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Introduction 

Combinatorics is a branch of mathematics that is not explicitly in the curriculum for 1st to 10th 

grade in Norwegian schools. This doesn’t mean that combinatorial tasks are not used in 

Norwegian classrooms, just that it depends on the teacher and the textbook used by the school. 

There are several fun combinatorial tasks that circulate on the internet, like “what animals have 

12 legs combined?” and others, easily found by for example exploring the combinatorics tag on 

mattelist.no.  

Although combinatorics isn’t in the curriculum, using combinatorial tasks can be a way to 

incorporate several skills at once. I am interested in exploring this with my 1st graders. Though it 

might seem a bit complicated to do this with 1st graders, one must remember that they are the 

ones who get the most out of the counting portion of the task. For higher levels, you’d like to 

avoid counting manually, and therefore you’d search for a formula that does the job for you. For 

very young students, counting is a skill that is developing, which makes this sort of tasks ideal 

for them. The basic skills like counting, sorting, adding and subtracting that we use when solving 

combinatorial tasks, these first steps, aren’t considered to be “mathematical” enough to stop 

there, we usually go further. For young students, there is no need to go much further, as they 

aren’t ready to comprehend it just yet. Using combinatorial tasks with this age group is beneficial 

because they get to practice the basic skills that is on the curriculum, and they are introduced to 

tasks that have more than one answer, which will eventually boost their problem-solving skills. I 

am a 1st grade teacher currently and the students are constantly surprising me with how much 

they are actually capable of, given the right framework.  

Combinatorics 
Combinatorics is defined as the study of “the enumeration, combination, and permutation of sets 

of elements and the mathematical relations that characterize their properties” (Weisstein, n.d.). 

Combinatorial tasks will always have something to be combined in a certain way, depending on 

a few factors, and the solution has several degrees of difficulty, which makes them perfect for 

differentiation. What is meant by this is that, if we have combinatorial task that involves 

combining clothing tops and bottoms, we can simply count the combinations and stop there, or 

we could go much further. As a teacher, there are many directions you can lead students in. If 

you were to give this task and tell them to combine 3 tops with 3 bottoms, everyone would be 
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able to arrive to the first stop, which is that there 9 ways to combine them. We can use a tree 

diagram to easily see this, like in figure 1. 

  

Figure 1 

Now, to differentiate, you can alter the task a bit by changing the number of each item, introduce 

another item etc., and some students, depending on their age and ability, can start to generalise 

and think of a formula. If they arrive at a formula that works, you can alter the task again and ask 

how it affects the formula.  

Different types of combinations 
There are 4 types of combinations of objects, firstly determined by whether the order of object 

matters or not. If the order does not matter, it is just called a combination, while an ordered 

combination is called a permutation. A combination of objects could be differently coloured balls 

in some container, vegetables in a salad bowl, etc, where the placement of these objects doesn’t 

matter. A permutation of objects could be a phone number, a license plate number, a password, 
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etc, where the order is essential. Next, we must determine whether in our combination or 

permutation we allow repetitions or not. If we are talking about a license plate number, we would 

consider this a permutation where we allow repetition, since for example RR 55555 could exist. 

If we are talking about some sort of competition like a 5k race, we would not allow repetition 

because the same person can’t finish 1st and 2nd place. An example of a combination where we 

would not allow repetition could be some sort of name draw, since each name would only be put 

in once and the number of names to draw would decrease each time you draw. For the last type 

of combination, a combination where we do allow repetition, we could consider randomly 

drawing coins from a wallet, since these could all have the same value. 

These 4 types of combinations have different formulas, as seen in table 1. 

 

The variables n and k can be explained in a few different ways, you could say that n is the 

number of options for a certain choice, and k is the number of times you make that choice. When 

using the formulas in table 1, and especially when teaching students how to use these formulas, 

we must be able to dissect the problem and find out how many choices we have, how many times 

are we making that choice, is repetition allowed or not, does order matter etc. You may 

encounter a problem that will need a variation of these formulas or maybe a combination of 

them. 

Dissecting the formulas 
The formulas in table 1 are more intuitive than they might seem, and I think a lot of students that 

have a grasp on basic concepts in mathematics would be able to find them on their own, perhaps 

with some guidance. Below is a basic explanation of each formula, and how some of them could 

be invented on the spot.  

With formula [1], we have n options and choose k times. We allow repetition, which means the n 

stays the same no matter how many times we choose something. A 4-digit code could be an 
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example of such a permutation with repetition. 4432 is an entirely different code to 2344. In our 

example, k is the number of digits, so k=4, and n is the number of options for these digits, aka 

the numbers from 0-9; n=10. For the first digit, we have 10 options. For the second digit, we 

have 10 options for each of the 10 numbers digit 1 could be, so there are a 100 different 

combinations for these 2. For the 3rd digit, we have 10 options for each of the 100 combinations 

for 1 and 2, which means there are 1000 combinations for 3 digits, and finally 10 000 options for 

a 4-digit code. From here it’s easy to see why the formula is n to the power of k, because you 

multipy n with itself k times.  

Looking at formula [2], we encounter a formula that looks very similar to formula [1], but has 

what is called a falling factorial, denoted 𝑛𝑘 = 𝑥!ሺ𝑥−𝑛ሻ!  ሺGraham, 1994, preface: p. x). This means 

that we get a polynomial equation with k terms like this: 𝑛𝑘 = 𝑛ሺ𝑛 − ͳሻሺ𝑛 − ʹሻሺ𝑛 − ͵ሻሺ𝑛 −Ͷሻ … Though one might not be familiar with the falling factorial notation, most would be able to 

see that we get n multiplied with itself k times, only with n decreasing with 1 for each time. If we 

have 50 contestants racing a 5k, there are 50 options for the 1st position, but now this person 

can’t occupy any other positions, so we get 50-1=49 options for the 2nd position, and so on.   

Skipping ahead a bit, in formula [4], order doesn’t matter and we do not allow repetition, which 

means we get 1 less option for each choice like in formula [2] which also looks similar, but since 

order doesn’t matter we divide this number by the number of times we make our choice. As we 

also see in table 1, formula [4] can also be written as n choose k, because it tells us the number of 

ways to choose k objects from a set of n objects. Now, formula [3] looks quite similar to formula 

[4], the difference is that instead of a falling factorial, [3] has a rising factorial, denoted  𝑛𝑘 = Γሺ𝑥+𝑛ሻΓሺ𝑥ሻ  ሺGraham, 1994, preface: p. x). A rising factorial gives us a polynomial equation 

with k terms like this: 𝑛𝑘 = 𝑛ሺ𝑛 + ͳሻሺ𝑛 + ʹሻሺ𝑛 + ͵ሻሺ𝑛 + Ͷሻ … It’s easy to remember that this 

formula looks like [3], only with a rising factorial instead of a falling one. For future reference, 

this formula can also be written like (𝑛+𝑘−ଵ𝑛 ).  

It could also be visualised by considering a set like {ܽ, ܾ, ܿ, ݀}. If we choose 2 from this set of 4 

(k=2, n= Ͷ), the 4 different types of combinations would look like table [2]. 
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 Repetition allowed Repetition not allowed 

Order matters aa – ab – ac – ad  

ba – bb – bc – bd  

ca – cb – cc – cd  

da – db – dc – dd  

aa – ab – ac – ad  

ba – bb – bc – bd  

ca – cb – cc – cd  

da – db – dc – dd 

Order doesn’t matter aa – ab – ac – ad  

ba – bb – bc – bd  

ca – cb – cc – cd  

da – db – dc – dd  

aa – ab – ac – ad  

ba – bb – bc – bd  

ca – cb – cc – cd  

da – db – dc – dd  

Table 2 

Combining coins 
Learning to add and subtract using coins is a very important skill that 1st graders start learning 

quickly after starting school. Introducing coins that have different values is confusing at first, 

since counting has been pretty heavily on the agenda every math class so far. Suddenly having 3 

coins doesn’t necessarily mean you will have 3 kr. As with most things, this is obvious when the 

teacher explains it, but is harder in praxis. The students know that a 10 kr coin is worth more 

than a 1 kr coin, but it is usually harder to visualise this when you are presented with only one 

coin, and especially so if you need to find the sum of different coins combined.  

The book Concrete Mathematics introduces a combinatorics problem that uses coins, 

“How many ways are there to pay 50 cents?” (Graham et al., 1994, p. 327), using generating 

functions to solve it. They find that there are 50 ways to make 50 cents when you have pennies, 

nickels, dimes, quarters and half-dollars. The interesting part is not the counting of combinations, 

this can easily be found if you have enough time on your hands to count manually, but that they 

used generating functions to solve it and prove it at the same time. I am interested in a similar 

problem, more geared towards our learning goal for this semester.  

It is easier to instruct students to find out what different values you can make using 4 

coins, where they would only need to count and add the values together and then count how 

many different values they get, than it is to expect them to master pre-algebra. It would be good 

practice for pre-algebraic skills, but not something that I would expect most of them to know. 

However, this is a great idea if some students need advancement.  



   

 

   7  

 

If I ask my students to find out what values you can possibly make when you draw 4 random 

coins, and the available coins are 1 kr, 5 kr, and 10 kr, I would like to know how many 

combinations there are.  

Counting 
As with any problem, one would usually start with a small example and count the combinations 

manually. We do this to be able to check that we are using the correct formula. A strategic 

approach is obviously the best approach, this way you can be sure you haven’t missed any 

combinations. If we have 3 different coins and we draw 3, there are 10 possible combinations, 

and with 3 different coins and 4 draws, there are 15 possible combinations. Now, since this is a 

combinatorics problem, we can categorize the problem to find a formula that can help us. In our 

problem, order doesn’t matter because we only care about the combined value, and we do allow 

repetitions because we want to include the combinations where all coins are the same type of 

coin. This means that formula [3] should be fitting. When we input our n and k, we find that this 

formula gives us the correct answer.  

Generating functions 
It’s easy to use the formulas to find the number of combinations or permutations, but what if we 

didn’t have these formulas? Even adding one more draw or option to our problem would 

complicate the manual counting process. As mentioned, they used generating functions to solve 

and prove the coin problem in Concrete Mathematics, which I will utilize in this problem as well. 

Generating functions are a way to deal with number sequences via manipulation of infinite series 

that “generate” the sequences (Graham, 1994, p. 320). Number sequences can be described using 

a closed form function, or by recurrence relations, but this is not always possible or they don’t 

provide the information we need. What we do is consider the number sequence as the 

coefficients in a power series f(x), where f(x) is the generating function of the sequence.  

We are interested in them because finding the generating function means finding the 

corresponding coefficient, which will tell us the number of times some combination occurs. For 

all the combinatorial tasks we have mentioned so far, we could use generating functions to solve 

them, and they would yield the formulas in table [1] or some variation.   

The sum of all the ways one can pay some amount with only 1 kr coins is ܧሺ𝑧ሻ = 𝑧 + 𝑧ଶ + zଷ + zସ + ⋯ 
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And when we include 5 kr coins as well, it gives us ܨሺ𝑧ሻ = ܧ + ͷܧ + ͷଶܧ + ͷଷܧ + ⋯ = ሺͷ + ͷଶ + ͷଷ + ⋯ ሻܧ 

Finally (in our case) we include 10 kr coins and get the infinite sum 𝑇ሺ𝑧ሻ = ሺͳͲ + ͳͲଶ + ͳͲଷ + ⋯ ሻܨ 

In the book, the goal is to find the number of terms that are worth 50 cents exactly. We want to 

find the number of terms that uses 4 coins exactly, so either something like zၪ or z²5², where the 

sum of the exponents is equal to 4.  In the original example, they use zၫ, z¹, z¹ၫ etc to signify the 

value of the coins, but for our goal the value doesn’t matter yet, meaning we can refer to them all 

as z. This means 5ၪ can now also be referred to as zၪ, and z²5²=z²z²=zၪ. When we have found our 

generating function, we will find our answer in this corresponding coefficient. 

Instead of the coefficients being different because they have different values, they will in our 

case be the same. So we end up with the geometric series 

ܧ = ͳͳ − 𝑧 

ܨ = ͳͳ − 𝑧  ܧ

𝑇 = ͳͳ − 𝑧  ܨ

 

From this we get the closed form of our generating function 
ଵሺଵ−𝑧ሻ𝑘 , where k is the number of 

different coins. In our case we get 
ଵሺଵ−𝑧ሻ3 . 

Looking at just the closed form of E, we should immediately recognise its Taylor series 

expansion as ∑ 𝑧𝑛.∞𝑛=଴  When we then need to expand  
ଵሺଵ−𝑧ሻ3 , we can use Newton’s binomial 

theorem; ሺ𝑥 + ͳሻ𝑟 = ∑ (𝑟𝑖)𝑥𝑖∞𝑖=଴  where r is a real number that is a non-negative integer and -1<x-

1 (Guichard, section 3.1). We first swap r for -3, giving us ሺ𝑥 + ͳሻ−ଷ=∑ (ଶ+𝑖ଶ )ሺ−𝑥ሻ𝑖∞𝑖=଴ , and then 
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we switch out x with -z, giving us ሺͳ − 𝑧ሻ−ଷ=∑ (ଶ+𝑖ଶ )ሺ𝑧ሻ𝑖∞𝑖=଴ . If we instead write (ଷ+𝑛−ଵଷ−ଵ ), it starts 

to look like formula [3], which can be written on the form (𝑘+𝑛−ଵ𝑛 ) or (𝑘+𝑛−ଵ𝑘−ଵ ). In fact, this is the 

coefficient of 
ଵሺଵ−𝑧ሻ𝑛. We get the generating function with the coefficient: 

∑ (𝑘 + 𝑛 − ͳ𝑛 ) 𝑧𝑛 → ∑ (͵ + 𝑛 − ͳ𝑛 ) 𝑧𝑛𝑛≥଴𝑛≥଴ = ͳ +  ͵𝑧 +  ͸𝑧ଶ + ͳͲ𝑧ଷ + ͳͷ𝑧ସ + ʹͳ𝑧ହ + ⋯ 

Since we want to find the number of terms that uses 4 coins exactly, we could either use the 

formula for the coefficient or look at the coefficient before 𝑧ସ in the terms above. We already 

know that when k=3 and n=3, there are 10 possible combinations, this is also confirmed by the 

sequence above.  

Execution 
“If you have 4 coins in your wallet, but you don’t know what type of coins they are (except that 

they can’t be 20 kr), what are the possible values you can have?” is how I phrased the question to 

my first graders. This is an abstract task at first glance and can seem intimidating. We had 

previously (that same day) done an example with 3 coins together, so they felt prepared, 

nonetheless. I gave them a sheet of paper with 2 cells per line, one big enough to place the coins 

in, and one big enough to write the value. I had them put the coins in the bigger cell, write the 

combined value, and draw the coins so they wouldn’t forget what combinations they had already 

done. They were also given a plate with 4 coins of each possible value (1 kr, 5 kr, 10 kr). If 

students were unsure where to start, I told them to close their eyes and draw 4 coins at random. If 

they got something they had already gotten, they could choose which coins to switch out so that 

the outcome would be different. I expected them to find different values, such that we hopefully 

could find all the possible values together. When the lesson neared its end, I asked the students to 

bring their sheet of paper and asked them to give me some possible values. To incorporate skills 

other than counting and adding, I had them place the values we found from lowest to highest, 

discussing this while we did it. “What is the lowest value you can get, and why?”, “which is the 

highest?”, “how can we be sure that we have found all the values?” etc. Another interesting pit 

stop is discussing when all the coins are equal, as this is an early meeting with multiplication. It 

made for a very engaging lesson, even though they probably don’t understand that there is a 

pattern to how many combinations or permutations there are for a given counting problem. With 
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such a young group, it doesn’t make sense to go into the mathematics of how we can know for 

sure, what is the formula, how can we generalise etc., but they are curious enough to wonder the 

same things. It isn’t long until we can dive into these things too. Combinatorics tasks are 

excellent for young students, since they are learning a lot of strategies that will come in handy 

later. They are learning to work strategically, be attentive, add and subtract (with a purpose), and 

finally how to problem solve using the skills they already know. Also, they are introduced to 

mathematical tasks that don’t have a singular answer, like they are used to. This makes for a 

more meaningful conversation as a class in the aftermath of the task, since more people can 

contribute. 

Other uses for combinatorics 
Combinatorics doesn’t have to be limited to math either, you could incorporate it in other 

subjects to make it interdisciplinary. When working with CVC (consonant-vowel-consonant) 

words for example, you could ask how many words they can make with a certain number of 

consonants and vowels. In Norwegian, we don’t really focus on CVC words, but it’s possible to 

still do this or to alter it to 1-syllable words (CV) or 2-syllable words (CV-CV). It’s a personal 

choice whether you limit the vowels and consonants so that all the possible words exist in real 

life or if it’s not that important. This could be appropriate even for the upper grades that may be 

familiar with the 4 formulas, because they need to establish which one to use, what the variables 

are and if they need to alter it. Order does matter because rat and tar and two completely 

different words. Whether we allow repetition or not is a personal choice, allowing it would mean 

to accept word like mam or did. Let’s say we did this and we had some magnetic letters, say M, 

L, T, S, O, I, A. So we have 4 consonants and 3 vowels. The vowel has a set place, which means 

that whatever number of combinations there are for the consonants times the number of available 

vowels, will equal the final number of combinations of both vowels and consonants. The 4 

consonants can occupy 2 slots, and in our case we do not allow repetition because we only have 

one of each magnetic letter. We look into formula [2] and find that the number of combinations 

for the consonants is 12. When we include the vowels, we get 3 times 12, which equals 36. For 

the vowels, we used the same formula, but since k is 1, we just get 3. Had we looked at 2-

syllable words (CV-CV), the vowels would also be able to occupy two slots, which would give 

us 6 combinations for the vowels, 6 times 12 equals 72, 72 combinations for a 2-syllable word 
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with 4 consonants and 3 vowels. If this had been an interdisciplinary task, students could now be 

asked to sort the words by real words and made-up words.  

Polyominoes 
Polyominoes are “shapes made by connecting certain numbers of equal-sized squares, each 

joined together with at least one other square along an edge” (Golomb, 1994, p. 3), and are part 

of a branch of mathematics called combinatorial geometry. The smallest polyomino is a 

monomino, consisting of only one square. Since there is only one way to arrange a single square, 

there is only one monomino. We are dealing with so-called “free” polyominoes, meaning we 

consider all rotations, translations and their compositions of a shape to be identical. 

 

Figure 2 

People are more familiar with the different polyominoes than they might think. Dominoes, 

polyominoes that consist of two squares, are used in the popular game with the same name. 

There is only one type of domino, since the only other way to place the squares while still 

connected to each other will result in the same shape, just rotated.  

 

Figure 3 

Any number of squares have a corresponding set of polyominoes, but polyomino puzzles and 

problems usually involve dominoes, trominoes (fig 4), tetrominoes (fig 5), pentominoes (fig 6) 

and maybe hexominoes.  

 

Figure 4 
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Figure 5 

 

Figure 6 

The number of polyominoes get increasingly higher along with the number of squares. We can 

see a selection in table [3]. 

Number of squares n Name  Number of free polyominoes 

1 Monomino 1 

2 Domino 1 

3 Tromino 2 

4 Tetromino 5 

5 Pentomino 12 

6 Hexomino 35 

7 Heptomino 108 

Table 3 
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We see that when n is higher than 6, the number of polyominoes goes above 100 and get hard to 

deal with. For our purposes, we will only consider the free polyominoes, meaning polyominoes 

that are free to rotate and flip.  

 There have been many attempts to find a formula that tells us the number of polyominoes 

for n squares, but we only have approximations that give us an upper bound. One such 

approximation will be discussed in a later section. 

Quadrillion 

There are many polyomino puzzles and tasks, and polyominoes possess many properties that 

allow them to easily turn into games. One such polyomino-based game is “Quadrillion” by 

SMART games. In this game, there are four 4x4 square tiles with grooves that make up the 

gameboard, and 12 polyomino puzzle pieces. There are 7 spots in total where a piece cannot be 

placed. The tiles can also be configurated a number of ways. You can click the tiles into place 

using the magnets on the sides and make a number of shapes, you can flip the tiles over to the 

contrasting side, and you can rotate the tiles. This results in an astonishing number of ways to 

make a gameboard that we will look at later on. The puzzle pieces are all shaped differently, and 

the objective of the game is to arrange the tiles in some way and place the puzzle pieces onto the 

game board so that all the grooves are covered. The pamphlet has many challenges for the player 

to try with varying degrees of difficulty, some where you are supposed to arrange some of the 

pieces before you start. The game is both fun and challenging for numerous age groups. The 

game itself is not necessarily combinatorial in nature, it is a puzzle game where you must be 

either skilled, very lucky or persevering. Some configurations have 1 unique solution, while 

others have very many.  
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What makes this game interesting in a combinatorial sense is the tiles that make up the 

gameboard. The tiles can be flipped over to reveal either a black side or a white side that are 

different from each other, they can be clicked together with magnets to each other by either a 

half side or a whole side. They can also be rotated, meaning there are many possible 

configurations for the gameboard. The pamphlet lists some of the shapes that are allowed, these 

are seen in fig 7. 

 

Figure 7 

I am interested in finding the total number of unique configurations of the gameboard, regardless 

of whether they have a solution or not, as this is not necessarily our objective. There isn’t an 

obvious reason why these configurations wouldn’t have a solution, so we treat them like they do. 

It’s clearly stated in the rulebook that “any of the configurations (see illustration on the right) 

with grids side by side are allowed” (SMART GAMES, 2013, p. 1). This is a non-trivial 

statement, to state this so confidently must mean there is either a mathematical proof or they ran 

them all through a computer. I’m more inclined to believe the latter since it is less laborious and 

more convenient. It also sparks curiosity whether they have found all the possible shapes the 

gameboard can have, tested them all, and found that there are some configurations for which 

there is no solution with the provided game pieces. If not, does this mean that there are solutions 

for all the shapes we can find? Or maybe there are one or two additional shapes for which there 

are solution for every possible rotation, flip and placement of the 4 game pieces?  

Counting configurations of the game board 
We already know there are quite a few ways to change up the gameboard, since we have 4 

unique tiles that can be flipped, rotated and moved along whichever edge, as long as the tiles stay 
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together. It isn’t a simple combinatorics problem where you have 4 items that can be combined 

in a number of ways, though this is part of the final equation. After a few attempts at counting 

every configuration of the tiles and then multiplying to take flipping and rotating into account, it 

was clear that we were overcounting. To fix this, I would either need to find out how many 

configurations had been counted more times than one and subtract them, or to find a new 

strategy. 

The new strategy was much more systematic, where instead of counting every time a tile is 

placed in a new way, you count all the unique shapes made by the tiles. We regard rotated or 

mirrored shapes as not unique and will therefore not include them in our counting. At this point, 

we don’t treat them like unique tiles, and we don’t take flipping or rotating into account yet. To 

improve the system even more, we divide into categories based on how many tiles are touching 

each other, or how many “neighbours” each tile has. For example, the shapes in fig 8 would 

belong in the same category, 1-2-2-1, since two of the tiles have only one neighbour, while the 

other two have two.  

  

Figure 8 

When we now count and record these into their respective categories, it also makes it easier to 

see if we have counted some configurations twice. A mirror image of one of our unique shapes 

must also have the same amount of neighbours. We are also more likely to observe a pattern 

when categorising it this way, which will help us when generalising.  

As with the polyominoes, these shapes that can be made with the tiles will be considered 

identical if they are a reflection or rotation of a shape we have already counted. This is because 

we are interested in creating a unique gameboard.  

2-2-2-2 

There are only 3 possibilities in this group:  
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Figure 9 

1-2-2-1 

This is the biggest group, which is why we first look at how many ways there are to make a 

unique shape with 3 static tiles while still able to maintain this neighbour ratio (1-2-1), onto 

which we add the 4th tile.  
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Figure 10 
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1-3-1-1 

 

Figure 11 

2-3-3-2 

 

Figure 12 

1-2-2-3 

  

Figure 13 
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In our case, we find 50 unique shapes. After taking on the manual labour that is counting the 

shapes, it’s easy to take into account the factors that result in a unique gameboard configuration, 

like placement (since we now consider the tiles to be unique), rotation, and which side is facing 

up. There are some shapes whose mirror image will be unique, due to the tiles themselves having 

“dot placements” in different places. If the shapes have a trivial mirror symmetry, they will 

contribute with a factor of 1 and will not be counted. We estimate the number of shapes where 

the mirror image will give us a unique gameboard at 42. This gives us (50+42) in our equation.  

We have found (50+42) ways to arrange the tiles in a unique shape. We have 4 unique tiles that 

can be placed in 4 different slots, depending on the shape, and since they are unique, the order 

does matter. We now need to use a combination of the formulas [1]-[4] to find the final number 

of gameboard configurations. We have 4 unique tiles, each of which can be flipped to the other 

side, and because all sides are unique it means we allow all the tiles to be the same colour and 

that order does matter. This means we need to use formula [1]. We have 4 tiles and there are 2 

sides to each tile, which means there are 2ၪ=16 ways to combine the tiles. When we introduce 

rotation, we see that each tile can be rotated 4 times. This means we use formula [1] and get 

4ၪ=256 ways we can rotate our 4 tiles. What we mean by this is that we may have sort of original 

position of the tiles in regard to rotation, and there are 255 ways to alter this original position.  

Lastly, we use formula [2] to find how many ways there are to place each tile into a slot. Here, a 

slot is referring to a vacant space in one of the gameboard shapes we have found. There are 4 

tiles and 4 slots, order obviously does matter, and we do not allow repetition since the tiles are 

unique. This leads us to ସ!ሺସ−ସሻ! = Ͷ! = ʹͶ. But again, we encounter an overcounting problem, to do 

with symmetry. Now, if we use one of our symmetric shapes and state that all placements of the 

tiles will result in a unique gameboard, we’d be wrong. Let’s look at an example, where I have 

used different colours to differentiate between the unique tiles. 
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Figure 14 

The first gameboard is the same as the second, only the second is rotated. Yet we have counted 

both of them as unique gameboards. This problem occurs with all the gameboard shapes that 

have rotational symmetry. The number of rotational symmetries will vary, this board has 2, while 

some might have 4. If we find the total number of rotational symmetries for all the boards and 

divide the final number of configurations with this, we will find the number of unique 

gameboard configurations.  

   

  

Figure 15 

Figure 14 has 2 rotational symmetries, as do all the boards in figure 15. The boards in figure 16 

has 4 rotational symmetries.  
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Figure 16 

This means we must divide our number with 24.  

We now take everything into consideration.  ሺͷͲ + Ͷʹሻ ∙ Ͷସ ∙ ʹସ ∙ Ͷ!ʹͶ = ͵͹͸ ͺ͵ʹ 

There are 376 832 ways to make a totally unique gameboard using 4 distinct tiles. Although it is 

entirely possible to run all these configurations through a computer program to see if there is a 

possible solution, it is a large enough number to assume that they probably haven’t been. 

Another interesting result we can get from all the information we’ve gathered, is that we can also 

calculate how many ways we can vary one gameboard shape just by flipping, rotating and 

different tile order. If we have one of the shapes with rotational symmetry, we must of course 

divide by the rotational symmetries. If we have an arbitrary gameboard shape, we take the 

number of possible combinations when we account for flipping, rotation and placement, and we 

arrive at Ͷସ ∙ ʹସ ∙ Ͷ! = ͻͺ͵ͲͶ ways. Though I could make an educated guess as to which extra 

shape of our 50 could possibly also have a solution for every variation, I do not have a computer 

program to do this and it is quite laborious to try finding a solution for all 98304 variations.  

The main reason this is so complicated, is because we are able to connect tiles by half edges, not 

only whole ones. If we look at the shapes we are able to make with 4 tiles when only allowed to 

connect by a whole edge, we get these: 

 

Figure 17 
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The 5 free tetrominoes. Not surprising, considering this is the very definition of a polyomino. If 

we had 5 tiles instead of 4, we would have the 12 free pentominoes, and so on. This counting has 

already been done for us, though there is no exact equation for it. Since there is no exact equation 

that gives the number of polyominoes for n squares, we won’t find one when we further 

complicate things by being able to connect via a half-edge either. These “half-polyominoes” can 

be reminiscent of the pseudo- and quasi- polyominoes, both of which have quite interesting 

properties (Golomb, 1994, p. 85).   

Approximating a formula 
Though there is no formula for the number n-ominoes P(n), there are several approximations that 

give us a ballpark. One of these is the inequality 𝑃ሺ𝑛 + ͳሻ < ሺʹ𝑛 + ͳሻ𝑃ሺ𝑛ሻ, based on the 

observation that one can at most place the extra square 2n+1 places (Golomb, 1994, p. 78). This 

gives us an upper bound on just how large the number of n-ominoes could be and is much more 

general as it doesn’t depend on us knowing what the previous term is. The inequality 𝑃ሺ𝑛 + ͳሻ < ሺʹ𝑛 + ͳሻ𝑃ሺ𝑛ሻ gives us factorial-like bounds, let’s insert some numbers for n so we 

can compare. Inserting 4, 5 and 6 for n gives us 𝑃ሺͷሻ < Ͷͷ, 𝑃ሺ͸ሻ < ͳͷ͸, 𝑃ሺ͹ሻ < ͷʹͷ. With the 

actual number of polyominoes for n=4, 5, 6 from table [͵] being 12, 35 and 108, respectively. 

This approximation is far from close, but not too bad either. Another approximation for the upper 

bound of P(n) that has a simpler expression is the inequality 𝑃ሺ𝑛ሻ < ሺଶ𝑛ሻ!ଶ𝑛𝑛!, which is not 

dependent on us knowing the previous term (Golomb, 1994, p. 78). The simplicity and 

practicality of this upper bound is appealing, but the drawback here is that it gives a much larger 

upper bound, for example 𝑃ሺͷሻ < ͻͶͷ, as opposed to 45 like in the other approximation. 

Since my quest to find all the unique shapes the gameboard can have is essentially finding all the 

half-polyominoes for 4 squares, there must be a similar formula that can approximate this for n 

tiles. If we make a new table with the number of half-polyominoes for 1, 2, 3, and 4 squares, we 

can compare this with some of the numbers from table [3] that shows the numbers of 

polyominoes for n squares.  

 1 square 2 squares 3 squares 4 squares 

Number of polyominoes 1 1 2 5 

Number of half-polyominoes 1 2 8 50 

Table 4 
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If we try a similar approach, we don’t have nearly as much data to make a very accurate 

approximation. Hopefully, however, we can approximate to a degree where we can be pretty 

confident that the number of half-polyominoes will not exceed our approximation. When placing 

an extra square on the half-polyominoes, some shapes have more options than others. It would 

only make sense for the half-polyomino approximation to be larger than the approximation for 

the polyominoes, since there are more options. In fact, for each option for placement in the 

polyomino-case, there can be at most two extra placement options in the half-polyomino case, 

since the extra square can move with a half-line in two directions. This would mean that a rough 

approximation could be  𝑃ℎሺ𝑛 + ͳሻ < ͵ሺʹ𝑛 + ͳሻ𝑃ℎሺ𝑛ሻ. It’s already obvious that this will 

overestimate severely, but the point is to find an upper bound for which we are confident the 

actual number won’t exceed. Using this approximation to approximate for 𝑃ℎሺͶሻ, we get 168, 

compared to 50, which we found in an earlier section. This isn’t too bad of an approximation. 

For 𝑃ℎሺͷሻ, we get 1350.   

Polyominoes in Quadrillion 
We see that polyominoes can appear in the gameboard, as we can place the 4 tiles in ways that 

form the 5 free tetrominoes. There are also 12 game pieces, these are rounded to fit into the 

grooves, but in this illustration they will be straight-edged: 

 

Figure 18 
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These are all a type of polyomino, in fact they are all pentominoes apart from the two first ones.  

From left to right, we have the skew tetromino, the right tromino, and the L, N, Y, W, F, U, T, P, 

Z, V pentominoes. There are 12 pentominoes in total, but the X and I pentomino are not game 

pieces in Quadrillion. Supposedly, this combination of polyominoes will solve any configuration 

of the tiles, as long as it’s one of the allowed shapes stated in the rulebook. As mentioned before, 

there is no reason to believe these game pieces won’t also work with other shapes; I found a 

solution for many of the alternative shapes that aren’t in the rulebook, but since they haven’t all 

been tested we can’t guarantee that there will be a solution. Pentominoes have many fascinating 

qualities, so it’s no wonder many of them are game pieces here.  

Execution 

I wanted to explore using polyominoes in math class, to see if it could be resourceful for the 

students. The sort of puzzle problems we encounter when looking at polyominoes may be 

regarded by some as purely recreational mathematics, which I disagree with. When looking at 

the age group, they are still developing the basic skills and operations that are needed to solve 

these tasks. For this particular lesson, I wanted to not only imagine how I would change and 

differentiate the activities for older vs younger students, but actually try it out on both a 6th grade 

class and my own students in 1st grade. I had some alternative activities that were a bit easier for 

the 1st graders to try if they found it hard, but they were very resilient and were able to do the 

same activities as the 6th graders except for the last few steps. I didn’t aim for this lesson to be 

very coherent, but for it to be a fun exploration of combinatorial geometry through polyominoes.  

First, I did a quick introduction to the topic: what is the definition of a polyomino? I didn’t want 

to use more than 5 minutes explaining before they try things out for themselves. Simply: 

“polyominoes are geometric shapes that are made by connecting a number of squares together, 

edge to edge.” Then I show them the only domino that exist, and we agree that there is only one, 

because every other configuration will just be a repetition. I then show them the different 

trominoes, and we agree what configurations are unique and which ones are not. The students 

should now be ready to find the tetrominoes on their own. The 6th graders did this by drawing in 

their math notebook, while the 1st graders were put in small groups and were given building 

blocks. Discovering these sparked a genuine reaction from the 6th grade students, who recognised 

these shapes almost immediately. Most knew them from tetris, and some from other mobile 
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puzzle games, and they realised then why tetris is called tetris. After finding all the tetrominoes, I 

tasked them with finding all the pentominoes. Most of the 6th graders and a few of the 1st graders 

used the tetrominoes and added a square to them in different places to find the pentominoes.  

After a quick summary, where we agreed on how many pentominoes there are and what they 

looked like, we moved over to discuss pentominoes further. The 6th graders were more curious 

and asked many questions which lead to a longer discussion, while the 1st graders were anxious 

to get their next task. Since I had more time with the 6th graders, and they seemed interested 

enough, I decided to have them make a larger version of one of the pentominoes out of nine of 

the pentominoes. They found this very fun, and I heard them discussing circumference, area, and 

odd and even numbers.  

For the “main activity”, I introduced the rules of quadrillion and showed the variations you could 

do to the gameboard, and showcasing the game pieces (which they recognised). The start of the 

task was the same for both the 6th graders and the 1st graders. They were told to pick one tile and 

find which game pieces could fill that tile. This served as a good warm-up for the older students 

and gave the 1st graders a chance to test out which ones wouldn’t work and why. If they had a 

tile that had 2 spots that couldn’t be filled, there would be 14 open spots. If they tried to put 3 

pentominoes in there, they would never fit. For some, this took a long time to find out. Most of 

them would just try every game piece possible until they found a solution. With a nudge in the 

right direction, some came to the conclusion that this wouldn’t work, and neither would using the 

tromino. This meant that the tetromino would be essential to solving all single-tile puzzles with 

the exception of the tile with only 1 spot missing. When I then told them they could progress to 2 

tiles, they utilized this knowledge and started counting how many open spots there were. Most 1st 

graders stuck to 1 or 2 tiles, while around 5 of them tried 4 tiles as well. Mind you, it doesn’t 

state in the rulebook that there is a solution for 1, 2 or 3 tiles, but we didn’t run into any 

problems assuming this would work. All the 6th graders moved on progressively from 1 tile up to 

4 tiles, and some were frustrated to find that having found the solution to 1 tile would be little to 

no help to them when searching for the solution to 2 tiles. After a long period of playful 

exploration, both the 6th graders and 1st graders were given the option to play against eachother. 

They ditched the tromino and tetromino, and we brought back the I and X pentomino we used 

earlier in the pentomino task. They agreed on a gameboard, did rock, paper, scissors to find 
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which one should start, and distributed the game pieces evenly. They intermittently place game 

pieces on the board, and the goal is to be the last one to be able to place a game piece on the 

board. Though the game-portion of this activity weighs more heavily than the mathematical 

thinking-portion, the students must still be strategic and try to obstruct their opponent without 

obstructing themselves. This activity was popular with both age groups, but the 1st graders 

probably learnt the most from it, as they would really try to stretch their brain to think several 

steps ahead.  

 

I had a good experience doing this lesson with both age groups, both of which are very eager to 

learn in the first place, but were extra eager to try something a bit different. It was nice to see 

everyone engaged in the same activity, even students who are usually more apprehensive when it 

comes to math. Combinatorial tasks and combinatorial geometry puzzles have a low threshold, 

meaning it doesn’t take much for anyone regardless of age and ability to at least attempt to solve 

them. Especially for the Quadrillion portion of the lesson, where there wasn’t a clear divide 

between the stronger and weaker students when it came to solving the boards. Partly because 

they had different gameboards, and partly because some got lucky with their first placement. Of 

course, as with all puzzles and brain teasers, these activities brought on both genuine joy and 

excitement and also a fair bit of frustration if they almost got it right. Which of course means 

they had to start again from scratch. I was pleased, if they didn’t care and weren’t trying, they 

wouldn’t be frustrated.  
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