
FACULTY OF SCIENCE AND TECHNOLOGY

BACHELOR’S THESIS

Study program/specialization: Spring semester 2023

Bachelor in Computer Science Open

Authors: Eirik Bakkan, Sune Selchow

Course coordinator: Tom Ryen

Supervisor: Nejm Saadallah

Thesis title:

WPSim: Web Application for Wind Park Simulation

Credits: 20

Keywords: Pages:

Web application, deployment 92

Frontend, backend

Wind park, wind turbines

Wake simulation Stavanger 5 June 2023

Contents

Contents i

Acknowledgements vi

Summary vii

1 Introduction 1

1.1 Assignment description . 1

1.2 Project goals . 2

1.3 Motivation . 3

2 Background 5

2.1 Wind turbines . 5

2.1.1 Wake effect . 6

2.2 Work flow . 7

2.2.1 Discord . 7

i

CONTENTS

2.2.2 GitHub . 8

2.3 Backend . 8

2.3.1 Python . 8

2.3.2 FLORIS . 9

2.3.3 FastAPI . 10

2.3.4 Uvicorn . 10

2.3.5 OAuth 2.0 . 11

2.3.6 Passport and Express 12

2.3.7 SQLite . 12

2.4 Frontend . 13

2.4.1 HTML and CSS . 13

2.4.2 React . 13

2.4.3 TypeScript . 16

2.4.4 Node.js . 17

2.5 Deployment . 18

2.5.1 Docker . 18

3 Design and construction of software 19

3.1 Database . 19

3.1.1 Allowed emails . 20

ii

CONTENTS

3.1.2 Users . 20

3.1.3 Configs . 20

3.2 Authentication . 21

3.2.1 Express . 21

3.2.2 Routes . 22

3.2.3 App registration . 23

3.2.4 Strategies . 24

3.2.5 Serialization and deserialization 25

3.2.6 Verifying logged in state 25

3.3 Application programming interface 27

3.3.1 Startup . 29

3.3.2 Turbine powers . 29

3.3.3 Turbine wind speeds 31

3.3.4 Wake plots . 31

3.3.5 Power plot . 33

3.3.6 Improve layout . 34

3.3.7 Get config . 35

3.3.8 Load configs . 36

3.3.9 Save config . 37

3.3.10 Update config . 37

iii

CONTENTS

3.3.11 Delete config . 38

3.3.12 Share config . 38

3.3.13 Update user . 39

3.4 Pages . 40

3.4.1 Home (/) . 43

3.4.2 Login (/login) . 44

3.4.3 Profile (/profile) . 45

3.4.4 Start (/start) . 45

3.4.5 Simulation (/simulation) 46

3.4.6 NoAccess (/failed) 57

3.4.7 NotFound (/*) . 57

4 Deployment 58

4.1 From development to production 58

4.1.1 Shifting to modular service architecture 58

4.1.2 Switching runtimes 59

4.2 From production to deployment 61

4.2.1 Hardware . 61

4.2.2 Network technologies 64

4.2.3 Physical connections and connection speeds 68

iv

CONTENTS

5 Evaluation of software 71

5.1 Functional test . 71

5.2 User experience . 71

5.3 Challenges and limitations 72

5.4 Features considered . 73

5.5 Further development . 74

6 Conclusion 75

Appendix 80

A Functional testing 80

A.0.1 Login/logout . 80

A.0.2 Redirect/navigate 80

A.0.3 Configuration . 81

A.0.4 Save/update/share 81

A.0.5 Simulation . 81

A.0.6 Download . 82

B Network map 83

v

Acknowledgements

Special recognition is given to the project supervisor, Nejm, for guiding the
team under the project. Nejm demonstrated great knowledge and insight,
and the information provided was invaluable. In addition, the support
offered during a delay due to a team member’s health-related circumstances,
has significantly contributed to the project’s success.

vi

Summary

This thesis presents the "Web Application for Wind Park Simulation" project,
a web based, interactive wind park simulator. The project was completed in
motivation to aid in renewable energy planning, specifically for wind farms,
in response to global warming.

Advanced technologies was used to create a scalable application, that can
be used on different platforms. Despite computational challenges related to
multi-variable computing, WPSim successfully achieved initial objectives.

The project was deployed, offering on-demand wake simulations, with future
enhancements already being considered. This project serves as a step towards
making renewable energy planning tools more accessible and efficient.

vii

Chapter 1

Introduction

1.1 Assignment description

"Web Application for Wind Park Simulation" had the goal of creating a web
stack for the FLORIS (“National Renewable Energy Laboratory”, n.d.) wake
simulation package.

The assignment had the following main tasks:

• Research and choose appropriate technologies.

• Implement backend services.

• Implement frontend services.

1

1.2 Project goals

1.2 Project goals

Given the project, the following goals where deemed important:

• Good user UX interaction.

• Low overhead, lightweight application.

- Of high importance due to the higher processing power required
for multi-variable simulation.

• Authentication using external OAuth providers.

- OAuth provides class leading level of credential security, without
increasing development overhead.

• Saving of user simulation configurations.

• On demand FLORIS power production simulation.

• Visualisations of FLORIS result data.

• Downloadable FLORIS result data in appropriate file formats.

• Deployment of stack to the web.

By focusing on these goals, development was streamlined, reducing dead
time.

2

1.3 Motivation

1.3 Motivation

Global warming is a serious concern. The UN stated that "Fossil fuels, such
as coal, oil and gas, are by far the largest contributor to global climate
change, accounting for over 75 percent of global greenhouse gas emissions
and nearly 90 percent of all carbon dioxide emissions." (“Renewable Energy
– Powering a Safer Future”, n.d.). Further stating that "The science is clear:
to avoid the worst impacts of climate change, emissions need to be reduced
by almost half by 2030 and reach net-zero by 2050." (“Renewable Energy –
Powering a Safer Future”, n.d.).

Developing a tool that facilitates quick online estimation simulations for
wind farms, may accelerate the transition from fossil fuels, to wind farms.

Efficient wind farms may also reduce the cost of energy, by reducing reliability
om fossil fuel trades. Figure 1.1 shows an abrupt increase of electricity prices
in Europe, even if compensated for inflation. Statnett lists the increased
price of gas and coal, affected by Russo-Ukrainian war, as one of the main
reasons for the price increase (“Om strømpriser”, 2023).

Reducing reliance on fossil fuels may help withstand unforeseen situations,
and reduce greenhouse gases, both of which may be fulfilled by investing in
wind energy. The web application developed in this project, may contribute
to the first step towards building a wind park, if only showcasing the
theoretical power production.

3

1.3 Motivation

Figure 1.1: Development of electricity prices for household consumers, 2008-2022.
The figure is taken from (“Energy statistics - quantities, annual data”, 2022).

4

Chapter 2

Background

This chapter contains theory and background information.

2.1 Wind turbines

The Earth’s atmosphere experiences multiple variables, including tempera-
tures, land height differences, gases and thermal mass differences. Variables
of which creates differences in air pressure, resulting in a natural phenom-
ena, called wind. Wind turbines can harness the atmospheric air pressure
difference, by converting the kinetic energy in wind to potential electric
energy. This is done by blades converting wind to angular kinetic energy,
which in turn power a generator. The generator uses the rotational input,
to energize conductive coils, resulting in electrical energy output. (“Wind
Energy Basics”, n.d.)

5

2.1 Wind turbines

Figure 2.1: Wind turbine schematic, Nordmann, 2014. Image used under CC
BY-SA 3.0. Cut and modified.

2.1.1 Wake effect

Energy can only be transformed or transferred from one form to another,
following the laws of physics. Wind turbines transforms energy, resulting in
a wake field, with lower energy, turbulent wind. Wake fields significantly
decrease wind turbine energy output, and are one of the most important
factors to consider, when designing wind farms. (“Wake Effect”, 2003)

Figure 2.2: "Horns Rev 1 offshore wind farm 12 February 2008, seen from south",
Steiness, 2008. Courtesy: Vattenfall.

6

2.2 Work flow

2.2 Work flow

The research and development for a web based simulation service, such as
WPSim, requires an efficient and streamlined workflow. This is to ensure
an throughout research phase, and a efficient development phase. Essential
tools utilized were Discord and GitHub.

2.2.1 Discord

Discord is a real-time communication platform (“Discord — Your Place to
Talk and Hang Out”, n.d.), that enables efficient collaboration within a
team. For the project, Discord served as a digital workspace, offering several
benefits:

• Immediate communication: Discord being a real-time communica-
tion platform, facilitated quick and effortless interaction between the
team members. This enabled quick clarification of doubts, sharing of
ideas, and resolution of issues.

• Multimedia communication: Usage of voice, video, and text com-
munication, allowed the team members to work from home, whenever
time was available.

• Multi platform: The Discord platform is available on both computer
and smart-phone devices, giving team members the opportunity to
respond and get information quickly.

• Organization: Discord uses a channel system, which allowed creation
of specific topic channels. The information found and given during the
project, was organized in the channel system, preventing information
from being lost, and allowing for easy references to previous discussions
and findings.

• Integration: Compatibility with other platforms, like GitHub, allowed
automatic informing on code changes.

7

2.3 Backend

2.2.2 GitHub

GitHub, an integral part of the development of WPSim, is a web-based
hosting service for code and version control. GitHub was used to store,
manage, and track changes to the code. Where key features utilized included:

• Version control: Being GitHub’s primary functionality, version
control facilitated tracking and reviewing changes made to the code.
Preventing unintended modifications, while also informing the team
on changes done.

• Branching and merging: Branching enabled team members to code
on different parts of the project simultaneously, without affecting the
main codebase. Once a change was ready and tested, it could be
merged back into the main branch, maintaining the code’s integrity.

• Collaboration: Using pull requests, we could review code before
merging, enhancing code quality.

By combining the real-time communication capabilities of Discord with
the version control and collaborative aspects of GitHub, the team could
streamline the workflow and increase productivity in the WPSim project.
This ensured efficient progress and ultimately led to a successful project.

2.3 Backend

2.3.1 Python

Python is a programming language, with code readability and ease of use, as
the main design philosophy. Code is dynamically typed and runtime garbage-
collected (“Python Language Documentation”, n.d.), further lowering its
barrier of entry.

WPSim uses Python in the simulation backend, due to FLORIS, the simula-
tion framework, being written in Python.

8

2.3 Backend

2.3.2 FLORIS

FLORIS (FLOw Redirection and Induction in Steady State) is an open-
source tool, developed by NREL (“National Renewable Energy Laboratory”,
n.d.), a U.S. based center in renewable energy, and energy efficiency research.
FLORIS was developed as computational tool, aiding in predicting, analyzing
and optimizing wind farm performance under varying conditions. The
framework is written in Python.

Alternative simulators

Alternative simulators, like OpenFast (National Renewable Energy Labora-
tory, n.d.-a) and TurbSim (National Renewable Energy Laboratory, n.d.-b)
are also essential tools in wind energy research, although they serve different
purposes. FLORIS operates at the wind farm level, focusing on wake interac-
tions and wind farm optimization, while OpenFAST and TurbSim operates
at the turbine level, focusing on the detailed physical response of individual
turbines to their operating environment. FLORIS is therefore ideal for
web deployment, due to the relatively low computational requirement when
focusing on wake computations.

WPSim uses the following features of FLORIS:

• Performance predictions: FLORIS simulates wake effects between
turbines, which are disruptions in the wind flow caused by upstream
turbines. Wake simulation is key in WPSim’s ability to estimate the
power output of the wind farm under different wind conditions.

• Optimization capabilities: FLORIS provides a framework for op-
timizing wind farm layout, with the goal to maximize power output
and minimize negative wake interactions. WPSim utilizes this feature
to allow the client to see the best case scenario, when no geographical
limits are applied.

• Flexible and extensible: FLORIS is coded in a modular way, which
allowed WPSim to be coded to in the future accept additional models
and algorithms from the FLORIS framework.

9

2.3 Backend

2.3.3 FastAPI

FastAPI is a modern, low overhead, web framework for building API’s with
Python. The framework is based on standard Python type hints, which
lowers the learning curve when developing API’s (Ramírez Sebastián, n.d.). It
features interactive API documentation, while also supporting asynchronous
request handling. Two of which are key attributes for developing web-based
applications like WPSim.

In the context of WPSim, FastAPI is utilized as follows:

• Fast Development: Automatic features, including request validation
and serialization, are tools that significantly sped up the development
process of WPSim.

• Asynchronous Support: Asynchronous request handling, which is
crucial for maintaining responsiveness in WPSim during complex loads,
allows WPSim to serve multiple requests concurrently, improving the
overall user experience.

• Integration with Python-Based Tools: As FLORIS, the simu-
lation framework, is also Python-based, FastAPI provided seamless
integration. Reducing complexity during development.

• Automatic Documentation: FastAPI generates automatic inter-
active API documentation, aiding in the understanding, testing, and
debugging of the WPSim API. Utilizing this feature, debugging and
developing the API was done at relative ease.

FastAPI’s features and capabilities complemented the WPSim stack. Con-
tributing to the efficiency, scalability, and usability of WPSim.

2.3.4 Uvicorn

Uvicorn is an ASGI (Asynchronous Server Gateway Interface) server imple-
mentation, written in Python. Designed to serve asynchronous code, for
Python web applications (“Uvicorn”, n.d.).

10

2.3 Backend

Uvicorn is built on uvloop, an asyncio event loop implementation, and
httptools, a collection of http protocol utilities. Allowing Uvicorn, when
paired with FastAPI, to deliver high performance, low latency serving of
data from FLORIS.

Uvicorn has the following WPSim relevant characteristics:

• Performance: Uvicorn uses uvloop, a low-overhead drop-in replace-
ment for the asyncio event loop. Using the uvloop implementation is
vital for a responsive user experience in WPSim.

• ASGI compliance: Uvicorn is an ASGI server, which allows it to
serve FastAPI applications. FastAPI compatibility is essential for our
Python-based, FLORIS, backend stack.

• Concurrency: ASGI servers support asynchronous request handling,
which is crucial for managing multiple simulation requests concurrently
in the FLORIS backend. Reducing the visibility of server load for the
user.

• Ease of deployment: Good documentation, describing incorporation
into more complex deployment setups, while also providing flexibility
for future scaling of WPSim.

Due to relevant characteristics, Uvicorn was chosen as the server to deploy
FLORIS on WPSim.

2.3.5 OAuth 2.0

Open Authorization (OAuth) is a widely adopted open standard for autho-
rization. It allows internet users to authorize websites or applications to
access their information on other websites without giving their passwords.
This protocol is utilized by major corporations like Amazon, Google, Face-
book, Microsoft, and Twitter, to enable their users to share their account
information with third-party websites or applications. (“OAuth”, 2023) Ul-
timately, this allows users to log in to other websites or applications by
using their Google, Facebook, or other supported accounts. Using OAuth in
your application eliminate the risks associated with storing user passwords.

11

2.3 Backend

When users can log in without having to create a user account, it simplifies
the user experience.

2.3.6 Passport and Express

To utilize the OAuth protocol, Passport and Express were used. Passport
is an authentication middleware for Node.js that provides a simple and
modular way to implement authentication in web applications. Passport is
designed to be unobtrusive, lightweight, and extensible, making it easy to
integrate with existing Node.js applications. (“Passport - Simple, unobtrusive
authentication for Node.js”, n.d.) Different so called strategies are used to
authenticate via socials. Express was used to utilize Passport. Express is
an open source web application framework for Node.js. It is minimal and
flexible. (“Express - Fast, unopinionated, minimalist web framework for
Node.js”, n.d.)

2.3.7 SQLite

SQLite is an excellent choice for a WPSim to be able to store configurations.
It is a small, fast, reliable and full-featured Structured Query Language
(SQL) relational database. SQLite is an embedded database which means
it is a library developers embed in their applications, rather than a stan-
dalone application. It is the most widely used database engine in the world.
(“SQLite”, 2023) (“What Is SQLite?”, n.d.) SQL databases uses tables to
store, fetch, modify and delete data. A row in a table is uniquely identified
by the primary key which can be one or more attributes in the row. Tables
can have relations between them by declaring an attribute as a foreign key.

12

2.4 Frontend

2.4 Frontend

2.4.1 HTML and CSS

Two of the main technologies when it comes to building web applications are
HTML (Hypertext Markup Language) and CSS (Cascading Style Sheets).
HTML describes the structure of the pages while CSS determines the styling
and layout including colors and fonts, and more. HTML consists of different
elements such as headings, paragraphs, lists and tables. (“HTML & CSS”,
n.d.)

Code 2.1: HTML elements dislaying "Home" as title and "Welcome" as text.
1 <h1>Home</h1>
2 <p>Welcome</p>

CSS classes can be assigned to the HTML elements to apply a certain style.

Code 2.2: HTML elements dislaying "Home" as title and "Welcome" as text with
CSS classes.
1 <h1 class="title">Home</h1>
2 <p class="text">Welcome</p>

Code 2.3: The CSS file containing the classes.
1 color: blue;
2 }
3

4 .text {
5 font-size: 12px;
6 }

2.4.2 React

React is a frontend library that enables developers to construct user interfaces
using JavaScript (or TypeScript) and HTML. It is maintained by Meta and

13

2.4 Frontend

supported by a community of individual developers and businesses. React is
widely regarded as one of the most commonly used frontend frameworks in
the industry. The construction of interfaces is based on components. (“React
(software)”, n.d.) (“React - The library for web and native user interfaces”,
n.d.) These are reusable and self-contained and determines the appearance
and functionality of a specific part of the interface.

Code 2.4: Component that displays the title "Home" and the text "Welcome".
1 const TextComponent: React.FunctionComponent = () => {
2 return (
3 <h1>Home</h1>
4 <p>Welcome</p>
5);
6 };

Code 2.5: Using the component in the application.
1 const App = () => {
2 return (
3 <TextComponent/>
4);
5 };

It is much more useful to assign values as props to the component to decide
what the component should display.

Code 2.6: Component receiving data using props.
1 const TextComponent: React.FunctionComponent = (props) => {
2 return (
3 <h1>props.title</h1>
4 <p>props.text</p>
5);
6 };

14

2.4 Frontend

Code 2.7: Using the component with props in the application.
1 const App = () => {
2 return (
3 <TextComponent title={"Hello"} text={"World!"}/>
4);
5 };

React hooks are functions that add state and other functionality to com-
ponents. The useState function returns a stateful value and a function to
update it. When the stateful value is updated, the components using the
value is also updated.

Code 2.8: Using the component with useState to control the state.
1 const App = () => {
2 const [myText, setMyText] = useState("Welcome");
3 return (
4 <TextComponent title={"Hello"} text={myText}/>
5);
6 };

Another important react hook is useEffect which adds side effects to a
component, for example fetching data from a source. The useEffect function
runs after the component has rendered. It is possible to add state variables
in the empty array at the end. When one of those variables change the
useEffect runs again.

Code 2.9: Utilizing useEffect and useState to fetch data and update the state of
the component.
1 const App = () => {
2 const [myText, setMyText] = useState("Welcome");
3

4 useEffect(() => {
5 data = fetchData();
6 setMyText(data);
7 }, []);
8

9 return (
10 <TextComponent title={"Hello"} text={myText}/>
11);
12 };

15

2.4 Frontend

2.4.3 TypeScript

TypeScript is a statically typed, object-oriented, programming language.
Being a superset of JavaScript, it adds optional types to the language.
Designed for development of large multi-platform applications, which is
facilitated by transpiling to JavaScript (“TypeScript”, n.d.). While JavaScript
is an essential language for web development, TypeScript also brings in
the advantage of static typing and enhanced IDE support while reducing
complexity in larger codebases.

In the context of the WPSim frontend, TypeScript was utilized and chosen
due to the following:

• Static typing: Static typing catches errors early during the develop-
ment phase, resulting in more robust code. It also allowed for type
checking during compile, which resulted in identifying potential type
mismatches and wrongly setup function calls early.

• Efficient coding: TypeScript’s static type checking capabilities facil-
itates enhanced auto-completion, navigation, and refactoring services
in IDEs (Integrated Development Environments), which improves the
overall development experience.

• Multi-platform: TypeScript code is transpiled to JavaScript, ensur-
ing compatibility across different web browsers.

• Improved code readability and maintainability: Explicit type
annotations improved code readability by making code structure, func-
tion contracts, and object interfaces, easier to understand. Greatly
benefiting the maintainability and scalability of WPSim’s codebase.

The use of TypeScript in WPSim’s frontend brought several benefits to the
development process of WPSim, contributing to the efficiency, robustness,
and maintainability of the codebase.

16

2.4 Frontend

2.4.4 Node.js

Node.js is a JavaScript runtime environment built on V8 JavaScript engine,
which is developed by Google. Designed for running scalable, non-static
network applications, which may include data-intensive workloads (“Node.js”,
n.d.).

In the context of the WPSim stack, Node.js was utilized and chosen due to
the following:

• Efficient handling of asynchronous operations: By operating
on a single-threaded event loop, while using non-blocking I/O calls,
Node.js can handle multiple concurrent connections in the event loop.
This facilitates future expansion of WPSim, when experiencing an
theoretically larger userbase.

• JavaScript runtime environment: Given that the frontend of
WPSim was developed in TypeScript, using Node.js as a runtime
environment, maintained consistency in the language used across the
stack, speeding up the development process.

• Ecosystem and package availability: Node.js has a library of open-
source packages available through NPM (Node Package Mananger).
This ecosystem seemed and was proven valuable for integrating tools
and libraries, further streamlining the development of WPSim.

• Performance: The V8 JavaScript engine Node.js provides, facilitates
fast execution of JavaScript code. Which is a key requirement for a
responsive user experience in WPSim.

Node.js were instrumental in the development and deployment of WPSim,
providing a high-performance, scalable and efficient environment, while also
offering valuable development tools.

17

2.5 Deployment

2.5 Deployment

2.5.1 Docker

Docker is a virtualization based, container orchestration system, that simpli-
fies the process of building, running, managing, and distributing applications
(“Docker”, n.d.). Docker images bundle an application along with required
files, libraries, and dependencies into a single package. Deploying docker
images to containers ensures that the application runs reliably from one
computing environment to another, while also reducing the security risk.

In the context of WPSim, a container orchestration system was chosen due
to the following:

• Environment consistency: Isolated and consistent environment
for running WPSim reduces edge-case problems, while also ensuring
that the applications works identically across different machines and
environments. Streamlining development and deployment.

• Isolation and security: Containers are isolated by usage of virtual-
ization, providing additional layers of security. Isolation minimizes the
risk of being affected by code from the host system or other containers.

Docker was chosen due to the following:

• Scalability and portability: Docker has native support across
multiple hardware and cloud platforms. Lowering the amount of
development and work needed to deploy, replicate, stop, or move
services. Increasing the flexibility and control when using WPSim.

• Continuous Integration and Deployment (CI/CD): Docker
tools, including dockerfiles, streamlined the CI/CD process for WPSim
by providing a consistent environment for build and test stages, elimi-
nating development overhead when supporting multiple environments.

The use of a container orchestration greatly improved the robustness of
WPSim, while Docker further facilitates scaling and management.

18

Chapter 3

Design and construction of
software

This chapter describes how the web application was built in a local envi-
ronment. The local version is located in the development branch of the
wpsim-prod GitHub repository. (Bakkan & Selchow, 2023)

3.1 Database

This app contains three SQLite tables.

Figure 3.1: The SQLite tables showing their primary and foreign keys.

19

3.1 Database

3.1.1 Allowed emails

This table was implemented to prevent everyone to gain access to the site
when deploying on a web server. When attempting to log in it checks if the
email fetched from the OAuth protocol is in this table. If the SQL statement
gives no result the callback function is called with false to indicate that this
user do not have access.

Code 3.1: Code that checks if the user is allowed access.
1 function (accessToken, refreshToken, profile, cb) {
2 let query = `SELECT * FROM allowed_emails WHERE email ...

= "${profile.emails[0].value}"`;
3 db.get(query, (err, result) => {
4 if (err) return cb(err);
5 if (!result) return cb(null, false);
6 })
7 ...

3.1.2 Users

This table contains the actual users of the app. user_id consists of the
Google or GitHub ID from the OAuth protocol plus either "google" or
"github" added at the end to be sure there is no overlap between Google
and GitHub IDs. How the information in this table is gathered is shown in
section 3.2.

3.1.3 Configs

This table contains all the information about a configuration (config) so that
the users can save their configs for later use:

• Which user it belongs to.

• The title of the config.

• The x and y coordinates for the turbines.

20

3.2 Authentication

• The wind samples.

• If the config was shared to you and if so by whom.

• Quick start tells if the config is a quick start config.

3.2 Authentication

Implementing social login was learned by watching the video from Lama
Dev, 2021.

Database access

The app needs to create a database object to access the database. This
object is used to run SQL statements.

Code 3.2: Connecting to the database.
1 const sqlite3 = require('sqlite3').verbose();
2 const db = new sqlite3.Database('./database.db');

3.2.1 Express

First of all the Express server needs to be set up. The server listens to port
5050 and uses the routes contained in the file "auth.js".

Code 3.3: Express setup.
1 const authRoute = require("./routes/auth");
2 const app = express();
3 const frontdomain = "http://localhost:3000";
4

5 app.use(
6 cookieSession({ name: "session", keys: ["WebWindSim"]})
7);
8

21

3.2 Authentication

9 app.use(passport.initialize());
10 app.use(passport.session());
11

12 app.use(
13 cors({
14 origin: frontdomain,
15 methods: "GET,POST,PUT,DELETE",
16 credentials: true,
17 })
18);
19

20 app.use("/auth", authRoute);
21

22 app.listen("5050", () => {
23 console.log("Server is running!");
24 });

3.2.2 Routes

Then the Google and GitHub routes are specified. The scope tells what
information to gather from the OAuth protocol. A callback function is also
needed.

Code 3.4: The Google route and callback.
1 router.get("/google", passport.authenticate("google", { ...

scope: ["profile", "email"] }));
2

3 router.get(
4 "/google/callback",
5 passport.authenticate("google", {
6 successRedirect: CLIENT_URL,
7 failureRedirect: FAILED_URL,
8 })
9);

22

3.2 Authentication

If the authentication is successful, the user is redirected to the CLIENT_URL.
If it is not successful, the user is redirected to the FAILED_URL.

Code 3.5: The callback URLs.
1 const CLIENT_URL = "http://localhost:3000/";
2 const FAILED_URL = "http://localhost:3000/failed";

3.2.3 App registration

The web application needs to be registered at both Google APIs & Services
and GitHub Developer settings to obtain CLIENT_ID and CLIENT_SECRET.
These are necessary for the app to be allowed to gather the data from OAuth.

Figure 3.2: The CLIENT_ID and CLIENT_SECRET from Google.

Then specify the app’s URL and callback URL.

Figure 3.3: The app’s URL and callback URL for Google.

23

3.2 Authentication

3.2.4 Strategies

The strategies define what to do with the gathered data. The first part
contains the CLIENT_ID and CLIENT_SECRET.

Code 3.6: The first part of the Google strategy.
1 passport.use(
2 new GoogleStrategy(
3 {
4 clientID: GOOGLE_CLIENT_ID,
5 clientSecret: GOOGLE_CLIENT_SECRET,
6 callbackURL: "/auth/google/callback",
7 },
8 ...

Then define the function to be executed when the data is gathered. First the
function checks if the user has access as shown in section 3.1.1 by looking up
the email in the allowed_emails table. If the email is allowed and the user
already exists in the database it returns the results. Otherwise it inserts a
new user into the database and returns the user object. cb is the callback
function.

Code 3.7: Code that fetches a user or creates one.
1 ...
2 query = `SELECT * FROM users WHERE id = ...

"${profile.id+"google"}"`;
3 db.get(query, (err, result) => {
4 if (err) return cb(err);
5 if (result) return cb(null, result);
6 const insertQuery = `INSERT INTO users (id, email, ...

name, profile_pic, type) VALUES ...
("${profile.id+"google"}", ...
"${profile.emails[0].value}", ...
"${profile.displayName}", ...
"${profile.photos[0].value}", "Basic")`;

7 db.run(insertQuery, (insertErr) => {
8 if (insertErr) return cb(insertErr);
9 return cb(null, {

10 id: profile.id+"google",
11 email: profile.emails[0].value,
12 name: profile.displayName,
13 profile_pic: profile.photos[0].value,

24

3.2 Authentication

14 type: "Basic"
15 });
16 });
17 });
18 ...

3.2.5 Serialization and deserialization

After the chosen strategy is completed, the serialization of the user starts.
This means taking the user object and converting it to a form to be stored
in the session to identify the user later. The function returns the user’s ID.

Code 3.8: Serialization of the user object.
1 passport.serializeUser((user, cb) => {
2 cb(null, user.id);
3 });

The deserialization happens whenever the user sends a request to the server.
It takes the user ID and returns the user object from the database and
attaches it to the req.user property.

Code 3.9: Deserialization of the user ID.
1 passport.deserializeUser((id, cb) => {
2 let query = `SELECT * FROM users WHERE id = "${id}"`;
3 db.get(query, (err, result) => {
4 if (err) return cb(err);
5 if (result) return cb(null, result);
6 return cb(null, false);
7 });
8 });

3.2.6 Verifying logged in state

Now the frontend can send a GET request to the Express server to verify if
the user is logged in. The endpoint checks if the request contains a user as

25

3.2 Authentication

shown in previous subsection. If it does, the user is sent back.

Code 3.10: Express checks if request contains user.
1 router.get("/login/success", (req, res) => {
2 if (req.user) {
3 res.status(200).json({
4 success: true,
5 message: "successful",
6 user: req.user,
7 // cookies: req.cookies
8 });
9 } else {

10 res.status(200).json({
11 success: false,
12 })
13 }
14 });

If the response object has the field success as true, the function getUser
sets the user object with the setUser hook and sets the ID and type in the
localStorage for later use.

Code 3.11: GET request from the frontend to verify if user is logged in.
1 const getUser = async () => {
2 fetch("http://localhost:5000/auth/login/success", {
3 method: "GET",
4 ...
5 },
6 })
7 .then((response) => {
8 if (response.status === 200) return response.json();
9 throw new Error("authentication has been failed!");

10 })
11 .then((resObject) => {
12 if (resObject.success) {
13 setUser(resObject.user);
14 localStorage.setItem("id", resObject.user.id);
15 localStorage.setItem("type", resObject.user.type);
16 }
17 ...

26

3.3 Application programming interface

3.3 Application programming interface

This section contains explanations of the API.

FastAPI

First of all FastAPI has to be initialized.

Code 3.12: How to initialize FastAPI.
1 app = FastAPI()
2

3 frontdomain = "http://localhost:3000"
4 authdomain = "http://localhost:5000"
5 simdomain = "http://localhost:8000"
6 database = "../auth/database.db"
7

8 origins = [
9 frontdomain,

10 authdomain,
11 simdomain
12]
13

14 app.add_middleware(
15 CORSMiddleware,
16 allow_origins=origins,
17 allow_credentials=True,
18 allow_methods=["*"],
19 allow_headers=["*"],
20)

Database access

The endpoints that use the database needs to first connect to it and then
commit and close the connection when done.

27

3.3 Application programming interface

Code 3.13: How to connect to the database and close it.
1 con = sqlite3.connect(database)
2 cur = con.cursor()
3 cur.execute(SQL STATEMENT)
4 con.commit()
5 con.close()

FLORIS and JSON

The endpoints that use FLORIS starts with the code shown below. FLORIS
is initalized and the data from the request is loaded from JSON (JavaScript
Object Notation). The data consists of the x and y coordinates for the
turbines, wind directions and wind speeds. This will be referred to as
a configuration or config. Other endpoints may load data containing for
example user ID. The data sent back is first converted to JSON.

Code 3.14: How to initialize FLORIS and load JSON data. Data sent back is
converted to JSON.
1 fi = FlorisInterface("./floris/inputs/gch.yaml")
2

3 body = await req.json()
4 data = body["body"]
5 x = json.loads(data["layout_x"])
6 y = json.loads(data["layout_y"])
7 wind_directions = json.loads(data["wind_directions"])
8 wind_speeds = json.loads(data["wind_speeds"])
9

10 fi.reinitialize(
11 layout_x=x,
12 layout_y=y,
13)
14 ... #Calculations
15 turbine_powers = json.dumps(turbine_powers)
16 return {"turbine_powers": turbine_powers}

28

3.3 Application programming interface

3.3.1 Startup

First up is the startup event which creates the SQLite configs table if it does
not exist and inserts the quick start configurations from a file. These are
predefined configs.

Code 3.15: Code snippet that shows the SQL statements.
1 @app.on_event("startup")
2 ...
3 cur.execute("CREATE TABLE IF NOT EXISTS configs(id ...

integer primary key autoincrement, user_id ...
VARCHAR, title VARCHAR, x_layout VARCHAR, y_layout ...
VARCHAR, wind_dir VARCHAR, wind_speed VARCHAR, ...
shared VARCHAR, quick_start VARCHAR, shared_by ...
VARCHAR, foreign key(user_id) references users(id))")

4 ...
5 for config in configs:
6 ...
7 cur.execute("INSERT INTO configs (title, x_layout, ...

y_layout, wind_dir, wind_speed, quick_start) ...
VALUES(?, ?, ?, ?, ?, ?)",

8 (config[0], config[1], config[2], ...
config[3], config[4], "true"))

9 ...

3.3.2 Turbine powers

This endpoint calculates the power production from the turbine positions
and the wind samples. After initalizing FLORIS and loading the JSON data
the calculations begin.

29

3.3 Application programming interface

Code 3.16: How to calculate power production.
1 @app.post("/floris/calculate/powers")
2 async def powers(req: Request):
3 ...
4 turbine_powers = []
5 aep = []
6

7 for i in range(len(wind_directions)):
8 dir = [wind_directions[i]]
9 speed = [wind_speeds[i]]

10 fi.reinitialize(
11 wind_directions=dir,
12 wind_speeds=speed
13)
14

15 fi.calculate_wake()
16 powers = fi.get_turbine_powers() / 1E3
17 production = fi.get_farm_power().sum() / 1E9 * ...

365 * 24
18 aep.append(round(production, 1))
19

20 turbines = []
21

22 for k in range(powers.shape[2]):
23 turbines.append(round(powers[0, 0, k], 1))
24 turbine_powers.append(turbines)

The FLORIS object needs to be reinitialized for each wind sample because
FLORIS calculates for each possible combination. A wind sample consists
of one wind direction and one wind speed. FLORIS calculates 100 condi-
tions when given 10 directions and 10 speeds, when the desired number of
conditions is 10. So for each wind sample the turbine powers and the annual
energy production of the turbines is calculated and added to separate arrays.
The endpoint returns:

• The turbine powers in kW for each wind sample.

• The annual energy production for each wind sample.

• The average annual energy production.

• The maximum annual energy production.

• The wind samples which gives the maximum annual energy production.

30

3.3 Application programming interface

Code 3.17: Code snippet that shows the convertion to JSON and returning
values.

1 ...
2 averageAep = sum(aep) / len(aep)
3 averageAep = json.dumps(round(averageAep, 1))
4 turbine_powers = json.dumps(turbine_powers)
5 maxAep = max(aep)
6 maxConditions = [i+1 for i, x in enumerate(aep) if x == ...

maxAep]
7 maxAep = json.dumps(maxAep)
8 maxConditions = json.dumps(maxConditions)
9 aep = json.dumps(aep)

10

11 return {"turbine_powers": turbine_powers, "aep": aep, ...
"average": averageAep, "maxAep": maxAep, ...
"maxConditions": maxConditions}

3.3.3 Turbine wind speeds

This endpoint is quite similar to previous subsection, but instead of calcu-
lating the powers, it calculates the wind speeds at every turbine for each
wind sample.

Code 3.18: How to calculate wind speeds.
1 @app.post("/floris/calculate/speeds")
2 async def speeds(req: Request):
3 ...
4 avg_vel = fi.get_turbine_average_velocities()
5 ...
6 turbine_speeds = json.dumps(turbine_speeds)
7

8 return {"turbine_speeds": turbine_speeds}

3.3.4 Wake plots

This is the endpoint which produces plots that show the wake effect for each
wind sample. After the initialization of FLORIS and loading of data the

31

3.3 Application programming interface

plots are produced. The FLORIS object calculates the horizontal plane and
visualize_cut_plane from floris.tools visualizes it.

Code 3.19: How to produce the wake plots.
1 @app.post("/floris/calculate/plot/wake")
2 async def wake(req: Request):
3 ...
4 cMAP = ...

col.LinearSegmentedColormap.from_list("cCMAP",[(0.0, ...
"#96007C"), (0.50, "#00488F"), (0.86, "#BEC0C8"), ...
(1, "#ffffff")], N=1024)

5 plots = []
6

7 for i in range(len(wind_directions)):
8 dir = [wind_directions[i]]
9 speed = [wind_speeds[i]]

10 fi.reinitialize(
11 wind_directions=dir,
12 wind_speeds=speed
13)
14 fi.calculate_wake()
15

16 fig, axarr = plt.subplots(1, 1, figsize=(10,8))
17 horizontal_plane = ...

fi.calculate_horizontal_plane(x_bounds=(0,2200), ...
y_bounds=(-500,1000),wd=[wind_directions[i]], ...
height=90.0)

18 visualize_cut_plane(horizontal_plane, ...
ax=axarr,cmap=cMAP, title="Turbines aligned ...
with wind, coming from the left"+ "\n"+"Wind ...
sample "+ str(i+1) + ": " ...
+str(wind_directions[i]) + "\N{DEGREE SIGN} ...
("+str(wind_speeds[i])+ " m/s)")

After each plot is produced it needs to be encoded using base64 to be able
to be converted to JSON.

Code 3.20: How to encode the plots using base64.
1 ...
2 buffer = BytesIO()
3 fig.savefig(buffer, format='png', bbox_inches='tight')
4 buffer.seek(0)
5 image_base64 = ...

base64.b64encode(buffer.getvalue()).decode('utf-8')

32

3.3 Application programming interface

6 plots.append(image_base64)
7

8 plots_json = json.dumps(plots)
9 plt.close()

10

11 return {"plots": plots_json}

3.3.5 Power plot

This endpoint produces a plot containing three subplots. Each subplot has
wind sample number as x values and the y values are wind direction, wind
speed and turbine power. First it determines how many wind samples and
turbines there are and then calculates the turbine powers.

Code 3.21: Determining number of wind samples and turbines, and calculation
of turbine powers.
1 @app.post("/floris/calculate/plot/power")
2 async def power(req: Request):
3 ...
4 condition = range(1, len(wind_directions)+1)
5 num_turbines = len(fi.layout_x)
6 turbine_powers = fi.get_turbine_powers() / 1000.
7 ...

Then the three subplots are produced.

Code 3.22: How to produce the three subplots.
1 ...
2 fig, axarr = plt.subplots(3, 1, sharex=True, figsize=(11,9))
3

4 ax = axarr[0]
5 ax.plot(condition, wind_directions, 'o-')
6 ax.set_ylabel('Wind Direction (Deg)')
7 ax.grid(True)
8

9 ax = axarr[1]
10 ax.plot(condition, wind_speeds, 'o-')
11 ax.set_ylabel('Wind Speed (m/s)')
12 ax.grid(True)
13

33

3.3 Application programming interface

14 ax = axarr[2]
15 for t in range(num_turbines):
16 ax.plot(condition, turbine_powers[:, 0, t], 'o-', ...

label='Turbine %d' % (t+1))
17

18 ax.legend(bbox_to_anchor=(1.0, 1.0))
19 ax.set_ylabel('Turbine Power (kW)')
20 ax.set_xlabel('Wind Sample')
21 ax.grid(True)
22 ...

Lastly the plots are encoded using base64 and sent as JSON as shown in
previous subsection.

3.3.6 Improve layout

This endpoint takes in the turbine positions and calculates new positions to
improve the energy production. FLORIS contains a class which calculates
this using SciPy (Scientific Python) optimization. SciPy’s optimize module
offers various functions that can be used to minimize or maximize objective
functions, while also taking into account possible constraints. (“Optimization
and root finding”, n.d.) Using a lot of wind samples causes long calculation
times. Random plausible wind samples are therefore created to give a good
approximation.

Code 3.23: How to create random plausible wind samples.
1 ...
2 wind_directions = np.arange(0, 360.0, 5.0)
3 np.random.seed(1)
4 wind_speeds = 8.0 + np.random.randn(1) * 0.5
5 ...

The boundaries are the corners in the square where the turbines can be
placed. These are added to tell the optimizer which area to work in. After
reinitializing FLORIS with the turbine positions and random wind samples
the optimization can begin.

34

3.3 Application programming interface

Code 3.24: Define the boundaries and create the optimization object.
1 ...
2 boundaries = [(25.0, 25.0), (25.0, 575.0), (975.0, 575.0), ...

(975.0, 25.0)]
3 layout_opt = LayoutOptimizationScipy(fi, boundaries, ...

freq=freq)
4 sol = layout_opt.optimize()
5 ...

Then calculate wake and annual energy production for both the old positions
and the optimized positions to calculate the gain in energy produced.

Code 3.25: Calculate the gain in energy produced.
1 ...
2 fi.calculate_wake()
3 base_aep = fi.get_farm_AEP(freq=freq) / 1e6
4 fi.reinitialize(layout=sol)
5 fi.calculate_wake()
6 opt_aep = fi.get_farm_AEP(freq=freq) / 1e6
7 percent_gain = 100 * (opt_aep - base_aep) / base_aep
8 ...

Lastly get the improved positions from the FLORIS object.

Code 3.26: Get the new turbine positions.
1 layout = fi.get_turbine_layout()
2 layout_x = list(layout[0])
3 layout_y = list(layout[1])
4 ...
5 return {"layout_x": layout_x, "layout_y": layout_y, ...

"percent_gain": percent_gain}

3.3.7 Get config

This endpoints fetches a the whole configuration given it’s ID. After con-
necting to the database and loading JSON data, the code below is executed.

35

3.3 Application programming interface

Code 3.27: How to fetch a configuration from the database.
1 @app.post("/configs/get")
2 async def get(req: Request):
3 ...
4 config = cur.execute("SELECT * FROM configs WHERE id = ...

(?)", (id,)).fetchone()
5 ...
6 return {"config" : config}

3.3.8 Load configs

This endpoint can fetch all the configuration ID’s and title/sharer a given
user has access to. It always fetches the user’s saved configs. If quick_start
and shared are set to true it also fetches the quick start configs and the
configs shared with the user. The previous subsection describes how to fetch
the whole config.

Code 3.28: How to fetch the configurations a user has access to from the database.
1 @app.post("/configs/load")
2 async def load(req: Request):
3 ...
4 saved_configs = cur.execute("SELECT id, title FROM ...

configs WHERE user_id = (?) AND shared = (?)", ...
(user_id, "false")).fetchall()

5 if quick_start:
6 quick_start = cur.execute("SELECT id, title FROM ...

configs WHERE quick_start = (?)", ...
("true",)).fetchall()

7 if shared:
8 shared = cur.execute("SELECT id, shared_by FROM ...

configs WHERE user_id = (?) AND shared = (?)", ...
(user_id, "true")).fetchall()

9 ...
10 return {"saved_configs" : saved_configs, "quick_start" ...

: quick_start, "shared" : shared}

36

3.3 Application programming interface

3.3.9 Save config

This endpoint inserts a configuration to the database given a configuration
and user ID. First it checks if the title already exists to prevent confusion
for the user. If it does not exist, it inserts the config and sends back the
config’s ID.

Code 3.29: How to insert a configuration into the database.
1 @app.post("/configs/save")
2 async def save(req: Request):
3 ...
4 title_exist = cur.execute("SELECT * FROM configs where ...

title = ? and user_id = ? and shared != 'true'", ...
(data["title"], data["user_id"])).fetchone()

5 if title_exist:
6 return {"title_exists": "true"}
7

8 cur.execute("INSERT INTO configs (user_id, title, ...
x_layout, y_layout, wind_dir, wind_speed, shared) ...
VALUES(?, ?, ?, ?, ?, ?, ?)", (data["user_id"], ...
data["title"], data["layout_x"], data["layout_y"], ...
data["wind_directions"], data["wind_speeds"], ...
"false"))

9 id = cur.execute("SELECT last_insert_rowid() FROM ...
configs;").fetchone()

10 ...
11 return {"id": id[0]}

3.3.10 Update config

This endpoint does the same as last subsection except it updates the current
configuration instead of inserting it.

Code 3.30: How to update a configuration in the database.
1 @app.put("/configs/update")
2 async def update(req: Request):
3 ...
4 title_exist = cur.execute("SELECT * FROM configs where ...

title = ? and user_id = ? and id != ? and shared ...

37

3.3 Application programming interface

!= 'true'", (data["title"], data["user_id"], ...
data["id"])).fetchone()

5 if title_exist:
6 return {"title_exists": "true"}
7

8 cur.execute("UPDATE configs SET title = ?, x_layout = ...
?, y_layout = ?, wind_dir = ?, wind_speed = ? ...
WHERE id = ?", (data["title"], data["layout_x"], ...
data["layout_y"], data["wind_directions"], ...
data["wind_speeds"], data["id"]))

9 ...
10 return {"updated": "true"}

3.3.11 Delete config

This endpoints deletes a configuration given it’s ID.

Code 3.31: How to delete a configuration in the database.
1 @app.post("/configs/delete")
2 async def delete(req: Request):
3 ...
4 cur.execute("DELETE from configs where id = ?", (id,))
5 ...
6 return {"deleted": "true"}

3.3.12 Share config

This endpoint inserts a configuration into the database with the attribute
shared set to true given a configuration, ID of sharer and email of the user
shared to. First the name of the sharer and the ID of the user shared to are
fetched from the database. If there are no user ID’s with the given email it
returns with a message telling the sharing failed.

38

3.3 Application programming interface

Code 3.32: How to fetch name of the sharer and ID of the user shared to.
1 @app.post("/configs/share")
2 async def share(req: Request):
3 ...
4 name = cur.execute("SELECT name FROM users WHERE id = ...

?", (data["user_id"],)).fetchone()
5 user_id = cur.execute("SELECT id FROM users WHERE ...

email = ?", (data["email"],)).fetchall()
6 if len(user_id) == 0:
7 return {"shared": "false"}

There might be more than one ID connected to an email because a user
might have the same email for both Google and GitHub. So the config is
inserted into the database for each ID found.

Code 3.33: How to insert the shared configuration into the database.
1 ...
2 for id in user_id:
3 cur.execute("INSERT INTO configs (user_id, title, ...

x_layout, y_layout, wind_dir, wind_speed, ...
shared, shared_by) VALUES(?, ?, ?, ?, ?, ?, ?, ...
?)", (id[0], data["title"], data["layout_x"], ...
data["layout_y"], data["wind_directions"], ...
data["wind_speeds"], "true", name[0]))

4 ...
5 return {"shared": "true"}

3.3.13 Update user

This endpoint updates a user’s account type given a user ID and a new
account type. The types are Basic and Pro. A Pro user has access to more
functionality than a Basic user.

39

3.4 Pages

Code 3.34: How to update the account type of a user.
1 @app.put("/users/update")
2 async def update_type(req: Request):
3 ...
4 cur.execute("UPDATE users SET type = ? WHERE id = ?", ...

(new_type, user_id))
5 ...
6 if new_type == "Pro":
7 return {"updated_to": "Pro"}
8 if new_type == "Basic":
9 return {"updated_to": "Basic"}

3.4 Pages

Routes and navigation

The package React Router DOM was used for routing. It takes a React
component and connects it with a specified path.

Code 3.35: React Router DOM routes for home and login pages.
1 const App = () => {
2 ...
3 return (
4 <BrowserRouter>
5 <div>
6 ...
7 <Routes>
8 <Route
9 path="/"

10 element= { <Home /> }/>
11 <Route
12 path="/login"
13 element={ <Login /> }
14 />
15 ...
16 </Routes>
17 </div>
18 </BrowserRouter>
19);
20 };

40

3.4 Pages

If the user tries to access pages that requires to be logged in, they will be
redirected to the login page by useNavigate from React Router DOM.

Code 3.36: Redirected to login page when not logged in.
1 const navigate = useNavigate();
2 useEffect(() => {
3 if (!localStorage.getItem("id")) {
4 navigate("/login")
5 }
6 }, []);

Navigation bar

The navigation bar is displayed on every page. It contains links to the home,
start and login pages for easy navigation. If the user is logged in, the login
link is replaced by logout, and name and profile picture is displayed and
linked to the profile page.

Figure 3.4: The navigation bar before a user is logged in. Graphics: Authors
(Apache 2.0).

The navigation bar’s props is defined by an interface where both props are
optional. If the props are undefined the component returns the bar shown
in figure 3.5. If the user is logged in the props would be defined and the
user is shown in the bar.

Code 3.37: The interface for the navigation bar component.
1 interface Props {
2 email?: string;
3 name?: string;
4 profile_pic?: string;
5 }

41

3.4 Pages

Fetching data

Fetching data from the backend is done by Axios. An example is shown
below. Define the parameters in the body and use the response data as
desired.

Code 3.38: Loading configurations from the backend with Axios.
1 const REACT_APP_simdomain = "http://localhost:8000"
2 const fetch_configs = async () => {
3 try {
4 const response = await ...

axios.post((REACT_APP_simdomain+'/configs/load'), ...
{ body : {

5 "user_id" : localStorage.getItem("id"),
6 "quick_start" : JSON.stringify(true),
7 "shared" : JSON.stringify(true),
8 }});
9 setQuickStart(response.data["quick_start"]);

10 setSavedConfigs(response.data["saved_configs"]);
11 setSharedConfigs(response.data["shared"]);
12 } catch (error) {
13 console.error(error);
14 }
15 };

42

3.4 Pages

3.4.1 Home (/)

Figure 3.5: The HomeCard component on the home page. Graphics: Authors
(Apache 2.0).

This page consists of a React component welcoming the user to the applica-
tion. The component checks the localStorage to see if the user is logged
in. If so, the login button which links to the login page changes to a button
which links to the start page. The text also changes.

Code 3.39: The Home component using the HomeCard component.
1 const Home: React.FC = () => {
2 return (
3 <div>
4 <div className="home">
5 {localStorage.getItem("id") ? (
6 <HomeCard title={"Welcome to WPSim - Wind ...

Park Simulator"} img={pic} desc={"You ...
are logged in."} linkTo={"/start"} ...
buttonText={"Go to Simulations"}/>

7) :
8 <HomeCard title={"Welcome to WPSim - Wind Park ...

Simulator"} img={pic} desc={"Please login ...
via Google or GitHub to gain access:"} ...
linkTo={"/login"} buttonText={"Login"}/>

9 }
10 </div>
11 </div>)}

43

3.4 Pages

3.4.2 Login (/login)

Figure 3.6: The Login component on the login page.

This page consists of a component which the user can log in via Google
or GitHub. The two HTML elements have onClick functions attached to
them. The functions starts the authentication process described earlier.

Code 3.40: The two functions starting the authentication process.
1 const REACT_APP_authdomain = "http://localhost:5000"
2

3 const google = () => {
4 window.open((REACT_APP_authdomain+"/auth/google"), ...

"_self");
5 };
6 const github = () => {
7 window.open((REACT_APP_authdomain+"/auth/github"), ...

"_self");
8 };

44

3.4 Pages

3.4.3 Profile (/profile)

Figure 3.7: The Profile component on the profile page.

This page shows the information about your profile which consists of name,
email, profile picture and account type. The button updates the type the
user’s account by sending a request to /users/update at the backend.

3.4.4 Start (/start)

Figure 3.8: Three StartCard components on the start page.

This page consists of three StartCard components which receives different
props. The configs listed in each component are fetched with Axios from
/configs/load using the useEffect hook. The "Your saved configs" and
"Configs shared with you" components also has a delete button and receives
this function as a prop. The function sends a request to /configs/delete
with the corresponding config ID.

45

3.4 Pages

Code 3.41: The three StartCard components.
1 <StartCard title={"Quick start"} configs={quickStart}/>
2 <StartCard title={"Your saved configs"} ...

configs={savedConfigs} deleteButton={true} ...
onClick={deleteAndFetch}/>

3 <StartCard title={"Configs shared with you"} ...
configs={sharedConfigs} deleteButton={true} ...
onClick={deleteAndFetch}/>

Clicking on one of the configs navigates to the simulation page with the
clicked config. The red buttons deletes the config and then fetches the
configs again to show the updated list. The bottom button navigates to the
simulation page with an empty config.

3.4.5 Simulation (/simulation)

This is the page where the user performs simulations.

Alerts

The user is alerted if they miss some input or the input is invalid.

Code 3.42: Example where the user is alerted if one of the values are empty when
attempting to fetch from the backend.
1 if (layout_x.length === 0 || layout_y.length === 0 || ...

wind_directions.length === 0 || wind_speeds.length === ...
0) {

2 alert("Please add turbines and wind samples.");
3 return
4 }

Turbine layout

The canvas HTML element is utilized to draw graphics, and was used to
determine the turbine positions.

46

3.4 Pages

Figure 3.9: The canvas element containing the turbine positions.

Code 3.43: The canvas HTML element.
1 <canvas className='canvas'
2 ref={canvasRef}
3 width={1012}
4 height={606}
5 onClick={handleClickCanvas}
6 />

Clicking on the canvas triggers a function which adds the x and y coordinates
to separate arrays, and both as an object to the clicks array. The function
also checks if the click is at least 150 meters apart from other turbines before
adding.

Code 3.44: The handleClickCanvas function.
1 const handleClickCanvas = (event: ...

React.MouseEvent<HTMLCanvasElement>) => {
2 const canvas = canvasRef.current;
3 if (!canvas) return;
4

5 const rect = canvas.getBoundingClientRect();
6 const x = Math.round(event.clientX - rect.left);
7 const y = Math.round(canvas.height - (event.clientY - ...

rect.top));
8

9 for (var k = 0; k < clicks.length; k++) {

47

3.4 Pages

10 if ((Math.abs(x-clicks[k]["x"])) < 150 && ...
(Math.abs(y-clicks[k]["y"]) < 150)) {

11 alert("Turbines need to be at least 150 meters ...
apart.");

12 return
13 }
14 }
15

16 setClicks([...clicks, { x, y }]);
17 setLayoutX([...layout_x, x]);
18 setLayoutY([...layout_y, y]);
19 };

The useEffect hook draws the canvas axes and their values before drawing
the clicks as turbines. This gets triggered again when the value of clicks
changes, which is when clicks are added or removed.

Code 3.45: Drawing of axes and turbines.
1 useEffect(() => {
2 ...
3

4 // Draw X axis
5 ctx.beginPath();
6 ctx.moveTo(0, canvas.height);
7 ctx.lineTo(canvas.width, canvas.height);
8 ctx.stroke();
9

10 // Draw X axis values
11 ctx.textBaseline = "bottom";
12 ctx.textAlign = "center";
13 for (let x = 100; x < canvas.width; x += 100) {
14 ctx.fillText(x.toString(), x, canvas.height);
15 }
16

17 ...
18

19 // Draw clicks
20 clicks.forEach(({ x, y }, index) => {
21 ctx.fillStyle = "gray";
22 ctx.fillRect(x - 3, canvas.height - y - 18, 5, 35);
23 ctx.fillStyle = "#000000";
24 ctx.fillText(`${index + 1}`, x + 10, canvas.height - ...

y - 22);
25 });
26

48

3.4 Pages

27 setShowImproved(false);
28 }, [clicks, reRender]);

The numbering and positions of the turbines are listed in the LayoutCard
component. Clicking the red button removes the corresponding turbine.
The function receives the index of the turbine and removes the values from
the arrays.

Figure 3.10: The LayoutCard component listing the turbine positions.

Code 3.46: Removing a turbine.
1 const removeTurbine = (index:number) => {
2 removeClick(index);
3 removeX(index);
4 removeY(index);
5 }

Wind samples

The WindCard component is similar to the LayoutCard component. It
lists the wind samples consisting of a direction and a speed, and the users
are able to remove them.

49

3.4 Pages

Figure 3.11: The WindCard component listing the wind samples.

The two input HTML elements only accepts numbers by defining the type.

Code 3.47: The WindCard input HTML elements.
1 ...
2 <input className='inputBox' type="number" ...

placeholder="Insert direction..." ...
onChange={props.onChangeDir} />

3 ...
4 <input className='inputBox' type="number" step={0.1} ...

placeholder="Insert speed..." ...
onChange={props.onChangeSpeed} />

Clicking add button checks if both fields are filled and if both fields are
within legal range before adding them.

Code 3.48: The addWind function.
1 const addWind = () => {
2 if (wind_directions_input.length===0 || ...

wind_speeds_input.length===0) {
3 alert("Please insert direction and speed.");

50

3.4 Pages

4 return
5 }
6 if (25 < wind_speeds_input || wind_speeds_input < 0 ...

|| wind_directions_input < 0 || ...
wind_directions_input > 360) {

7 alert("Please insert speed from 0 to 25 and ...
direction from 0 to 360.");

8 return
9 }

10 addDirection();
11 addSpeed();
12 };

Save, update and share

This component contains three buttons which saves a new config, updates
the current one or shares the current one with another user by sending
requests with Axios to the backend. The user can also download the config
as CSV.

Figure 3.12: Component which saves, updates shares or downloads a config.

Code 3.49: The three buttons with corresponding onClick functions.
1 ...
2 <button className="cardButton" ...

onClick={save}>{saveButton}</button>
3 ...
4 <button className="updateButton" ...

onClick={update}>{updateButton}</button>
5 ...
6 <button className="shareButton" ...

onClick={share}>{shareButton}</button>

51

3.4 Pages

Calculations and results

Figure 3.13: Component with buttons to request calculations.

This component consists of five buttons which triggers different functions
where each function sends requests to the backend with Axios. Importing
wind samples from Seklima is possible using Papa Parse. Turbine power
production and Turbine wind speeds creates graphs using Recharts.
The data used in the charts needs to be in a specific object form. After
setting the response data from the backend, the objects are generated. The
code beneath generates the data for the Turbine powers graph. The code
loops through the array of turbine powers and generates objects. Each
object consists of the turbine powers for a specific wind sample.

Code 3.50: The loop which generates graph data.
1 for (var k=0; k < powers.length; k++) {
2 myObject = {};
3 myObject["name"] = `Wind sample ${k+1}: ...

${wind_directions[k]}\xB0 ${wind_speeds[k]}m/s`;
4 samples.push(`${k+1}: ${wind_directions[k]}\xB0 ...

${wind_speeds[k]}m/s`);
5 for (var i=0; i < powers[k].length; i++) {
6 myObject[`Turb${i+1}`] = powers[k][i];
7 if (k===0) {
8 myTurbines.push(`Turb${i+1}`);
9 }

10 }
11 myData.push(myObject);
12 }

52

3.4 Pages

Figure 3.14: Turbine powers graph.

The graph shows the turbine powers for each wind sample. The user can
drag a slider or press Start to begin the simulation to switch between the
samples. The graph component receives the activeIndex variable which is
changed by the slider. This variable determines which sample to show in
the graph.

Code 3.51: The Slider component from React Slider.
1 <Slider
2 value={activeIndex}
3 min={0}
4 max={sliderLength}
5 onChange={handleSliderChange}
6 className="slider"
7 thumbClassName="thumb"
8 trackClassName="track"
9 marks

10 />

Code 3.52: One of the components from Recharts showing which data to display
using activeIndex.
1 <BarChart width={900} height={325} ...

data={[props.data[props.activeIndex]]}>

The Power production graph also shows the previous data when changing
the activeIndex to obtain a simulation effect.

53

3.4 Pages

Figure 3.15: Power production graph.

Time per wind sample determines how long each wind sample produces
energy before moving to the next. Changing it triggers a function which
calculates the correct power production with the new time per wind sample.
Simulation speed determines how long before the active index changes
when pressing Start. The Reset button sets the activeIndex to 0.

The calculation buttons Turbine wake plots and Turbine power plot
requests these plots from the backend where they are generated. The turbines
in each wake plot are aligned with the wind coming from the left to achieve
some consistency in the different plots. Otherwise each plot would have
drastic differences when it comes to the length of the axes which would be
perceived as chaotic.

Figure 3.16: Wake plot.

54

3.4 Pages

The Improve layout button sends a request to the backend and displays
improved positions and the increased energy production.

Figure 3.17: The ImprovementCard component.

The user can choose to use the improved layout or keep the old. Both layouts
are displayed in the canvas.

Figure 3.18: The canvas with improved layout in green.

Downloading results

The results from the calculations can be downloaded.

Power production, turbine powers and turbine wind speeds can be down-
loaded as separate CSV files using React CSV.

55

3.4 Pages

Figure 3.19: Download request buttons.

Code 3.53: One of the components from React CSV.
1 <CSVLink filename='wpsim_production.csv' ...

onClick={generateCsvProduction} data={csvProduction} ...
separator={";"}><button ...
className='downloadButton'>Power production ...
CSV</button></CSVLink>

Clicking the buttons triggers the functions which generates the CSV data,
and is downloaded as a CSV file afterwards.

Code 3.54: The function which generates CSV data for the power production.
1 const generateCsvProduction = () => {
2 var csv = [
3 ["Time", "Direction", "Speed"],
4];
5 csv = [csv[0].concat(totalPowerChartTurbines)];
6 for (var i = 1; i < totalPowerChartData.length; i++) {
7 var data = [(timeRes * i).toString(), ...

wind_directions[i - 1].toString(), ...
wind_speeds[i - 1].toString()];

8 for (var k = 0; k < ...
totalPowerChartTurbines.length; k++) {

9 data.push(totalPowerChartData[i][csv[0][3 + ...
k]].toString());

10 }
11 csv.push(data);
12 }
13 setCsvProduction(csv);
14 }

56

3.4 Pages

The wake plots and the power plot can be downloaded as PNG using JSZip
and File Saver.

Code 3.55: The function which downloads the wake plots as PNG in a ZIP file.
1 const downloadWakePlots = () => {
2 const zip = new JSZip();
3 for (var i=0; i < wakePlots.length; i++) {
4 zip.file("cond"+(i+1).toString()+".png", ...

wakePlots[i], {base64: true});
5 }
6 zip.generateAsync({type:"blob"}).then(blob => {
7 saveAs(blob, 'wake_plots.zip');
8 });
9 }

3.4.6 NoAccess (/failed)

Figure 3.20: The NoAccess component on the failed page.

A failed authentication is redirected to this page.

3.4.7 NotFound (/*)

Figure 3.21: The NotFound component on non defined paths.

This component is shown if a user attempts to access a path which does not
exist.

57

Chapter 4

Deployment

The transition from development to deployment, is a critical phase dur-
ing software engineering. Changing from a development environment to
production-ready software, involves rigorous testing, optimization, and co-
ordination between engineers. Ultimately leading to the deployment of a
stable and reliable software product. The deployed version is located in the
main branch of the wpsim-prod GitHub repository. (Bakkan & Selchow,
2023)

4.1 From development to production

The process of transitioning a web application from development to pro-
duction, involves optimizing the application for performance, security and
scalability, while also removing quality of life features used during develop-
ment.

4.1.1 Shifting to modular service architecture

During development, a frontend-backend architecture was used to limit
complexity. This decision was crucial in ensuring the project’s viability in

58

4.1 From development to production

its initial stages. By having a monolith backend, development overhead was
reduced and streamlined, during the proof-of-concept phase. The reduced
complexity resulted in less time spent at facilitating premature inter-service
compatibility. The effectiveness of this approach proved to be extremely
valuable during the early project phase, setting a strong foundation for
subsequent developments.

When shifting to production, transitioning from the traditional frontend-
backend architecture, to a modular system was deemed necessary, and
challenging. By having developed a monolith backend, with a singular
local database, remote database technology had to be implemented. This
was implemented, by having the host system share the database, from a
singular authentication service, over NFSv3 (Stateless Network File System).
Facilitating the ability to run the simulation service on faster, less redundant
hardware, as illustrated in figure ??.

A modular system composed of frontend, authentication, and simulation
services, significantly enhanced scalability, without compromising reliability
or introducing any significant risks. By deploying individual modules inde-
pendently, potential downtime could be mitigated, and updates streamlined,
creating a robust and flexible solution, ready to meet future challenges.

4.1.2 Switching runtimes

Switching from development to production-ready runtimes reduces overhead
and security risks, by removing quality of life features used during develop-
ment. Production-ready runtimes have stricter security, and will often use a
whitelist policy for connections.

NodeJS

The authentication service required transitioning from nodemon, which
is a development, on-the-fly, runtime (“Nodemon”, n.d.), to a direct NodeJS
runtime. Using NodeJS directly, reduced risks coming from development
features.

59

4.1 From development to production

This was done using a single line implementation, in the Dockerfile, as shown
in figure 4.1).

Code 4.1: Changes in command for authentication service initialization.
1 Original: CMD ["nodemon", "index.js"]
2 Revised: CMD ["node", "index.js"]

The frontend service transitioned from node runtimes to NGINX. Since
the frontend only serves static files, NGINX, a purpose built webserver
(“NGINX”, n.d.), could be used instead. Using NGINX was done by having a
multi-step compile, as shown in figure 4.2). The static files was first compiled
by NodeJS, before being served to NGINX. By using NGINX, performance,
security and scalability was facilitated.

Code 4.2: Changes in Dockerfile, used by the frontend.
1 # Node 19 slim image
2 FROM node:19-slim AS builder
3 ...
4 # Install dependencies
5 RUN npm ci --omit=dev
6 ...
7 # Build the React app
8 RUN npm run build
9 # NGINX image

10 FROM nginx:stable-alpine3.17-slim
11 # Copy build files to Nginx
12 COPY --from=builder /app/build /usr/share/nginx/html
13 ...
14 # Start NGINX
15 CMD ["nginx", "-g", "daemon off;"]

Uvicorn

The simulation service was transitioned from the uvicorn runtime, to
gunicorn. Gunicorn uses a central master process to control a set of workers,
which each processes their own request (“Design of Gunicorn”, n.d.). By
using multiple workers, concurrent request can be processed simultaneously,
improving performance scaling on a multi-threaded host server.

60

4.2 From production to deployment

This was done by installing gunicorn and modifying the Dockerfile, as shown
in figure 4.3).

Code 4.3: Changes in Dockerfile, used by the frontend.
1 Original CMD: CMD ["uvicorn", "main:app", "--host", ...

"0.0.0.0", "--port", "8000"]
2 Revised ENV: ENV WORKERS=8
3 Revised CMD: CMD gunicorn -k uvicorn.workers.UvicornWorker ...

main:app --workers $WORKERS --bind 0.0.0.0:80 ...
--log-level debug

4.2 From production to deployment

The process of deploying production-ready software involves complex setup
to handle traffic and maintain availability. Including using suitable hardware.

4.2.1 Hardware

Hardware used in deployment.

High uptime unit

• CPU: Intel Celeron J4125 (4 cores, 4 threads)

• RAM: 20GB DDR4 RAM

• Storage SSD: 2x 920GB SATA SSD (in SHR1 for redundancy)

• Networking: 2x Gigabit Ethernet ports

This unit is used to host the frontend and authentication service, as well as
serving the reverse proxy and NFS file-server. The Intel Celeron J4125 is a
low-power CPU, suitable for lighter workloads. The 20GB of RAM provides

61

4.2 From production to deployment

headroom for improved IO performance, while the dual gigabit Ethernet
ports ensure reliable network connectivity.

Data: The storage used by the services is stored in a SHR1 (1 disk re-
dundancy) SSD volume. The database is stored in the aforementioned
volume, in a Btrfs file system, with hourly snapshots and data checksum
checking. Snapshots are encrypted before being duplicated to a secondary
SHR1 volume. The secondary volume is synchronised with Jottacloud, a
Norwegian cloud storage provider.

Data security: If power is lost; full disk encryption must be unlocked at
boot.

Performant unit

• CPU: AMD Ryzen R9-5950X (16 cores, 32 threads)

• RAM: 64GB DDR4 RAM

• Storage: 2TB NVMe SSD

• Networking: 1x 2.5 Gigabit Ethernet port

This unit is used to host the simulation service. The AMD Ryzen R9-5950X
is a high-performance CPU, that can handle concurrent simulations without
affecting the user experience. The 64GB of RAM is sufficient for most
workloads, allowing several instances in parallel. The single 2.5 gigabit
Ethernet port provide adequate network connectivity, considering the max
bandwidth throughput if and when the CPU would be at full load.

Data: The 2TB NVMe SSD provides quick IO, with easily reproducible
setup if the drive should crash.

Data security: Critical information is never stored in non-volatile memory.

62

4.2 From production to deployment

Always-on unit

• SoC: Broadcom BCM6750KFEBG (3 cores, 3 threads)

• RAM: 512MB DDR3L RAM

• Storage: 256MB eMMC

• Networking: 4x Gigabit Ethernet ports

This unit is used to host critical dormant services, that only goes active
once in a while. It hosts the DDNS client, which reports the IP served by
the internet service provider, to the domain name registrar. The Broadcom
BCM6750KFEBG is a low-power SoC (System on Chip) that can handle
light services. The 512MB of RAM is sufficient for the DDNS client, and
more services if needed. The four gigabit Ethernet ports provide adequate
network connectivity.

Data: The 256MB eMMC is suitable for the required services.

Data security: The eMMC storage is read once at boot, and requires
authentication to be modified.

Router

• SoC: Broadcom BCM4912 (4 cores, 4 threads (ARM Cortex-B53 (v8)))

• RAM: 1GB DDR3L RAM

• Storage: 256MB eMMC

• LAN Networking: 4x 1, 1x 2.5 Gigabit Ethernet ports

• WAN Networking 1x 2.5 Gigabit Ethernet ports

This unit acts as the gateway to the WAN, while also port forwarding to
the reverse proxy in the "High uptime unit". The Broadcom BCM4912 is a
low-power, low-performance SoC (System on Chip) with 1GB of RAM and
256MB eMMC. Ethernet operations are hardware accelerated by Broadcom

63

4.2 From production to deployment

Ethernet transceivers, reducing load from the SoC. The four gigabit, and
single 2.5 gigabit Ethernet ports provide adequate LAN network connectivity
between the units. With the "Performant unit" having the 2.5 gigabit
connection.

Data: The 256MB eMMC is suitable for the required services.

Data security: The eMMC storage is read once at boot, and requires
authentication to be modified during runtime.

WAN: Considering the computation limitation of downstream internal
hardware, a WAN uplink/downlink of 750/750 Mbit/s, is adequate with
bandwidth to spare.

WAN security: External control of internal services is accessed trough
an encrypted, Wireguard VPN proxy, with multiple steps of authentication.
Internal LAN communication is on a whitelist basis.

The hardware used is optimized for the specific needs of each subsystem.
The "High uptime unit" ensures data redundancy and handles frontend,
authentication, reverse-proxy and file-server tasks. The "Performant unit"
does the computationally heavy, non-critical tasks. The "Always-on unit"
runs critical dormant services such as the DDNS client. The router serves as
the gateway for WAN/internet connections and manages port forwarding. By
using several units, configured to deliver optimal performance and reliability
for their respective roles, a stable and efficient system is achieved.

4.2.2 Network technologies

To achieve optimal network infrastructure performance and security, the
correct usage of networking technologies, both software and hardware, is
needed.

A communications map is located in Appendix B. This map showcases the
communication lines between a client and the WPSim application, including
the communication lines needed for deploying WPSim.

64

4.2 From production to deployment

DNS

The Domain Name System (DNS) is a crucial component of internet in-
frastructure, responsible for translating human-readable domain names into
IP addresses. A DNS record is an essential element of web applications,
as it enables users to access the application using a human memorable,
domain name. DNS facilitates scalability and flexibility for web apps, trough
allowing developers to switch hosting providers, or migrate to a different
server and IP, with no visible change to the user.

When deploying wpsim.no, a DDNS service was deemed necessary to limit
downtime. Dynamic DNS (DDNS) is a service that automatically updates
DNS records when an IP address change is detected. It is particularly useful
for individuals and businesses with dynamic IP addresses, which are common
among residential and small business internet connections.

The DNS records used for wpsim.no is listed in the 4.1 table. Where the
ANAME record, also known as "alias", is a record that allows a domain
to be associated with another domain. In the case of wpsim.no, this is the
DDNS address. Subdomains are listed with CNAME records, which prompts
the DNS resolver to look up the target domain specified in the CNAME
data field.

Host name TTL RR Type Data
wpsim.no 1 hour ANAME [DDNS address]

auth.wpsim.no 1 hour CNAME wpsim.no
sim.wpsim.no 1 hour CNAME wpsim.no

Table 4.1: DNS Records for wpsim.no (TTL - Time To Lease, RR - Resource
Record)

SSL certificate

Secure Socket Layer (SSL) certificates are a vital element in ensuring security
and integrity of data transmitted over the internet. SSL certificates ensures
that the data sent over the SSL encryption is not intercepted by unauthorized
parties.

65

4.2 From production to deployment

For wpsim.no, implementing an SSL certificate was a crucial step in safe-
guarding the privacy of our users and building trust in our web application.
SSL certificates not only protect sensitive data but also help to establish
the authenticity of a website, ensuring that users are interacting with the
intended site.

SSL certificates are issued by trusted Certificate Authorities (CA), which
verify the identity of the website owner and issue the certificate accordingly.
When a user accesses the wpsim.no site, their browser checks the SSL
certificate to ensure that it was issued by a trusted CA, and that it is still
valid. This validation process helps to prevent man-in-the-middle attacks,
where an attacker intercepts the communication between the user and the
web server.

In addition to the security benefits, having an SSL certificate also has a
positive impact on the search engine ranking and user perception of a website.
Major search engines, such as Google, consider SSL certification as a ranking
factor, meaning that websites with SSL certificates are more likely to appear
higher in search results. Furthermore, modern browsers display a padlock
icon next to the URL of a website with a valid SSL certificate, signaling to
users that the site is secure and trustworthy.

The wpsim.no SSL certificate setup and configuration involved the following
steps:

1. Obtaining an SSL certificate from a trusted Certificate Authority (CA).

2. Installing the SSL certificate on the reverse proxy, infront of the
wpsim.no services.

3. Configuring a Apache instance to redirect HTTP to HTTPS, ensuring
that all connections to the site are encrypted.

With the SSL certificate was in place, communication to and from wpsim.no
was secured. Giving the users confidence that the site is genuine. The SSL
certificate, in conjunction with the DNS and DDNS services, contributes to
the overall reliability, security, and accessibility of wpsim.no.

66

4.2 From production to deployment

Port forwarding

Port forwarding enables efficient routing of incoming traffic to the appropriate
devices and services within a local network. By configuring port forwarding
rules on a network router, administrators can forward incoming traffic
to specific devices or services based on the port number. By using port
forwarding, services on local networks can be accessed from the wide area
network (WAN).

In the case of wpsim.no, port forwarding plays a vital role, by managing
the flow of traffic, to the services within the network. WPSim, requires two
ports to function, 80 (HTTP) and 443 (HTTPS), in a domain pointed setup.

Reverse proxy

The reverse proxy server, a service in the "High uptime unit", acts as
an intermediary between the user and the web application. It accepts
incoming connections and forwards them to the appropriate services, based
on predefined rules and configurations. Using a reverse proxy can not only
enhance security, but also facilitate load balancing and traffic management,
by distributing requests across multiple servers.

A significant advantage of using a reverse proxy server is the ability to serve
HTTPS connections while communicating with services using HTTP. The
reduces security risks by reducing the points of failure, while also allowing
quick management of the SSL certificates.

To implement this functionality, the reverse proxy is configured with a CA au-
thorized SSL certificate for the wpsim.no, auth.wpsim.no and sim.wpsim.no.
When users access the site, their browser establishes a secure HTTPS con-
nection with the reverse proxy. Communication is then done with the reverse
proxy in the middle, with the services on LAN using the HTTP protocol.

67

4.2 From production to deployment

This approach provides several benefits for the wpsim.no web application:

1. Enhanced Security: The reverse proxy server ensures that all WAN
communication between the user and the web application is encrypted
using SSL, protecting sensitive data from unauthorized access and
interception.

2. Quicker development: By using HTTP for communication between
the reverse proxy server and internal services, the development and
maintenance overhead associated with encryption is minimized.

3. Simplified Certificate Management: With the reverse proxy server
handling SSL certificates, administrators can manage certificates cen-
trally, making it easier to maintain and update them as needed.

By forwarding incoming traffic on ports 80 and 443 to the reverse proxy server
within the "High uptime unit", traffic flow can be efficiently managed, while
maintaining high levels of security, and scalability. This configuration ensures
that the web application can adapt to changes in network infrastructure and
to increased traffic loads without compromising the user experience.

4.2.3 Physical connections and connection speeds

The physical connections and connection speeds, used in network infras-
tructure, plays a crucial role in the performance and reliability of web
applications.

This subsection details the limitations originating from connections, and
network components that form the foundation of the wpsim.no architecture.
Detailing the "High uptime unit" and the "Performant unit", which host
the developed services.

68

4.2 From production to deployment

High uptime unit

The unit has dual load balancing gigabit Ethernet connections, which serve
to ensure stable communication and data transfer. Incoming WAN traffic,
from ports 80 and 443, is directed trough this unit.

Traffic originating from port 80, is forwarded by the reverse proxy, to an
Apache server. The Apache server redirects users to port 443, which is used
for secure SSL communication. Incoming traffic from port 443, is forwarded
to the appropriate services, based on the source domain and subdomain.

This unit could theoretically experience a connection bottleneck, originating
from the internet service provider (ISP) connection, if scaled.

Performant unit

The "Performant unit" hosts the the simulation service, responsible for
running on-demand FLORIS computations. With a 2.5 Gigabit end-to-end,
internal, Ethernet connection, this unit is could theoretically experience a
WAN up-link bottleneck, when serving several users. However, considering
the processing power, data sent during computation of user requests is not
likely to saturate the connection. A processing power bottleneck is more
likely to occur, as demonstrated in figure 4.1.

69

4.2 From production to deployment

Figure 4.1: Load test for the Performant unit, 3 users requesting all features at
once, using the quickstart 3x2 layout.

70

Chapter 5

Evaluation of software

Evaluating WPSim is an important step towards ensuring software quality
and user experience. This chapter details assessments of WPSim, including
functional tests, challenges and limitations encountered, and reflects on
potential enhancements and future development prospects.

5.1 Functional test

Functional testing is a type of black box testing and was performed to ensure
that the application behaves as expected. The tests listed in Appendix A
were performed and passed.

5.2 User experience

The user experience (UX) of the software application was carefully considered
throughout the development process. The design principles prioritized were
responsiveness, and intuitiveness. The aim was to create an interface, that
could be easily navigated and understood, by users of various knowledge
levels.

71

5.3 Challenges and limitations

To ensure this, the visual layout was designed to be quickly understood,
reducing visual clutter that could lead to confusion, or a sense of being
overwhelmed. Key functionalities were positioned to be accessible, without
having to search the page, reducing the number of steps a user must take to
perform an operation. Interactive elements were designed to provide clear
feedback, informing users about the actions they’ve taken.

The UX design aimed to deliver an smooth and responsive experience,
contributing to product usability.

5.3 Challenges and limitations

The development of the software faced a number of challenges and limitations.
One of the primary challenges was ensuring reliability when handling compute
intensive tasks. Designing a system that can effectively handle potential
errors or impossible computations, while recovering smoothly is a complex
task, requiring planning and testing.

Limitations in the simulation service posed challenges, where a balance
between feature-richness and responsiveness had to done. wpsim.no resolves
this issue by giving the user a set amount of computational time, before the
request will inform the user that it has timed out.

Further, the scope of the project and time constraints inevitably led to some
features and enhancements not being prioritized, see 5.5. This is a common
challenge in software development.

Limitations in the development environment, challenged predicting the
WPSim’s behavior in deployment. Rigorous testing was carried out when
implementing Docker, allowing coverage of most scenarios. Using Docker
limited edge-cases which could surface during usage of the development
environment.

72

5.4 Features considered

Improve layout

This feature will attempt modifying the user created layout, creating an
optimized version. WPSim "Improve layout" accepts at most 6 turbines.
More turbines increases the computational requirements exponentially, on
an average case. The feature uses random wind samples, instead of the
user samples. This creates a good approximation, without reducing respon-
siveness. If an accurate approximation is necessary, accurate wind data
over several seasons, would be necessary, quickly requiring out of scope
computational resources.

5.4 Features considered

Placing turbines on a real map

Being able to place turbines on a real map instead of a canvas, could enhance
the application. This was not implemented due to the following:

• FLORIS uses a 2D plane to calculate wakes.

• A real map could give the user too much confidence on approximated
data.

• The map would ideally have to be imported from an API, increasing
reliance on external services.

Receiving wind samples from

Using an external API for wind data was considered, as it could significantly
speed up the setup of a user configuration. No free to use, trustworthy,
stable API was found, resulting in searching for other solutions. Seklima was
found as a replacement, where users are able to download a CSV, containing
wind data, before uploading it to wpsim.no.

73

5.5 Further development

5.5 Further development

Development items considered, if continuation of the project.

• UX: Drag and drop turbines to new positions, requiring a new canvas
system.

• UX: Edit singular turbine positions and wind samples, without delete.

• UX/Sim: Configure the turbine parameters. Requires development of
all features comprehensively, as providing users with detailed controls
for a singular aspect, might inadvertently lead excessive trust into the
precision of the data. Care must be taken to appropriately manage
user expectations about FLORIS capabilities.

• UX/Sim: Wake model select. WPSim uses the Gauss Curl Hybrid
model, used by default in FLORIS code demonstrations.

• Auth: Refined, non-SQL, access control. Auth0 seems suitable.

74

Chapter 6

Conclusion

The project, "Web Application for Wind Park Simulation," was undertaken
with the objective of developing a web stack for the FLORIS (“National
Renewable Energy Laboratory”, n.d.) wake simulation package. Motivation
was rooted in the urgency to reduce global warming, by developing a tool
that enabled quick online estimation simulations for wind farms, ultimately
serving to reduce reliance on fossil fuels.

One of the project’s foundational elements was the wake effect concept, a
phenomenon causing wind turbines leave behind low energy wind, which
significantly affects the energy output of a wind farm. The web application
effectively incorporates this concept, successfully meeting one of the primary
goals of the project.

Several core objectives were outlined for this project. One of these was
ensuring an outstanding user experience, which was achieved thanks to
the application’s high responsiveness and single-page design. A further
goal was keeping application as lightweight as possible, critical due to
the intense processing power required for multi-variable simulations. The
implementation of OAuth was another successful milestone, providing robust
user authentication without risking credentials.

The application also met the objective of enabling users to save simulation
configurations. Additionally, it provides on-demand FLORIS power and

75

Conclusion

production estimation simulations, with visualizations of result data. Users
can conveniently download these results, which further substantiates the
achievement of the project’s core objectives.

Discord and GitHub were central to project communication and collaboration,
helping the team to stay synchronized and maintain efficient version control
throughout the development process. In terms of architecture, the web
application featured a frontend serving static files and an per-case serving
backend.

The transition from development to production and subsequent deployment
were crucial phases in the project. The team effectively managed this
transition through a shift in runtimes, the usage of Docker, and the strategic
use of a reverse proxy for hosting Docker containers.

Although functional tests were successful and user experience was respon-
sive, the project did face a significant challenge with the automatic layout
improvement function. The function, due to its compute-intensive nature,
currently restricts the application to manage only 5-6 turbines before expo-
nentially increasing compute time. This limitation presents a considerable
area for future development, including hardware accelerated functions.

Looking ahead to future iterations of the project, a range of enhancements
are being considered. These include allowing users to drag turbines to new
placements, enabling turbine placement editing without needing to remove
and add, offering the ability to configure turbine parameters, and providing
an option to change the wake model from the default Gauss Curl Hybrid
model.

In summary, the "Web Application for Wind Park Simulation" project
successfully met its critical objectives, providing a useful tool for wind
farm simulations, and contributing to global efforts to reduce fossil fuel
dependence. While challenges remain, the foundation laid by this project
promises exciting potential for future development.

76

Bibliography

Bakkan, E., & Selchow, S. (2023). Bac-2023-wind-park-sim / wpsim-prod.
Retrieved June 5, 2023, from https://github.com/BAC-2023-Wind-
Park-Sim/wpsim-prod

Design of gunicorn. (n.d.). Gunicorn. Retrieved May 24, 2023, from https:
//docs.gunicorn.org/en/stable/design.html

Discord — your place to talk and hang out. (n.d.). Discord Inc. Retrieved
May 23, 2023, from https://discord.com/

Docker. (n.d.). Docker, Inc. Retrieved May 23, 2023, from https://www.
docker.com/

Energy statistics - quantities, annual data. (2022). Eurostat. Retrieved May
30, 2023, from https://ec.europa.eu/eurostat/databrowser/view/
nrg_pc_204/default/table?lang=en

Express - fast, unopinionated, minimalist web framework for node.js. (n.d.).
Express. Retrieved May 9, 2023, from http://expressjs.com/

Html & css. (n.d.). W3C. Retrieved May 9, 2023, from https://www.w3.org/
standards/webdesign/htmlcss

Lama Dev. (2021). React social login with passport.js | react oauth w/ google,
facebook, github. Retrieved May 15, 2023, from https://www.youtube.
com/watch?v=7K9kDrtc4S8

National renewable energy laboratory. (n.d.). National Renewable Energy
Laboratory. Retrieved May 29, 2023, from https://www.nrel.gov/

National Renewable Energy Laboratory. (n.d.-a). OpenFAST. Retrieved May
23, 2023, from https://www.nrel.gov/wind/nwtc/openfast.html

National Renewable Energy Laboratory. (n.d.-b). TurbSim. Retrieved May
23, 2023, from https://www.nrel.gov/wind/nwtc/turbsim.html

Nginx. (n.d.). NGINX, Inc. Retrieved May 23, 2023, from https://www.
nginx.com/

77

https://github.com/BAC-2023-Wind-Park-Sim/wpsim-prod
https://github.com/BAC-2023-Wind-Park-Sim/wpsim-prod
https://docs.gunicorn.org/en/stable/design.html
https://docs.gunicorn.org/en/stable/design.html
https://discord.com/
https://www.docker.com/
https://www.docker.com/
https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_204/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/nrg_pc_204/default/table?lang=en
http://expressjs.com/
https://www.w3.org/standards/webdesign/htmlcss
https://www.w3.org/standards/webdesign/htmlcss
https://www.youtube.com/watch?v=7K9kDrtc4S8
https://www.youtube.com/watch?v=7K9kDrtc4S8
https://www.nrel.gov/
https://www.nrel.gov/wind/nwtc/openfast.html
https://www.nrel.gov/wind/nwtc/turbsim.html
https://www.nginx.com/
https://www.nginx.com/

BIBLIOGRAPHY

Node.js. (n.d.). OpenJS Foundation. Retrieved May 23, 2023, from https:
//nodejs.org/

Nodemon. (n.d.). Nodemon. Retrieved May 23, 2023, from https://nodemon.
io/

Nordmann, A. (2014). Wind turbine int. Retrieved May 30, 2023, from
https://commons.wikimedia.org/wiki/File:Wind_turbine_int.svg

Oauth. (2023). Wikipedia. Retrieved April 27, 2023, from https : / / en .
wikipedia.org/w/index.php?title=OAuth&oldid=1151302967

Om strømpriser. (2023). Statnett. Retrieved April 24, 2023, from https:
//www.statnett.no/om-statnett/bli-bedre-kjent-med-statnett/om-
strompriser/

Optimization and root finding. (n.d.). SciPy. Retrieved May 11, 2023, from
https://docs.scipy.org/doc/scipy/reference/optimize.html

Passport - simple, unobtrusive authentication for node.js. (n.d.). Passport.
Retrieved May 9, 2023, from https://www.passportjs.org/

Python language documentation. (n.d.). Python Software Foundation. Re-
trieved May 23, 2023, from https://docs.python.org/3/

Ramírez Sebastián. (n.d.). Fastapi. Retrieved May 23, 2023, from https:
//fastapi.tiangolo.com/

React - the library for web and native user interfaces. (n.d.). React. Retrieved
April 27, 2023, from https://react.dev/

React (software). (n.d.). Wikipedia. Retrieved April 27, 2023, from https:
//en.wikipedia.org/w/index.php?title=React%5C_(software)
&oldid=1157304333

Renewable energy – powering a safer future. (n.d.). United Nations. Retrieved
May 30, 2023, from https://www.un.org/en/climatechange/raising-
ambition/renewable-energy

Sqlite. (2023). Wikipedia. Retrieved April 27, 2023, from https : / / en .
wikipedia.org/w/index.php?title=SQLite&oldid=1149593284

Steiness, C. (2008). Horns rev wind farm 06. Retrieved June 3, 2023, from
https://group.vattenfall.com/press-and-media/media-bank/wind-
solar-and-energy-storage

Typescript. (n.d.). Microsoft Corporation. Retrieved May 23, 2023, from
https://www.typescriptlang.org/

Uvicorn. (n.d.). Encode. Retrieved May 23, 2023, from https://www.uvicorn.
org/

Wake effect. (2003). Danish Wind Industry Association. Retrieved May 11,
2023, from https://web.archive.org/web/20090630074838/www.
windpower.org/en/tour/wres/wake.htm

78

https://nodejs.org/
https://nodejs.org/
https://nodemon.io/
https://nodemon.io/
https://commons.wikimedia.org/wiki/File:Wind_turbine_int.svg
https://en.wikipedia.org/w/index.php?title=OAuth&oldid=1151302967
https://en.wikipedia.org/w/index.php?title=OAuth&oldid=1151302967
https://www.statnett.no/om-statnett/bli-bedre-kjent-med-statnett/om-strompriser/
https://www.statnett.no/om-statnett/bli-bedre-kjent-med-statnett/om-strompriser/
https://www.statnett.no/om-statnett/bli-bedre-kjent-med-statnett/om-strompriser/
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://www.passportjs.org/
https://docs.python.org/3/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://react.dev/
https://en.wikipedia.org/w/index.php?title=React%5C_(software)&oldid=1157304333
https://en.wikipedia.org/w/index.php?title=React%5C_(software)&oldid=1157304333
https://en.wikipedia.org/w/index.php?title=React%5C_(software)&oldid=1157304333
https://www.un.org/en/climatechange/raising-ambition/renewable-energy
https://www.un.org/en/climatechange/raising-ambition/renewable-energy
https://en.wikipedia.org/w/index.php?title=SQLite&oldid=1149593284
https://en.wikipedia.org/w/index.php?title=SQLite&oldid=1149593284
https://group.vattenfall.com/press-and-media/media-bank/wind-solar-and-energy-storage
https://group.vattenfall.com/press-and-media/media-bank/wind-solar-and-energy-storage
https://www.typescriptlang.org/
https://www.uvicorn.org/
https://www.uvicorn.org/
https://web.archive.org/web/20090630074838/www.windpower.org/en/tour/wres/wake.htm
https://web.archive.org/web/20090630074838/www.windpower.org/en/tour/wres/wake.htm

BIBLIOGRAPHY

What is sqlite? (n.d.). SQLite. Retrieved April 27, 2023, from https://sqlite.
org/index.html

Wind energy basics. (n.d.). National Renewable Energy Laboratory. Retrieved
May 11, 2023, from https://www.nrel.gov/research/re-wind.html

79

https://sqlite.org/index.html
https://sqlite.org/index.html
https://www.nrel.gov/research/re-wind.html

Appendix A

Functional testing

A.0.1 Login/logout

• Logging in with either Google or GitHub should give the user access
to the site if their email is in the allowed_emails table.

• Clicking Logout should logout the user.

A.0.2 Redirect/navigate

• Users that are not logged in should be redirected to Login when trying
to access any of the pages that requires to be logged in.

• When logged in, Login page should redirect to Home.

• A failed login redirects to /failed page.

• Accessing a path which does not exist redirects to shows the NotFound
component.

• Navbar navigates the user to the appropriate page when clicked.

• Clicking one of the configurations on the Start page should navigate
to the Simulation page with this configuration.

• Reloading should show the same page the user is currently on.

80

Functional testing

A.0.3 Configuration

• Turbines must be 150 meters apart and added to the list when clicking
on the layout. Deleting turbines should remove them from the list.

• Wind directions must be a number between 0 and 360. Wind speeds
must be a number between 0 and 25. Both must be inserted to add a
wind sample. Deleting a sample should remove it from the list.

A.0.4 Save/update/share

• Saving a configuration requires a title. The saved configuration should
now appear on the Start page. The config can now be deleted at the
Start page.

• Updating an already saved configuration should update this configura-
tion and not save a new one. Clicking on the updated configuration
on the Start page should show the updated version.

• Sharing the current config requires a title and an email to share with
the given user and gives them a copy of the current config which they
can find on the Start page. This copy can be deleted without deleting
the original.

• Account type can be changed on the Profile page by clicking the button.

A.0.5 Simulation

• Requesting calculations without turbines or wind samples alerts the
user.

• Importing wind samples from Seklima as explained in the README
should add the samples to the list.

• Clicking Turbine power production should create two graphs: one
which shows total power production, and one which shows the turbine
powers for each wind sample.

• Clicking Turbine wind speeds should show a graph which shows
the turbine wind speeds for each wind sample.

81

Functional testing

• Clicking Turbine wake plots should show plots which shows how
the wind behaves for each sample.

• Clicking Turbine power plot should show a plot which shows the
turbine powers for each wind sample.

• Each plot/graph except Turbine power plot comes with a slider which
is synchronized with the other sliders. Dragging it should update each
graph/plot to the corresponding wind sample. Clicking Start should
start a simulation where graphs/plots go through the different wind
samples given by the simulation speed. The Reset button resets the
slider.

• Changing Time per wind sample under Power production updates
the graph and shows the correct numbers.

• Clicking Improve layout requires max 7 turbines, wind samples and
a Pro account. New and old layout are compared, and the user can
choose which to keep. Adding more turbines before choosing keeps the
old layout.

A.0.6 Download

• Downloading the Configuration CSV requires turbines and wind sam-
ples to download, and contains the correct values.

• After each calculation it is possible to download the results in appro-
priate formats (CSV/PNG) and these contain the correct values.

82

Appendix B

Network map

83

Network map

84

	Contents
	Acknowledgements
	Summary
	Introduction
	Assignment description
	Project goals
	Motivation

	Background
	Wind turbines
	Wake effect

	Work flow
	Discord
	GitHub

	Backend
	Python
	FLORIS
	FastAPI
	Uvicorn
	OAuth 2.0
	Passport and Express
	SQLite

	Frontend
	HTML and CSS
	React
	TypeScript
	Node.js

	Deployment
	Docker

	Design and construction of software
	Database
	Allowed emails
	Users
	Configs

	Authentication
	Express
	Routes
	App registration
	Strategies
	Serialization and deserialization
	Verifying logged in state

	Application programming interface
	Startup
	Turbine powers
	Turbine wind speeds
	Wake plots
	Power plot
	Improve layout
	Get config
	Load configs
	Save config
	Update config
	Delete config
	Share config
	Update user

	Pages
	Home (/)
	Login (/login)
	Profile (/profile)
	Start (/start)
	Simulation (/simulation)
	NoAccess (/failed)
	NotFound (/*)

	Deployment
	From development to production
	Shifting to modular service architecture
	Switching runtimes

	From production to deployment
	Hardware
	Network technologies
	Physical connections and connection speeds

	Evaluation of software
	Functional test
	User experience
	Challenges and limitations
	Features considered
	Further development

	Conclusion
	Appendix
	Functional testing
	Login/logout
	Redirect/navigate
	Configuration
	Save/update/share
	Simulation
	Download

	Network map

