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Abstract

Many modern control systems are implemented on devices that are resource constrained
in the form of computational power, energy consumption or bandwidth. Control systems
are conventionally implemented through periodic sampling and updating of the control
action, referred to as periodic control systems. As a consequence, periodic control systems
waste resources by updating the control action and sampling the state of a system, even
when it is not necessary. A more efficient way of spending resources is only to update
the control action or conduct sampling when necessary, referred to as aperiodic control
systems.

This thesis presents the theoretical background, implementation in simulation and
experimental validation of two strategies for realising aperiodic control systems. The
two strategies are event-triggered and self-triggered control. The Quanser 3 DOF hover,
an experimental drone-like system, serves as the basis for both the simulation model
and experimental validation of the two strategies. Event-triggered control is a reactive
strategy, meaning it continuously monitors the state of the system to update the control
action aperiodically. Whereas self-triggered control is a proactive strategy, meaning that
the state of the system is sampled aperiodically, as well as the update of the control action.
Both strategies are designed based on the solution of a linear matrix inequality derived
from a Lyapunov function. It is found that both strategies perform well in simulation, but
only the event-triggered control strategy provides adequate performance on the Quanser
3 DOF hover. The reason why the self-triggered control strategy performs inadequately
when tested on the Quanser 3 DOF hover is likely due to unmodelled dynamics and
disturbances.
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Chapter 1

Introduction

Most commonly, control systems are realised with a periodic sampling rate and periodic
updates of the control action [1]. The advantage of periodic sampling is that if the time
between samples is chosen to be sufficiently small, modelling of the control system can
be done without having to make any significant assumptions about the sampling process.
A drawback to periodic control is that updates of the control action and sampling of
the state are conducted regardless of whether it is necessary. Hence, spending more
energy, computation power and bandwidth to transfer the sampled data than necessary.
For systems not restricted by these drawbacks, periodic control is possibly the best
alternative to realise control systems due to its simplicity. On the other hand, for systems
limited by any of these drawbacks, implementing techniques that only update the control
action or sample the state when necessary will be beneficial in terms of saving resources.
Only updating the control action or sampling the state when necessary is denoted as
aperiodic control. The overall objective of this thesis is to investigate two techniques for
implementing aperiodic control.

The first technique for realising aperiodic control is event-triggered control (ETC). The
main idea behind the ETC strategy is to update the control action aperiodically and
sample the system’s state continuously. Updates of the control action are conducted
when a designed triggering condition violates a specified threshold. There are different
methods of designing triggering conditions, where the common factor is that the algorithm
continuously monitors the system’s state and compares it to the state of the system at
the last time the control action was updated. In this thesis, the triggering condition of
the controller is designed based on the derivative of a quadratic Lyapunov function.

The second technique for realising aperiodic control is self-triggered control (STC). Similar
to ETC, STC updates the control action aperiodically. Additionally, STC samples the
system’s state aperiodically. The main idea behind STC is to plan the next instance at
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2 Chapter 1 Introduction

which sampling of the system’s state and updating the control action is required. This is
done based on a comparison between the predicted state trajectory of the system and an
exponentially decreasing function based on the desired decay rate of the system. The
predicted state trajectory is computed based on the sampled state, control input and a
model of the system. The exponentially decreasing function is based on the sampled state
of the system. The difference between ETC and STC is that ETC relies on continuous
monitoring of the state, meaning that it is reactive, while STC relies on a simulated
model and prediction of the state, meaning that it is proactive.

The two control strategies are implemented on the Quanser 3 degrees of freedom (DOF)
hover [2], which can be seen in Figure 2.1. The control strategies are tested and verified
in a simulation environment modelled based on the 3 DOF hover and on the actual
3 DOF hover in the laboratory of UiS. The 3 DOF hover is a stationary quadcopter
with 3 DOF, yaw, pitch, and roll, which is configured to be controlled by MATLAB and
SIMULINK. The experiments conducted in the thesis test the self-stabilising capabilities
of the two control strategies. Additionally, the first presented ETC strategy is further
developed to be able to follow a reference signal, which is tested in simulation and by
experimental validation.

1.1 History

Most articles that discuss aperiodic control have been published within the last 20 years.
This does not mean that it only has been discussed recently. The first examples of
articles discussing aperiodic control were published in the 1960s. Some examples of
articles published in the 1960s are [3], [4] and [5]. One of the reasons why aperiodically
control has been researched extensively in the last 20 years is the publication of [6],
which proved that aperiodic control could be very effective in control systems, in addition
to the publication of [7], which proved that aperiodic control has the potential to save
significant amounts of computing resources. Both these articles were published in 1999.
The first article discussing STC [8] emerged in 2003. In 2007, [9] was published, which
implemented the ETC strategy on state space (SS) systems. In 2012, [10] was published,
which is probably the most referred to article within the research field of aperiodic
control. [10] gives introductory insights to both ETC and STC and presents the main
ideas behind the strategies.

Some of the main developments for aperiodic control over the past ten years have been
focused on physical implementations and use cases of the already defined theory. Because
this thesis focuses on implementing and developing algorithms for a drone-like system,
similar work has been researched in preparation for the thesis. Some examples are [11]
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and [12], which utilise ETC together with an LQR controller to achieve stabilisation from
different initial conditions and disturbances on a quadrotor drone. What separates [11]
and [12] from work done in this thesis is that the gain matrix is computed by solving a
linear matrix inequality (LMI) rather than using the LQR method, additionally reference
signal tracking has been implemented in this thesis. Another article that implements
ETC on a quadrotor drone is [13]. This is done using a non-linear controller, which
separates it from the controller implemented in this thesis.

1.2 Project Description

The following project description in cursive is the original one presented to me when I
applied to write the thesis.

Event-triggered and self-triggered control of the 3 DOF hover system
Event-triggered control and safe-triggered control are two control approaches that consist of
two elements: i) a feedback controller that computes the control action, and a triggering
mechanism the determines when the control action is to be computed again. Event-
triggered control is reactive since the triggering condition is based on monitoring the
current measurements and detecting when some performance index becomes degrades. On
the other hand, self-triggered control is proactive since the next control update time is
precomputed according to model-based predictions. Both approaches have the potential of
saving time when compared to traditional periodic sampling approaches.

The goal of the project is to test these two control strategies on the 3 DOF Hover produced
by Quanser which is available in the laboratory at UiS. This equipment consists of a
planar round frame with four propellers mounted on a three degree of freedom pivot
joint that enables the body to rotate about the different axes (roll, pitch, and yaw). The
propellers generate a lift force that can be used to directly control the pitch and roll angles.

Activities and Objectives

• Literature study and analysis of the state-of-the-art of event-triggered and self-
triggered control

• Implementation and evaluation of event-triggered control in a simulation environ-
ment

• Implementation and evaluation of self-triggered control in a simulation environment

• Experimental validation of the designed control laws on the 3 DOF Hover system
available at the laboratory at UiS
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1.3 Thesis Outline

The remaining outline of this thesis is structured as follows:

• Chapter 2 presents the system description of the Quanser 3 DOF hover, which
consists of mathematical modelling and SS representation of the system.

• Chapter 3 contains the theoretical background on which the thesis is based. The
Chapter starts with sections defining theoretical concepts used in the ETC and
STC strategies. These sections are followed by longer sections that present the
ETC and STC strategies.

• Chapter 4 presents the experiments that have been conducted and the results of
these in the form of figures, tables and some discussion.

• Chapter 5 discusses the results presented in Chapter 4 to a greater extent. This
Chapter also compares the strategies and gives some ideas for future work that can
be of interest.

• Chapter 6 contain the final conclusion of the thesis.



Chapter 2

System Description

The control strategies presented in the thesis are tested on a simulation model based
on the 3 DOF hover, referred to as simulation, and by experimental validation on the
physical Quanser 3 DOF hover depicted in Figure 2.1, referred to as the 3 DOF hover.
The design of the simulation model and the setup of the physical model are based on the
works found in [14], published by the producer Quanser. The 3 DOF hover is a stationary
quadcopter with 3 DOF, yaw, pitch, and roll, which is configured to be controlled by
MATLAB and SIMULINK [14]. The 3 DOF hover consists of four propellers driven by
individual DC motors, mounted on a planar frame which is coupled to the stationary base
pedestal [14]. The angles of the three axes are controlled by the propellers and measured
by high-resolution encoders. The transmitted and received signals, motor commands and
encoder signals, respectively, are communicated through a slip ring mechanism, which
allows the yaw axis to move continuously without limitations.

Figure 2.1: The Quanser 3 DOF hover [14].

5



6 Chapter 2 System Description

2.1 Modeling

Figure 2.2 shows a free-body diagram of the physical system depicted in Figure 2.1. The
positive rotation of the three axes is defined, as well as the positive direction of actuated
force by the individual propellers on the system. The front and back propellers have
been defined as having a positive rotation direction as counter-clockwise (CCW), and
the right and left propellers have been defined as having a positive rotation direction as
clockwise (CW).

Figure 2.2: Free-body diagram of 3 DOF Quanser aero [14].

2.1.1 Pitch and Roll Axes

The dynamics for the roll and pitch axes can, in general, be denoted as:

Jiθ̈i(t) = ∆F (t)L (2.1)

where i = p for pitch angle and i = r for roll angle. Ji is used to describe the moment
of inertia about the pitch/ roll axes, θ̈i(t) is the double time derivative of the pitch/
roll angle relative to the pivot point, i.e. the acceleration about the pitch/ roll axes,
∆F (t) describes the differential thrust-force (difference between Ff (t), Fb(t), Fr(t) and
Fl(t)), actuated by the propellers and L is the distance from the pivot to the individual
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propellers. Figure 2.3 presents a free-body diagram for the pitch axis. The description
also holds for the roll axis if relevant variables are changed.

Figure 2.3: Free-body diagram of pitch axis [14]. This free-body diagram also holds for
the roll axis if we change to the relevant variables.

To further extend the general expression in Equation (2.1) for the pitch axis, the DC
motor voltages Vf (t) and Vb(t) and a force-thrust constant Kf of the motors/ propellers
are introduced. The expression for the thrust forces can be expanded to Fi(t) = KfVi(t).
This results in the expression:

Jpθ̈p(t) = LKf (Vf (t) − Vb(t)) (2.2)

where the relevant symbols are described in Table 2.1.

Table 2.1: Parameters and variables related to the pitch axis.

Symbol Description Value Unit
L Distance from the pivot to the motor 0,197 m
Jp Moment of inertia about the pitch axis 0,0552 kg m2

Kf Force-thrust constant of motor/ propeller 0,1188 N/ V
θp(t) Pitch angle Variable r
Vf (t) Front motor voltage Variable V
Vb(t) Back motor voltage Variable V

The dynamics of the roll axis can be derived in the same way as the pitch axis. This is
because the axes are perpendicular to each other. The dynamics for the roll axis are:

Jrθ̈r(t) = LKf (Vr(t) − Vl(t)) (2.3)

where the relevant symbols are described in Table 2.2.
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Table 2.2: Parameters and variables related to the roll axis.

Symbol Description Value Unit
L Distance from the pivot to the motor 0,197 m
Jr Moment of inertia about the roll axis 0,0552 kg m2

Kf Force-thrust constant of motor/ propeller 0,1188 N/ V
θr(t) Pitch angle Variable r
Vr(t) Right motor voltage Variable V
Vl(t) Left motor voltage Variable V

2.1.2 Yaw Axis

The dynamics of the yaw axis can be described by asserting all torques actuated by the
rotating propellers:

Jy θ̈y(t) = ∆τ(t) = τl(t) + τr(t) − τf (t) − τb(t) (2.4)

where ∆τ(t) is the difference in torque exerted on the system by all the individual
motors. Figure 2.4 presents a free-body diagram describing the yaw axis’s movement
and dynamics.

Figure 2.4: Free-body diagram of yaw axis [14].
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A more specific term can be derived for the dynamics of the yaw axis in the same way
as it was done for the roll and pitch axes. The torques actuated by the propellers are
replaced by the motor voltages multiplied by the force-thrust constant of the motors,
τi(t) = KtVi(t). Resulting in the extended-expression:

Jy θ̈y(t) = Kt(Vr(t) + Vl(t)) −Kt(Vf (t) + Vb(t)) (2.5)

where the relevant symbols are described in Table 2.3.

Table 2.3: Parameters and variables related to the yaw axis.

Symbol Description Value Unit
Jy Moment of inertia about the yaw axis 0,110 kg/ m2

Kt Torque thrust constant of motor/ propeller 0,0036 Nm/ V
θy(t) Yaw angle Variable r
τl(t) Torque generated by left CW rotor Variable Nm
τr(t) Torque generated by right CW rotor Variable Nm
τf (t) Torque generated by front CCW rotor Variable Nm
τb(t) Torque generated by back CCW rotor Variable Nm

2.2 State-space Model

SS models are mathematical representations used to describe the behaviour of a dynamical
system in a compact form. The simplest SS representation is the linear SS model, which
is the form in which the 3 DOF hover is represented in this thesis. In general, SS models
for linear time invariant (LTI) systems can be written on the form [15]:ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(2.6)

where the relevant symbols are described in Table 2.4. The state vector describes the
current state of the system. For the 3 DOF hover, an appropriate choice for the state
vector is for it to contain the angular position and the angular velocity for the three axes,
resulting in the state vector:

xT (t) = [θy(t) θp(t) θr(t) θ̇y(t) θ̇p(t) θ̇r(t)] (2.7)

Together with the output vector containing the angular positions:

yT (t) = [θy(t) θp(t) θr(t)] (2.8)
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Table 2.4: Notations related to the SS model. The dimensions of the matrices and
vectors in the table are defined by n− states, m− inputs and p− outputs.

Symbol ∈ Description
A Rn×n State matrix
B Rn×m Input matrix
C Rp×n Output matrix
D Rp×m Feedthrough matrix
x Rn State vector
y Rm Output vector
u Rp Input vector

The input vector for the system is described by what act on the system, which for the 3
DOF hover is the voltages of the individual motors:

uT (t) = [Vf (t) Vb(t) Vr(t) Vl(t)] (2.9)

The state matrix is derived by considering the relation between ẋ and x, which for the 3
DOF hover results in:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


(2.10)

To formulate the input matrix, B, Equations (2.2) - (2.4) are considered, together with
the control vector , given by Equation (2.9), leading to:

B =



0 0 0 0
0 0 0 0
0 0 0 0

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy

LKf

Jp
−LKf

Jp
0 0

0 0 LKf

Jr
−LKf

Jr


(2.11)

The output matrix, y, is defined by considering the output vector denoted in Equation
(2.8) and the state vector denoted in Equation(2.7):

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 (2.12)
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Finally, for the SS model, the feedthrough matrix, D, is a null matrix:

D =


0 0 0 0
0 0 0 0
0 0 0 0

 (2.13)

When the SS system given by Equation (2.6) is discussed going forward in this thesis,
the term containing the feedthrough matrix will be left out, as all the elements of the
matrix are zero. By combining all the derived matrices denoted in Table 2.4 into the
expression for the SS system, given by Equation (2.6), the compact SS representation for
the 3 DOF hover is defined as:



θ̇y(t)

θ̇p(t)

θ̇r(t)

θ̈y(t)

θ̈p(t)

θ̈r(t)


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





θy(t)

θp(t)

θr(t)

θ̇y(t)

θ̇p(t)

θ̇r(t)


+



0 0 0 0

0 0 0 0

0 0 0 0

−Kt
Jy

−Kt
Jy

Kt
Jy

Kt
Jy

LKf

Jp
−LKf

Jp
0 0

0 0 LKf

Jr
−LKf

Jr





Vf (t)

Vb(t)

Vr(t)

Vl(t)




θy(t)

θp(t)

θr(t)

 =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





θy(t)

θp(t)

θr(t)

θ̇y(t)

θ̇p(t)

θ̇r(t)


(2.14)





Chapter 3

Theoretical Background

3.1 Linear Quadratic Regulator

A popular control strategy for SS systems is the linear quadratic regulator (LQR), which
utilises a feedback loop. LQR is a feedback control method based on minimising a cost
function. The general form of the cost function, used for the SS system, representing the
3 DOF hover in this case, consists of quadratic terms of the state vector x(t) and the
input vector u(t) on the form [16]:

J =
∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t))dt (3.1)

where the matrices Q and R are weighing matrices specified by design. Q and R are
positive definite and symmetric matrices. Where a symmetric matrix is defined as a
quadratic matrix that is symmetric about its diagonal, this can formally be written as
B = BT , where B is an arbitrary quadratic and symmetric matrix. A matrix is defined
as a positive definite matrix if all the eigenvalues of a quadratic matrix are real and
positive. It can be proven that the optimal control law for the LQR strategy is [16]:

u(t) = −R−1BTP (t)x(t) = −Kx(t) (3.2)

where P (t) is found by solving a Riccati differential equation of the form[16]:

ATP (t) + P (t)A− P (t)BR−1BTP (t) +Q = 0 (3.3)

Appendix B, Figure B.1 presents an example of a system controlled by an LQR controller
in a feedback loop. This example is conducted to compare with the performance of one

13



14 Chapter 3 Theoretical Background

of the experiments conducted in Chapter 4. Figure 3.1 is an example of a typical periodic
feedback control system in which the LQR strategy could be applied.

Figure 3.1: Block diagram of a feedback loop.

3.2 State-space Trajectories

One of the main components of the STC algorithm, which is presented later in Section 3.5,
is the computation of the expected state trajectory of the system. The state trajectory
is the first equation in the equation set of the SS equations. The SS trajectory is often
referred to as the solution to the SS equations. The general form of the SS equations is:ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(3.4)

The solution/ trajectory of the SS equations is [17]:x(t) = eA(t−t0)x(t0) +
∫ t

0 e
A(t−s)Bu(s)ds

y(t) = CeA(t−t0)x(t0) + C
∫ t

0 e
A(t−s)Bu(s)d

(3.5)

where t0 is initial time and x(t0) is the initial state. The state trajectory presented in
Equation (3.5) can be used to compute the state at the time, t, in Figure 3.2 the output
trajectory of the 3 DOF hover described by Equation (2.14) is shown. Only states the
output trajectory consisting of states x1, x2 and x3 are shown in the figure. The states
remaining states of the state vector, x4, x5 and x6, which are the angular velocity of the
system, are not shown here since it is easier to get a visual understanding of the angular
positions rather than the angular velocity. Moreover, only the output, y(t), consisting of
the angular position of the three axes, is presented in the figures throughout the thesis,
even though it is the full state that is used in computations.
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Figure 3.2: Example of SS trajectory. The system is initialised from a state where the
yaw, pitch and roll axes are 8, 10 and −10 degrees, respectively.

The system is controlled by a feedback controller u(t) = Kx(t). Later, in Section 3.4, it
is described how the gain matrix, K, is computed.

3.2.1 Tustin Discretisation

One challenge when implementing the state trajectory of Equation (3.5) in the STC
algorithm is the computation of the integral. This is because integrals generally are
functions of continuous time, whereas when implemented on digital platforms, the
integrals have to be implemented in discrete time. There are several methods for
discretising a signal. Some examples are forward Euler discretisation, backward Euler
discretisation, Tustin discretisation, and zero-order hold discretisation. In this thesis,
Tustin discretisation is the preferred method for discretisation because it preserves
stability, it is relatively easy to implement, and it produces an approximation with low
error [18]. Whereas the two Euler methods are also easy to implement but are less
accurate compared to the Tustin method, forward Euler does not guarantee that stability
is preserved, and zero-order hold is more complex to implement.
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Tustin approximation of an integral can be computed as[19]:

y(tn+1) = y(tn) +
∫ tn+1

tn

f(t,y(t))dt

≈ y(tn) + h

2 [f(tn, y(tn)) + f(tn+1, y(tn+1))] (3.6)

where h = tn+1 − tn. Visually, Equation (3.6) can be thought of as the total area
contained by the red lines, which is the Tustin approximate of the area below the function
defined by the blue line.

Figure 3.3: The area under the function, represented by the blue line, can be approxi-
mated using the Tustin approximation, represented by the area contained by the red

lines.

3.3 Lyapunov Functions

Lyapunov functions are commonly used to analyse dynamical systems to determine a
system’s stability. A Lyapunov function is a scalar function, which is defined to be
decreasing, i.e. the derivative of the Lyapunov is, by definition, negative [20]. Lyapunov
functions can be thought of as a scalar function which provides information about the
energy contained in the current state of the system. A commonly utilised Lyapunov
function for LTI SS representation is the quadratic Lyapunov function. Consider the SS
system defined in Equation (3.4), then the quadratic Lyapunov function of the system is:

V (x(t)) = x(t)TPx(t) (3.7)
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where P is a positive definite and symmetric matrix. The following Subsection 3.3.1
explains more about how the matrix P is computed. This thesis utilises quadratic
Lyapunov functions in both the ETC and STC strategies. Figure 3.4 presents the
quadratic Lyapunov function of the previously provided example depicted in Figure 3.2.

Figure 3.4: Quadratic Lyapunov function of the SS trajectory shown in Figure 3.2.

3.3.1 Linear Matrix Inequalities and the Derivative of the Lyapunov Function

LMIs refer to matrix inequalities consisting of matrix variables that are linear, as the
name implies. Later in this Chapter, when introducing the ETC and STC strategies
LMIs are encountered when deriving the respective algorithms. To lay the groundwork
for the later presented control strategies, this section provides a simple example of how
a quadratic Lyapunov function is used to derive a general LMI problem. First, the
following SS system is considered:

ẋ(t) = Ax(t) (3.8)

where the quadratic Lyapunov function of the system is:

V (x(t)) = xT (t)Px(t) (3.9)
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where P is a positive definite and symmetric matrix. The derivative of the Lyapunov
function in the Equation (3.9) is:

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)Pẋ ≤ 0

= xT (t)ATPx(t) + xT (t)PAx(t) ≤ 0

= xT (t)
(
ATP + PA

)
︸ ︷︷ ︸

LMI

x(t) ≤ 0 (3.10)

where the LMI is marked by the curly bracket in the last line of the equation. This LMI
is on the form most commonly encountered in the field of control theory [20].

ATP + PA ≤ 0 (3.11)

The LMIs are solved using the toolbox YALMIP [21] together with the solver Mosek in
MATLAB. One example of how an LMI like the one in Equation (3.11) can be solved
using YALMIP is shown in Listing 3.1:

1 yalmip ('clear ');
2 P = sdpvar (6);
3 LMI = A '*P + P*A;
4 tol = 1e -10;
5 value = tol*eye (6);
6
7 Constraints = [P >= value , LMI <= -value ];
8 ops = sdpsettings ('solver ', 'mosek ', 'verbose ', 0);
9 res_opt = optimize ( Constraints , [], ops);

10
11 P = double (P);

Listing 3.1: Using YALMIP to solve LMI denoted in Equation (3.11).

3.4 Event-triggered Control

The main purpose of the ETC strategy is to reduce the number of times the controller
updates the control action, i.e. saving resources in the control system. This is achieved
by updating the control action aperiodically instead of periodically. To implement ETC,
a triggering condition is required. When the value of the triggering condition is greater
than a specified threshold, the control action is updated.
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There are several different ways in which a triggering condition can be developed. The
simplest implementation of a triggering condition is based on comparing the measured
state of the system with the state of the system at the previous time of which the control
action was updated and checking if the difference between the measurements is below a
specified performance threshold, an algorithm for this type of ETC is presented in [7].
Another way of implementing ETC is by designing a triggering condition based on a
Lyapunov function. Similar to the first mentioned implementation, the Lyapunov-based
implementation measures the state of the system and the state of the system at the
previous time at which the control action was updated, but instead of comparing these
two measurements directly and checking a specified threshold, it considers a quadratic
Lyapunov function with the two measurements as input variables and checks if the decay
rate/ derivative of the Lyapunov function is inline with a decay rate specified by design.
In this thesis, an algorithm based on the Lyapunov function is used to implement ETC
for the 3 DOF hover, both in a simulation environment and on the 3 DOF hover. The
ETC algorithm developed and presented here is based on the work found in [9], [10] and
[22]. Figure 3.5 presents the main idea behind ETC visually, implemented in a feedback
loop, as a block diagram. The figure highlights that the triggering condition uses the
measured state of the system and the state of the system at the previous time at which
the control action was updated as input arguments.

Figure 3.5: Block diagram visually presenting the main idea behind ETC.

In order to introduce ETC, the following SS system is considered:ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.12)
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and the linear feedback control law:

u(t) = Kx(t) (3.13)

By combining the first equation of the SS system given by Equation (3.12) with the
linear feedback control law given by Equation (3.13), the following closed-loop system is
obtained:

ẋ(t) = (A+BK)x(t) (3.14)

The closed-loop system denoted in Equation (3.14), is used when developing the ETC
algorithm. Next, the following quadratic Lyapunov function is defined:

V (x(t)) = xT (t)Px(t) (3.15)

where P is a symmetric and positive definite matrix. Furthermore, to design a triggering
condition for the ETC algorithm, the derivative of the Lyapunov function, denoted in
Equation (3.15) is defined, based on the closed-loop system presented in Equation (3.14):

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)Pẋ(t)

= xT (t)(A+BK)TPx(t) + xT (t)P (A+BK)x(t)

= xT (t)[(A+BK)TP + P (A+BK)]︸ ︷︷ ︸
−Q

x(t)

= −xT (t)Qx(t) (3.16)

where Q is the specified rate of decrease for the derivative of the Lyapunov function,
V̇ (x(t)). Since the derivative of Lyapunov functions, as discussed in Section 3.3, is
negative, V̇ (x(t)) is always negative. In order to formulate an inequality which can be
used to design the triggering condition for the controller, V̇ (x(t)) is required to be less
or equal to the specified rate of decrease, −xT (t)Qx(t):

V̇ (x(t)) ≤ −xT (t)Qx(t) (3.17)

In some cases, it may be desired to specify a slower rate of decrease than what is defined
in Equation (3.17). This can be achieved by introducing a parameter σ ∈ [0,1), which
leads to the weaker inequality [10]:

V̇ (x(t)) ≤ −σxT (t)Qx(t) (3.18)

which is a weaker inequality than the one presented in Equation (3.17), meaning it will
have a slower rate of decrease. Smaller values of σ lead to a slower rate of decrease,
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larger values of σ will lead to faster rates of decrease and σ = 1 yield the same inequality
as denoted in Equation (3.17). In Appendix C, the effect of different values of σ can be
seen. Later in Chapter 4, the various plots in Appendix C are explained to a greater
extent. After introducing σ, V̇ (x(t)) can no longer be considered a Lyapunov function
because Lyapunov functions are required to be decreasing. Instead, V̇ (x(t)) can be called
a Lyapunov-like function, but for simplicity in the context of this thesis, V̇ (x(t)) will
still be referred to as a Lyapunov function.

In order to calculate the Lyapunov function given by Equation (3.15) and the derivative
of the Lyapunov function given by Equation (3.16), the matrices K, P and Q has to be
defined. The matrices are found by solving the bilinear matrix inequality (BMI), which
is a factor in the derivative of the Lyapunov function given by Equation (3.16):

Q = −[(A+BK)TP + P (A+BK)] ≤ 0, (3.19)

this is a BMI due to the product between variables P and K, which both are matrices
that are defined by the solution of the BMI. The BMI is a non-convex optimisation
problem which generally is hard to solve. A better approach to solve the inequality
is to redefine the BMI presented in Equation (3.19) to an LMI by introducing the
transformation Y = KP−1 and apply the Schur complement [23]. LMIs are convex
optimisation problems, which in comparison to BMIs, are easy to find a solution to. By
doing the substitution and applying the Schur complement, the following expression is
derived:

Q = −[(A+BK)TP + P (A+BK)] ≤ 0

= −[ATP +KTBTP + PA+ PBK] ≤ 0

= −[P−1AT + P−1KTBT +AP−1 +BKP−1] ≤ 0

= −[AP T +BY + PAT + Y TBT ] ≤ 0 (3.20)

which can be solved using the same methodology as presented in Subsection 3.3.1, using
YALMIP [21]. The specific implementation in MATLAB used to find the solution of
the LMI denoted in Equation (3.20) is shown in Appendix E.1. The solution of the
LMI is defined by the matrices Y and P , which can be used to compute K = Y P and
Q = −[AP T +BY + PAT + Y TBT ]. When designing the triggering condition, it has to
be considered that the linear feedback control law, presented in Equation (3.13), is kept
constant between sampling and update instances, which is denoted as:

u(t) = u(tk) = Kx(tk) (3.21)
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As a consequence of the updated linear feedback control law introduced in Equation
(3.21), the closed-loop system, presented in Equation (3.14), is changed to:

ẋ(t) = Ax(t) +BKx(tk) (3.22)

As discussed earlier, the triggering condition takes the measured state of the system
and the state of the system at the previous time of which the control action as input
variables, this is formulated as:

∆x(t) = x(tk) − x(t) (3.23)

which substituted into Equation (3.22) yields the following closed-loop system:

ẋ(t) = (A+BK)x(t) +BK∆x(t) (3.24)

Looking back to the derivative of the Lyapunov function defined in Equation (3.16), all
matrices have now been defined, and ẋT (t) has to be derived to find the final expression.
The transposed of the state derivative can be formulated as:

ẋT (t) = [(A+BK)x(t) +BK∆x(t)]T

= [(A+BK)x(t)]T + [BK∆x(t)]T

= xT (t)(A+BK)T + (BK∆x(t))T (3.25)

Furthermore, the derivative of the Lyapunov function for the new closed-loop system is
found by substituting Equations (3.24) and (3.25) in Equation (3.16), as shown below.

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)Pẋ(t)

= [xT (t)(A+BK)T + (BK∆x(t))T ]Px(t)

+ xT (t)P [(A+BK)x(t) +BK∆x(t)]

= xT (t)(A+BK)TPx(t) + xT (t)P (A+BK)x(t) + (BK∆x(t))TPx(t)

+ xT (t)PBK∆x

= xT (t)[(A+BK)TP + P (A+BK)]x(t) + 2xT (t)PBK∆x(t)

= −xT (t)Qx(t) + 2xT (t)PBK∆x(t) (3.26)

As discussed when Equation (3.17) was presented, the variable σ ∈ [0,1) is introduced to
be able to specify a slower rate of decrease. This leads to the following derivative of the
Lyapunov function:

V̇ (x(t)) = −xT (t)Qx(t) + 2xT (t)PBK∆x(t) ≤ −σxT (t)Qx(t) (3.27)
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which is defined as the triggering condition:

ψ = (σ − 1)xT (t)Qx(t) + 2xT (t)PBK∆x(t) ≤ 0 (3.28)

ψ is introduced to represent the trigger condition. In Chapter 4, containing the experi-
ments of this thesis, ψ is used when discussing the trigger condition. The implementation
of the triggering condition, ψ, in MATLAB can be seen in Appendix E.3.

3.4.1 An Improved Gain Matrix

During testing and experimentation, it was found that the initial gain matrix, K, which
is found by solving the LMI in Equation (3.20) and substituting into K = Y P , is not
very effective. This is because the elements of the derived gain matrix are relatively
small, which in turn, results in conservative error compensation in the feedback loop.
One method which can be utilised to find a more effective/aggressive gain matrix is to
move the poles of the closed-loop system further into the left half plane, as illustrated in
Figure 3.6.

Figure 3.6: Conceptual graph shoving movement of poles further into the left half plane.

Definition 4.1: " Let D be a domain on the complex plane, which is symmetric about
the real axis. Then, a matrix A ∈ Rn×n is said to be D-stable if " [20]

λi(A) ∈ D, i = 1, 2,..., n. [20] (3.29)
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The idea of D-stability has to be considered to obtain a gain matrix that yields faster
and more precise control of the system. The idea is to establish LMI conditions for the
D-stability of a matrix with different given D-regions [20]. In other words, this means
that conditions are introduced when solving the LMI, which moves the stability region of
the system further into the left-half plane. In practice, this means forcing the system’s
closed-loop eigenvalues further into the left half-plane. This can be written formally as
presented in Equation (3.30) and observed graphically in Figure 3.7.

D = Hα = {x+ jy | x < −α} (3.30)

where Hα is a Hurwitz stable set. Hurwitz stability, H, is commonly used to check if a
system is stable. A system is asymptotically stable, according to the Hurwitz criterion, if
the real part of all the eigenvalues of the system is strictly negative [24]. This is formally
written as Re[λi(A + BK)] < 0. This means that the closed-loop eigenvalues of the
system are contained in the shaded area/ D-region of Figure 3.7, and thus, the system is
stable.

Figure 3.7: Conceptual graph, showing D-region being moved further into the left
half-plane.

To alter the D-region, a term containing a constraint is introduced to the derived LMI.
The new LMI with the added constraint is shown in Equation (3.31), which requires that
all the poles of the system are located within the specified D-region.

AP T +BY + PAT + Y TBT ≤ −2αP [20] (3.31)



Chapter 3 Theoretical Background 25

where P is symmetric and positive definite and K = Y P . In other words, the D-region
of the system is moved further into the left-half plane, depending on the chosen value of
α. which can be solved using the same methodology as presented in Subsection 3.3.1,
using YALMIP. The specific implementation in MATLAB used to find the solution of
the LMI denoted in Equation (3.31) is shown in Appendix E.2.

3.4.2 Reference Tracking

The ETC strategy presented up to this point is designed to drive the system towards zero
degrees in all axes, i.e. self-stabilise. However, for the 3 DOF hover and drone systems
in general, it is desirable to be able to manoeuvre the system. To achieve manoeuvring
of the system, reference tracking has to be introduced.

In general, tilting the pitch and roll axes of a drone system results in movements in
the horizontal plane. The dynamics of the pitch and roll axes have previously been
introduced in Equations (2.2) and (2.3). Similarly, the rotation of a drone can be achieved
by controlling the motors as described in Equation (2.5). Reference tracking allows for
specifying the angle of the three axes, allowing a drone to fly and manoeuvre as desired
over distances.

A block diagram of the main idea behind reference tracking in ETC is shown in Figure
3.8. The purpose of introducing reference tracking is that it is desired that the system
is able to follow a given reference signal, often different from zero. The ETC reference
tracking algorithm developed and presented here is based on the works found in [25].

Figure 3.8: Block diagram visually presenting the main idea behind ETC reference
tracking.

The triggering condition, presented in Equation (3.28) must be modified to allow the
system to follow a reference signal. This is achieved by introducing a virtual system that



26 Chapter 3 Theoretical Background

generates a reference signal in addition to the previously introduced system description.
Consider the previously presented SS system:ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.32)

and the sampled version of the linear feedback control law:

u(tk) = Kx(tk) (3.33)

together with the defined expression for the difference between the measured state of the
system and the state of the system at the previous time at which the control action was
updated:

∆x(t) = x(tk) − x(t) (3.34)

By substituting Equation (3.34) into Equation (3.33), followed by Equation (3.33) into
Equation (3.32), the following closed-loop system is:

ẋ(t) = (A+BK)x(t) +BK∆x(t) (3.35)

Next, a system that generates the reference signal is introduced:ẋr(t) = Axr(t) +Bur(t)

yr(t) = Cxr(t)
(3.36)

and the sampled version of the linear feedback control law:

ur(tk) = Kxr(tk) (3.37)

together with the defined expression for the difference between the measured state of the
system and the state of the system at the previous time at which the control action was
updated:

∆xr(t) = xr(tk) − xr(t) (3.38)

By substituting Equation (3.38) into Equation (3.37), followed by Equation (3.37) into
Equation (3.36), the following closed-loop system for the reference system is:

ẋr(t) = (A+BK)xr(t) +BK∆xr(t) (3.39)

To find the final system description for the reference tracking problem, the system
description, presented in Equation (3.35) and the reference system, presented in Equation
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(3.39) are combined, resulting in the following expression:

ė(t) = ẋ(t) − ẋr(t)

= (A+BK)e(t) +BK∆x(t) −BK∆xr(t) (3.40)

where e(t) = x(t)−xr(t). Furthermore, to obtain a Lyapunov function for the new system
defined by Equation (3.40), the same steps presented previously are now considered with
a more complex system. The quadratic Lyapunov function for the system is:

V (e(t)) = e(t)TPe(t) (3.41)

where P is symmetric and positive definite. Next, to define the triggering condition,
the derivative of the Lyapunov function, defined in Equation (3.41) has to be defined,
based on the closed-loop systems, presented in Equation (3.35) and the control law,
presented in Equation (3.39). Before deriving the full expression, the expression for ėT (t)
is considered:

ėT (t) = [(A+BK)e(t) +BK∆x(t) −BK∆xr(t)]T

= e(t)T (A+BK)T + (BK∆x(t))T − (BK∆xr(t))T (3.42)

By substituting the defined expressions, the derivative of the Lyapunov function presented
in Equation (3.41) is:

V̇ (e(t)) = ė(t)TPe(t) + e(t)TP ė(t)

= [e(t)T (A+BK)T + (BK∆x(t))T − (BK∆xr(t))T ]Pe(t)

+ e(t)TP [(A+BK)e(t) +BK∆x(t) −BK∆xr(t)]

= e(t)T [(A+BK)TP + P (A+BK)]e(t)

+ [(BK∆x(t))T − (BK∆xr(t)T )]Pe(t)

+ e(t)TP [BK∆x(t) −BK∆xr(t)]

= −e(t)TQe(t)

+ (BK∆x(t))TPe(t) + e(t)TP (BK∆x(t))

− (BK∆xr(t)TPe(t) − e(t)TP (BK∆xr(t))

= −e(t)TQe(t) + 2e(t)TPBK∆x(t) − 2e(t)TPBK∆xr(t)

= −e(t)TQe(t) + 2e(t)TPBK(∆x(t) − ∆xr(t))

= −e(t)TQe(t) + 2e(t)TPBK∆e(t) (3.43)
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As before, σ ∈ [0,1) is introduced to specify a slower rate of decrease. This yields the
following inequality:

V̇ (e(t)) = −e(t)TQe(t) + 2e(t)TPBK∆e(t) leq − σxT (t)Qx(t) (3.44)

which is defined as the triggering condition:

ψ = (σ − 1)e(t)TQe(t) + 2e(t)TPBK∆e(t) (3.45)

where ψ represents the triggering condition for the reference tracking problem. The
implementation of the triggering condition, ψ, in MATLAB can be seen in Appendix E.4.

3.5 Self-triggered Control

The primary goal of STC, like ETC, is to reduce the number of times the controller
has to update control action. Additionally, STC also saves resources by only sampling
the state of the system when the control action is updated. This will save resources in
the form of using the sensors of the system less, using less bandwidth, transferring the
signal from the sensor and processing the signal. In the STC strategy, the controller
decides when it is necessary to sample the state and update the control action. The
controller decides this based on knowledge of the system’s dynamics and the system’s
current sampled state. The main idea behind STC is to plan the next instance at which
sampling and updating are required based on a comparison between the predicted state
trajectory of the system, which is estimated based on the sampled state, control input
and the model of the system, and an exponentially decreasing function, with a specified
rate of decrease, which is based on the sampled state of the system. Due to the lack of
continuous state monitoring, the system is classified as an open-loop system during the
intervals between sampling instances. The algorithm developed and presented here is
based on the work found in [10], [26], [27] and [28]. Figure 3.9 presents the main idea
behind ST as a block diagram, which highlights that the triggering condition uses the
sampled state as an input argument.

The SS representation of the system is revisited:ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3.46)

and the sampled version of the linear feedback control law:

u(tk) = Kx(tk) (3.47)
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Figure 3.9: Block diagram visually presenting the main idea behind STC.

where the gain matrix, K, is designed in the same way as described in Subsection 3.4.1, by
solving the LMI denoted in Equation (3.31). Consider the previously presented quadratic
Lyapunov function:

V (x(t)) = xT (t)Px(t) (3.48)

where P is a symmetric and positive definite matrix.The main idea for the implementation
of STC in this thesis is based on comparing a Lyapunov function of a computed state
trajectory with an exponentially decreasing function [28]. A copy of the dynamics of the
system, denoted by Equation (3.46), with the same control input, as denoted in Equation
(3.47), is used to compute the expected trajectory of the plant [28]:

ξ̇(t) = Aξ(t) +BKx(tk) (3.49)

The quadratic Lyapunov function presented in Equation (3.48) of the closed-loop reference
system presented in Equation (3.49) is:

V (ξ(t)) = ξT (t)Pξ(t) (3.50)

The exponentially decreasing function is defined as [28]:

Vexp(t) = V (x(tk))e−λτ (3.51)

where V (x(tk)) is the value of the sampled quadratic Lyapunov function shown in
Equation (3.48) at time tk, τ = t − tk is the time between the current time t and the
time of the current update and sampling instance tk, and λ is the desired decay rate of
the system. The decay rate is defined as the smallest value found by considering the
absolute value of the real part of the eigenvalues of the system [27]. In other words, it
is the eigenvalue of the system furthest to the right in the left half plane. This is also
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referred to as the dominant eigenvalue of the system [17]. This is formally written as:

λ = min |real{λi(A+BK)}| (3.52)

where λ(A + BK) is the eigenvalue of A + BK. The reason for this choice of desired
decay rate is that it is desired that the STC implementation has the same decay rate as a
traditional periodical feedback system. Which has been designed by one of the Equations
(3.20) or (3.31). The triggering condition is based on the comparison between the
Lyapunov function of the closed-loop reference system, presented in Equation (3.50), and
the exponentially decreasing function, presented in Equation (3.51), which is formalised
as:

V (ξ(t)) ≤ Vexp(t) (3.53)

The inequality presented in Equation (3.53) is rewritten to be represented by the function
h(t, x(t)):

h(t, x(t)) = V (ξ(t)) − Vexp(t) ≤ 0 (3.54)

To find the next update and sampling instance for the system, the function presented
in Equation (3.54) is simulated inside the controller at the time instance of which the
control action is updated and a sampling of the state is conducted until inequality is
violated. For this to be implemented, the time variable t needs to be changed to the
emulated time variable τ , which results in the following [28]:

h(τ, ξ(τ)) = V (ξ(τ)) − Vexp(τ) ≤ 0 (3.55)

As previously stated, the goal of the presented STC strategy is to compute when a new
update and sampling instance of the system is required. This can formally be written
as[28]:

τv = max{τ ≤ τmax|h(τ, ξ(τ)) ≤ 0} (3.56)

where the output of the equation is time until the next sampling and update instance, τv.
τv is the max value of τ , below a design parameter, τmax, that guarantees the maximum
time between update and sampling instances, given that the inequality h(τ, ξ(τ)) of
Equation (3.55) has not been violated. The time instant of the next update and sampling
instance is given by the sum of the time at the current update and sampling instance,
and the computed time until the next update and sampling instance, τv:

tk+1 = tk + τv (3.57)
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3.5.1 Implementation in SIMULINK

The inequality presented in Equation (3.54) is implemented in SIMULINK using the block
MATLAB Function. The exponential decreasing function, introduced in Equation (3.51),
is implemented by sampling the value of the Lyapunov function at time tk and multiplying
it with the exponential term e−λτ . The Lyapunov function computed from the system,
which is a copy of the plant dynamics, introduced in Equation (3.50), requires further
steps in order to be implemented in the controller. The first step to this implementation
is to compute the state trajectory of Equation (3.49) with the time dependency of the
emulated time, τ , inside the controller. Previously in Section 3.2, the state trajectory of
a system was presented as:

x(t) = eA(t−t0)x(t0) +
∫ t

0
eA(t−s)Bu(s)ds (3.58)

The notations of the state trajectory, in Equation (3.58), are changed to better suit the
current problem, which is the state trajectory of the system, denoted in Equation (3.49):

ξ(τ) = eAτx(tk) + eAτ
∫ τ

0
e−Asds Bu(tk) (3.59)

The challenge of implementing Equation (3.59) is the implementation of the integral.
The integral has to be numerically approximated, which can be done by applying
Tustin approximation as previously described in Subsection 3.2.1. To apply the Tustin
approximation, the integral of Equation (3.59) has to be split into two parts:

∫ τ

0
e−Asds =

∫ τ−Ts

0
e−Asds︸ ︷︷ ︸∫

(P revious Iteration)

+
∫ τ

τ−Ts

e−Asds︸ ︷︷ ︸∫
(Current Iteration)

(3.60)

where Ts represents the time step duration, which serves as a parameter for quantifying
the temporal interval between successive computations associated with estimating the
state trajectory. The computational complexity of the STC strategy is linked to the
parameter Ts, in the sense that if Ts is chosen to be the same as the minimum update
and sampling time, the controller will do a computation to predict the state trajectory
as many times as the control action would have been updated in the traditional feedback
control strategy. If Ts is specified to be the same as the minimum update and sampling
interval, the STC strategy will only save resources for the sensors of the system in terms
of bandwidth usage and processing of sampled data. If Ts is specified to be larger than
the minimum update and sampling interval, additional resources will be saved in terms
of computational power.

∫
(Previous Iteration) is the integral from 0 to the previous

emulated time (τ − Ts) and
∫

(Current Iteration) is the integral from the previous time
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(τ − Ts) to the current emulated time τ . Equation (3.6) is used to approximate the
integral which is denoted as

∫
(Current Iteration) as follows:

∫ tn+1

tn

f(t,y(t))dt ≈ h

2 [f(tn, y(tn) + f(tn+1, y(tn+1)]

⇒
∫ τ

τ−Ts

e−Asds ≈ Ts

2 [e−A(τ−Ts) + e−Aτ ] (3.61)

By substituting the Tustin approximation of
∫

(Current Iteration) into Equation (3.59)
the following expression is found:

ξ(τ) = eAτx(tk) + eAτ
[
ξ(τ − Ts) + Ts

2 [e−A(τ−Ts) + e−Aτ ]
]
Bu(tk) (3.62)

where ξ(τ − Ts) is the expression previously considered as
∫

(Previous Iteration). Equa-
tion (3.62) is the Tustin approximation of Equation (3.59), which can be implemented in
SIMULINK using the block MATLAB Function. Furthermore, Equation (3.62) is imple-
mented as a factor of the Lyapunov function presented in Equation (3.50), which is a
term of the inequality denoted in Equation (3.54). Appendix E.5 contains a Listing with
the implementation of Equation (3.62) and Equation (3.57), which are the triggering
condition and the formulation used to find the next update and sampling instance of the
system.

3.5.2 Example: STC, Triggering Condition

Figure 3.10 provides an example of how the triggering condition, presented in Equation
(3.55), works in practice. In the left-hand side subplot, the exponentially decreasing
function is represented by the orange lines, and the "lobes" in blue are the computed
Lyapunov function of the state trajectory. It is important to note that the first data point
of each lobe is based on the true Lyapunov function of the system at the corresponding
time instance, while the remainder of the lobe is estimated using Tustin approximation
to predict the Lyapunov function of the state trajectory, as described by substituting
Equation (3.62) into Equation (3.50). For this reason, the last data point of each "lobe"
does not overlap perfectly with the start of the next one due to errors introduced by
the Tustin approximation. Normally, a solution to reduce the error is to break down
the integrals over smaller steps, i.e. smaller Ts, but this results in more computational
resources being spent, which STC aims to reduce in the first place. In the right-hand
side subplot, the triggering condition, presented in Equation (3.55), h(τ,x(tk)), is plotted.
From this plot, it can be observed that a new "lobe" starts every time a value greater
than zero appears. This is because when a lobe reaches a value greater than zero, the
triggering condition, denoted in Equation (3.55), is violated, which means that the next
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update and sampling instance is found. Which was formally introduced in Equation
(3.56) and Equation (3.57).

Figure 3.10: Comparison between the computed trajectory of the Lyapunov function
and the exponentially decreasing function. Each lobe corresponds to an update and
sampling instance. The individual lobe does not end exactly where the next one starts,
and this is due to computation errors accumulated because Tustin discretisation is used

to estimate the state trajectory of the system.





Chapter 4

Experiments and Results

This chapter is divided into three main sections, where each Section has different setups
with different algorithms and parameters:

1. ETC with the initial gain matrix: Implementation of the algorithm presented
in Section 3.4. Where the gain matrix is computed according to the solution of the
LMI defined in Equation (3.20). This means that the system’s D-region has not
been altered.

2. ETC with an improved gain matrix: The algorithm presented in Section 3.4
is used together with a gain matrix computed according to the solution of the LMI
presented in Equation (3.31) as introduced in Subsection 3.4.1. Additionally, the
algorithm presented in Subsection 3.4.2, which further develops the ETC strategy
to allow for reference tracking, is tested.

3. STC with an improved gain matrix: Which is the implementation of the STC
algorithm presented in Section 3.5 with a gain matrix computed according to the
solution of the LMI presented in Equation (3.31) as introduced in Subsection 3.4.1.

The three main sections contain one or more experiments. There are three types of
experiments:

1. Initial conditions: The system is initialised from a position where the angle of
all the axes is different from zero, and the goal is for the system to bring the angles
of all the axes to zero degrees. I.e. testing the ability of the system to self-stabilise.
The ability to self-stabilise is important because this type of problem often appears
from disturbances in drone systems. One such example is a drone affected by a
gust of wind. In this case, all the angles of the axes could be driven away from

35
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the desired angle, and by self-stabilising, the drone brings all the axes back to the
desired angle.

2. Disturbances: A one-second pulse of 5 Volts is introduced to each motor separately
to test the control strategy’s ability to self-stabilise when exposed to disturbances.

3. Reference tracking: In Subsection 3.4.2, it was discussed that driving the different
axes to different angles results in propulsion of the system. This is realised by
introducing reference tracking, allowing for specified angles to be tracked for each
axis.

Table 4.1 provides an overview of what type of experiment has been conducted in each
Section.

Table 4.1: Overview of what type of experiments have been conducted in each Section
of this Chapter.

Initial conditions Disturbances Ref. tracking
ETC - Initial K Experiment 1 Experiment 2
ETC - Improved K Experiment 3 Experiment 4 Experiment 5
STC Experiment 6

The general structure of the experiments consists of the following results, presented in
figures, tables and descriptions:

1. Periodic control (PC): Is the result of the traditional PC strategy in simulation,
as described in Section 3.1. This is presented first in order to define the ideal
scenario to compare the results obtained using the ETC and STC strategies in
simulation and on the 3 DOF hover.

2. Simulation of the specified control strategy: Is the results of the specified
control strategy (ETC or STC) in simulation.

3. Results from the 3 DOF hover the specified control strategy: Is the results
of the specified control strategy (ETC or STC) on the 3 DOF hover.

In each experiment, the same parameters are used across all three cases defined in the list
above, which includes the same gain matrix and decay rate parameter. The exception
from this structure is Experiment 5 - Reference Tracking, which contains results obtained
from the PC strategy on the 3 DOF hover in addition to the structure defined in the
list above. This is included in order to compare it to the results from the experiment on
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the 3 DOF hover because the performance was not as expected. This is discussed to a
greater extent in the experiment.

The figures in the experiments contain the following subplots, where subplots 1) − 3)
are structured in the same way for all the figures, starting from the uppermost subplot:
1) The output, y(t), of the system. I.e. the angular position of the three axes, yaw pitch
and roll. 2) The control action, u(t), of the four motors. I.e. the output voltage of each
motor. 3) The Lyapunov function, V (x(t)), of the system. This can be thought of as the
energy contained in the current state of the system.

After the first three subplots, the figures obtained using the ETC or STC strategies are
structured differently from each other. The remaining subplots contain the following:

• Unique for ETC: 4) Presents the triggering condition, which is defined as
described in Equation (3.28) or Equation (3.45), for ETC and ETC with reference
tracking, respectively. 5) Is a binary plot, meaning the values contained in the
plot are either logical 1 or 0. If the plot at a time instance is logical 1, this means
that the triggering condition at this point of time has been violated, and the
controller performs an update to the control action. Otherwise, if the plot at a
time instance is logical 0, it means that the triggering condition is not violated,
and the control action is kept constant and not updated at this point in time. 6)
Displays the interval of time elapsed between control action updates, where the
update frequency (UF) also can be observed. Although this data can be viewed in
the previous subplot, it is more easily interpreted when plotted against time.

• Unique for STC: 4) Is the discretised value of the Lyapunov function, which
is used to compute the Lyapunov function of the expected state trajectory and
the exponentially decreasing function denoted in Equation (3.55), which is used to
compute the next time of which an update and sampling instance is required. 5)
Presents the instances in which the control action is updated and sampling of the
state is performed. The amplitude of the update instances specifies the time until
a new update and sampling instance is required.
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4.1 Event-triggered Control - Initial Gain Matrix

The first two experiments, Experiment 1 - Initial Conditions and Experiment 2 - Distur-
bances, were conducted using a gain matrix K computed by solving the LMI presented
in Equation (3.20). The two experiments prove that the performance of the system with
the designed gain matrix is not very good in terms of minimising the integral absolute
error (IAE) for the three axes of the system. However, the two experiments prove that
the ETC strategy works as designed, and the results can be regarded as satisfactory. The
solution of the LMI was found using YALMIP as the method presented in Subsection
3.3.1 and shown in greater detail in Listing E.1. The computed gain matrix is:

K =


9,91 −1,52 0 6,71 −1,03 0
9,91 1,52 0 6,71 1,03 0

−9,91 0 −1,52 −6,71 0 −1,03
−9,91 0 1,52 −6,71 0 1,03

 (4.1)

At an early stage of the project, the decision to use σ = 0,997 was made to achieve the
best possible performance in terms of deviation from the desired reference. This value of
σ has been kept constant for all the experiments throughout the thesis. In Appendix C,
a comparison of three different values of σ is presented in a figure. The figure shows that
the performance in terms of the deviation of the state is best in the rightmost column,
obtained using σ = 0,997. However, this comes at the cost of a higher UF, which can be
observed by considering the leftmost column, obtained using σ = 0,333. In hindsight, it
can be discussed if choosing σ = 0,997 for the entire project is the most logical choice
since it comes at the cost of a higher UF.

4.1.1 Experiment 1 - Initial Conditions

Quantitative measurements from the experiment are presented in Table 4.2. The first
column indicates the type of test, where Sim. denotes test in simulation and Lab. denotes
a test on the 3 DOF hover. The second column corresponds to the figure associated with
the test. The columns labelled yaw, pitch, roll, and total show the IAE of the specified
axis as well as the total of all axes combined. This measurement provides insight into
how well the system performs in terms of error. The rightmost column presents the UF
of the control action, i.e. how many times the control action is updated per second. The
UF is set to 1000 for the traditional PC strategy, which is also the maximum UF that
the other two control strategies (ETC and STC) can utilise. It can be discussed whether
a UF of 1000 is required for the traditional PC strategy or if comparable results can
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be attained with a lower UF. However, this UF is chosen to enable the ETC and STC
strategies to operate at UF as high as this when required. Each experiment will have a
table structured the same way as this one, and the explanation provided here will not be
repeated.

Table 4.2: IAE for each axis, the total IAE across all axes, and the UF.

Strategy Figure Yaw Pitch Roll Total UF
PC Sim. 4.1 12,81 16,92 18,37 48,10 1000
ETC Sim. 4.2 11,89 15,91 19,55 47,35 264,30
ETC Lab. 4.3 30,62 19,19 30,51 80,33 159,90

Based on the IAE metric, the ETC strategy in simulations, displayed in Figure 4.2,
demonstrates that the performance is on par with the ideal scenario shown in Figure 4.1.
However, the ETC provides an advantage because its average UF is lower than the ideal
scenario, therefore saving resources in terms of computing power. On the 3 DOF hover,
displayed in Figure 4.3, the ETC strategy’s performance was worse than the results of
simulations when considering the IAE metric. However, it was found that the UF on
the 3 DOF hover was lower compared to the simulation. In all of the three figures in
this experiment, it can be seen that the Lyapunov function has a decreasing trend, with
some oscillations being present in the test conducted on the 3 DOF hover.

This experiment shows that the system is able to successfully self-stabilise from initial
conditions different from zero. However, it can be argued that the settling time for all
the tests in the experiment is relatively high, in addition to the relatively high UF of the
control action, compared to experiments presented later. The reason for this is possibly
that the derived gain matrix is weak in terms of its ability to deal with deviations in the
feedback loop. Later, in Experiment 3 - Initial Conditions, the same type of experiment
as the one conducted here will be repeated with a gain matrix that compensates for
deviations to a greater extent.
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Figure 4.1: In simulation, the self-stabilising ability of the PC strategy is tested
using a gain matrix derived from solving the LMI presented in Equation (3.20).
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Figure 4.2: In simulation, the self-stabilising ability of the ETC strategy is tested
using a gain matrix derived from solving the LMI presented in Equation (3.20).
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Figure 4.3: On the 3 DOF hover, the self-stabilising ability of the ETC strategy
is tested using a gain matrix derived from solving the LMI presented in Equation (3.20).
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4.1.2 Experiment 2 - Disturbances

When considering the IAE, the performance of the ETC strategy in simulations, as
depicted in Figure 4.5, closely resembles that of the conventional PC strategy, depicted
in Figure 4.4. This can also be observed in Table 4.3. The UF, both in simulations and
on the 3 DOF hover, is similar to the findings in Experiment 1 - Initial Conditions. The
IAE performance of the test on the 3 DOF hover, illustrated in Figure 4.6, is better
compared to the results obtained from the PC and ETC strategies in simulations. This
is likely due to dynamics and disturbances which is not implemented in the simulation
model. The decay of the Lyapunov function for all the tests is satisfactory. All the tests
show a decaying trend. One issue with the test on the 3 DOF hover is that there are
major oscillations present in the system, which, as explained in Experiment 1 - Initial
Conditions, likely is due to the gain matrix of the system not being adequate.

Table 4.3: IAE for each axis, the total IAE across all axes, and the UF.

Strategy Figure Yaw Pitch Roll Total UF
PC Sim. 4.4 57,67 375,28 374,79 807,74 1000
ETC Sim. 4.5 62,74 408,18 407,74 878,66 312,57
ETC Lab. 4.6 87,28 49,98 144,84 282,10 133,65
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Figure 4.4: In simulation, the ability to self-stabilise when exposed to disturbances
introduced to the motors of the PC strategy is tested using a gain matrix derived

from solving the LMI presented in Equation (3.20).
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Figure 4.5: In simulation, the ability to self-stabilise when exposed to disturbances
introduced to the motors of the ETC strategy is tested using a gain matrix derived

from solving the LMI presented in Equation (3.20).
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Figure 4.6: On the 3 DOF hover, the ability to self-stabilise when exposed to
disturbances introduced to the motors of the ETC strategy is tested using a gain

matrix derived from solving the LMI presented in Equation (3.20).
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4.2 Event-triggered Control - Improved Gain Matrix

The three experiments in this Section have been conducted using an improved gain
matrix, K. The gain matrix is computed by solving the LMI presented in Equation
(3.31). The solution of the LMI was found using YALMIP as shown in Listing E.2. The
improved gain matrix is designed by finding the value of α that minimises the IAE of the
three axes and the number of times the control action is updated. The best α is found
by testing in the type of experiment denoted as Disturbances. Figure 4.7 presents the
results of varying the value of α. In the left subplot, the total IAE of the three axes is
highlighted in blue, alongside the UF of the control action in orange. A weighted sum of
the two performance measurements is presented in the right subplot. The weighted sum
is computed as:

Weighted sum = Total IAE + 5 · UF (4.2)

where the importance of the UF is considered by weighing it such that it is five times
more important than the total IAE of the three axes.

Figure 4.7: Experimentation in simulation to find best suiting α. The best choice, as
observed in the right-hand-side subplot, is α = 1,4.

Solving the LMI denoted in Equation (3.31), with α = 1,4 results in the gain matrix:

K =


177,43 −27,31 60,29 −9,28 0
177,43 27,31 60,29 9,28 0

−177,43 0 −60,29 0 −9,28
−177,43 0 −60,29 0 9,28

 (4.3)

compared to the gain matrix presented in Equation (4.1), used in the previous two
experiments, it can be seen that the elements of the improved gain matrix are greater
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in absolute value. This implies that for the same deviations, the controller will provide
control actions of a greater magnitude.

4.2.1 Experiment 3 - Initial Conditions

The IAE metric of the ETC strategy in simulation, as shown in Figure 4.9, is comparable
to the ideal control of the PC strategy, as depicted in Figure 4.8. Furthermore, the IAE
metric of the ETC strategy implemented on the 3 DOF hover is significantly better than
that of the previous experiment, Experiment 1 - Initial Conditions. The updated gain
matrix has also had a positive impact on the UF, with Table 4.4 illustrating a significant
decrease compared to Experiment 1 - Initial Conditions. Both in simulations and on
the 3 DOF hover, the Lyapunov function is performing well. The improvement in the
decay of the Lyapunov function of the ETC strategy on the 3 DOF hover is especially
noteworthy as the trend has improved.

Table 4.4: IAE for each axis, the total IAE across all axes, and the UF.

Strategy Figure Yaw Pitch Roll Total UF
PC Sim. 4.8 4,92 4,49 8,57 17,99 1000
ETC Sim. 4.9 4,50 4,87 8,29 17,67 48,00
ETC Lab. 4.10 4,95 13,64 18,34 36,92 183,20
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Figure 4.8: In simulation, the self-stabilising ability of the PC strategy is tested
using a gain matrix derived from solving the LMI presented in Equation (3.31), with

α = 1.4.
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Figure 4.9: In a simulation environment, the self-stabilising ability of the ETC
strategy is tested through an experiment using a gain matrix derived from solving the

LMI presented in Equation (3.31), with α = 1.4.
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Figure 4.10: On the 3 DOF hover, the self-stabilising ability of the ETC strategy
is tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 1.4.
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4.2.2 Experiment 4 - Disturbances

The performance of the IAE metric of the ETC strategy in simulations, depicted in
Figure 4.12, is comparable to the ideal performance of the PC strategy, depicted in
Figure 4.11. Figures 4.12 and 4.13 show that with the improved gain matrix, the ability
of the system to self-stabilise when exposed to disturbances is relatively good. From the
subplots of the Lyapunov function, it can be observed that the Lyapunov function is
swiftly decreasing in all cases. In this experiment, the overall performance of the ETC
strategy implemented on the 3 DOF hover observed in Figure 4.13 is especially good.
The reason for highlighting this is that it can be observed that the update instances are
concentrated to a higher degree where disturbances are introduced, which means that
the sampling period is smaller where there are disturbances and higher where there are
no disturbances. In Table 4.5, it can be observed that the UF in this experiment is lower
compared to Experiment 2 - Disturbances, which conducted the same experiment with
the initial gain matrix. Overall it can be concluded that the improved gain matrix works
better both in terms of the IAE metric and the UF by lowering both of them.

Table 4.5: IAE for each axis, the total IAE across all axes, and the UF.

Strategy Figure Yaw Pitch Roll Total UF
PC Sim. 4.11 3,50 27,46 27,72 58,68 1000
ETC Sim. 4.12 3,32 26,23 26,38 55,92 197,93
ETC Lab. 4.13 15,93 22,78 45,18 83,88 121,78
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Figure 4.11: In simulation, the ability to self-stabilise when exposed to disturbances
introduced to the motors of the PC strategy is tested using a gain matrix derived

from solving the LMI presented in Equation (3.31), with α = 1.4.
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Figure 4.12: In simulation, the ability to self-stabilise when exposed to disturbances
introduced to the motors of the ETC strategy is tested using a gain matrix derived

from solving the LMI presented in Equation (3.31), with α = 1.4.
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Figure 4.13: On the 3 DOF hover, the ability to self-stabilise when exposed to
disturbances introduced to the motors of the ETC strategy is tested using a gain

matrix derived from solving the LMI presented in Equation (3.31), with α = 1.4.
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4.2.3 Experiment 5 - Reference Tracking

This experiment aims to test the ability of the system to track a reference, achieved by
implementing the ETC strategy described in Subsection 3.4.2. Comparisons between
the performance of the traditional PC strategy and the ETC strategy in simulations
can be reviewed by considering Figures 4.14 and 4.15 or the first two rows of Table 4.6.
Considering this, it is observed that the simulation performance is relatively similar
between the two strategies, with the exception being the use of computational resources,
which is significantly reduced using the ETC strategy.

Table 4.6: IAE for each axis, the total IAE across all axes, and the UF.

Strategy Figure Yaw Pitch Roll Total UF
PC Sim. 4.14 9,35 10,60 10,51 30,46 1000
ETC Sim. 4.15 8,63 10,32 10,24 29,20 168,00
PC Lab. 4.16 34,36 83,00 86,29 203,65 1000
ETC Lab. 4.17 25,88 78,19 73,58 177,65 97,60

Figure 4.14: In simulation, the reference tracking ability of the PC strategy is
tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 1.4.
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Figure 4.15: In simulation, the reference tracking ability of the ETC strategy is
tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 1.4.
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Figure 4.16 and Figure 4.17 depict the tests of the PC strategy and the ETC strategy
conducted on the 3 DOF hover. In both cases, the performance is satisfactory when
considering the yaw axis, but the performance is poor for the pitch and roll axis, where
a significant steady-state error is present. The reason for the poor performance is likely
due to the design of the gain matrix. This conclusion can be made because an identical
experiment has been conducted for the two strategies, with the exception of how the
gain matrix is designed. The gain matrix was designed using the LQR method presented
in Section 3.1, where the results are presented in Appendix B. The steady-state error
was reduced significantly in the experiment conducted using a gain matrix design by
applying the LQR method. However, some steady-state error is still apparent.

Figure 4.16: On the 3 DOF hover, the reference tracking ability of the PC
strategy is tested using a gain matrix derived from solving the LMI presented in

Equation (3.31), with α = 1.4.
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Figure 4.17: On the 3 DOF hover, the reference tracking ability of the ETC
strategy is tested using a gain matrix derived from solving the LMI presented in

Equation (3.31), with α = 1.4.
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4.3 Self-triggered Control

For the STC strategy, the UF denotes the number of times the control action is updated
and the number of times the system’s state is sampled, which both happen simultaneously.
The experiment in this Section has been conducted using an improved gain matrix. The
gain matrix has been derived in the same way as described in the previous Section 4.2. To
find the best suiting value of α, the experiment denoted as Initial conditions was carried
out with different values of α, and plotting the resulting IAE, UF and the weighted sum
of these two variables, as depicted in Figure 4.18. Because one of the main objectives of
the STC algorithm is to reduce the UF of the system, and the magnitude of the IAE
metric and UF are very different, the following weighted sum was applied to find the
best suiting value of α:

Weighted sum = Total IAE + 20 · UF (4.4)

Figure 4.18: Experimentation in simulation to find best suiting α. The best choice, as
observed, is α = 0.4

The figure only contains values in the range [0,4 ≤ α ≤ 1,1] because any values outside
this interval resulted in a system that did not diverge to zero within the simulated time
of ten seconds. Values smaller than 0,4 failed to reduce the amplitude of the angles, and
values greater than 1,1 resulted in oscillations of increasing amplitude.

Solving the LMI denoted in Equation (3.31), with α = 0,4 results in the gain matrix:

K =


16,83 −2,59 13,17 −2,03 0
16,83 2,59 13,17 2,03 0

−16,83 0 −13,17 0 −2,03
−16,83 0 −13,17 0 2,03

 (4.5)
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The time step Ts, which affects the number of computation points of the predicted state
trajectory denoted by Equation (3.62), is specified to Ts = 10ms for the STC strategy in
this experiment. This results in 100 computations per second when computing the next
update and sampling instance.

4.3.1 Experiment 6 - Initial Conditions

In this experiment, the self-stabilising ability of the STC strategy is tested. The figures
associated with the first three rows of Table 4.7 are conducted with the gain matrix
presented in equation (4.5). The last row of the Table displays the result of a modified
version of the STC strategy, depicted in Figure 4.22, which was tuned experimentally to
achieve better performance for the STC strategy on the 3 DOF hover.

Table 4.7 shows that the total IAE of the PC and STC strategies in simulations are very
similar. The first subplot of Figure 4.19 and Figure 4.20 confirms that the self-stabilising
ability of the two methods is similar, bringing all the axes to zero in approximately
five seconds in both cases, with the STC strategy being affected by oscillations to a
greater extent. This verifies that the STC strategy, at least in simulations, performs
satisfactorily. The UF of the STC strategy, both in simulations and on the 3 DOF hover,
is very low, which is good in terms of saving computing resources. The defined upper
bound, denoted as τmax in equation (3.56), was set to ten seconds to check if the system
self-stabilised without depending on an upper bound. The results from the simulation
depicted in Figure 4.20 proved that, at least in this case, there was no need to define
an upper bound. Meanwhile, choosing a lower upper bound, τmax, could be beneficial
for the implementation on the 3 DOF hover. However, this was not defined to keep the
same assumptions for the test in simulation and on the 3 DOF hover.

Figure 4.21 presents the self-stabilising ability of the STC strategy tested on the 3 DOF
hover. The overall performance depicted in this figure is poor. Despite observing a
decaying trend in the Lyapunov function, the system fails to self-stabilise within the
ten seconds of the test. The poor performance is likely due to the system being open-
loop between update and sampling instances. As a result, the system can not measure
disturbance or compensate for unmodelled dynamics affecting it.

Table 4.7: IAE for each axis, the total IAE across all axes, and the UF.

Strategy Figure Yaw Pitch Roll Total UF
PC Sim. 4.19 8,42 11,15 12,79 32,35 1000
STC Sim. 4.20 9,09 11,39 15,44 35,92 1,20
STC Lab. 4.21 13,30 22,72 40,79 76,81 1,80
STC Imp. Lab. 4.22 11,77 11,09 21,05 43,92 7,90



62 Chapter 4 Experiments and Results

As previously stated, the performance of the STC strategy presented in row three of
the Table above and Figure 4.21 was considered to be poor. To achieve a satisfactory
performance of the STC strategy on the 3 DOF hover, the parameter α has been tuned
experimentally together with changing the computed variable τv of Equation (3.56) to
τ/4, instead of τ . This is not the best way of compensating for unmodelled dynamics
and disturbances. However, for the sake of being able to present results that perform
adequately, this was done to compensate for the unmodelled dynamics and disturbances.
This resulted in similar performance as in simulation when considering the IAE metric.
However, the UF increased by a factor of approximately 6,5.

A better way of handling the issue of the poor performance depicted in Figure 4.21
would likely be to include disturbances in the SS representation presented in Equation
(3.46), when designing the STC strategy. The article [27] presents an STC strategy that
accounts for disturbances in this fashion.

Figure 4.19: In simulation, the self-stabilising ability of the PC strategy is tested
using a gain matrix derived from solving the LMI presented in Equation (3.31), with

α = 0.4.
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Figure 4.20: In simulation, the self-stabilising ability of the STC strategy is
tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 0.4.
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Figure 4.21: On the 3 DOF hover, the self-stabilising ability of the STC strategy
is tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 0.4.
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Figure 4.22: On the 3 DOF hover, the self-stabilising ability of the STC strategy
is tested using a gain matrix derived from solving the LMI presented in Equation (3.31),
with α = 0.8. Additionally, Equation (3.56) has been modified such that the computed

next update and sampling instance is τv/4





Chapter 5

Discussion

The project description, presented in Section 1.2, states the following:

The goal of the project is to test these two (read ETC and STC) control strategies on
the 3 DOF Hover produced by Quanser which is available in the laboratory at UiS.

The statement is specified to a greater extent by the outlined specific activities and
objectives, presented in a bulletin list in the project description in Section 1.2: conducting
literature studies, implementing the two control strategies in simulation, and performing
experimental validation on the actual 3 DOF hover.

Chapter 3 presents the findings from my literature studies, which have been designed for
the 3 DOF hover. Chapter 4 consists of experiments and corresponding results, both in
simulation and by experimental validation on the 3 DOF hover. From this, it can be
concluded that the objectives of the given project description have been met. In addition
to the given objectives of the project description, reference tracking for the ETC strategy
was presented and tested in simulation and by experimental validation on the 3 DOF
hover. A method of designing the controller/ gain matrix of the two strategies was also
presented and tested throughout the experiments of thesis.

5.1 Design of Gain Matrix

Throughout the project, the gain matrix used in the experiments has been designed
by solving the LMI denoted by Equation (3.20) or the LMI with the added constraint
denoted by Equation (3.31).

The gain matrix utilised in Experiment 1 - Initial Conditions and Experiment 2 - Distur-
bances was designed by solving the LMI denoted by Equation (3.20). Although successful
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in proving the effectiveness of the ETC strategy, this proved to produce poor performance
in terms of the self-stabilising ability of the system. As a result, the same experiments
were conducted with an improved gain matrix designed by solving the LMI denoted
by Equation (3.31), containing an additional constraint, as presented in Experiment 3 -
Initial Conditions and Experiment 4 - Disturbances. These two experiments proved the
improved gain matrix’s effectiveness for the system’s self-stabilising ability.

The improved gain matrix was also used in Experiment 5 - Reference Tracking, where
it produced good results in simulations. Meanwhile, on the 3 DOF hover, a significant
steady-state error was present in the pitch and roll axes. Another approach for designing
the gain matrix was tested in order to compare it to the existing LMI-based method.
This approach was the LQR method, which proved to reduce the steady-state error
considerably, although some steady-state error was still present. This raises the question
of whether designing the gain matrix based on solving an LMI is the best-suited method
for achieving desired performance or if alternative design approaches should be explored
to a greater extent.

In Experiment 6 - Initial Conditions, the STC strategy was tested. The gain matrix was
found again by solving the LMI denoted in Equation (3.31). Here the system proved
to self-stabilise successfully, with acceptable performance in simulations. However, the
performance on the 3 DOF hover was poor. The lack of performance here is likely due to
unmodelled dynamics and disturbances that have not been accounted for in the design
process of the STC strategy and not due to the gain matrix performing inadequately.
A solution to this was presented, but it was argued whether this was a good method
of dealing with the issue. Another method, more likely to be successful, was discussed.
This method includes a term to account for disturbances in the SS model, as presented
in the article [27].

5.2 Comparison Between the Control Strategies

All the previous results, presented in Chapter 4, were conducted using different gain
matrices in the experiments within each section. To make a fair comparison of the
ETC and STC strategies, both should utilise the same gain matrix. The tests presented
in Tables 5.1 and 5.2 have been conducted using the same gain matrix, derived from
Equation (3.31), with α = 0,4. The value of α was chosen as it produced acceptable
results for the STC strategy in simulation, as well as the ETC strategy has proven to
perform adequately for small values of α in simulation, as previously depicted in Figure
4.7. In contrast, higher values of α, which worked well for the ETC strategy, yielded
poor results for the STC strategy, as previously depicted in Figure 4.18.
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By considering the IAE metric in Tables 5.1 and 5.2, it appears that the performance
between the classic PC, ETC and STC strategies are on par with each other, both in
simulation and on the 3 DOF hover. Moreover, the UF is the lowest for the STC strategy.
This suggests that the STC strategy has the overall best performance, both in simulations
and on the 3 DOF hover.

It has been shown previously that the performance of the STC strategy indeed is good
in simulation, but that it lacked performance when tested on the 3 DOF hover due to
unmodelled dynamics and disturbances. This suggests that the results presented in Table
5.2 are slightly suspicious because the ETC strategy has previously proven to perform
well on the 3 DOF hover. By considering the corresponding figures noted in the Table, it
can be observed that there are substantial oscillations present for all the strategies on the
3 DOF hover. From this, it is noted that all the strategies perform equally poorly when
tested using a gain matrix designed according to Equation (3.31), using α = 0,4. This
suggests that the test on the 3 DOF hover is not a good test to compare the strategies.

Table 5.1: IAE for each axis, the total IAE across all axes, and the UF in simulation.

Simulation
Strategy Figure Yaw Pitch Roll Total UF
PC 4.19 8,42 11,15 12,79 32,35 1000
ETC D.1 7,20 9,03 15,41 31,64 28,10
STC 4.20 9,09 11,39 15,44 35,92 1,20

Table 5.2: IAE for each axis, the total IAE across all axes, and the UF on the 3 DOF
hover.

Laboratory
Strategy Figure Yaw Pitch Roll Total UF
PC D.2 24,76 11,61 26,89 63,26 1000
ETC D.3 24,52 14,52 26,85 65,89 159,50
STC 4.21 13,30 22,72 40,78 76,81 1,80

The conclusion drawn from studying the tests presented in Tables 5.1 and 5.2 is that the
STC strategy is superior to the ETC strategy in environments where the most pronounced
dynamics are modelled and that disturbances are known and can be modelled or that
there are no disturbances of significance. While in environments where not all the
dynamics are easily modelled, and there are unknown or unmodelled disturbances, the
ETC strategy is superior to the STC strategy as long as a suitable gain matrix is utilised.
In short, this means that the two strategies are best suited for different types of systems,
and one should be chosen over the other for this reason.
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5.3 Future Directions

• Explore alternative methods of designing the controller and gain matrix. For
instance, investigating the possibility of implementing a non-linear controller, such
as a sliding mode controller, see [13] and [29].

• Design of an STC strategy that accounts for disturbances, as presented in article
[27] or other methods that account for unmodelled dynamics and disturbances.

• Explore ETC based on output feedback, as presented in paper [30]. This could be
interesting because, for many systems, full-state measurements are not available for
feedback. Thus it could be interesting to compare the performance of ETC based
on output feedback to ETC based on state feedback as presented in this thesis.

• As presented in the previous bulletin, but for STC. An approach for implementing
STC based on output feedback is by the introduction of observers, as presented in
the paper [28].

• Study and test alternative methods of realising STC and make a comparison to
the method in this thesis. The paper [10] presents two methods of implementing
STC. The first is the method presented in this thesis, and the second method is
called minimum attention implementation.



Chapter 6

Conclusion

The overall defined goals of the thesis were to study literature, implementation in
simulation and experimental validation of the ETC and STC strategies. All of the defined
objectives of the thesis have successfully been completed and presented, and discussed
throughout the thesis.

The ETC strategy presented in the theoretical background proved to perform as designed.
This was shown in the first two experiments, which required the system to self-stabilise
from a non-zero initial position and disturbances, respectively. The two experiments
proved that the proposed ETC strategy worked as intended, even though the system’s
performance only can be classified as adequate due to the long settling times. The
performance of the first two experiments gave reason to further develop the design
approach of the gain matrix. The first two experiments were conducted again, as
presented in experiments three and four, with an improved gain matrix, which performed
well. This leads to the conclusion that the ETC strategy designed based on the solution
of an LMI defined from a Lyapunov function is a well-suited strategy to self-stabilise the
Quanser 3 DOF hover when exposed to non-zero initial positions or disturbances.

An extended version of the first presented ETC strategy was introduced to enable the
system to follow a reference signal. This performed well in simulation, but a significant
steady-state error was present when implemented on the Quanser 3 DOF hover. Other
design parameters were tested for designing the gain matrix without success. As a result,
an attempt to test a gain matrix designed using the LQR method was conducted, which
proved more successful. This leads to the conclusion that the ETC strategy can be used
to realise reference tracking for the Quanser 3 DOF hover successfully. However, the
proposed gain matrix designed by solving an LMI defined from a Lyapunov function is
unsuitable for this application.
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The STC strategy presented in the theoretical background performed as designed when
tested in simulation. However, when tested on the Quanser 3 DOF hover, the performance
proved to be inadequate. It was concluded that the reason for this is likely caused by the
fact that the STC does not actively monitor the system’s state, causing the estimated
state trajectory of the controller to align poorly against the actual state trajectory of the
system due to unmodelled dynamics and disturbances. A solution to this problem was
presented, which proved to perform well in compensating for the state error but came at
the cost of more updates of the control action and sampling of the system’s state. It was
concluded that other methods that account for unmodelled dynamics and disturbances
should be considered for implementation on the Quanser 3 DOF hover.
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Traditional feedback control is designed with the assumption that 
the control action is updated every time the state of the system is 
sampled. All the algorithms in this thesis have been designed 
with the same control law: 

𝑢 𝑡 = 𝐾𝑥(𝑡)

Rendering the closed-loop system:

ሶ𝑥 𝑡 = 𝐴 + 𝐵𝐾 𝑥(𝑡)

The gain matrix K is designed by solving a linear matrix inequality
(LMI) derived from a quadratic Lyapunov function utilized in ETC 
and STC.

Periodic control

Event-triggered and self-triggered 
control of a 3 DOF hover system
Vetle Normann
Department of Electrical Engineering and Computer Science

Traditional control, systems typically depend upon periodic 
updating of the controller which is designed to be small enough 
to be disregarded in the design process. One problem with this 
approach is that many modern control systems are implemented 
on microcontrollers, which in many cases are restricted by limited 
resources in terms of computing power and battery energy.

A way of spending less resources is to update the output of the 
controller more infrequently. There are different ways this can be 
done. The simplest method is increasing the time between 
periodic updates, which may significantly affect performance. The 
most sensible way of approaching this problem is by introducing 
aperiodic updating of the control action.

In this thesis, two methods of implementing aperiodic updating 
of the controller are researched, implemented and tested. The 
two methods are event-triggered control (ETC) and self-triggered 
control (STC). The implemented algorithm for both methods are 
based on Lyapunov functions, which guarantees the 
performance of the controllers.

The main idea behind ETC is to update the control action 
aperiodically. Updates are executed when a designed triggering 
condition violates a specified threshold. There are different 
methods of designing a triggering condition, where the common 
factor is that the algorithm continuously monitors the system's 
state and compares it to the state of the system at the previous 
time the control action was updated. In this thesis, the triggering 
condition of the controller is designed based on the derivative of a 
quadratic Lyapunov function. 

The plot below shows a simulation of ETC, and the QR code is 
linked to a video of ETC of the Quanser 3 DOF hover. In the plot 
below updates of the control action are reduced by 97,2%.

STC not only updates the control action aperiodically but 
sampling is also done aperiodically. The main idea behind STC is 
to plan the next instance at which sampling and updating are 
required based on a comparison between the predicted state 
trajectory of the system, which is estimated based on the 
sampled state, control input and the model of the system, and an 
exponentially decreasing function, which is based on the sampled 
state of the system. One major drawback to STC is that 
disturbances are not measured, hence the systems ability to deal 
with disturbances are quite poor.

The plot below shows a simulation of STC, and the QR code is 
linked to a video of STC of the Quanser 3 DOF hover. In the plot 
below updates of the control action are reduced by 99,88%.

Background Event-triggered control Self-triggered control

The two control strategies are implemented on the Quanser 3 
degree of freedom (DOF) hover, both in a simulation 
environment and on the physical equipment available in the 
laboratory of UiS. The 3 DOF hover is a stationary quadcopter with 
3 DOF, yaw, pitch, and roll, which is configured to be controlled by 
Matlab and/ or Simulink. The 3 DOF hover consists of four 
propellers driven by individual DC motors, mounted on a planar 
frame which is coupled to the stationary base pedestal. The 
angles of the three axes are controlled by the propellers and 
measured by high-resolution encoders. The transmitted and 
received signals, motor commands and encoder signals, 
respectively, are communicated through a slip ring mechanism, 
which allows the yaw axis to move continuously without 
limitations.

A state space model is developed  to represent the 3 DOF hover in 
simulations. The state space model is of the following form:

ቊ
ሶ𝑥 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)

𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

System

Lyapunov functions are commonly used to analyze dynamical 
systems to determine the system's stability. Furthermore, to 
guarantee the performance of the ETC and STC algorithms, 
Lyapunov functions are utilized as a measure of performance, 
which confirm that the de<cay rate of the closed-loop systems is 
satisfactory. The form of the quadratic Lyapunov function utilized 
in the thesis is:

𝑉 𝑥 𝑡 = 𝑥𝑇 𝑡 𝑃𝑥(𝑡)

The Lyapunov function can be thought of as a scalar which gives 
information about the energy contained in the system's current 
state. The controller's goal is to bring the energy contained in the 
system's current state towards zero.

Lyapunov functions

I would like to thank my supervisor, 
Damiano Rotondo, for outstanding 
help, insights and guidance during 
the project!
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Appendix B

LQR Example

The example is based on the work found in the laboratory guide on the 3 DOF hover,
published by Quanser [14]. The laboratory guide presents the same weighing matrices as
used here, which are presented in Equations (B.1) and (B.2). The results obtained here
are found by conducting the same test as in Experiment 5 - Reference Tracking, with
the difference being that the gain matrix utilised here is derived using the LQR method
presented in Section 3.1 instead of the LMI based method used previously. Consider the
weighing matrices:

Q =



500 0 0 0 0 0
0 350 0 0 0 0
0 0 350 0 0 0
0 0 0 0 0 0
0 0 0 0 20 0
0 0 0 0 0 20


(B.1)

and

R =


0,01 0 0 0

0 0,01 0 0
0 0 0,01 0
0 0 0 0,01

 (B.2)

Using the function ICARE in MATLAB to solve the Riccati differential Equation (3.3),
the following gain matrix is computed:

K =


−111,80 132,30 0 −41,41 36,23 0
−111,80 −132,30 0 −41,41 −36,23 0
111,80 0 132,30 41,41 0 36,23
111,80 0 −132,30 41,41 0 −36,23

 (B.3)
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Table B.1 show the difference in performance for the PC strategy and ETC strategy on
the 3 DOF hover, using a gain matrix designed using the LQR method and a gain matrix
designed by solving the LMI in the ETC strategy.

Table B.1: IAE for each axis, the total IAE across all axes, and the UF of control
action.

Strategy Figure Yaw Pitch Roll Total UF
PC (LQR K) B.1 31,95 26,39 24,37 82,70 1000
ETC (LQR K) B.2 33,15 29,16 24,18 86,49 241,33
PC (ETC K) 4.16 34,36 83,00 86,29 203,65 1000
ETC (ETC K) 4.17 25,88 78,19 73,58 177,65 97,60

From the table, it is observed that the performance in terms of the IAE metric is
significantly better using the gain matrix computed using the LQR method. Meanwhile,
the UF is higher using this gain matrix than using the gain matrix computed by solving
the LMI in the ETC method. The following figures show that the steady-state error is
relatively small compared to the steady-state error previously observed in Figures 4.16
and 4.17.

Figure B.1: On the 3 DOF hover, the reference tracking ability of the PC
strategy is tested using a gain matrix derived from solving Equation (3.2) as presented

in Section 3.1.
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Figure B.2: On the 3 DOF hover, the reference tracking ability of the ETC
strategy is tested using a gain matrix derived from solving Equation (3.2) as presented

in Section 3.1.





Appendix C

Effect of Decay Rate Parameter σ

This experiment is the same as the one presented in Experiment 3 - Initial Conditions.
The reason for providing the results presented in Figure C.1 is to highlight the effect of
different values of the decay rate parameter σ for the ETC strategy.
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Figure C.1: Comparison of different decay rates σ of the ETC strategy.



Appendix D

ETC Experiment - With Gain Matrix
Used In STC Experiments

The Appendix contains results that are used to compare the PC, ETC, and STC strategies
using the same gain matrix applicable to simulations and the 3 DOF hover. The tests
here are conducted the same way as Experiment 6 - Initial Conditions, using the same
parameters to ensure a fair comparison between the control strategies. Figure D.1 can be
compared to Figures 4.19 and 4.20. Figures D.2 and D.3 can be compared to Figure 4.21.
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Figure D.1: In simulation, the self-stabilising ability of the ETC strategy is
tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 0.4.
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Figure D.2: On the 3 DOF hover, the self-stabilising ability of the PC strategy
is tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 0.4.
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Figure D.3: On the 3 DOF hover, the self-stabilising ability of the ETC strategy
is tested using a gain matrix derived from solving the LMI presented in Equation (3.31),

with α = 0.4.



Appendix E

MATLAB Code

E.1 Solution of LMI

Listing E.1 is used to solve the LMI presented in Equation (3.20), using YALMIP:

1 yalmip ('clear ');
2 Y = sdpvar (4 ,6); % Initializes Y - 4x6
3 P = sdpvar (6); % Initializes P - 6x6
4 lyap_d = A*P '+B*Y+P*A '+Y '*B ';
5 tol = 1e -10;
6 value = tol*eye (6);
7
8 Constraints = [P >= value , lyap_d <= -value ];
9 ops = sdpsettings ('solver ', 'mosek ', 'verbose ', 0);

10 res_opt = optimize ( Constraints , [], ops);
11
12 % Matrices used in the Simulink program
13 P = double (P);
14 Y = double (Y);
15 P = inv(P);
16 K = Y*P;
17 Q = -(A'*P+K '*B'*P + P*A+P*B*K);

Listing E.1: Using MATLAB to solve LMI, presented in Equation (3.20).
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E.2 Solution of LMI, With Additional Constraint

Listing E.2 is used to solve the LMI presented in Equation (3.31), using YALMIP:

1 yalmip ('clear ');
2 alpha = 1.8;
3 Y = sdpvar (4 ,6); % Initializes Y - 4x6
4 P = sdpvar (6); % Initializes P - 6x6
5 lyap_d = A*P '+B*Y+P*A '+Y '*B ';
6 tol = 1e -10;
7 value = 2* alpha*P+ tol*eye (6);
8
9 % Solving the BMI

10 Constraints = [P >= tol*eye (6) , lyap_d <= -value ];
11 ops = sdpsettings ('solver ', 'mosek ', 'verbose ', 0);
12 res_opt = optimize ( Constraints , [], ops);
13
14 % Matrices used in the Simulink program
15 P = double (P); % this is actually p*-1
16 Y = double (Y);
17 P = inv(P);
18 K = Y*P;
19 Q = -(A'*P+K '*B'*P + P*A+P*B*K);

Listing E.2: Using MATLAB to solve LMI, with added constraint, presented in Equation
(3.31).
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E.3 ETC - Trigger Condition

Listing E.3 presents the implementation of the triggering condition used in the ETC
strategy, as presented in Equation (3.28).

1 function [ Lyapunov_function , triggering_condition ,
Trigger_Binary , flag ]= fcn(x_t , x_tk , P, B, K, Q,
Trigger_Binary )

2 sigma = 0.997;
3 e = x_tk - x_t;
4 x = x_t;
5
6 triggering_condition = (sigma -1)*x '*Q*x + 2*x '*P*B*K*e ;
7 Lyapunov_function = x'*P*x;
8 lyapunov_derivative = -x '*Q*x + 2*x'*P*B*K*e;
9

10 if triggering_condition > 0
11 if Trigger_Binary == 1
12 Trigger_Binary = 0;
13 else
14 Trigger_Binary = 1;
15 end
16 flag = 1;
17 else
18 flag = 0;
19 end

Listing E.3: Implementation in MATLAB of the trigger condition used in the ETC
strategy, as presented in Equation (3.28).
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E.4 ETC Reference Tracking - Trigger Condition

Listing E.4 presents the implementation of the triggering condition used for reference
tracking in the ETC strategy, as presented in Equation (3.45).

1 function [ Lyapunov_function , triggering_condition ,
Trigger_Binary , flag] = fcn(x_t , x_tk , x_r , x_r_tk , P, B,

K, Q, Trigger_Binary )
2 sigma = 0.997;
3 deltak_r = x_r_tk - x_r;
4 deltak_x = x_tk - x_t;
5 e = x_t - x_r;
6
7 triggering_condition = (sigma -1)*e '*Q*e + 2* deltak_x '*K'*B'*

P*e - 2* deltak_r '*K '*B'*P*e;
8 Lyapunov_function = e'*P*e;
9

10 if triggering_condition > 0
11 if Trigger_Binary == 1
12 Trigger_Binary = 0;
13 else
14 Trigger_Binary = 1;
15 end
16 flag = 1;
17 else
18 flag = 0;
19 end

Listing E.4: Implementation in MATLAB of the trigger condition used for reference
tracking in the ETC strategy, as presented in Equation (3.45).

E.5 STC - Trigger Condition

Listing E.5 presents the implementation of the triggering condition used in the STC
strategy, as presented in Equation (3.56) and the computation of the next update and
sampling instance of the controller, as presented in Equation (3.55).
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1 function [ Lyap_func_disc , flag , Trigger_Binary , tau ,
t_since_update , nextSampling ] = STC(x_tk , A, B, P, u_tk ,
Ts , lambda , Trigger_Binary , simTime , t_since_update ,
nextSampling )

2 update = false; tau = 0; integral = zeros (6);
3 Lyap_func_disc = (x_tk '*P*x_tk);
4 if simTime >= nextSampling
5 h_c = 0; tau = Ts;
6 while h_c <= 0
7 V_exp = (x_tk '*P*x_tk)*exp(- lambda *tau);
8 Traj_1 = expm(A*tau)*x_tk;
9 Traj_2 = integral + Ts *0.5*( expm(-A*(tau -Ts)) + expm

(-A*tau));
10 integral = Traj_2 ;
11 Traj_2 = expm(A*tau)* Traj_2 *B*u_tk;
12 V_traj = (( Traj_1 + Traj_2 ) '*P*( Traj_1 + Traj_2 ));
13 h_c = V_traj - V_exp;
14 tau = tau + Ts;
15 end
16 nextSampling = simTime + tau;
17 update = true;
18 end
19 if update
20 if Trigger_Binary == 1
21 Trigger_Binary = 0;
22 else
23 Trigger_Binary = 1;
24 end
25 flag = 1;
26 t_since_update =tau;
27 else
28 flag = 0;
29 t_since_update = ( t_since_update - Ts);
30 end
31 end

Listing E.5: Implementation in MATLAB of the STC trigger condition and the
computation of the next update and sampling instance, as presented in Equations

(3.56) and (3.55).





Appendix F

SIMULINK Schemes

The following pages contain SIMULINK schemes of the following models:

1. ETC - 3 DOF hover simulation model.

2. ETC reference tracking - 3 DOF hover Simulation model.

3. ETC - 3 DOF hover laboratory model.

4. ETC reference tracking - 3 DOF hover laboratory model.

5. STC - 3 DOF hover simulation model.

6. STC - 3 DOF hover laboratory model.
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