLE( ) ;
1105 HAL RCC GPIOF CLK ENABLE( ) ;
1106 HAL RCC GPIOH CLK ENABLE( ) ;
1107 HAL RCC GPIOA CLK ENABLE( ) ;
1108 HAL RCC GPIOB CLK ENABLE( ) ;
1109 HAL RCC GPIOE CLK ENABLE( ) ;
1110 HAL RCC GPIOD CLK ENABLE( ) ;
1111 HAL RCC GPIOG CLK ENABLE( ) ;
1112

1113 /∗Conf igure GPIO pin Output Level ∗/
1114 HAL GPIO WritePin (BEMF DIVIDER ENABLE GPIO Port , BEMF DIVIDER ENABLE Pin , GPIO PIN SET) ;
1115

1116 /∗Conf igure GPIO pin Output Level ∗/
1117 HAL GPIO WritePin (LED GREEN GPIO Port , LED GREEN Pin , GPIO PIN RESET) ;
1118

1119 /∗Conf igure GPIO pin Output Level ∗/
1120 HAL GPIO WritePin ( Driver Card Enable GPIO Port , Driver Card Enable Pin , GPIO PIN SET) ;
1121

1122 /∗Conf igure GPIO pin Output Level ∗/
1123 HAL GPIO WritePin (GPIOD, GPIO PIN 10 , GPIO PIN RESET) ;
1124

1125 /∗Conf igure GPIO pin Output Level ∗/
1126 HAL GPIO WritePin (LED YELLOW GPIO Port , LED YELLOW Pin, GPIO PIN RESET) ;
1127

1128 /∗Conf igure GPIO pin : B1 Pin ∗/
1129 GPIO InitStruct . Pin = B1 Pin ;
1130 GPIO InitStruct .Mode = GPIO MODE INPUT;
1131 GPIO InitStruct . Pul l = GPIO NOPULL;
1132 HAL GPIO Init (B1 GPIO Port , &GPIO InitStruct ) ;
1133

1134 /∗Conf igure GPIO pin : Dr iver Card Faul t Pin ∗/
1135 GPIO InitStruct . Pin = Driver Card Faul t Pin ;
1136 GPIO InitStruct .Mode = GPIO MODE INPUT;
1137 GPIO InitStruct . Pul l = GPIO NOPULL;
1138 HAL GPIO Init ( Driver Card Fault GPIO Port , &GPIO InitStruct ) ;
1139

1140 /∗Conf igure GPIO pins : RMII MDC Pin RMII RXD0 Pin RMII RXD1 Pin ∗/
1141 GPIO InitStruct . Pin = RMII MDC Pin |RMII RXD0 Pin |RMII RXD1 Pin ;
1142 GPIO InitStruct .Mode = GPIO MODE AF PP;
1143 GPIO InitStruct . Pul l = GPIO NOPULL;
1144 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
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1145 GPIO InitStruct . A l te rnate = GPIO AF11 ETH ;
1146 HAL GPIO Init (GPIOC, &GPIO InitStruct ) ;
1147

1148 /∗Conf igure GPIO pins : RMII REF CLK Pin RMII MDIO Pin ∗/
1149 GPIO InitStruct . Pin = RMII REF CLK Pin |RMII MDIO Pin ;
1150 GPIO InitStruct .Mode = GPIO MODE AF PP;
1151 GPIO InitStruct . Pul l = GPIO NOPULL;
1152 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1153 GPIO InitStruct . A l te rnate = GPIO AF11 ETH ;
1154 HAL GPIO Init (GPIOA, &GPIO InitStruct ) ;
1155

1156 /∗Conf igure GPIO pin : BEMF DIVIDER ENABLE Pin ∗/
1157 GPIO InitStruct . Pin = BEMF DIVIDER ENABLE Pin ;
1158 GPIO InitStruct .Mode = GPIO MODE OUTPUT PP;
1159 GPIO InitStruct . Pul l = GPIO NOPULL;
1160 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1161 HAL GPIO Init (BEMF DIVIDER ENABLE GPIO Port , &GPIO InitStruct ) ;
1162

1163 /∗Conf igure GPIO pins : LED GREEN Pin Driver Card Enable Pin ∗/
1164 GPIO InitStruct . Pin = LED GREEN Pin | Driver Card Enable Pin ;
1165 GPIO InitStruct .Mode = GPIO MODE OUTPUT PP;
1166 GPIO InitStruct . Pul l = GPIO NOPULL;
1167 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1168 HAL GPIO Init (GPIOB, &GPIO InitStruct ) ;
1169

1170 /∗Conf igure GPIO pin : RMII TXD1 Pin ∗/
1171 GPIO InitStruct . Pin = RMII TXD1 Pin ;
1172 GPIO InitStruct .Mode = GPIO MODE AF PP;
1173 GPIO InitStruct . Pul l = GPIO NOPULL;
1174 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1175 GPIO InitStruct . A l te rnate = GPIO AF11 ETH ;
1176 HAL GPIO Init (RMII TXD1 GPIO Port , &GPIO InitStruct ) ;
1177

1178 /∗Conf igure GPIO pin : PD10 ∗/
1179 GPIO InitStruct . Pin = GPIO PIN 10 ;
1180 GPIO InitStruct .Mode = GPIO MODE OUTPUT PP;
1181 GPIO InitStruct . Pul l = GPIO NOPULL;
1182 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1183 HAL GPIO Init (GPIOD, &GPIO InitStruct ) ;
1184

1185 /∗Conf igure GPIO pin : USB FS OVCR Pin ∗/
1186 GPIO InitStruct . Pin = USB FS OVCR Pin ;
1187 GPIO InitStruct .Mode = GPIO MODE IT RISING ;
1188 GPIO InitStruct . Pul l = GPIO NOPULL;
1189 HAL GPIO Init (USB FS OVCR GPIO Port , &GPIO InitStruct ) ;
1190

1191 /∗Conf igure GPIO pin : USB FS VBUS Pin ∗/
1192 GPIO InitStruct . Pin = USB FS VBUS Pin ;
1193 GPIO InitStruct .Mode = GPIO MODE INPUT;
1194 GPIO InitStruct . Pul l = GPIO NOPULL;
1195 HAL GPIO Init (USB FS VBUS GPIO Port , &GPIO InitStruct ) ;
1196

1197 /∗Conf igure GPIO pin : USB FS ID Pin ∗/
1198 GPIO InitStruct . Pin = USB FS ID Pin ;
1199 GPIO InitStruct .Mode = GPIO MODE AF PP;
1200 GPIO InitStruct . Pul l = GPIO NOPULL;
1201 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1202 GPIO InitStruct . A l te rnate = GPIO AF10 OTG1 HS ;
1203 HAL GPIO Init (USB FS ID GPIO Port , &GPIO InitStruct ) ;
1204

1205 /∗Conf igure GPIO pins : RMII TX EN Pin RMII TXD0 Pin ∗/
1206 GPIO InitStruct . Pin = RMII TX EN Pin |RMII TXD0 Pin ;
1207 GPIO InitStruct .Mode = GPIO MODE AF PP;
1208 GPIO InitStruct . Pul l = GPIO NOPULL;
1209 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1210 GPIO InitStruct . A l te rnate = GPIO AF11 ETH ;
1211 HAL GPIO Init (GPIOG, &GPIO InitStruct ) ;
1212

1213 /∗Conf igure GPIO pin : LED YELLOW Pin ∗/
1214 GPIO InitStruct . Pin = LED YELLOW Pin ;
1215 GPIO InitStruct .Mode = GPIO MODE OUTPUT PP;
1216 GPIO InitStruct . Pul l = GPIO NOPULL;
1217 GPIO InitStruct . Speed = GPIO SPEED FREQ LOW;
1218 HAL GPIO Init (LED YELLOW GPIO Port , &GPIO InitStruct ) ;
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1219

1220 /∗ EXTI in t e r r up t i n i t ∗/
1221 HAL NVIC SetPriority (EXTI9 5 IRQn , 0 , 0) ;
1222 HAL NVIC EnableIRQ(EXTI9 5 IRQn) ;
1223

1224 /∗ USER CODE BEGIN MX GPIO Init 2 ∗/
1225 // Enable EXTI i n t e r r up t f o r B1 Pin
1226 HAL NVIC SetPriority (EXTI15 10 IRQn , 0 , 0) ;
1227 HAL NVIC EnableIRQ(EXTI15 10 IRQn ) ;
1228 /∗ USER CODE END MX GPIO Init 2 ∗/
1229 }
1230

1231 /∗ USER CODE BEGIN 4 ∗/
1232 void HAL ADC ConvCpltCallback (ADC HandleTypeDef∗ hadc ){
1233 // Stop the ADC’ s a f t e r a read ing has been completed
1234 HAL ADC Stop DMA(&hadc1 ) ;
1235 HAL ADC Stop DMA(&hadc2 ) ;
1236 }
1237

1238 // Needed f o r l ogg ing o f data during t e s t i n g
1239 i n t w r i t e ( i n t f i l e , char ∗ptr , i n t l en ) {
1240 i n t DataIdx ;
1241

1242 f o r ( DataIdx = 0 ; DataIdx < l en ; DataIdx++) {
1243 ITM SendChar (∗ ( ptr + DataIdx ) ) ;
1244 }
1245

1246 re turn l en ;
1247 }
1248 /∗ USER CODE END 4 ∗/
1249

1250 /∗∗
1251 ∗ @brie f This func t i on i s executed in case o f e r r o r occurrence .
1252 ∗ @retval None
1253 ∗/
1254 void Error Handler ( void )
1255 {
1256 /∗ USER CODE BEGIN Error Handler Debug ∗/
1257 /∗ User can add h i s own implementation to r epor t the HAL e r r o r re turn s t a t e ∗/
1258 d i s a b l e i r q ( ) ;
1259 whi le (1 )
1260 {
1261 }
1262 /∗ USER CODE END Error Handler Debug ∗/
1263 }
1264

1265 #i f d e f USE FULL ASSERT
1266 /∗∗
1267 ∗ @brie f Reports the name o f the source f i l e and the source l i n e number
1268 ∗ where the assert param e r r o r has occurred .
1269 ∗ @param f i l e : po in t e r to the source f i l e name
1270 ∗ @param l i n e : assert param e r r o r l i n e source number
1271 ∗ @retval None
1272 ∗/
1273 void a s s e r t f a i l e d ( u i n t 8 t ∗ f i l e , u i n t 32 t l i n e )
1274 {
1275 /∗ USER CODE BEGIN 6 ∗/
1276 /∗ User can add h i s own implementation to r epor t the f i l e name and l i n e number ,
1277 ex : p r i n t f (”Wrong parameters value : f i l e %s on l i n e %d\ r\n” , f i l e , l i n e ) ∗/
1278 /∗ USER CODE END 6 ∗/
1279 }
1280 #end i f /∗ USE FULL ASSERT ∗/

A.2 stm32h7xx it.c
1

2 /∗ USER CODE BEGIN Header ∗/
3 /∗∗
4 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
5 ∗ @f i l e stm32h7xx it . c
6 ∗ @brie f In t e r rupt Se rv i c e Routines .
7 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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8 ∗ @attent ion
9 ∗

10 ∗ Copyright ( c ) 2023 STMicroe l ec t ron i c s .
11 ∗ Al l r i g h t s r e s e rved .
12 ∗
13 ∗ This so f tware i s l i c e n s e d under terms that can be found in the LICENSE f i l e
14 ∗ in the root d i r e c t o r y o f t h i s so f tware component .
15 ∗ I f no LICENSE f i l e comes with t h i s so ftware , i t i s provided AS−IS .
16 ∗
17 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
18 ∗/
19 /∗ USER CODE END Header ∗/
20

21 /∗ Inc lude s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
22 #inc lude ”main . h”
23 #inc lude ” stm32h7xx it . h”
24 /∗ Pr ivate i n c l ude s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
25 /∗ USER CODE BEGIN Inc lude s ∗/
26 #inc lude ” stm32h7xx hal gpio . h”
27 #inc lude ” stm32h7xx hal cortex . h” // l a t i l
28 #inc lude ” stm32h7xx hal t im . h”
29 #inc lude <s tdboo l . h>
30 /∗ USER CODE END Inc lude s ∗/
31

32 /∗ Pr ivate typede f −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
33 /∗ USER CODE BEGIN TD ∗/
34

35 /∗ USER CODE END TD ∗/
36

37 /∗ Pr ivate d e f i n e −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
38 /∗ USER CODE BEGIN PD ∗/
39

40 /∗ USER CODE END PD ∗/
41

42 /∗ Pr ivate macro −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
43 /∗ USER CODE BEGIN PM ∗/
44

45 /∗ USER CODE END PM ∗/
46

47 /∗ Pr ivate v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
48 /∗ USER CODE BEGIN PV ∗/
49

50 /∗ USER CODE END PV ∗/
51

52 /∗ Pr ivate func t i on prototypes −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
53 /∗ USER CODE BEGIN PFP ∗/
54

55 /∗ USER CODE END PFP ∗/
56

57 /∗ Pr ivate user code −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
58 /∗ USER CODE BEGIN 0 ∗/
59

60 /∗ USER CODE END 0 ∗/
61

62 /∗ External v a r i a b l e s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗/
63 extern DMA HandleTypeDef hdma adc1 ;
64 extern DMA HandleTypeDef hdma adc2 ;
65 extern TIM HandleTypeDef htim1 ;
66 extern TIM HandleTypeDef htim4 ;
67 /∗ USER CODE BEGIN EV ∗/
68

69 /∗ USER CODE END EV ∗/
70

71 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
72 /∗ Cortex Proces sor In t e r rup t i on and Exception Handlers ∗/
73 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
74 /∗∗
75 ∗ @brie f This func t i on handles Non maskable i n t e r r up t .
76 ∗/
77 void NMI Handler ( void )
78 {
79 /∗ USER CODE BEGIN NonMaskableInt IRQn 0 ∗/
80

81 /∗ USER CODE END NonMaskableInt IRQn 0 ∗/
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82 /∗ USER CODE BEGIN NonMaskableInt IRQn 1 ∗/
83 whi le (1 )
84 {
85 }
86 /∗ USER CODE END NonMaskableInt IRQn 1 ∗/
87 }
88

89 /∗∗
90 ∗ @brie f This func t i on handles Hard f a u l t i n t e r r up t .
91 ∗/
92 void HardFault Handler ( void )
93 {
94 /∗ USER CODE BEGIN HardFault IRQn 0 ∗/
95

96 /∗ USER CODE END HardFault IRQn 0 ∗/
97 whi le (1 )
98 {
99 /∗ USER CODE BEGIN W1 HardFault IRQn 0 ∗/

100 /∗ USER CODE END W1 HardFault IRQn 0 ∗/
101 }
102 }
103

104 /∗∗
105 ∗ @brie f This func t i on handles Memory management f a u l t .
106 ∗/
107 void MemManage Handler ( void )
108 {
109 /∗ USER CODE BEGIN MemoryManagement IRQn 0 ∗/
110

111 /∗ USER CODE END MemoryManagement IRQn 0 ∗/
112 whi le (1 )
113 {
114 /∗ USER CODE BEGIN W1 MemoryManagement IRQn 0 ∗/
115 /∗ USER CODE END W1 MemoryManagement IRQn 0 ∗/
116 }
117 }
118

119 /∗∗
120 ∗ @brie f This func t i on handles Pre−f e t ch f au l t , memory acc e s s f a u l t .
121 ∗/
122 void BusFault Handler ( void )
123 {
124 /∗ USER CODE BEGIN BusFault IRQn 0 ∗/
125

126 /∗ USER CODE END BusFault IRQn 0 ∗/
127 whi le (1 )
128 {
129 /∗ USER CODE BEGIN W1 BusFault IRQn 0 ∗/
130 /∗ USER CODE END W1 BusFault IRQn 0 ∗/
131 }
132 }
133

134 /∗∗
135 ∗ @brie f This func t i on handles Undefined i n s t r u c t i o n or i l l e g a l s t a t e .
136 ∗/
137 void UsageFault Handler ( void )
138 {
139 /∗ USER CODE BEGIN UsageFault IRQn 0 ∗/
140

141 /∗ USER CODE END UsageFault IRQn 0 ∗/
142 whi le (1 )
143 {
144 /∗ USER CODE BEGIN W1 UsageFault IRQn 0 ∗/
145 /∗ USER CODE END W1 UsageFault IRQn 0 ∗/
146 }
147 }
148

149 /∗∗
150 ∗ @brie f This func t i on handles System s e r v i c e c a l l v ia SWI i n s t r u c t i o n .
151 ∗/
152 void SVC Handler ( void )
153 {
154 /∗ USER CODE BEGIN SVCall IRQn 0 ∗/
155
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156 /∗ USER CODE END SVCall IRQn 0 ∗/
157 /∗ USER CODE BEGIN SVCall IRQn 1 ∗/
158

159 /∗ USER CODE END SVCall IRQn 1 ∗/
160 }
161

162 /∗∗
163 ∗ @brie f This func t i on handles Debug monitor .
164 ∗/
165 void DebugMon Handler ( void )
166 {
167 /∗ USER CODE BEGIN DebugMonitor IRQn 0 ∗/
168

169 /∗ USER CODE END DebugMonitor IRQn 0 ∗/
170 /∗ USER CODE BEGIN DebugMonitor IRQn 1 ∗/
171

172 /∗ USER CODE END DebugMonitor IRQn 1 ∗/
173 }
174

175 /∗∗
176 ∗ @brie f This func t i on handles Pendable r eques t f o r system s e r v i c e .
177 ∗/
178 void PendSV Handler ( void )
179 {
180 /∗ USER CODE BEGIN PendSV IRQn 0 ∗/
181

182 /∗ USER CODE END PendSV IRQn 0 ∗/
183 /∗ USER CODE BEGIN PendSV IRQn 1 ∗/
184

185 /∗ USER CODE END PendSV IRQn 1 ∗/
186 }
187

188 /∗∗
189 ∗ @brie f This func t i on handles System t i c k t imer .
190 ∗/
191 void SysTick Handler ( void )
192 {
193 /∗ USER CODE BEGIN SysTick IRQn 0 ∗/
194

195 /∗ USER CODE END SysTick IRQn 0 ∗/
196 HAL IncTick ( ) ;
197 /∗ USER CODE BEGIN SysTick IRQn 1 ∗/
198

199 /∗ USER CODE END SysTick IRQn 1 ∗/
200 }
201

202 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
203 /∗ STM32H7xx Per iphe ra l In t e r rupt Handlers ∗/
204 /∗ Add here the In t e r rupt Handlers f o r the used p e r i ph e r a l s . ∗/
205 /∗ For the a v a i l a b l e p e r i ph e r a l i n t e r r up t handler names , ∗/
206 /∗ p l ea s e r e f e r to the s ta r tup f i l e ( startup stm32h7xx . s ) . ∗/
207 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
208

209 /∗∗
210 ∗ @brie f This func t i on handles DMA1 stream0 g l oba l i n t e r r up t .
211 ∗/
212 void DMA1 Stream0 IRQHandler ( void )
213 {
214 /∗ USER CODE BEGIN DMA1 Stream0 IRQn 0 ∗/
215 //HAL ADC Stop DMA(&hadc1 ) ;
216 /∗ USER CODE END DMA1 Stream0 IRQn 0 ∗/
217 HAL DMA IRQHandler(&hdma adc1 ) ;
218 /∗ USER CODE BEGIN DMA1 Stream0 IRQn 1 ∗/
219

220 /∗ USER CODE END DMA1 Stream0 IRQn 1 ∗/
221 }
222

223 /∗∗
224 ∗ @brie f This func t i on handles DMA1 stream1 g l oba l i n t e r r up t .
225 ∗/
226 void DMA1 Stream1 IRQHandler ( void )
227 {
228 /∗ USER CODE BEGIN DMA1 Stream1 IRQn 0 ∗/
229 //HAL ADC Stop DMA(&hadc2 ) ;
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230 /∗ USER CODE END DMA1 Stream1 IRQn 0 ∗/
231 HAL DMA IRQHandler(&hdma adc2 ) ;
232 /∗ USER CODE BEGIN DMA1 Stream1 IRQn 1 ∗/
233

234 /∗ USER CODE END DMA1 Stream1 IRQn 1 ∗/
235 }
236

237 /∗∗
238 ∗ @brie f This func t i on handles EXTI l i n e [ 9 : 5 ] i n t e r r up t s .
239 ∗/
240 void EXTI9 5 IRQHandler ( void )
241 {
242 /∗ USER CODE BEGIN EXTI9 5 IRQn 0 ∗/
243 // Blue user button changes the PWM State o f the system
244 i f (HAL GPIO ReadPin(B1 GPIO Port , B1 Pin ) == GPIO PIN RESET)
245 {
246 i f (Cur PWM State == PWMON){
247 Cur PWM State = PWMOFF;
248 }
249 e l s e {
250 Cur PWM State = PWMON;
251 }
252 }
253 HAL GPIO EXTI CLEAR IT(B1 Pin ) ;
254 /∗ USER CODE END EXTI9 5 IRQn 0 ∗/
255 HAL GPIO EXTI IRQHandler (USB FS OVCR Pin) ;
256 /∗ USER CODE BEGIN EXTI9 5 IRQn 1 ∗/
257

258 /∗ USER CODE END EXTI9 5 IRQn 1 ∗/
259 }
260

261 /∗∗
262 ∗ @brie f This func t i on handles TIM1 update i n t e r r up t .
263 ∗/
264 void TIM1 UP IRQHandler ( void )
265 {
266 /∗ USER CODE BEGIN TIM1 UP IRQn 0 ∗/
267

268 /∗ USER CODE END TIM1 UP IRQn 0 ∗/
269 HAL TIM IRQHandler(&htim1 ) ;
270 /∗ USER CODE BEGIN TIM1 UP IRQn 1 ∗/
271

272 /∗ USER CODE END TIM1 UP IRQn 1 ∗/
273 }
274

275 /∗∗
276 ∗ @brie f This func t i on handles TIM4 g l oba l i n t e r r up t .
277 ∗/
278 void TIM4 IRQHandler ( void )
279 {
280 /∗ USER CODE BEGIN TIM4 IRQn 0 ∗/
281 // c a l l the pu l s e func t i on to phase s h i f t the outputs
282 Pulse ( Cur Master Count Step ) ;
283 // i t e r a t e the counter
284 i f ( Cur Master Count Step == Step 3 ){
285 Cur Master Count Step = Step 1 ;
286 }
287 e l s e {
288 Cur Master Count Step++;
289 }
290

291 // Let the i n t e r r up t i t e r a t e the commutation sequence f o r t e s t i n g without back EMF
292 /∗
293 Test++;
294 i f ( Test>5){
295 i f ( Cur Commutation State >= step 6 ){
296 Cur Commutation State = s t ep 1 ;
297 }
298 e l s e {
299 Cur Commutation State++;
300 }
301 Execute Commutation ( Cur Commutation State ) ;
302 Test = 0 ;
303 }
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304 ∗/
305

306

307

308 /∗ USER CODE END TIM4 IRQn 0 ∗/
309 HAL TIM IRQHandler(&htim4 ) ;
310 /∗ USER CODE BEGIN TIM4 IRQn 1 ∗/
311

312 /∗ USER CODE END TIM4 IRQn 1 ∗/
313 }
314

315 /∗ USER CODE BEGIN 1 ∗/
316 /∗
317 void HAL TIM PeriodElapsedCallback (TIM HandleTypeDef ∗htim ){
318 i f ( htim−>Ins tance == TIM4){
319 Pulse ( Cur Master Count Step ) ;
320 Cur Master Count Step++;
321 }
322 }
323 ∗/
324 // button i n t e r r up t func t i on
325 void EXTI15 10 IRQHandler ( void )
326 {
327 // Blue user button changes the PWM State o f the system
328 i f (HAL GPIO ReadPin(B1 GPIO Port , B1 Pin ) == GPIO PIN RESET)
329 {
330 i f (Cur PWM State == PWMON){
331 Cur PWM State = PWMOFF;
332 }
333 e l s e {
334 Cur PWM State = PWMON;
335 }
336 }
337 HAL GPIO EXTI CLEAR IT(B1 Pin ) ;
338 }
339 /∗ USER CODE END 1 ∗/
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